Properties

Label 1620.4.a.h.1.4
Level $1620$
Weight $4$
Character 1620.1
Self dual yes
Analytic conductor $95.583$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1620,4,Mod(1,1620)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1620, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1620.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1620 = 2^{2} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1620.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(95.5830942093\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.438516.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 20x^{2} + 48 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 180)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(4.75789\) of defining polynomial
Character \(\chi\) \(=\) 1620.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.00000 q^{5} +17.9035 q^{7} -39.5614 q^{11} -23.4839 q^{13} +16.2456 q^{17} -28.3443 q^{19} +105.531 q^{23} +25.0000 q^{25} +99.8442 q^{29} -321.899 q^{31} +89.5174 q^{35} -205.760 q^{37} -327.644 q^{41} +375.061 q^{43} -88.9336 q^{47} -22.4655 q^{49} -85.0314 q^{53} -197.807 q^{55} -796.806 q^{59} -317.936 q^{61} -117.420 q^{65} -525.490 q^{67} +760.854 q^{71} -101.076 q^{73} -708.287 q^{77} -225.633 q^{79} +503.051 q^{83} +81.2278 q^{85} -868.775 q^{89} -420.444 q^{91} -141.722 q^{95} +1749.44 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 20 q^{5} - 13 q^{7} - 57 q^{11} + 14 q^{13} - 3 q^{17} - 31 q^{19} + 69 q^{23} + 100 q^{25} + 69 q^{29} - 58 q^{31} - 65 q^{35} - 388 q^{37} - 396 q^{41} + 371 q^{43} - 129 q^{47} + 111 q^{49} - 1356 q^{53}+ \cdots - 1495 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) 17.9035 0.966697 0.483348 0.875428i \(-0.339420\pi\)
0.483348 + 0.875428i \(0.339420\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −39.5614 −1.08438 −0.542191 0.840255i \(-0.682405\pi\)
−0.542191 + 0.840255i \(0.682405\pi\)
\(12\) 0 0
\(13\) −23.4839 −0.501020 −0.250510 0.968114i \(-0.580598\pi\)
−0.250510 + 0.968114i \(0.580598\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 16.2456 0.231772 0.115886 0.993263i \(-0.463029\pi\)
0.115886 + 0.993263i \(0.463029\pi\)
\(18\) 0 0
\(19\) −28.3443 −0.342244 −0.171122 0.985250i \(-0.554739\pi\)
−0.171122 + 0.985250i \(0.554739\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 105.531 0.956728 0.478364 0.878162i \(-0.341230\pi\)
0.478364 + 0.878162i \(0.341230\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 99.8442 0.639331 0.319666 0.947530i \(-0.396429\pi\)
0.319666 + 0.947530i \(0.396429\pi\)
\(30\) 0 0
\(31\) −321.899 −1.86499 −0.932496 0.361180i \(-0.882374\pi\)
−0.932496 + 0.361180i \(0.882374\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 89.5174 0.432320
\(36\) 0 0
\(37\) −205.760 −0.914237 −0.457119 0.889406i \(-0.651118\pi\)
−0.457119 + 0.889406i \(0.651118\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −327.644 −1.24803 −0.624017 0.781411i \(-0.714500\pi\)
−0.624017 + 0.781411i \(0.714500\pi\)
\(42\) 0 0
\(43\) 375.061 1.33015 0.665073 0.746778i \(-0.268400\pi\)
0.665073 + 0.746778i \(0.268400\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −88.9336 −0.276006 −0.138003 0.990432i \(-0.544068\pi\)
−0.138003 + 0.990432i \(0.544068\pi\)
\(48\) 0 0
\(49\) −22.4655 −0.0654972
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −85.0314 −0.220377 −0.110188 0.993911i \(-0.535145\pi\)
−0.110188 + 0.993911i \(0.535145\pi\)
\(54\) 0 0
\(55\) −197.807 −0.484951
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −796.806 −1.75823 −0.879113 0.476614i \(-0.841864\pi\)
−0.879113 + 0.476614i \(0.841864\pi\)
\(60\) 0 0
\(61\) −317.936 −0.667337 −0.333669 0.942690i \(-0.608287\pi\)
−0.333669 + 0.942690i \(0.608287\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −117.420 −0.224063
\(66\) 0 0
\(67\) −525.490 −0.958192 −0.479096 0.877763i \(-0.659035\pi\)
−0.479096 + 0.877763i \(0.659035\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 760.854 1.27179 0.635893 0.771778i \(-0.280632\pi\)
0.635893 + 0.771778i \(0.280632\pi\)
\(72\) 0 0
\(73\) −101.076 −0.162056 −0.0810279 0.996712i \(-0.525820\pi\)
−0.0810279 + 0.996712i \(0.525820\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −708.287 −1.04827
\(78\) 0 0
\(79\) −225.633 −0.321338 −0.160669 0.987008i \(-0.551365\pi\)
−0.160669 + 0.987008i \(0.551365\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 503.051 0.665266 0.332633 0.943056i \(-0.392063\pi\)
0.332633 + 0.943056i \(0.392063\pi\)
\(84\) 0 0
\(85\) 81.2278 0.103652
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −868.775 −1.03472 −0.517359 0.855768i \(-0.673085\pi\)
−0.517359 + 0.855768i \(0.673085\pi\)
\(90\) 0 0
\(91\) −420.444 −0.484335
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −141.722 −0.153056
\(96\) 0 0
\(97\) 1749.44 1.83123 0.915613 0.402060i \(-0.131706\pi\)
0.915613 + 0.402060i \(0.131706\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1294.16 1.27498 0.637492 0.770457i \(-0.279972\pi\)
0.637492 + 0.770457i \(0.279972\pi\)
\(102\) 0 0
\(103\) 191.807 0.183488 0.0917441 0.995783i \(-0.470756\pi\)
0.0917441 + 0.995783i \(0.470756\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1417.70 1.28089 0.640443 0.768006i \(-0.278751\pi\)
0.640443 + 0.768006i \(0.278751\pi\)
\(108\) 0 0
\(109\) 129.747 0.114014 0.0570071 0.998374i \(-0.481844\pi\)
0.0570071 + 0.998374i \(0.481844\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −830.855 −0.691684 −0.345842 0.938293i \(-0.612407\pi\)
−0.345842 + 0.938293i \(0.612407\pi\)
\(114\) 0 0
\(115\) 527.655 0.427862
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 290.852 0.224053
\(120\) 0 0
\(121\) 234.104 0.175886
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) −2385.67 −1.66688 −0.833441 0.552608i \(-0.813633\pi\)
−0.833441 + 0.552608i \(0.813633\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 904.316 0.603133 0.301567 0.953445i \(-0.402490\pi\)
0.301567 + 0.953445i \(0.402490\pi\)
\(132\) 0 0
\(133\) −507.462 −0.330846
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −808.364 −0.504111 −0.252056 0.967713i \(-0.581107\pi\)
−0.252056 + 0.967713i \(0.581107\pi\)
\(138\) 0 0
\(139\) −2864.72 −1.74807 −0.874037 0.485859i \(-0.838507\pi\)
−0.874037 + 0.485859i \(0.838507\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 929.056 0.543298
\(144\) 0 0
\(145\) 499.221 0.285918
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 679.411 0.373554 0.186777 0.982402i \(-0.440196\pi\)
0.186777 + 0.982402i \(0.440196\pi\)
\(150\) 0 0
\(151\) −2386.23 −1.28602 −0.643008 0.765859i \(-0.722314\pi\)
−0.643008 + 0.765859i \(0.722314\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −1609.49 −0.834050
\(156\) 0 0
\(157\) −2698.35 −1.37167 −0.685833 0.727759i \(-0.740562\pi\)
−0.685833 + 0.727759i \(0.740562\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1889.37 0.924866
\(162\) 0 0
\(163\) 1500.47 0.721017 0.360509 0.932756i \(-0.382603\pi\)
0.360509 + 0.932756i \(0.382603\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 3429.43 1.58909 0.794543 0.607208i \(-0.207710\pi\)
0.794543 + 0.607208i \(0.207710\pi\)
\(168\) 0 0
\(169\) −1645.51 −0.748979
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2007.94 0.882435 0.441217 0.897400i \(-0.354547\pi\)
0.441217 + 0.897400i \(0.354547\pi\)
\(174\) 0 0
\(175\) 447.587 0.193339
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −3836.95 −1.60216 −0.801082 0.598555i \(-0.795742\pi\)
−0.801082 + 0.598555i \(0.795742\pi\)
\(180\) 0 0
\(181\) −1822.10 −0.748263 −0.374131 0.927376i \(-0.622059\pi\)
−0.374131 + 0.927376i \(0.622059\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −1028.80 −0.408859
\(186\) 0 0
\(187\) −642.697 −0.251330
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −4195.97 −1.58958 −0.794790 0.606885i \(-0.792419\pi\)
−0.794790 + 0.606885i \(0.792419\pi\)
\(192\) 0 0
\(193\) −1810.36 −0.675194 −0.337597 0.941291i \(-0.609614\pi\)
−0.337597 + 0.941291i \(0.609614\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −3827.21 −1.38415 −0.692074 0.721826i \(-0.743303\pi\)
−0.692074 + 0.721826i \(0.743303\pi\)
\(198\) 0 0
\(199\) −477.853 −0.170222 −0.0851108 0.996371i \(-0.527124\pi\)
−0.0851108 + 0.996371i \(0.527124\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 1787.56 0.618039
\(204\) 0 0
\(205\) −1638.22 −0.558137
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1121.34 0.371123
\(210\) 0 0
\(211\) −216.265 −0.0705607 −0.0352803 0.999377i \(-0.511232\pi\)
−0.0352803 + 0.999377i \(0.511232\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1875.31 0.594860
\(216\) 0 0
\(217\) −5763.11 −1.80288
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −381.509 −0.116123
\(222\) 0 0
\(223\) −5380.77 −1.61580 −0.807899 0.589321i \(-0.799395\pi\)
−0.807899 + 0.589321i \(0.799395\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 554.590 0.162156 0.0810780 0.996708i \(-0.474164\pi\)
0.0810780 + 0.996708i \(0.474164\pi\)
\(228\) 0 0
\(229\) 3410.67 0.984206 0.492103 0.870537i \(-0.336228\pi\)
0.492103 + 0.870537i \(0.336228\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −2640.60 −0.742452 −0.371226 0.928543i \(-0.621062\pi\)
−0.371226 + 0.928543i \(0.621062\pi\)
\(234\) 0 0
\(235\) −444.668 −0.123434
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 182.951 0.0495151 0.0247575 0.999693i \(-0.492119\pi\)
0.0247575 + 0.999693i \(0.492119\pi\)
\(240\) 0 0
\(241\) −7433.77 −1.98693 −0.993467 0.114117i \(-0.963596\pi\)
−0.993467 + 0.114117i \(0.963596\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −112.328 −0.0292912
\(246\) 0 0
\(247\) 665.635 0.171471
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 2170.36 0.545785 0.272893 0.962045i \(-0.412020\pi\)
0.272893 + 0.962045i \(0.412020\pi\)
\(252\) 0 0
\(253\) −4174.96 −1.03746
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 78.3663 0.0190209 0.00951043 0.999955i \(-0.496973\pi\)
0.00951043 + 0.999955i \(0.496973\pi\)
\(258\) 0 0
\(259\) −3683.82 −0.883790
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −1216.81 −0.285291 −0.142646 0.989774i \(-0.545561\pi\)
−0.142646 + 0.989774i \(0.545561\pi\)
\(264\) 0 0
\(265\) −425.157 −0.0985555
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −1249.44 −0.283196 −0.141598 0.989924i \(-0.545224\pi\)
−0.141598 + 0.989924i \(0.545224\pi\)
\(270\) 0 0
\(271\) 7675.60 1.72051 0.860257 0.509860i \(-0.170303\pi\)
0.860257 + 0.509860i \(0.170303\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −989.035 −0.216877
\(276\) 0 0
\(277\) 731.747 0.158723 0.0793617 0.996846i \(-0.474712\pi\)
0.0793617 + 0.996846i \(0.474712\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −1129.95 −0.239883 −0.119942 0.992781i \(-0.538271\pi\)
−0.119942 + 0.992781i \(0.538271\pi\)
\(282\) 0 0
\(283\) −2451.26 −0.514883 −0.257442 0.966294i \(-0.582880\pi\)
−0.257442 + 0.966294i \(0.582880\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −5865.96 −1.20647
\(288\) 0 0
\(289\) −4649.08 −0.946282
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 6245.86 1.24535 0.622674 0.782481i \(-0.286046\pi\)
0.622674 + 0.782481i \(0.286046\pi\)
\(294\) 0 0
\(295\) −3984.03 −0.786302
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −2478.28 −0.479340
\(300\) 0 0
\(301\) 6714.90 1.28585
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −1589.68 −0.298442
\(306\) 0 0
\(307\) 10638.4 1.97774 0.988870 0.148782i \(-0.0475354\pi\)
0.988870 + 0.148782i \(0.0475354\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 37.2693 0.00679533 0.00339767 0.999994i \(-0.498918\pi\)
0.00339767 + 0.999994i \(0.498918\pi\)
\(312\) 0 0
\(313\) 947.572 0.171118 0.0855590 0.996333i \(-0.472732\pi\)
0.0855590 + 0.996333i \(0.472732\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 10576.6 1.87395 0.936976 0.349394i \(-0.113612\pi\)
0.936976 + 0.349394i \(0.113612\pi\)
\(318\) 0 0
\(319\) −3949.98 −0.693279
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −460.469 −0.0793225
\(324\) 0 0
\(325\) −587.098 −0.100204
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −1592.22 −0.266814
\(330\) 0 0
\(331\) −8719.36 −1.44791 −0.723957 0.689845i \(-0.757678\pi\)
−0.723957 + 0.689845i \(0.757678\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −2627.45 −0.428516
\(336\) 0 0
\(337\) −7773.62 −1.25655 −0.628273 0.777993i \(-0.716238\pi\)
−0.628273 + 0.777993i \(0.716238\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 12734.8 2.02236
\(342\) 0 0
\(343\) −6543.10 −1.03001
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 7089.94 1.09685 0.548427 0.836199i \(-0.315227\pi\)
0.548427 + 0.836199i \(0.315227\pi\)
\(348\) 0 0
\(349\) 12085.5 1.85364 0.926819 0.375509i \(-0.122532\pi\)
0.926819 + 0.375509i \(0.122532\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −8976.95 −1.35353 −0.676763 0.736201i \(-0.736618\pi\)
−0.676763 + 0.736201i \(0.736618\pi\)
\(354\) 0 0
\(355\) 3804.27 0.568760
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 2038.36 0.299667 0.149834 0.988711i \(-0.452126\pi\)
0.149834 + 0.988711i \(0.452126\pi\)
\(360\) 0 0
\(361\) −6055.60 −0.882869
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −505.381 −0.0724736
\(366\) 0 0
\(367\) 7047.82 1.00243 0.501217 0.865322i \(-0.332886\pi\)
0.501217 + 0.865322i \(0.332886\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −1522.36 −0.213037
\(372\) 0 0
\(373\) −4285.50 −0.594892 −0.297446 0.954739i \(-0.596135\pi\)
−0.297446 + 0.954739i \(0.596135\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −2344.73 −0.320318
\(378\) 0 0
\(379\) −1366.86 −0.185253 −0.0926267 0.995701i \(-0.529526\pi\)
−0.0926267 + 0.995701i \(0.529526\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −12454.8 −1.66164 −0.830822 0.556537i \(-0.812130\pi\)
−0.830822 + 0.556537i \(0.812130\pi\)
\(384\) 0 0
\(385\) −3541.43 −0.468800
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −436.562 −0.0569012 −0.0284506 0.999595i \(-0.509057\pi\)
−0.0284506 + 0.999595i \(0.509057\pi\)
\(390\) 0 0
\(391\) 1714.41 0.221743
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −1128.17 −0.143707
\(396\) 0 0
\(397\) −7117.74 −0.899822 −0.449911 0.893073i \(-0.648544\pi\)
−0.449911 + 0.893073i \(0.648544\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −7769.47 −0.967553 −0.483777 0.875192i \(-0.660735\pi\)
−0.483777 + 0.875192i \(0.660735\pi\)
\(402\) 0 0
\(403\) 7559.45 0.934399
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 8140.16 0.991383
\(408\) 0 0
\(409\) −12832.6 −1.55142 −0.775711 0.631089i \(-0.782608\pi\)
−0.775711 + 0.631089i \(0.782608\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −14265.6 −1.69967
\(414\) 0 0
\(415\) 2515.26 0.297516
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 14903.2 1.73764 0.868818 0.495132i \(-0.164880\pi\)
0.868818 + 0.495132i \(0.164880\pi\)
\(420\) 0 0
\(421\) −1218.77 −0.141091 −0.0705456 0.997509i \(-0.522474\pi\)
−0.0705456 + 0.997509i \(0.522474\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 406.139 0.0463544
\(426\) 0 0
\(427\) −5692.17 −0.645113
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 9989.48 1.11642 0.558209 0.829700i \(-0.311489\pi\)
0.558209 + 0.829700i \(0.311489\pi\)
\(432\) 0 0
\(433\) −6010.34 −0.667063 −0.333532 0.942739i \(-0.608240\pi\)
−0.333532 + 0.942739i \(0.608240\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −2991.20 −0.327434
\(438\) 0 0
\(439\) 10234.7 1.11270 0.556348 0.830949i \(-0.312202\pi\)
0.556348 + 0.830949i \(0.312202\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −4958.56 −0.531802 −0.265901 0.964000i \(-0.585669\pi\)
−0.265901 + 0.964000i \(0.585669\pi\)
\(444\) 0 0
\(445\) −4343.88 −0.462740
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 7715.87 0.810989 0.405495 0.914097i \(-0.367099\pi\)
0.405495 + 0.914097i \(0.367099\pi\)
\(450\) 0 0
\(451\) 12962.0 1.35335
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −2102.22 −0.216601
\(456\) 0 0
\(457\) −491.734 −0.0503333 −0.0251667 0.999683i \(-0.508012\pi\)
−0.0251667 + 0.999683i \(0.508012\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −3213.49 −0.324658 −0.162329 0.986737i \(-0.551901\pi\)
−0.162329 + 0.986737i \(0.551901\pi\)
\(462\) 0 0
\(463\) 3324.70 0.333719 0.166860 0.985981i \(-0.446637\pi\)
0.166860 + 0.985981i \(0.446637\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −11322.6 −1.12194 −0.560972 0.827835i \(-0.689572\pi\)
−0.560972 + 0.827835i \(0.689572\pi\)
\(468\) 0 0
\(469\) −9408.10 −0.926281
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −14837.9 −1.44239
\(474\) 0 0
\(475\) −708.608 −0.0684487
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 7182.32 0.685112 0.342556 0.939497i \(-0.388707\pi\)
0.342556 + 0.939497i \(0.388707\pi\)
\(480\) 0 0
\(481\) 4832.05 0.458051
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 8747.21 0.818949
\(486\) 0 0
\(487\) −242.899 −0.0226012 −0.0113006 0.999936i \(-0.503597\pi\)
−0.0113006 + 0.999936i \(0.503597\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −3491.36 −0.320902 −0.160451 0.987044i \(-0.551295\pi\)
−0.160451 + 0.987044i \(0.551295\pi\)
\(492\) 0 0
\(493\) 1622.02 0.148179
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 13621.9 1.22943
\(498\) 0 0
\(499\) −714.219 −0.0640738 −0.0320369 0.999487i \(-0.510199\pi\)
−0.0320369 + 0.999487i \(0.510199\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 18948.7 1.67968 0.839842 0.542832i \(-0.182648\pi\)
0.839842 + 0.542832i \(0.182648\pi\)
\(504\) 0 0
\(505\) 6470.78 0.570190
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −11841.3 −1.03115 −0.515574 0.856845i \(-0.672421\pi\)
−0.515574 + 0.856845i \(0.672421\pi\)
\(510\) 0 0
\(511\) −1809.62 −0.156659
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 959.034 0.0820584
\(516\) 0 0
\(517\) 3518.34 0.299296
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 21836.5 1.83623 0.918114 0.396317i \(-0.129712\pi\)
0.918114 + 0.396317i \(0.129712\pi\)
\(522\) 0 0
\(523\) 6595.18 0.551409 0.275705 0.961242i \(-0.411089\pi\)
0.275705 + 0.961242i \(0.411089\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −5229.43 −0.432253
\(528\) 0 0
\(529\) −1030.19 −0.0846708
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 7694.36 0.625290
\(534\) 0 0
\(535\) 7088.52 0.572829
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 888.768 0.0710240
\(540\) 0 0
\(541\) −7877.56 −0.626031 −0.313015 0.949748i \(-0.601339\pi\)
−0.313015 + 0.949748i \(0.601339\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 648.737 0.0509887
\(546\) 0 0
\(547\) 15421.0 1.20540 0.602702 0.797966i \(-0.294091\pi\)
0.602702 + 0.797966i \(0.294091\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −2830.01 −0.218807
\(552\) 0 0
\(553\) −4039.62 −0.310637
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −17146.1 −1.30431 −0.652156 0.758085i \(-0.726135\pi\)
−0.652156 + 0.758085i \(0.726135\pi\)
\(558\) 0 0
\(559\) −8807.90 −0.666430
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −13330.5 −0.997892 −0.498946 0.866633i \(-0.666279\pi\)
−0.498946 + 0.866633i \(0.666279\pi\)
\(564\) 0 0
\(565\) −4154.27 −0.309330
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 18582.1 1.36907 0.684536 0.728979i \(-0.260005\pi\)
0.684536 + 0.728979i \(0.260005\pi\)
\(570\) 0 0
\(571\) 5572.92 0.408440 0.204220 0.978925i \(-0.434534\pi\)
0.204220 + 0.978925i \(0.434534\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 2638.28 0.191346
\(576\) 0 0
\(577\) −11047.6 −0.797083 −0.398542 0.917150i \(-0.630484\pi\)
−0.398542 + 0.917150i \(0.630484\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 9006.37 0.643111
\(582\) 0 0
\(583\) 3363.96 0.238973
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −20.2551 −0.00142422 −0.000712110 1.00000i \(-0.500227\pi\)
−0.000712110 1.00000i \(0.500227\pi\)
\(588\) 0 0
\(589\) 9124.00 0.638282
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −21868.4 −1.51438 −0.757190 0.653194i \(-0.773428\pi\)
−0.757190 + 0.653194i \(0.773428\pi\)
\(594\) 0 0
\(595\) 1454.26 0.100200
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 9359.66 0.638439 0.319220 0.947681i \(-0.396579\pi\)
0.319220 + 0.947681i \(0.396579\pi\)
\(600\) 0 0
\(601\) 1007.30 0.0683668 0.0341834 0.999416i \(-0.489117\pi\)
0.0341834 + 0.999416i \(0.489117\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1170.52 0.0786585
\(606\) 0 0
\(607\) −6975.60 −0.466443 −0.233222 0.972424i \(-0.574927\pi\)
−0.233222 + 0.972424i \(0.574927\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 2088.51 0.138285
\(612\) 0 0
\(613\) 25416.8 1.67468 0.837338 0.546686i \(-0.184111\pi\)
0.837338 + 0.546686i \(0.184111\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 9850.85 0.642755 0.321378 0.946951i \(-0.395854\pi\)
0.321378 + 0.946951i \(0.395854\pi\)
\(618\) 0 0
\(619\) 17017.0 1.10496 0.552481 0.833526i \(-0.313681\pi\)
0.552481 + 0.833526i \(0.313681\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −15554.1 −1.00026
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −3342.69 −0.211895
\(630\) 0 0
\(631\) 6738.60 0.425134 0.212567 0.977147i \(-0.431818\pi\)
0.212567 + 0.977147i \(0.431818\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −11928.4 −0.745452
\(636\) 0 0
\(637\) 527.579 0.0328154
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 6290.15 0.387591 0.193796 0.981042i \(-0.437920\pi\)
0.193796 + 0.981042i \(0.437920\pi\)
\(642\) 0 0
\(643\) 8883.66 0.544848 0.272424 0.962177i \(-0.412175\pi\)
0.272424 + 0.962177i \(0.412175\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 13436.4 0.816444 0.408222 0.912883i \(-0.366149\pi\)
0.408222 + 0.912883i \(0.366149\pi\)
\(648\) 0 0
\(649\) 31522.8 1.90659
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 17166.0 1.02873 0.514363 0.857572i \(-0.328028\pi\)
0.514363 + 0.857572i \(0.328028\pi\)
\(654\) 0 0
\(655\) 4521.58 0.269729
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −20418.8 −1.20699 −0.603493 0.797369i \(-0.706225\pi\)
−0.603493 + 0.797369i \(0.706225\pi\)
\(660\) 0 0
\(661\) 5244.03 0.308577 0.154288 0.988026i \(-0.450692\pi\)
0.154288 + 0.988026i \(0.450692\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −2537.31 −0.147959
\(666\) 0 0
\(667\) 10536.7 0.611666
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 12578.0 0.723649
\(672\) 0 0
\(673\) 14954.5 0.856542 0.428271 0.903650i \(-0.359123\pi\)
0.428271 + 0.903650i \(0.359123\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −27051.4 −1.53570 −0.767850 0.640629i \(-0.778674\pi\)
−0.767850 + 0.640629i \(0.778674\pi\)
\(678\) 0 0
\(679\) 31321.1 1.77024
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −26054.5 −1.45966 −0.729829 0.683630i \(-0.760400\pi\)
−0.729829 + 0.683630i \(0.760400\pi\)
\(684\) 0 0
\(685\) −4041.82 −0.225445
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 1996.87 0.110413
\(690\) 0 0
\(691\) −6295.60 −0.346593 −0.173297 0.984870i \(-0.555442\pi\)
−0.173297 + 0.984870i \(0.555442\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −14323.6 −0.781763
\(696\) 0 0
\(697\) −5322.76 −0.289259
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −4014.82 −0.216316 −0.108158 0.994134i \(-0.534495\pi\)
−0.108158 + 0.994134i \(0.534495\pi\)
\(702\) 0 0
\(703\) 5832.13 0.312892
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 23169.9 1.23252
\(708\) 0 0
\(709\) −22598.7 −1.19706 −0.598528 0.801102i \(-0.704248\pi\)
−0.598528 + 0.801102i \(0.704248\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −33970.3 −1.78429
\(714\) 0 0
\(715\) 4645.28 0.242970
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −6579.83 −0.341288 −0.170644 0.985333i \(-0.554585\pi\)
−0.170644 + 0.985333i \(0.554585\pi\)
\(720\) 0 0
\(721\) 3434.01 0.177378
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 2496.10 0.127866
\(726\) 0 0
\(727\) 33217.2 1.69458 0.847290 0.531131i \(-0.178233\pi\)
0.847290 + 0.531131i \(0.178233\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 6093.08 0.308291
\(732\) 0 0
\(733\) 16051.2 0.808821 0.404411 0.914578i \(-0.367477\pi\)
0.404411 + 0.914578i \(0.367477\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 20789.1 1.03905
\(738\) 0 0
\(739\) 14855.1 0.739452 0.369726 0.929141i \(-0.379452\pi\)
0.369726 + 0.929141i \(0.379452\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −23494.9 −1.16009 −0.580044 0.814585i \(-0.696965\pi\)
−0.580044 + 0.814585i \(0.696965\pi\)
\(744\) 0 0
\(745\) 3397.05 0.167058
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 25381.8 1.23823
\(750\) 0 0
\(751\) 8301.68 0.403372 0.201686 0.979450i \(-0.435358\pi\)
0.201686 + 0.979450i \(0.435358\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −11931.1 −0.575124
\(756\) 0 0
\(757\) 7018.98 0.337000 0.168500 0.985702i \(-0.446108\pi\)
0.168500 + 0.985702i \(0.446108\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 31808.3 1.51518 0.757589 0.652732i \(-0.226377\pi\)
0.757589 + 0.652732i \(0.226377\pi\)
\(762\) 0 0
\(763\) 2322.93 0.110217
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 18712.1 0.880907
\(768\) 0 0
\(769\) −21932.9 −1.02851 −0.514253 0.857639i \(-0.671931\pi\)
−0.514253 + 0.857639i \(0.671931\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −25629.2 −1.19252 −0.596260 0.802791i \(-0.703347\pi\)
−0.596260 + 0.802791i \(0.703347\pi\)
\(774\) 0 0
\(775\) −8047.47 −0.372998
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 9286.83 0.427131
\(780\) 0 0
\(781\) −30100.4 −1.37910
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −13491.7 −0.613428
\(786\) 0 0
\(787\) 29789.3 1.34927 0.674633 0.738153i \(-0.264302\pi\)
0.674633 + 0.738153i \(0.264302\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −14875.2 −0.668648
\(792\) 0 0
\(793\) 7466.39 0.334350
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −13115.4 −0.582901 −0.291450 0.956586i \(-0.594138\pi\)
−0.291450 + 0.956586i \(0.594138\pi\)
\(798\) 0 0
\(799\) −1444.78 −0.0639706
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 3998.72 0.175731
\(804\) 0 0
\(805\) 9446.87 0.413613
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −9743.58 −0.423444 −0.211722 0.977330i \(-0.567907\pi\)
−0.211722 + 0.977330i \(0.567907\pi\)
\(810\) 0 0
\(811\) 13466.5 0.583075 0.291538 0.956559i \(-0.405833\pi\)
0.291538 + 0.956559i \(0.405833\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 7502.35 0.322449
\(816\) 0 0
\(817\) −10630.8 −0.455234
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 25128.2 1.06818 0.534092 0.845426i \(-0.320654\pi\)
0.534092 + 0.845426i \(0.320654\pi\)
\(822\) 0 0
\(823\) 37032.4 1.56849 0.784245 0.620452i \(-0.213051\pi\)
0.784245 + 0.620452i \(0.213051\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 33611.4 1.41328 0.706640 0.707574i \(-0.250210\pi\)
0.706640 + 0.707574i \(0.250210\pi\)
\(828\) 0 0
\(829\) 17321.9 0.725710 0.362855 0.931846i \(-0.381802\pi\)
0.362855 + 0.931846i \(0.381802\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −364.965 −0.0151804
\(834\) 0 0
\(835\) 17147.2 0.710661
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 13870.7 0.570761 0.285381 0.958414i \(-0.407880\pi\)
0.285381 + 0.958414i \(0.407880\pi\)
\(840\) 0 0
\(841\) −14420.1 −0.591256
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −8227.53 −0.334953
\(846\) 0 0
\(847\) 4191.27 0.170028
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −21714.1 −0.874676
\(852\) 0 0
\(853\) −18237.0 −0.732030 −0.366015 0.930609i \(-0.619278\pi\)
−0.366015 + 0.930609i \(0.619278\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −37468.9 −1.49348 −0.746741 0.665115i \(-0.768383\pi\)
−0.746741 + 0.665115i \(0.768383\pi\)
\(858\) 0 0
\(859\) 8485.07 0.337028 0.168514 0.985699i \(-0.446103\pi\)
0.168514 + 0.985699i \(0.446103\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −20829.5 −0.821603 −0.410801 0.911725i \(-0.634751\pi\)
−0.410801 + 0.911725i \(0.634751\pi\)
\(864\) 0 0
\(865\) 10039.7 0.394637
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 8926.37 0.348454
\(870\) 0 0
\(871\) 12340.6 0.480074
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 2237.93 0.0864640
\(876\) 0 0
\(877\) 41591.2 1.60141 0.800704 0.599061i \(-0.204459\pi\)
0.800704 + 0.599061i \(0.204459\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 47222.3 1.80586 0.902928 0.429792i \(-0.141413\pi\)
0.902928 + 0.429792i \(0.141413\pi\)
\(882\) 0 0
\(883\) −3201.36 −0.122010 −0.0610048 0.998137i \(-0.519430\pi\)
−0.0610048 + 0.998137i \(0.519430\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 29115.9 1.10216 0.551080 0.834453i \(-0.314216\pi\)
0.551080 + 0.834453i \(0.314216\pi\)
\(888\) 0 0
\(889\) −42711.8 −1.61137
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 2520.76 0.0944614
\(894\) 0 0
\(895\) −19184.8 −0.716509
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −32139.7 −1.19235
\(900\) 0 0
\(901\) −1381.38 −0.0510772
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −9110.50 −0.334633
\(906\) 0 0
\(907\) −39255.4 −1.43710 −0.718552 0.695473i \(-0.755195\pi\)
−0.718552 + 0.695473i \(0.755195\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 36666.8 1.33351 0.666754 0.745278i \(-0.267683\pi\)
0.666754 + 0.745278i \(0.267683\pi\)
\(912\) 0 0
\(913\) −19901.4 −0.721403
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 16190.4 0.583047
\(918\) 0 0
\(919\) −11786.5 −0.423070 −0.211535 0.977370i \(-0.567846\pi\)
−0.211535 + 0.977370i \(0.567846\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −17867.8 −0.637190
\(924\) 0 0
\(925\) −5144.01 −0.182847
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −40009.2 −1.41298 −0.706490 0.707723i \(-0.749723\pi\)
−0.706490 + 0.707723i \(0.749723\pi\)
\(930\) 0 0
\(931\) 636.770 0.0224160
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −3213.48 −0.112398
\(936\) 0 0
\(937\) −14272.7 −0.497620 −0.248810 0.968552i \(-0.580039\pi\)
−0.248810 + 0.968552i \(0.580039\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 26221.6 0.908395 0.454197 0.890901i \(-0.349926\pi\)
0.454197 + 0.890901i \(0.349926\pi\)
\(942\) 0 0
\(943\) −34576.6 −1.19403
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 41671.9 1.42994 0.714971 0.699155i \(-0.246440\pi\)
0.714971 + 0.699155i \(0.246440\pi\)
\(948\) 0 0
\(949\) 2373.67 0.0811933
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 24374.3 0.828500 0.414250 0.910163i \(-0.364044\pi\)
0.414250 + 0.910163i \(0.364044\pi\)
\(954\) 0 0
\(955\) −20979.8 −0.710882
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −14472.5 −0.487323
\(960\) 0 0
\(961\) 73827.9 2.47820
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −9051.79 −0.301956
\(966\) 0 0
\(967\) −18670.4 −0.620888 −0.310444 0.950592i \(-0.600478\pi\)
−0.310444 + 0.950592i \(0.600478\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −139.756 −0.00461893 −0.00230946 0.999997i \(-0.500735\pi\)
−0.00230946 + 0.999997i \(0.500735\pi\)
\(972\) 0 0
\(973\) −51288.4 −1.68986
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 11504.5 0.376726 0.188363 0.982099i \(-0.439682\pi\)
0.188363 + 0.982099i \(0.439682\pi\)
\(978\) 0 0
\(979\) 34370.0 1.12203
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −1414.94 −0.0459101 −0.0229550 0.999736i \(-0.507307\pi\)
−0.0229550 + 0.999736i \(0.507307\pi\)
\(984\) 0 0
\(985\) −19136.0 −0.619010
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 39580.6 1.27259
\(990\) 0 0
\(991\) 12991.4 0.416434 0.208217 0.978083i \(-0.433234\pi\)
0.208217 + 0.978083i \(0.433234\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −2389.27 −0.0761254
\(996\) 0 0
\(997\) 21151.2 0.671880 0.335940 0.941883i \(-0.390946\pi\)
0.335940 + 0.941883i \(0.390946\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1620.4.a.h.1.4 4
3.2 odd 2 1620.4.a.g.1.4 4
9.2 odd 6 180.4.i.b.121.3 yes 8
9.4 even 3 540.4.i.b.181.1 8
9.5 odd 6 180.4.i.b.61.3 8
9.7 even 3 540.4.i.b.361.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.4.i.b.61.3 8 9.5 odd 6
180.4.i.b.121.3 yes 8 9.2 odd 6
540.4.i.b.181.1 8 9.4 even 3
540.4.i.b.361.1 8 9.7 even 3
1620.4.a.g.1.4 4 3.2 odd 2
1620.4.a.h.1.4 4 1.1 even 1 trivial