Properties

Label 540.4.i.b.361.1
Level $540$
Weight $4$
Character 540.361
Analytic conductor $31.861$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [540,4,Mod(181,540)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(540, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("540.181");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 540 = 2^{2} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 540.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(31.8610314031\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.192296282256.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 36x^{6} - 94x^{5} + 331x^{4} - 510x^{3} + 708x^{2} - 468x + 117 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{6} \)
Twist minimal: no (minimal twist has level 180)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 361.1
Root \(0.500000 - 1.47446i\) of defining polynomial
Character \(\chi\) \(=\) 540.361
Dual form 540.4.i.b.181.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.50000 + 4.33013i) q^{5} +(-8.95174 - 15.5049i) q^{7} +(19.7807 + 34.2612i) q^{11} +(11.7420 - 20.3377i) q^{13} +16.2456 q^{17} -28.3443 q^{19} +(-52.7655 + 91.3926i) q^{23} +(-12.5000 - 21.6506i) q^{25} +(-49.9221 - 86.4676i) q^{29} +(160.949 - 278.773i) q^{31} +89.5174 q^{35} -205.760 q^{37} +(163.822 - 283.748i) q^{41} +(-187.531 - 324.812i) q^{43} +(44.4668 + 77.0187i) q^{47} +(11.2328 - 19.4557i) q^{49} -85.0314 q^{53} -197.807 q^{55} +(398.403 - 690.054i) q^{59} +(158.968 + 275.341i) q^{61} +(58.7098 + 101.688i) q^{65} +(262.745 - 455.088i) q^{67} +760.854 q^{71} -101.076 q^{73} +(354.143 - 613.394i) q^{77} +(112.817 + 195.404i) q^{79} +(-251.526 - 435.655i) q^{83} +(-40.6139 + 70.3453i) q^{85} -868.775 q^{89} -420.444 q^{91} +(70.8608 - 122.734i) q^{95} +(-874.721 - 1515.06i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 20 q^{5} + 13 q^{7} + 57 q^{11} - 14 q^{13} - 6 q^{17} - 62 q^{19} - 69 q^{23} - 100 q^{25} - 69 q^{29} + 58 q^{31} - 130 q^{35} - 776 q^{37} + 396 q^{41} - 371 q^{43} + 129 q^{47} - 111 q^{49} - 2712 q^{53}+ \cdots + 1495 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/540\mathbb{Z}\right)^\times\).

\(n\) \(217\) \(271\) \(461\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.50000 + 4.33013i −0.223607 + 0.387298i
\(6\) 0 0
\(7\) −8.95174 15.5049i −0.483348 0.837184i 0.516469 0.856306i \(-0.327246\pi\)
−0.999817 + 0.0191220i \(0.993913\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 19.7807 + 34.2612i 0.542191 + 0.939103i 0.998778 + 0.0494239i \(0.0157385\pi\)
−0.456587 + 0.889679i \(0.650928\pi\)
\(12\) 0 0
\(13\) 11.7420 20.3377i 0.250510 0.433896i −0.713156 0.701005i \(-0.752735\pi\)
0.963666 + 0.267109i \(0.0860683\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 16.2456 0.231772 0.115886 0.993263i \(-0.463029\pi\)
0.115886 + 0.993263i \(0.463029\pi\)
\(18\) 0 0
\(19\) −28.3443 −0.342244 −0.171122 0.985250i \(-0.554739\pi\)
−0.171122 + 0.985250i \(0.554739\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −52.7655 + 91.3926i −0.478364 + 0.828551i −0.999692 0.0248052i \(-0.992103\pi\)
0.521328 + 0.853356i \(0.325437\pi\)
\(24\) 0 0
\(25\) −12.5000 21.6506i −0.100000 0.173205i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −49.9221 86.4676i −0.319666 0.553677i 0.660753 0.750604i \(-0.270237\pi\)
−0.980418 + 0.196927i \(0.936904\pi\)
\(30\) 0 0
\(31\) 160.949 278.773i 0.932496 1.61513i 0.153457 0.988155i \(-0.450959\pi\)
0.779039 0.626975i \(-0.215707\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 89.5174 0.432320
\(36\) 0 0
\(37\) −205.760 −0.914237 −0.457119 0.889406i \(-0.651118\pi\)
−0.457119 + 0.889406i \(0.651118\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 163.822 283.748i 0.624017 1.08083i −0.364714 0.931120i \(-0.618833\pi\)
0.988730 0.149709i \(-0.0478336\pi\)
\(42\) 0 0
\(43\) −187.531 324.812i −0.665073 1.15194i −0.979265 0.202581i \(-0.935067\pi\)
0.314192 0.949359i \(-0.398266\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 44.4668 + 77.0187i 0.138003 + 0.239028i 0.926741 0.375702i \(-0.122598\pi\)
−0.788738 + 0.614730i \(0.789265\pi\)
\(48\) 0 0
\(49\) 11.2328 19.4557i 0.0327486 0.0567222i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −85.0314 −0.220377 −0.110188 0.993911i \(-0.535145\pi\)
−0.110188 + 0.993911i \(0.535145\pi\)
\(54\) 0 0
\(55\) −197.807 −0.484951
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 398.403 690.054i 0.879113 1.52267i 0.0267963 0.999641i \(-0.491469\pi\)
0.852316 0.523027i \(-0.175197\pi\)
\(60\) 0 0
\(61\) 158.968 + 275.341i 0.333669 + 0.577931i 0.983228 0.182380i \(-0.0583800\pi\)
−0.649559 + 0.760311i \(0.725047\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 58.7098 + 101.688i 0.112032 + 0.194044i
\(66\) 0 0
\(67\) 262.745 455.088i 0.479096 0.829818i −0.520617 0.853790i \(-0.674298\pi\)
0.999713 + 0.0239721i \(0.00763129\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 760.854 1.27179 0.635893 0.771778i \(-0.280632\pi\)
0.635893 + 0.771778i \(0.280632\pi\)
\(72\) 0 0
\(73\) −101.076 −0.162056 −0.0810279 0.996712i \(-0.525820\pi\)
−0.0810279 + 0.996712i \(0.525820\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 354.143 613.394i 0.524135 0.907828i
\(78\) 0 0
\(79\) 112.817 + 195.404i 0.160669 + 0.278287i 0.935109 0.354361i \(-0.115301\pi\)
−0.774440 + 0.632648i \(0.781968\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −251.526 435.655i −0.332633 0.576137i 0.650394 0.759597i \(-0.274604\pi\)
−0.983027 + 0.183460i \(0.941270\pi\)
\(84\) 0 0
\(85\) −40.6139 + 70.3453i −0.0518258 + 0.0897650i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −868.775 −1.03472 −0.517359 0.855768i \(-0.673085\pi\)
−0.517359 + 0.855768i \(0.673085\pi\)
\(90\) 0 0
\(91\) −420.444 −0.484335
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 70.8608 122.734i 0.0765280 0.132550i
\(96\) 0 0
\(97\) −874.721 1515.06i −0.915613 1.58589i −0.806001 0.591914i \(-0.798372\pi\)
−0.109613 0.993974i \(-0.534961\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −647.078 1120.77i −0.637492 1.10417i −0.985981 0.166855i \(-0.946639\pi\)
0.348490 0.937313i \(-0.386695\pi\)
\(102\) 0 0
\(103\) −95.9034 + 166.110i −0.0917441 + 0.158905i −0.908245 0.418439i \(-0.862578\pi\)
0.816501 + 0.577344i \(0.195911\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1417.70 1.28089 0.640443 0.768006i \(-0.278751\pi\)
0.640443 + 0.768006i \(0.278751\pi\)
\(108\) 0 0
\(109\) 129.747 0.114014 0.0570071 0.998374i \(-0.481844\pi\)
0.0570071 + 0.998374i \(0.481844\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 415.427 719.541i 0.345842 0.599015i −0.639665 0.768654i \(-0.720927\pi\)
0.985506 + 0.169639i \(0.0542601\pi\)
\(114\) 0 0
\(115\) −263.828 456.963i −0.213931 0.370539i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −145.426 251.885i −0.112027 0.194036i
\(120\) 0 0
\(121\) −117.052 + 202.740i −0.0879429 + 0.152322i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) −2385.67 −1.66688 −0.833441 0.552608i \(-0.813633\pi\)
−0.833441 + 0.552608i \(0.813633\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −452.158 + 783.161i −0.301567 + 0.522329i −0.976491 0.215558i \(-0.930843\pi\)
0.674924 + 0.737887i \(0.264176\pi\)
\(132\) 0 0
\(133\) 253.731 + 439.475i 0.165423 + 0.286521i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 404.182 + 700.064i 0.252056 + 0.436573i 0.964092 0.265570i \(-0.0855601\pi\)
−0.712036 + 0.702143i \(0.752227\pi\)
\(138\) 0 0
\(139\) 1432.36 2480.92i 0.874037 1.51388i 0.0162523 0.999868i \(-0.494827\pi\)
0.857785 0.514009i \(-0.171840\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 929.056 0.543298
\(144\) 0 0
\(145\) 499.221 0.285918
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −339.705 + 588.387i −0.186777 + 0.323507i −0.944174 0.329448i \(-0.893137\pi\)
0.757397 + 0.652955i \(0.226471\pi\)
\(150\) 0 0
\(151\) 1193.11 + 2066.53i 0.643008 + 1.11372i 0.984758 + 0.173932i \(0.0556472\pi\)
−0.341750 + 0.939791i \(0.611019\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 804.747 + 1393.86i 0.417025 + 0.722308i
\(156\) 0 0
\(157\) 1349.17 2336.84i 0.685833 1.18790i −0.287341 0.957828i \(-0.592771\pi\)
0.973174 0.230069i \(-0.0738953\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1889.37 0.924866
\(162\) 0 0
\(163\) 1500.47 0.721017 0.360509 0.932756i \(-0.382603\pi\)
0.360509 + 0.932756i \(0.382603\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1714.72 + 2969.98i −0.794543 + 1.37619i 0.128586 + 0.991698i \(0.458956\pi\)
−0.923129 + 0.384491i \(0.874377\pi\)
\(168\) 0 0
\(169\) 822.753 + 1425.05i 0.374489 + 0.648634i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −1003.97 1738.93i −0.441217 0.764211i 0.556563 0.830806i \(-0.312120\pi\)
−0.997780 + 0.0665946i \(0.978787\pi\)
\(174\) 0 0
\(175\) −223.793 + 387.622i −0.0966697 + 0.167437i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −3836.95 −1.60216 −0.801082 0.598555i \(-0.795742\pi\)
−0.801082 + 0.598555i \(0.795742\pi\)
\(180\) 0 0
\(181\) −1822.10 −0.748263 −0.374131 0.927376i \(-0.622059\pi\)
−0.374131 + 0.927376i \(0.622059\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 514.401 890.968i 0.204430 0.354082i
\(186\) 0 0
\(187\) 321.348 + 556.592i 0.125665 + 0.217658i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 2097.98 + 3633.82i 0.794790 + 1.37662i 0.922973 + 0.384866i \(0.125752\pi\)
−0.128183 + 0.991751i \(0.540914\pi\)
\(192\) 0 0
\(193\) 905.179 1567.82i 0.337597 0.584735i −0.646383 0.763013i \(-0.723719\pi\)
0.983980 + 0.178278i \(0.0570526\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −3827.21 −1.38415 −0.692074 0.721826i \(-0.743303\pi\)
−0.692074 + 0.721826i \(0.743303\pi\)
\(198\) 0 0
\(199\) −477.853 −0.170222 −0.0851108 0.996371i \(-0.527124\pi\)
−0.0851108 + 0.996371i \(0.527124\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −893.779 + 1548.07i −0.309020 + 0.535238i
\(204\) 0 0
\(205\) 819.109 + 1418.74i 0.279069 + 0.483361i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −560.670 971.109i −0.185562 0.321402i
\(210\) 0 0
\(211\) 108.133 187.291i 0.0352803 0.0611073i −0.847846 0.530242i \(-0.822101\pi\)
0.883126 + 0.469135i \(0.155434\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1875.31 0.594860
\(216\) 0 0
\(217\) −5763.11 −1.80288
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 190.755 330.397i 0.0580613 0.100565i
\(222\) 0 0
\(223\) 2690.38 + 4659.88i 0.807899 + 1.39932i 0.914317 + 0.405000i \(0.132729\pi\)
−0.106418 + 0.994321i \(0.533938\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −277.295 480.289i −0.0810780 0.140431i 0.822635 0.568570i \(-0.192503\pi\)
−0.903713 + 0.428138i \(0.859170\pi\)
\(228\) 0 0
\(229\) −1705.33 + 2953.72i −0.492103 + 0.852348i −0.999959 0.00909459i \(-0.997105\pi\)
0.507855 + 0.861442i \(0.330438\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −2640.60 −0.742452 −0.371226 0.928543i \(-0.621062\pi\)
−0.371226 + 0.928543i \(0.621062\pi\)
\(234\) 0 0
\(235\) −444.668 −0.123434
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −91.4754 + 158.440i −0.0247575 + 0.0428813i −0.878139 0.478406i \(-0.841215\pi\)
0.853381 + 0.521287i \(0.174548\pi\)
\(240\) 0 0
\(241\) 3716.89 + 6437.83i 0.993467 + 1.72074i 0.595562 + 0.803309i \(0.296929\pi\)
0.397905 + 0.917427i \(0.369737\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 56.1638 + 97.2786i 0.0146456 + 0.0253669i
\(246\) 0 0
\(247\) −332.818 + 576.457i −0.0857355 + 0.148498i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 2170.36 0.545785 0.272893 0.962045i \(-0.412020\pi\)
0.272893 + 0.962045i \(0.412020\pi\)
\(252\) 0 0
\(253\) −4174.96 −1.03746
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −39.1832 + 67.8672i −0.00951043 + 0.0164725i −0.870741 0.491741i \(-0.836361\pi\)
0.861231 + 0.508214i \(0.169694\pi\)
\(258\) 0 0
\(259\) 1841.91 + 3190.28i 0.441895 + 0.765385i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 608.404 + 1053.79i 0.142646 + 0.247070i 0.928492 0.371352i \(-0.121106\pi\)
−0.785846 + 0.618422i \(0.787772\pi\)
\(264\) 0 0
\(265\) 212.579 368.197i 0.0492777 0.0853515i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −1249.44 −0.283196 −0.141598 0.989924i \(-0.545224\pi\)
−0.141598 + 0.989924i \(0.545224\pi\)
\(270\) 0 0
\(271\) 7675.60 1.72051 0.860257 0.509860i \(-0.170303\pi\)
0.860257 + 0.509860i \(0.170303\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 494.517 856.529i 0.108438 0.187821i
\(276\) 0 0
\(277\) −365.873 633.711i −0.0793617 0.137459i 0.823613 0.567152i \(-0.191955\pi\)
−0.902975 + 0.429694i \(0.858622\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 564.975 + 978.566i 0.119942 + 0.207745i 0.919744 0.392518i \(-0.128396\pi\)
−0.799803 + 0.600263i \(0.795063\pi\)
\(282\) 0 0
\(283\) 1225.63 2122.85i 0.257442 0.445902i −0.708114 0.706098i \(-0.750454\pi\)
0.965556 + 0.260196i \(0.0837871\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −5865.96 −1.20647
\(288\) 0 0
\(289\) −4649.08 −0.946282
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −3122.93 + 5409.07i −0.622674 + 1.07850i 0.366312 + 0.930492i \(0.380620\pi\)
−0.988986 + 0.148011i \(0.952713\pi\)
\(294\) 0 0
\(295\) 1992.01 + 3450.27i 0.393151 + 0.680958i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 1239.14 + 2146.26i 0.239670 + 0.415121i
\(300\) 0 0
\(301\) −3357.45 + 5815.27i −0.642924 + 1.11358i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −1589.68 −0.298442
\(306\) 0 0
\(307\) 10638.4 1.97774 0.988870 0.148782i \(-0.0475354\pi\)
0.988870 + 0.148782i \(0.0475354\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −18.6347 + 32.2762i −0.00339767 + 0.00588493i −0.867719 0.497055i \(-0.834415\pi\)
0.864322 + 0.502940i \(0.167748\pi\)
\(312\) 0 0
\(313\) −473.786 820.622i −0.0855590 0.148193i 0.820070 0.572263i \(-0.193934\pi\)
−0.905629 + 0.424070i \(0.860601\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −5288.32 9159.63i −0.936976 1.62289i −0.771072 0.636748i \(-0.780279\pi\)
−0.165904 0.986142i \(-0.553054\pi\)
\(318\) 0 0
\(319\) 1974.99 3420.78i 0.346640 0.600398i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −460.469 −0.0793225
\(324\) 0 0
\(325\) −587.098 −0.100204
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 796.110 1378.90i 0.133407 0.231068i
\(330\) 0 0
\(331\) 4359.68 + 7551.19i 0.723957 + 1.25393i 0.959402 + 0.282042i \(0.0910118\pi\)
−0.235445 + 0.971888i \(0.575655\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 1313.73 + 2275.44i 0.214258 + 0.371106i
\(336\) 0 0
\(337\) 3886.81 6732.15i 0.628273 1.08820i −0.359625 0.933097i \(-0.617095\pi\)
0.987898 0.155104i \(-0.0495713\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 12734.8 2.02236
\(342\) 0 0
\(343\) −6543.10 −1.03001
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −3544.97 + 6140.07i −0.548427 + 0.949903i 0.449956 + 0.893051i \(0.351440\pi\)
−0.998383 + 0.0568520i \(0.981894\pi\)
\(348\) 0 0
\(349\) −6042.73 10466.3i −0.926819 1.60530i −0.788609 0.614894i \(-0.789199\pi\)
−0.138209 0.990403i \(-0.544135\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 4488.47 + 7774.27i 0.676763 + 1.17219i 0.975950 + 0.217994i \(0.0699512\pi\)
−0.299187 + 0.954194i \(0.596715\pi\)
\(354\) 0 0
\(355\) −1902.13 + 3294.59i −0.284380 + 0.492560i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 2038.36 0.299667 0.149834 0.988711i \(-0.452126\pi\)
0.149834 + 0.988711i \(0.452126\pi\)
\(360\) 0 0
\(361\) −6055.60 −0.882869
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 252.691 437.673i 0.0362368 0.0627640i
\(366\) 0 0
\(367\) −3523.91 6103.59i −0.501217 0.868133i −0.999999 0.00140579i \(-0.999553\pi\)
0.498782 0.866727i \(-0.333781\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 761.179 + 1318.40i 0.106519 + 0.184496i
\(372\) 0 0
\(373\) 2142.75 3711.35i 0.297446 0.515191i −0.678105 0.734965i \(-0.737199\pi\)
0.975551 + 0.219774i \(0.0705319\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −2344.73 −0.320318
\(378\) 0 0
\(379\) −1366.86 −0.185253 −0.0926267 0.995701i \(-0.529526\pi\)
−0.0926267 + 0.995701i \(0.529526\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 6227.39 10786.2i 0.830822 1.43903i −0.0665644 0.997782i \(-0.521204\pi\)
0.897387 0.441245i \(-0.145463\pi\)
\(384\) 0 0
\(385\) 1770.72 + 3066.97i 0.234400 + 0.405993i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 218.281 + 378.074i 0.0284506 + 0.0492779i 0.879900 0.475159i \(-0.157609\pi\)
−0.851450 + 0.524437i \(0.824276\pi\)
\(390\) 0 0
\(391\) −857.206 + 1484.72i −0.110871 + 0.192035i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −1128.17 −0.143707
\(396\) 0 0
\(397\) −7117.74 −0.899822 −0.449911 0.893073i \(-0.648544\pi\)
−0.449911 + 0.893073i \(0.648544\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 3884.74 6728.56i 0.483777 0.837926i −0.516050 0.856559i \(-0.672598\pi\)
0.999826 + 0.0186329i \(0.00593139\pi\)
\(402\) 0 0
\(403\) −3779.72 6546.67i −0.467200 0.809213i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −4070.08 7049.59i −0.495691 0.858563i
\(408\) 0 0
\(409\) 6416.30 11113.4i 0.775711 1.34357i −0.158683 0.987330i \(-0.550725\pi\)
0.934394 0.356241i \(-0.115942\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −14265.6 −1.69967
\(414\) 0 0
\(415\) 2515.26 0.297516
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −7451.60 + 12906.6i −0.868818 + 1.50484i −0.00561181 + 0.999984i \(0.501786\pi\)
−0.863206 + 0.504852i \(0.831547\pi\)
\(420\) 0 0
\(421\) 609.386 + 1055.49i 0.0705456 + 0.122188i 0.899141 0.437660i \(-0.144193\pi\)
−0.828595 + 0.559849i \(0.810859\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −203.069 351.727i −0.0231772 0.0401441i
\(426\) 0 0
\(427\) 2846.08 4929.56i 0.322556 0.558684i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 9989.48 1.11642 0.558209 0.829700i \(-0.311489\pi\)
0.558209 + 0.829700i \(0.311489\pi\)
\(432\) 0 0
\(433\) −6010.34 −0.667063 −0.333532 0.942739i \(-0.608240\pi\)
−0.333532 + 0.942739i \(0.608240\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1495.60 2590.46i 0.163717 0.283566i
\(438\) 0 0
\(439\) −5117.33 8863.48i −0.556348 0.963624i −0.997797 0.0663373i \(-0.978869\pi\)
0.441449 0.897286i \(-0.354465\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 2479.28 + 4294.24i 0.265901 + 0.460554i 0.967799 0.251723i \(-0.0809973\pi\)
−0.701898 + 0.712277i \(0.747664\pi\)
\(444\) 0 0
\(445\) 2171.94 3761.91i 0.231370 0.400745i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 7715.87 0.810989 0.405495 0.914097i \(-0.367099\pi\)
0.405495 + 0.914097i \(0.367099\pi\)
\(450\) 0 0
\(451\) 12962.0 1.35335
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 1051.11 1820.57i 0.108301 0.187582i
\(456\) 0 0
\(457\) 245.867 + 425.854i 0.0251667 + 0.0435900i 0.878334 0.478047i \(-0.158655\pi\)
−0.853168 + 0.521637i \(0.825322\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 1606.74 + 2782.96i 0.162329 + 0.281162i 0.935703 0.352788i \(-0.114766\pi\)
−0.773375 + 0.633949i \(0.781433\pi\)
\(462\) 0 0
\(463\) −1662.35 + 2879.28i −0.166860 + 0.289009i −0.937314 0.348486i \(-0.886696\pi\)
0.770455 + 0.637495i \(0.220029\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −11322.6 −1.12194 −0.560972 0.827835i \(-0.689572\pi\)
−0.560972 + 0.827835i \(0.689572\pi\)
\(468\) 0 0
\(469\) −9408.10 −0.926281
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 7418.97 12850.0i 0.721194 1.24914i
\(474\) 0 0
\(475\) 354.304 + 613.672i 0.0342244 + 0.0592783i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −3591.16 6220.07i −0.342556 0.593325i 0.642351 0.766411i \(-0.277959\pi\)
−0.984907 + 0.173086i \(0.944626\pi\)
\(480\) 0 0
\(481\) −2416.03 + 4184.68i −0.229026 + 0.396684i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 8747.21 0.818949
\(486\) 0 0
\(487\) −242.899 −0.0226012 −0.0113006 0.999936i \(-0.503597\pi\)
−0.0113006 + 0.999936i \(0.503597\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 1745.68 3023.60i 0.160451 0.277909i −0.774580 0.632476i \(-0.782039\pi\)
0.935030 + 0.354567i \(0.115372\pi\)
\(492\) 0 0
\(493\) −811.012 1404.71i −0.0740896 0.128327i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −6810.97 11796.9i −0.614715 1.06472i
\(498\) 0 0
\(499\) 357.109 618.532i 0.0320369 0.0554895i −0.849562 0.527488i \(-0.823134\pi\)
0.881599 + 0.471999i \(0.156467\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 18948.7 1.67968 0.839842 0.542832i \(-0.182648\pi\)
0.839842 + 0.542832i \(0.182648\pi\)
\(504\) 0 0
\(505\) 6470.78 0.570190
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 5920.63 10254.8i 0.515574 0.893001i −0.484262 0.874923i \(-0.660912\pi\)
0.999837 0.0180779i \(-0.00575468\pi\)
\(510\) 0 0
\(511\) 904.808 + 1567.17i 0.0783294 + 0.135671i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −479.517 830.548i −0.0410292 0.0710647i
\(516\) 0 0
\(517\) −1759.17 + 3046.97i −0.149648 + 0.259198i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 21836.5 1.83623 0.918114 0.396317i \(-0.129712\pi\)
0.918114 + 0.396317i \(0.129712\pi\)
\(522\) 0 0
\(523\) 6595.18 0.551409 0.275705 0.961242i \(-0.411089\pi\)
0.275705 + 0.961242i \(0.411089\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2614.71 4528.82i 0.216127 0.374342i
\(528\) 0 0
\(529\) 515.095 + 892.171i 0.0423354 + 0.0733271i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −3847.18 6663.51i −0.312645 0.541517i
\(534\) 0 0
\(535\) −3544.26 + 6138.84i −0.286415 + 0.496085i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 888.768 0.0710240
\(540\) 0 0
\(541\) −7877.56 −0.626031 −0.313015 0.949748i \(-0.601339\pi\)
−0.313015 + 0.949748i \(0.601339\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −324.368 + 561.823i −0.0254943 + 0.0441575i
\(546\) 0 0
\(547\) −7710.52 13355.0i −0.602702 1.04391i −0.992410 0.122972i \(-0.960758\pi\)
0.389708 0.920938i \(-0.372576\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 1415.01 + 2450.86i 0.109403 + 0.189492i
\(552\) 0 0
\(553\) 2019.81 3498.41i 0.155318 0.269019i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −17146.1 −1.30431 −0.652156 0.758085i \(-0.726135\pi\)
−0.652156 + 0.758085i \(0.726135\pi\)
\(558\) 0 0
\(559\) −8807.90 −0.666430
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 6665.25 11544.5i 0.498946 0.864200i −0.501053 0.865416i \(-0.667054\pi\)
0.999999 + 0.00121656i \(0.000387245\pi\)
\(564\) 0 0
\(565\) 2077.14 + 3597.71i 0.154665 + 0.267888i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −9291.05 16092.6i −0.684536 1.18565i −0.973582 0.228336i \(-0.926671\pi\)
0.289046 0.957315i \(-0.406662\pi\)
\(570\) 0 0
\(571\) −2786.46 + 4826.29i −0.204220 + 0.353719i −0.949884 0.312603i \(-0.898799\pi\)
0.745664 + 0.666322i \(0.232132\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 2638.28 0.191346
\(576\) 0 0
\(577\) −11047.6 −0.797083 −0.398542 0.917150i \(-0.630484\pi\)
−0.398542 + 0.917150i \(0.630484\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −4503.19 + 7799.75i −0.321555 + 0.556950i
\(582\) 0 0
\(583\) −1681.98 2913.28i −0.119486 0.206956i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 10.1276 + 17.5414i 0.000712110 + 0.00123341i 0.866381 0.499383i \(-0.166440\pi\)
−0.865669 + 0.500617i \(0.833107\pi\)
\(588\) 0 0
\(589\) −4562.00 + 7901.62i −0.319141 + 0.552768i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −21868.4 −1.51438 −0.757190 0.653194i \(-0.773428\pi\)
−0.757190 + 0.653194i \(0.773428\pi\)
\(594\) 0 0
\(595\) 1454.26 0.100200
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −4679.83 + 8105.70i −0.319220 + 0.552905i −0.980325 0.197388i \(-0.936754\pi\)
0.661106 + 0.750293i \(0.270087\pi\)
\(600\) 0 0
\(601\) −503.648 872.344i −0.0341834 0.0592074i 0.848428 0.529311i \(-0.177550\pi\)
−0.882611 + 0.470104i \(0.844216\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −585.260 1013.70i −0.0393293 0.0681203i
\(606\) 0 0
\(607\) 3487.80 6041.05i 0.233222 0.403952i −0.725533 0.688188i \(-0.758407\pi\)
0.958754 + 0.284236i \(0.0917399\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 2088.51 0.138285
\(612\) 0 0
\(613\) 25416.8 1.67468 0.837338 0.546686i \(-0.184111\pi\)
0.837338 + 0.546686i \(0.184111\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −4925.42 + 8531.08i −0.321378 + 0.556643i −0.980773 0.195154i \(-0.937479\pi\)
0.659395 + 0.751797i \(0.270813\pi\)
\(618\) 0 0
\(619\) −8508.50 14737.2i −0.552481 0.956925i −0.998095 0.0616997i \(-0.980348\pi\)
0.445614 0.895225i \(-0.352985\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 7777.05 + 13470.2i 0.500130 + 0.866250i
\(624\) 0 0
\(625\) −312.500 + 541.266i −0.0200000 + 0.0346410i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −3342.69 −0.211895
\(630\) 0 0
\(631\) 6738.60 0.425134 0.212567 0.977147i \(-0.431818\pi\)
0.212567 + 0.977147i \(0.431818\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 5964.18 10330.3i 0.372726 0.645581i
\(636\) 0 0
\(637\) −263.789 456.896i −0.0164077 0.0284190i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −3145.07 5447.43i −0.193796 0.335664i 0.752709 0.658353i \(-0.228747\pi\)
−0.946505 + 0.322689i \(0.895413\pi\)
\(642\) 0 0
\(643\) −4441.83 + 7693.48i −0.272424 + 0.471853i −0.969482 0.245162i \(-0.921159\pi\)
0.697058 + 0.717015i \(0.254492\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 13436.4 0.816444 0.408222 0.912883i \(-0.366149\pi\)
0.408222 + 0.912883i \(0.366149\pi\)
\(648\) 0 0
\(649\) 31522.8 1.90659
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −8583.02 + 14866.2i −0.514363 + 0.890904i 0.485498 + 0.874238i \(0.338638\pi\)
−0.999861 + 0.0166657i \(0.994695\pi\)
\(654\) 0 0
\(655\) −2260.79 3915.80i −0.134865 0.233593i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 10209.4 + 17683.2i 0.603493 + 1.04528i 0.992288 + 0.123956i \(0.0395580\pi\)
−0.388795 + 0.921324i \(0.627109\pi\)
\(660\) 0 0
\(661\) −2622.01 + 4541.46i −0.154288 + 0.267235i −0.932800 0.360395i \(-0.882642\pi\)
0.778511 + 0.627630i \(0.215975\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −2537.31 −0.147959
\(666\) 0 0
\(667\) 10536.7 0.611666
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −6289.00 + 10892.9i −0.361825 + 0.626699i
\(672\) 0 0
\(673\) −7477.24 12951.0i −0.428271 0.741787i 0.568449 0.822719i \(-0.307544\pi\)
−0.996720 + 0.0809318i \(0.974210\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 13525.7 + 23427.2i 0.767850 + 1.32996i 0.938726 + 0.344663i \(0.112007\pi\)
−0.170876 + 0.985293i \(0.554660\pi\)
\(678\) 0 0
\(679\) −15660.6 + 27124.9i −0.885121 + 1.53307i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −26054.5 −1.45966 −0.729829 0.683630i \(-0.760400\pi\)
−0.729829 + 0.683630i \(0.760400\pi\)
\(684\) 0 0
\(685\) −4041.82 −0.225445
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −998.435 + 1729.34i −0.0552066 + 0.0956207i
\(690\) 0 0
\(691\) 3147.80 + 5452.15i 0.173297 + 0.300159i 0.939570 0.342356i \(-0.111225\pi\)
−0.766274 + 0.642514i \(0.777891\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 7161.80 + 12404.6i 0.390881 + 0.677026i
\(696\) 0 0
\(697\) 2661.38 4609.64i 0.144630 0.250506i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −4014.82 −0.216316 −0.108158 0.994134i \(-0.534495\pi\)
−0.108158 + 0.994134i \(0.534495\pi\)
\(702\) 0 0
\(703\) 5832.13 0.312892
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −11584.9 + 20065.7i −0.616261 + 1.06740i
\(708\) 0 0
\(709\) 11299.4 + 19571.1i 0.598528 + 1.03668i 0.993039 + 0.117790i \(0.0375809\pi\)
−0.394510 + 0.918892i \(0.629086\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 16985.2 + 29419.2i 0.892145 + 1.54524i
\(714\) 0 0
\(715\) −2322.64 + 4022.93i −0.121485 + 0.210418i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −6579.83 −0.341288 −0.170644 0.985333i \(-0.554585\pi\)
−0.170644 + 0.985333i \(0.554585\pi\)
\(720\) 0 0
\(721\) 3434.01 0.177378
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −1248.05 + 2161.69i −0.0639331 + 0.110735i
\(726\) 0 0
\(727\) −16608.6 28767.0i −0.847290 1.46755i −0.883618 0.468209i \(-0.844900\pi\)
0.0363284 0.999340i \(-0.488434\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −3046.54 5276.76i −0.154145 0.266988i
\(732\) 0 0
\(733\) −8025.62 + 13900.8i −0.404411 + 0.700460i −0.994253 0.107059i \(-0.965857\pi\)
0.589842 + 0.807519i \(0.299190\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 20789.1 1.03905
\(738\) 0 0
\(739\) 14855.1 0.739452 0.369726 0.929141i \(-0.379452\pi\)
0.369726 + 0.929141i \(0.379452\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 11747.5 20347.2i 0.580044 1.00467i −0.415430 0.909625i \(-0.636369\pi\)
0.995473 0.0950399i \(-0.0302979\pi\)
\(744\) 0 0
\(745\) −1698.53 2941.93i −0.0835291 0.144677i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −12690.9 21981.3i −0.619114 1.07234i
\(750\) 0 0
\(751\) −4150.84 + 7189.47i −0.201686 + 0.349331i −0.949072 0.315060i \(-0.897975\pi\)
0.747386 + 0.664390i \(0.231309\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −11931.1 −0.575124
\(756\) 0 0
\(757\) 7018.98 0.337000 0.168500 0.985702i \(-0.446108\pi\)
0.168500 + 0.985702i \(0.446108\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −15904.2 + 27546.8i −0.757589 + 1.31218i 0.186488 + 0.982457i \(0.440290\pi\)
−0.944077 + 0.329725i \(0.893044\pi\)
\(762\) 0 0
\(763\) −1161.46 2011.72i −0.0551086 0.0954509i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −9356.06 16205.2i −0.440453 0.762888i
\(768\) 0 0
\(769\) 10966.5 18994.5i 0.514253 0.890712i −0.485610 0.874175i \(-0.661403\pi\)
0.999863 0.0165366i \(-0.00526402\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −25629.2 −1.19252 −0.596260 0.802791i \(-0.703347\pi\)
−0.596260 + 0.802791i \(0.703347\pi\)
\(774\) 0 0
\(775\) −8047.47 −0.372998
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −4643.42 + 8042.63i −0.213566 + 0.369907i
\(780\) 0 0
\(781\) 15050.2 + 26067.7i 0.689551 + 1.19434i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 6745.87 + 11684.2i 0.306714 + 0.531244i
\(786\) 0 0
\(787\) −14894.6 + 25798.3i −0.674633 + 1.16850i 0.301943 + 0.953326i \(0.402365\pi\)
−0.976576 + 0.215173i \(0.930968\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −14875.2 −0.668648
\(792\) 0 0
\(793\) 7466.39 0.334350
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 6557.71 11358.3i 0.291450 0.504807i −0.682703 0.730696i \(-0.739196\pi\)
0.974153 + 0.225890i \(0.0725289\pi\)
\(798\) 0 0
\(799\) 722.388 + 1251.21i 0.0319853 + 0.0554001i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −1999.36 3462.99i −0.0878653 0.152187i
\(804\) 0 0
\(805\) −4723.43 + 8181.23i −0.206806 + 0.358199i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −9743.58 −0.423444 −0.211722 0.977330i \(-0.567907\pi\)
−0.211722 + 0.977330i \(0.567907\pi\)
\(810\) 0 0
\(811\) 13466.5 0.583075 0.291538 0.956559i \(-0.405833\pi\)
0.291538 + 0.956559i \(0.405833\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −3751.17 + 6497.22i −0.161224 + 0.279249i
\(816\) 0 0
\(817\) 5315.42 + 9206.58i 0.227617 + 0.394244i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −12564.1 21761.6i −0.534092 0.925074i −0.999207 0.0398240i \(-0.987320\pi\)
0.465115 0.885250i \(-0.346013\pi\)
\(822\) 0 0
\(823\) −18516.2 + 32071.0i −0.784245 + 1.35835i 0.145205 + 0.989402i \(0.453616\pi\)
−0.929449 + 0.368950i \(0.879717\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 33611.4 1.41328 0.706640 0.707574i \(-0.250210\pi\)
0.706640 + 0.707574i \(0.250210\pi\)
\(828\) 0 0
\(829\) 17321.9 0.725710 0.362855 0.931846i \(-0.381802\pi\)
0.362855 + 0.931846i \(0.381802\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 182.483 316.069i 0.00759021 0.0131466i
\(834\) 0 0
\(835\) −8573.58 14849.9i −0.355331 0.615451i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −6935.33 12012.4i −0.285381 0.494294i 0.687321 0.726354i \(-0.258787\pi\)
−0.972701 + 0.232060i \(0.925453\pi\)
\(840\) 0 0
\(841\) 7210.07 12488.2i 0.295628 0.512043i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −8227.53 −0.334953
\(846\) 0 0
\(847\) 4191.27 0.170028
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 10857.0 18805.0i 0.437338 0.757492i
\(852\) 0 0
\(853\) 9118.48 + 15793.7i 0.366015 + 0.633957i 0.988938 0.148326i \(-0.0473885\pi\)
−0.622923 + 0.782283i \(0.714055\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 18734.5 + 32449.1i 0.746741 + 1.29339i 0.949377 + 0.314140i \(0.101716\pi\)
−0.202635 + 0.979254i \(0.564951\pi\)
\(858\) 0 0
\(859\) −4242.53 + 7348.29i −0.168514 + 0.291875i −0.937898 0.346912i \(-0.887230\pi\)
0.769384 + 0.638787i \(0.220563\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −20829.5 −0.821603 −0.410801 0.911725i \(-0.634751\pi\)
−0.410801 + 0.911725i \(0.634751\pi\)
\(864\) 0 0
\(865\) 10039.7 0.394637
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −4463.19 + 7730.46i −0.174227 + 0.301770i
\(870\) 0 0
\(871\) −6170.28 10687.2i −0.240037 0.415756i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −1118.97 1938.11i −0.0432320 0.0748800i
\(876\) 0 0
\(877\) −20795.6 + 36019.0i −0.800704 + 1.38686i 0.118450 + 0.992960i \(0.462207\pi\)
−0.919154 + 0.393899i \(0.871126\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 47222.3 1.80586 0.902928 0.429792i \(-0.141413\pi\)
0.902928 + 0.429792i \(0.141413\pi\)
\(882\) 0 0
\(883\) −3201.36 −0.122010 −0.0610048 0.998137i \(-0.519430\pi\)
−0.0610048 + 0.998137i \(0.519430\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −14557.9 + 25215.1i −0.551080 + 0.954498i 0.447117 + 0.894475i \(0.352451\pi\)
−0.998197 + 0.0600228i \(0.980883\pi\)
\(888\) 0 0
\(889\) 21355.9 + 36989.5i 0.805685 + 1.39549i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −1260.38 2183.04i −0.0472307 0.0818060i
\(894\) 0 0
\(895\) 9592.38 16614.5i 0.358255 0.620515i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −32139.7 −1.19235
\(900\) 0 0
\(901\) −1381.38 −0.0510772
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 4555.25 7889.92i 0.167317 0.289801i
\(906\) 0 0
\(907\) 19627.7 + 33996.2i 0.718552 + 1.24457i 0.961573 + 0.274548i \(0.0885281\pi\)
−0.243022 + 0.970021i \(0.578139\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −18333.4 31754.4i −0.666754 1.15485i −0.978807 0.204787i \(-0.934350\pi\)
0.312052 0.950065i \(-0.398984\pi\)
\(912\) 0 0
\(913\) 9950.71 17235.1i 0.360701 0.624753i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 16190.4 0.583047
\(918\) 0 0
\(919\) −11786.5 −0.423070 −0.211535 0.977370i \(-0.567846\pi\)
−0.211535 + 0.977370i \(0.567846\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 8933.91 15474.0i 0.318595 0.551823i
\(924\) 0 0
\(925\) 2572.00 + 4454.84i 0.0914237 + 0.158350i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 20004.6 + 34649.0i 0.706490 + 1.22368i 0.966151 + 0.257977i \(0.0830560\pi\)
−0.259661 + 0.965700i \(0.583611\pi\)
\(930\) 0 0
\(931\) −318.385 + 551.459i −0.0112080 + 0.0194128i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −3213.48 −0.112398
\(936\) 0 0
\(937\) −14272.7 −0.497620 −0.248810 0.968552i \(-0.580039\pi\)
−0.248810 + 0.968552i \(0.580039\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −13110.8 + 22708.6i −0.454197 + 0.786693i −0.998642 0.0521041i \(-0.983407\pi\)
0.544444 + 0.838797i \(0.316741\pi\)
\(942\) 0 0
\(943\) 17288.3 + 29944.2i 0.597014 + 1.03406i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −20835.9 36088.9i −0.714971 1.23837i −0.962971 0.269605i \(-0.913107\pi\)
0.248000 0.968760i \(-0.420227\pi\)
\(948\) 0 0
\(949\) −1186.83 + 2055.65i −0.0405966 + 0.0703155i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 24374.3 0.828500 0.414250 0.910163i \(-0.364044\pi\)
0.414250 + 0.910163i \(0.364044\pi\)
\(954\) 0 0
\(955\) −20979.8 −0.710882
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 7236.27 12533.6i 0.243661 0.422034i
\(960\) 0 0
\(961\) −36914.0 63936.8i −1.23910 2.14618i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 4525.89 + 7839.08i 0.150978 + 0.261501i
\(966\) 0 0
\(967\) 9335.19 16169.0i 0.310444 0.537705i −0.668015 0.744148i \(-0.732856\pi\)
0.978459 + 0.206443i \(0.0661890\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −139.756 −0.00461893 −0.00230946 0.999997i \(-0.500735\pi\)
−0.00230946 + 0.999997i \(0.500735\pi\)
\(972\) 0 0
\(973\) −51288.4 −1.68986
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −5752.25 + 9963.18i −0.188363 + 0.326254i −0.944705 0.327923i \(-0.893651\pi\)
0.756342 + 0.654177i \(0.226985\pi\)
\(978\) 0 0
\(979\) −17185.0 29765.3i −0.561016 0.971708i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 707.470 + 1225.37i 0.0229550 + 0.0397593i 0.877275 0.479989i \(-0.159359\pi\)
−0.854320 + 0.519748i \(0.826026\pi\)
\(984\) 0 0
\(985\) 9568.02 16572.3i 0.309505 0.536078i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 39580.6 1.27259
\(990\) 0 0
\(991\) 12991.4 0.416434 0.208217 0.978083i \(-0.433234\pi\)
0.208217 + 0.978083i \(0.433234\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 1194.63 2069.16i 0.0380627 0.0659266i
\(996\) 0 0
\(997\) −10575.6 18317.4i −0.335940 0.581865i 0.647725 0.761874i \(-0.275721\pi\)
−0.983665 + 0.180009i \(0.942387\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 540.4.i.b.361.1 8
3.2 odd 2 180.4.i.b.121.3 yes 8
9.2 odd 6 180.4.i.b.61.3 8
9.4 even 3 1620.4.a.h.1.4 4
9.5 odd 6 1620.4.a.g.1.4 4
9.7 even 3 inner 540.4.i.b.181.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.4.i.b.61.3 8 9.2 odd 6
180.4.i.b.121.3 yes 8 3.2 odd 2
540.4.i.b.181.1 8 9.7 even 3 inner
540.4.i.b.361.1 8 1.1 even 1 trivial
1620.4.a.g.1.4 4 9.5 odd 6
1620.4.a.h.1.4 4 9.4 even 3