Properties

Label 1620.4.a.j.1.4
Level $1620$
Weight $4$
Character 1620.1
Self dual yes
Analytic conductor $95.583$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1620,4,Mod(1,1620)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1620, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1620.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1620 = 2^{2} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1620.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(95.5830942093\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 151x^{4} - 212x^{3} + 4412x^{2} + 8656x - 19148 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{5} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-4.35846\) of defining polynomial
Character \(\chi\) \(=\) 1620.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.00000 q^{5} +6.21414 q^{7} -28.3492 q^{11} -8.60548 q^{13} -90.1352 q^{17} +114.170 q^{19} -48.4106 q^{23} +25.0000 q^{25} +305.958 q^{29} +93.5957 q^{31} +31.0707 q^{35} -282.892 q^{37} -28.7685 q^{41} -354.443 q^{43} -522.998 q^{47} -304.384 q^{49} -66.9285 q^{53} -141.746 q^{55} -7.63223 q^{59} +9.41124 q^{61} -43.0274 q^{65} -494.391 q^{67} -560.709 q^{71} +1116.68 q^{73} -176.166 q^{77} +1041.87 q^{79} +45.5107 q^{83} -450.676 q^{85} -357.159 q^{89} -53.4757 q^{91} +570.849 q^{95} -120.006 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 30 q^{5} + 12 q^{7} - 84 q^{13} - 12 q^{17} - 114 q^{19} - 30 q^{23} + 150 q^{25} - 168 q^{29} - 324 q^{31} + 60 q^{35} - 492 q^{37} - 312 q^{41} - 156 q^{43} - 462 q^{47} - 588 q^{49} - 1014 q^{53}+ \cdots - 1188 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) 6.21414 0.335532 0.167766 0.985827i \(-0.446345\pi\)
0.167766 + 0.985827i \(0.446345\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −28.3492 −0.777054 −0.388527 0.921437i \(-0.627016\pi\)
−0.388527 + 0.921437i \(0.627016\pi\)
\(12\) 0 0
\(13\) −8.60548 −0.183595 −0.0917973 0.995778i \(-0.529261\pi\)
−0.0917973 + 0.995778i \(0.529261\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −90.1352 −1.28594 −0.642970 0.765891i \(-0.722298\pi\)
−0.642970 + 0.765891i \(0.722298\pi\)
\(18\) 0 0
\(19\) 114.170 1.37854 0.689272 0.724503i \(-0.257931\pi\)
0.689272 + 0.724503i \(0.257931\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −48.4106 −0.438883 −0.219441 0.975626i \(-0.570423\pi\)
−0.219441 + 0.975626i \(0.570423\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 305.958 1.95914 0.979568 0.201113i \(-0.0644557\pi\)
0.979568 + 0.201113i \(0.0644557\pi\)
\(30\) 0 0
\(31\) 93.5957 0.542267 0.271134 0.962542i \(-0.412601\pi\)
0.271134 + 0.962542i \(0.412601\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 31.0707 0.150055
\(36\) 0 0
\(37\) −282.892 −1.25695 −0.628475 0.777830i \(-0.716320\pi\)
−0.628475 + 0.777830i \(0.716320\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −28.7685 −0.109583 −0.0547913 0.998498i \(-0.517449\pi\)
−0.0547913 + 0.998498i \(0.517449\pi\)
\(42\) 0 0
\(43\) −354.443 −1.25703 −0.628513 0.777799i \(-0.716336\pi\)
−0.628513 + 0.777799i \(0.716336\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −522.998 −1.62313 −0.811565 0.584262i \(-0.801384\pi\)
−0.811565 + 0.584262i \(0.801384\pi\)
\(48\) 0 0
\(49\) −304.384 −0.887418
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −66.9285 −0.173459 −0.0867296 0.996232i \(-0.527642\pi\)
−0.0867296 + 0.996232i \(0.527642\pi\)
\(54\) 0 0
\(55\) −141.746 −0.347509
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −7.63223 −0.0168412 −0.00842061 0.999965i \(-0.502680\pi\)
−0.00842061 + 0.999965i \(0.502680\pi\)
\(60\) 0 0
\(61\) 9.41124 0.0197539 0.00987693 0.999951i \(-0.496856\pi\)
0.00987693 + 0.999951i \(0.496856\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −43.0274 −0.0821060
\(66\) 0 0
\(67\) −494.391 −0.901485 −0.450743 0.892654i \(-0.648841\pi\)
−0.450743 + 0.892654i \(0.648841\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −560.709 −0.937239 −0.468619 0.883400i \(-0.655248\pi\)
−0.468619 + 0.883400i \(0.655248\pi\)
\(72\) 0 0
\(73\) 1116.68 1.79038 0.895192 0.445680i \(-0.147038\pi\)
0.895192 + 0.445680i \(0.147038\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −176.166 −0.260726
\(78\) 0 0
\(79\) 1041.87 1.48379 0.741896 0.670515i \(-0.233927\pi\)
0.741896 + 0.670515i \(0.233927\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 45.5107 0.0601862 0.0300931 0.999547i \(-0.490420\pi\)
0.0300931 + 0.999547i \(0.490420\pi\)
\(84\) 0 0
\(85\) −450.676 −0.575090
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −357.159 −0.425379 −0.212690 0.977120i \(-0.568222\pi\)
−0.212690 + 0.977120i \(0.568222\pi\)
\(90\) 0 0
\(91\) −53.4757 −0.0616019
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 570.849 0.616503
\(96\) 0 0
\(97\) −120.006 −0.125616 −0.0628079 0.998026i \(-0.520006\pi\)
−0.0628079 + 0.998026i \(0.520006\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −498.559 −0.491173 −0.245586 0.969375i \(-0.578980\pi\)
−0.245586 + 0.969375i \(0.578980\pi\)
\(102\) 0 0
\(103\) −254.686 −0.243641 −0.121820 0.992552i \(-0.538873\pi\)
−0.121820 + 0.992552i \(0.538873\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 311.077 0.281056 0.140528 0.990077i \(-0.455120\pi\)
0.140528 + 0.990077i \(0.455120\pi\)
\(108\) 0 0
\(109\) −661.173 −0.580999 −0.290500 0.956875i \(-0.593822\pi\)
−0.290500 + 0.956875i \(0.593822\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −565.537 −0.470807 −0.235404 0.971898i \(-0.575641\pi\)
−0.235404 + 0.971898i \(0.575641\pi\)
\(114\) 0 0
\(115\) −242.053 −0.196274
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −560.113 −0.431474
\(120\) 0 0
\(121\) −527.326 −0.396188
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) 1809.60 1.26438 0.632190 0.774814i \(-0.282156\pi\)
0.632190 + 0.774814i \(0.282156\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −2029.83 −1.35379 −0.676897 0.736078i \(-0.736676\pi\)
−0.676897 + 0.736078i \(0.736676\pi\)
\(132\) 0 0
\(133\) 709.467 0.462546
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 545.350 0.340091 0.170045 0.985436i \(-0.445609\pi\)
0.170045 + 0.985436i \(0.445609\pi\)
\(138\) 0 0
\(139\) −1762.64 −1.07558 −0.537788 0.843080i \(-0.680740\pi\)
−0.537788 + 0.843080i \(0.680740\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 243.958 0.142663
\(144\) 0 0
\(145\) 1529.79 0.876152
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1223.53 −0.672722 −0.336361 0.941733i \(-0.609196\pi\)
−0.336361 + 0.941733i \(0.609196\pi\)
\(150\) 0 0
\(151\) 2849.03 1.53543 0.767716 0.640790i \(-0.221393\pi\)
0.767716 + 0.640790i \(0.221393\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 467.978 0.242509
\(156\) 0 0
\(157\) −942.831 −0.479275 −0.239637 0.970862i \(-0.577029\pi\)
−0.239637 + 0.970862i \(0.577029\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −300.830 −0.147259
\(162\) 0 0
\(163\) 417.774 0.200752 0.100376 0.994950i \(-0.467995\pi\)
0.100376 + 0.994950i \(0.467995\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1392.76 −0.645360 −0.322680 0.946508i \(-0.604584\pi\)
−0.322680 + 0.946508i \(0.604584\pi\)
\(168\) 0 0
\(169\) −2122.95 −0.966293
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −3671.35 −1.61345 −0.806727 0.590924i \(-0.798763\pi\)
−0.806727 + 0.590924i \(0.798763\pi\)
\(174\) 0 0
\(175\) 155.354 0.0671064
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −2387.27 −0.996834 −0.498417 0.866938i \(-0.666085\pi\)
−0.498417 + 0.866938i \(0.666085\pi\)
\(180\) 0 0
\(181\) 2078.63 0.853608 0.426804 0.904344i \(-0.359639\pi\)
0.426804 + 0.904344i \(0.359639\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −1414.46 −0.562125
\(186\) 0 0
\(187\) 2555.26 0.999245
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −2991.03 −1.13311 −0.566553 0.824026i \(-0.691723\pi\)
−0.566553 + 0.824026i \(0.691723\pi\)
\(192\) 0 0
\(193\) −5055.79 −1.88561 −0.942807 0.333338i \(-0.891825\pi\)
−0.942807 + 0.333338i \(0.891825\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −3665.56 −1.32569 −0.662843 0.748758i \(-0.730651\pi\)
−0.662843 + 0.748758i \(0.730651\pi\)
\(198\) 0 0
\(199\) 3217.92 1.14629 0.573147 0.819452i \(-0.305722\pi\)
0.573147 + 0.819452i \(0.305722\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 1901.27 0.657353
\(204\) 0 0
\(205\) −143.843 −0.0490068
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −3236.61 −1.07120
\(210\) 0 0
\(211\) −3909.15 −1.27544 −0.637718 0.770270i \(-0.720121\pi\)
−0.637718 + 0.770270i \(0.720121\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1772.22 −0.562159
\(216\) 0 0
\(217\) 581.617 0.181948
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 775.657 0.236092
\(222\) 0 0
\(223\) 808.723 0.242852 0.121426 0.992600i \(-0.461253\pi\)
0.121426 + 0.992600i \(0.461253\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 18.7516 0.00548275 0.00274138 0.999996i \(-0.499127\pi\)
0.00274138 + 0.999996i \(0.499127\pi\)
\(228\) 0 0
\(229\) −1022.99 −0.295202 −0.147601 0.989047i \(-0.547155\pi\)
−0.147601 + 0.989047i \(0.547155\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 2881.43 0.810166 0.405083 0.914280i \(-0.367243\pi\)
0.405083 + 0.914280i \(0.367243\pi\)
\(234\) 0 0
\(235\) −2614.99 −0.725886
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 114.828 0.0310779 0.0155390 0.999879i \(-0.495054\pi\)
0.0155390 + 0.999879i \(0.495054\pi\)
\(240\) 0 0
\(241\) −1968.74 −0.526214 −0.263107 0.964767i \(-0.584747\pi\)
−0.263107 + 0.964767i \(0.584747\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1521.92 −0.396865
\(246\) 0 0
\(247\) −982.485 −0.253093
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −1706.47 −0.429129 −0.214564 0.976710i \(-0.568833\pi\)
−0.214564 + 0.976710i \(0.568833\pi\)
\(252\) 0 0
\(253\) 1372.40 0.341035
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −6191.41 −1.50276 −0.751380 0.659869i \(-0.770612\pi\)
−0.751380 + 0.659869i \(0.770612\pi\)
\(258\) 0 0
\(259\) −1757.93 −0.421747
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 138.736 0.0325278 0.0162639 0.999868i \(-0.494823\pi\)
0.0162639 + 0.999868i \(0.494823\pi\)
\(264\) 0 0
\(265\) −334.643 −0.0775733
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −3362.16 −0.762061 −0.381030 0.924562i \(-0.624431\pi\)
−0.381030 + 0.924562i \(0.624431\pi\)
\(270\) 0 0
\(271\) 3502.68 0.785140 0.392570 0.919722i \(-0.371586\pi\)
0.392570 + 0.919722i \(0.371586\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −708.729 −0.155411
\(276\) 0 0
\(277\) 3853.36 0.835833 0.417917 0.908485i \(-0.362760\pi\)
0.417917 + 0.908485i \(0.362760\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 8259.91 1.75354 0.876770 0.480910i \(-0.159694\pi\)
0.876770 + 0.480910i \(0.159694\pi\)
\(282\) 0 0
\(283\) −5171.06 −1.08618 −0.543088 0.839676i \(-0.682745\pi\)
−0.543088 + 0.839676i \(0.682745\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −178.772 −0.0367685
\(288\) 0 0
\(289\) 3211.35 0.653644
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −4190.68 −0.835571 −0.417786 0.908546i \(-0.637194\pi\)
−0.417786 + 0.908546i \(0.637194\pi\)
\(294\) 0 0
\(295\) −38.1611 −0.00753162
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 416.596 0.0805765
\(300\) 0 0
\(301\) −2202.56 −0.421772
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 47.0562 0.00883420
\(306\) 0 0
\(307\) 3745.74 0.696355 0.348177 0.937429i \(-0.386801\pi\)
0.348177 + 0.937429i \(0.386801\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −4854.78 −0.885175 −0.442588 0.896725i \(-0.645939\pi\)
−0.442588 + 0.896725i \(0.645939\pi\)
\(312\) 0 0
\(313\) 3171.06 0.572649 0.286324 0.958133i \(-0.407567\pi\)
0.286324 + 0.958133i \(0.407567\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −5837.07 −1.03420 −0.517101 0.855924i \(-0.672989\pi\)
−0.517101 + 0.855924i \(0.672989\pi\)
\(318\) 0 0
\(319\) −8673.65 −1.52235
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −10290.7 −1.77273
\(324\) 0 0
\(325\) −215.137 −0.0367189
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −3249.99 −0.544612
\(330\) 0 0
\(331\) 5595.31 0.929142 0.464571 0.885536i \(-0.346209\pi\)
0.464571 + 0.885536i \(0.346209\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −2471.96 −0.403157
\(336\) 0 0
\(337\) −8661.15 −1.40001 −0.700004 0.714139i \(-0.746819\pi\)
−0.700004 + 0.714139i \(0.746819\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −2653.36 −0.421371
\(342\) 0 0
\(343\) −4022.94 −0.633289
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 10555.3 1.63297 0.816483 0.577369i \(-0.195921\pi\)
0.816483 + 0.577369i \(0.195921\pi\)
\(348\) 0 0
\(349\) 6399.71 0.981572 0.490786 0.871280i \(-0.336710\pi\)
0.490786 + 0.871280i \(0.336710\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −9778.11 −1.47432 −0.737162 0.675716i \(-0.763835\pi\)
−0.737162 + 0.675716i \(0.763835\pi\)
\(354\) 0 0
\(355\) −2803.55 −0.419146
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 2893.60 0.425399 0.212700 0.977118i \(-0.431774\pi\)
0.212700 + 0.977118i \(0.431774\pi\)
\(360\) 0 0
\(361\) 6175.72 0.900382
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 5583.42 0.800684
\(366\) 0 0
\(367\) −7307.82 −1.03941 −0.519707 0.854345i \(-0.673959\pi\)
−0.519707 + 0.854345i \(0.673959\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −415.903 −0.0582012
\(372\) 0 0
\(373\) 8272.24 1.14831 0.574156 0.818746i \(-0.305330\pi\)
0.574156 + 0.818746i \(0.305330\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −2632.91 −0.359687
\(378\) 0 0
\(379\) −740.953 −0.100423 −0.0502113 0.998739i \(-0.515989\pi\)
−0.0502113 + 0.998739i \(0.515989\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −1233.49 −0.164566 −0.0822828 0.996609i \(-0.526221\pi\)
−0.0822828 + 0.996609i \(0.526221\pi\)
\(384\) 0 0
\(385\) −880.828 −0.116600
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 6958.20 0.906927 0.453464 0.891275i \(-0.350188\pi\)
0.453464 + 0.891275i \(0.350188\pi\)
\(390\) 0 0
\(391\) 4363.50 0.564377
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 5209.35 0.663572
\(396\) 0 0
\(397\) 5973.68 0.755190 0.377595 0.925971i \(-0.376751\pi\)
0.377595 + 0.925971i \(0.376751\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −4716.88 −0.587406 −0.293703 0.955897i \(-0.594888\pi\)
−0.293703 + 0.955897i \(0.594888\pi\)
\(402\) 0 0
\(403\) −805.436 −0.0995574
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 8019.74 0.976717
\(408\) 0 0
\(409\) 7815.88 0.944915 0.472458 0.881353i \(-0.343367\pi\)
0.472458 + 0.881353i \(0.343367\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −47.4277 −0.00565077
\(414\) 0 0
\(415\) 227.554 0.0269161
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −2955.17 −0.344557 −0.172278 0.985048i \(-0.555113\pi\)
−0.172278 + 0.985048i \(0.555113\pi\)
\(420\) 0 0
\(421\) −6770.08 −0.783737 −0.391869 0.920021i \(-0.628171\pi\)
−0.391869 + 0.920021i \(0.628171\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −2253.38 −0.257188
\(426\) 0 0
\(427\) 58.4828 0.00662805
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 6082.40 0.679765 0.339883 0.940468i \(-0.389613\pi\)
0.339883 + 0.940468i \(0.389613\pi\)
\(432\) 0 0
\(433\) −8993.04 −0.998102 −0.499051 0.866573i \(-0.666318\pi\)
−0.499051 + 0.866573i \(0.666318\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −5527.02 −0.605019
\(438\) 0 0
\(439\) 17180.5 1.86784 0.933919 0.357485i \(-0.116366\pi\)
0.933919 + 0.357485i \(0.116366\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −12231.3 −1.31180 −0.655901 0.754847i \(-0.727711\pi\)
−0.655901 + 0.754847i \(0.727711\pi\)
\(444\) 0 0
\(445\) −1785.79 −0.190235
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −1182.08 −0.124245 −0.0621224 0.998069i \(-0.519787\pi\)
−0.0621224 + 0.998069i \(0.519787\pi\)
\(450\) 0 0
\(451\) 815.563 0.0851515
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −267.378 −0.0275492
\(456\) 0 0
\(457\) −7353.03 −0.752648 −0.376324 0.926488i \(-0.622812\pi\)
−0.376324 + 0.926488i \(0.622812\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −3706.94 −0.374510 −0.187255 0.982311i \(-0.559959\pi\)
−0.187255 + 0.982311i \(0.559959\pi\)
\(462\) 0 0
\(463\) −14015.4 −1.40680 −0.703401 0.710794i \(-0.748336\pi\)
−0.703401 + 0.710794i \(0.748336\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 12187.1 1.20760 0.603801 0.797135i \(-0.293652\pi\)
0.603801 + 0.797135i \(0.293652\pi\)
\(468\) 0 0
\(469\) −3072.22 −0.302477
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 10048.2 0.976776
\(474\) 0 0
\(475\) 2854.24 0.275709
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −64.6375 −0.00616568 −0.00308284 0.999995i \(-0.500981\pi\)
−0.00308284 + 0.999995i \(0.500981\pi\)
\(480\) 0 0
\(481\) 2434.42 0.230769
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −600.029 −0.0561771
\(486\) 0 0
\(487\) −3763.31 −0.350168 −0.175084 0.984553i \(-0.556020\pi\)
−0.175084 + 0.984553i \(0.556020\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −2106.94 −0.193655 −0.0968277 0.995301i \(-0.530870\pi\)
−0.0968277 + 0.995301i \(0.530870\pi\)
\(492\) 0 0
\(493\) −27577.6 −2.51933
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −3484.33 −0.314474
\(498\) 0 0
\(499\) 2130.97 0.191173 0.0955866 0.995421i \(-0.469527\pi\)
0.0955866 + 0.995421i \(0.469527\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 12920.0 1.14528 0.572639 0.819808i \(-0.305920\pi\)
0.572639 + 0.819808i \(0.305920\pi\)
\(504\) 0 0
\(505\) −2492.79 −0.219659
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 685.808 0.0597209 0.0298604 0.999554i \(-0.490494\pi\)
0.0298604 + 0.999554i \(0.490494\pi\)
\(510\) 0 0
\(511\) 6939.24 0.600731
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −1273.43 −0.108959
\(516\) 0 0
\(517\) 14826.6 1.26126
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −21259.3 −1.78769 −0.893845 0.448377i \(-0.852002\pi\)
−0.893845 + 0.448377i \(0.852002\pi\)
\(522\) 0 0
\(523\) 6099.14 0.509937 0.254968 0.966949i \(-0.417935\pi\)
0.254968 + 0.966949i \(0.417935\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −8436.26 −0.697323
\(528\) 0 0
\(529\) −9823.42 −0.807382
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 247.567 0.0201188
\(534\) 0 0
\(535\) 1555.39 0.125692
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 8629.04 0.689572
\(540\) 0 0
\(541\) 9552.07 0.759104 0.379552 0.925170i \(-0.376078\pi\)
0.379552 + 0.925170i \(0.376078\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −3305.87 −0.259831
\(546\) 0 0
\(547\) 24878.0 1.94462 0.972309 0.233698i \(-0.0750828\pi\)
0.972309 + 0.233698i \(0.0750828\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 34931.1 2.70075
\(552\) 0 0
\(553\) 6474.33 0.497860
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −10625.7 −0.808306 −0.404153 0.914692i \(-0.632434\pi\)
−0.404153 + 0.914692i \(0.632434\pi\)
\(558\) 0 0
\(559\) 3050.16 0.230783
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 16188.0 1.21180 0.605900 0.795541i \(-0.292813\pi\)
0.605900 + 0.795541i \(0.292813\pi\)
\(564\) 0 0
\(565\) −2827.68 −0.210551
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −7919.46 −0.583482 −0.291741 0.956497i \(-0.594234\pi\)
−0.291741 + 0.956497i \(0.594234\pi\)
\(570\) 0 0
\(571\) 13505.3 0.989808 0.494904 0.868948i \(-0.335203\pi\)
0.494904 + 0.868948i \(0.335203\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −1210.26 −0.0877765
\(576\) 0 0
\(577\) −7873.07 −0.568042 −0.284021 0.958818i \(-0.591669\pi\)
−0.284021 + 0.958818i \(0.591669\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 282.810 0.0201944
\(582\) 0 0
\(583\) 1897.37 0.134787
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 20117.0 1.41451 0.707254 0.706959i \(-0.249934\pi\)
0.707254 + 0.706959i \(0.249934\pi\)
\(588\) 0 0
\(589\) 10685.8 0.747539
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 4394.15 0.304294 0.152147 0.988358i \(-0.451381\pi\)
0.152147 + 0.988358i \(0.451381\pi\)
\(594\) 0 0
\(595\) −2800.56 −0.192961
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 14244.7 0.971660 0.485830 0.874053i \(-0.338517\pi\)
0.485830 + 0.874053i \(0.338517\pi\)
\(600\) 0 0
\(601\) 16435.6 1.11551 0.557755 0.830006i \(-0.311663\pi\)
0.557755 + 0.830006i \(0.311663\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −2636.63 −0.177180
\(606\) 0 0
\(607\) 27431.2 1.83426 0.917131 0.398586i \(-0.130499\pi\)
0.917131 + 0.398586i \(0.130499\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 4500.65 0.297998
\(612\) 0 0
\(613\) −15161.9 −0.998995 −0.499497 0.866315i \(-0.666482\pi\)
−0.499497 + 0.866315i \(0.666482\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −6160.44 −0.401961 −0.200981 0.979595i \(-0.564413\pi\)
−0.200981 + 0.979595i \(0.564413\pi\)
\(618\) 0 0
\(619\) −26799.2 −1.74015 −0.870074 0.492922i \(-0.835929\pi\)
−0.870074 + 0.492922i \(0.835929\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −2219.44 −0.142728
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 25498.5 1.61636
\(630\) 0 0
\(631\) −26100.0 −1.64663 −0.823315 0.567585i \(-0.807878\pi\)
−0.823315 + 0.567585i \(0.807878\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 9048.01 0.565448
\(636\) 0 0
\(637\) 2619.37 0.162925
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −3235.84 −0.199389 −0.0996944 0.995018i \(-0.531787\pi\)
−0.0996944 + 0.995018i \(0.531787\pi\)
\(642\) 0 0
\(643\) −18448.4 −1.13147 −0.565733 0.824589i \(-0.691407\pi\)
−0.565733 + 0.824589i \(0.691407\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −17173.6 −1.04353 −0.521765 0.853089i \(-0.674726\pi\)
−0.521765 + 0.853089i \(0.674726\pi\)
\(648\) 0 0
\(649\) 216.367 0.0130865
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 26039.4 1.56049 0.780245 0.625474i \(-0.215094\pi\)
0.780245 + 0.625474i \(0.215094\pi\)
\(654\) 0 0
\(655\) −10149.1 −0.605435
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 2706.12 0.159963 0.0799815 0.996796i \(-0.474514\pi\)
0.0799815 + 0.996796i \(0.474514\pi\)
\(660\) 0 0
\(661\) 27271.4 1.60474 0.802371 0.596825i \(-0.203571\pi\)
0.802371 + 0.596825i \(0.203571\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 3547.33 0.206857
\(666\) 0 0
\(667\) −14811.6 −0.859831
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −266.801 −0.0153498
\(672\) 0 0
\(673\) −12793.0 −0.732738 −0.366369 0.930470i \(-0.619399\pi\)
−0.366369 + 0.930470i \(0.619399\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 27114.1 1.53926 0.769629 0.638491i \(-0.220441\pi\)
0.769629 + 0.638491i \(0.220441\pi\)
\(678\) 0 0
\(679\) −745.733 −0.0421481
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 33488.7 1.87615 0.938075 0.346433i \(-0.112607\pi\)
0.938075 + 0.346433i \(0.112607\pi\)
\(684\) 0 0
\(685\) 2726.75 0.152093
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 575.952 0.0318462
\(690\) 0 0
\(691\) −1728.99 −0.0951864 −0.0475932 0.998867i \(-0.515155\pi\)
−0.0475932 + 0.998867i \(0.515155\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −8813.19 −0.481012
\(696\) 0 0
\(697\) 2593.05 0.140917
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 9451.65 0.509250 0.254625 0.967040i \(-0.418048\pi\)
0.254625 + 0.967040i \(0.418048\pi\)
\(702\) 0 0
\(703\) −32297.7 −1.73276
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −3098.11 −0.164804
\(708\) 0 0
\(709\) −23271.7 −1.23271 −0.616353 0.787470i \(-0.711391\pi\)
−0.616353 + 0.787470i \(0.711391\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −4531.02 −0.237992
\(714\) 0 0
\(715\) 1219.79 0.0638008
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −24974.3 −1.29539 −0.647695 0.761900i \(-0.724267\pi\)
−0.647695 + 0.761900i \(0.724267\pi\)
\(720\) 0 0
\(721\) −1582.66 −0.0817493
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 7648.95 0.391827
\(726\) 0 0
\(727\) 1666.52 0.0850177 0.0425089 0.999096i \(-0.486465\pi\)
0.0425089 + 0.999096i \(0.486465\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 31947.8 1.61646
\(732\) 0 0
\(733\) −8694.92 −0.438137 −0.219068 0.975710i \(-0.570302\pi\)
−0.219068 + 0.975710i \(0.570302\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 14015.6 0.700503
\(738\) 0 0
\(739\) −19373.0 −0.964342 −0.482171 0.876077i \(-0.660152\pi\)
−0.482171 + 0.876077i \(0.660152\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 27444.0 1.35508 0.677538 0.735488i \(-0.263047\pi\)
0.677538 + 0.735488i \(0.263047\pi\)
\(744\) 0 0
\(745\) −6117.65 −0.300850
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 1933.08 0.0943032
\(750\) 0 0
\(751\) −3861.56 −0.187630 −0.0938152 0.995590i \(-0.529906\pi\)
−0.0938152 + 0.995590i \(0.529906\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 14245.1 0.686666
\(756\) 0 0
\(757\) 19846.9 0.952903 0.476452 0.879201i \(-0.341923\pi\)
0.476452 + 0.879201i \(0.341923\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −30259.4 −1.44140 −0.720698 0.693250i \(-0.756178\pi\)
−0.720698 + 0.693250i \(0.756178\pi\)
\(762\) 0 0
\(763\) −4108.63 −0.194944
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 65.6790 0.00309196
\(768\) 0 0
\(769\) 29877.1 1.40104 0.700518 0.713634i \(-0.252952\pi\)
0.700518 + 0.713634i \(0.252952\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −9509.77 −0.442487 −0.221244 0.975219i \(-0.571012\pi\)
−0.221244 + 0.975219i \(0.571012\pi\)
\(774\) 0 0
\(775\) 2339.89 0.108453
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −3284.49 −0.151064
\(780\) 0 0
\(781\) 15895.6 0.728285
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −4714.16 −0.214338
\(786\) 0 0
\(787\) −13809.0 −0.625461 −0.312730 0.949842i \(-0.601244\pi\)
−0.312730 + 0.949842i \(0.601244\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −3514.33 −0.157971
\(792\) 0 0
\(793\) −80.9882 −0.00362670
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 16821.9 0.747631 0.373815 0.927503i \(-0.378049\pi\)
0.373815 + 0.927503i \(0.378049\pi\)
\(798\) 0 0
\(799\) 47140.5 2.08725
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −31657.1 −1.39122
\(804\) 0 0
\(805\) −1504.15 −0.0658563
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −28306.2 −1.23015 −0.615075 0.788468i \(-0.710874\pi\)
−0.615075 + 0.788468i \(0.710874\pi\)
\(810\) 0 0
\(811\) 13617.1 0.589594 0.294797 0.955560i \(-0.404748\pi\)
0.294797 + 0.955560i \(0.404748\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 2088.87 0.0897790
\(816\) 0 0
\(817\) −40466.7 −1.73286
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 30903.3 1.31368 0.656841 0.754029i \(-0.271892\pi\)
0.656841 + 0.754029i \(0.271892\pi\)
\(822\) 0 0
\(823\) 20273.3 0.858665 0.429333 0.903146i \(-0.358749\pi\)
0.429333 + 0.903146i \(0.358749\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 32437.6 1.36393 0.681963 0.731387i \(-0.261127\pi\)
0.681963 + 0.731387i \(0.261127\pi\)
\(828\) 0 0
\(829\) −7539.68 −0.315879 −0.157940 0.987449i \(-0.550485\pi\)
−0.157940 + 0.987449i \(0.550485\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 27435.7 1.14117
\(834\) 0 0
\(835\) −6963.81 −0.288614
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 20839.4 0.857518 0.428759 0.903419i \(-0.358951\pi\)
0.428759 + 0.903419i \(0.358951\pi\)
\(840\) 0 0
\(841\) 69221.2 2.83822
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −10614.7 −0.432139
\(846\) 0 0
\(847\) −3276.88 −0.132934
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 13695.0 0.551653
\(852\) 0 0
\(853\) −36319.7 −1.45787 −0.728934 0.684584i \(-0.759984\pi\)
−0.728934 + 0.684584i \(0.759984\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 10265.3 0.409168 0.204584 0.978849i \(-0.434416\pi\)
0.204584 + 0.978849i \(0.434416\pi\)
\(858\) 0 0
\(859\) 38218.5 1.51804 0.759022 0.651065i \(-0.225677\pi\)
0.759022 + 0.651065i \(0.225677\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 27385.0 1.08018 0.540090 0.841608i \(-0.318390\pi\)
0.540090 + 0.841608i \(0.318390\pi\)
\(864\) 0 0
\(865\) −18356.7 −0.721559
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −29536.2 −1.15299
\(870\) 0 0
\(871\) 4254.48 0.165508
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 776.768 0.0300109
\(876\) 0 0
\(877\) 31319.6 1.20592 0.602958 0.797773i \(-0.293989\pi\)
0.602958 + 0.797773i \(0.293989\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 6309.71 0.241293 0.120647 0.992696i \(-0.461503\pi\)
0.120647 + 0.992696i \(0.461503\pi\)
\(882\) 0 0
\(883\) −24665.0 −0.940026 −0.470013 0.882660i \(-0.655751\pi\)
−0.470013 + 0.882660i \(0.655751\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 27988.7 1.05949 0.529746 0.848156i \(-0.322287\pi\)
0.529746 + 0.848156i \(0.322287\pi\)
\(888\) 0 0
\(889\) 11245.1 0.424240
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −59710.6 −2.23756
\(894\) 0 0
\(895\) −11936.4 −0.445798
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 28636.3 1.06238
\(900\) 0 0
\(901\) 6032.62 0.223058
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 10393.1 0.381745
\(906\) 0 0
\(907\) 23263.2 0.851645 0.425822 0.904807i \(-0.359985\pi\)
0.425822 + 0.904807i \(0.359985\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 38345.8 1.39457 0.697286 0.716793i \(-0.254391\pi\)
0.697286 + 0.716793i \(0.254391\pi\)
\(912\) 0 0
\(913\) −1290.19 −0.0467679
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −12613.6 −0.454241
\(918\) 0 0
\(919\) −11675.3 −0.419077 −0.209539 0.977800i \(-0.567196\pi\)
−0.209539 + 0.977800i \(0.567196\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 4825.17 0.172072
\(924\) 0 0
\(925\) −7072.29 −0.251390
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 34050.4 1.20254 0.601269 0.799047i \(-0.294662\pi\)
0.601269 + 0.799047i \(0.294662\pi\)
\(930\) 0 0
\(931\) −34751.5 −1.22334
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 12776.3 0.446876
\(936\) 0 0
\(937\) 15395.5 0.536766 0.268383 0.963312i \(-0.413511\pi\)
0.268383 + 0.963312i \(0.413511\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −25708.7 −0.890626 −0.445313 0.895375i \(-0.646908\pi\)
−0.445313 + 0.895375i \(0.646908\pi\)
\(942\) 0 0
\(943\) 1392.70 0.0480939
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −7035.07 −0.241403 −0.120702 0.992689i \(-0.538514\pi\)
−0.120702 + 0.992689i \(0.538514\pi\)
\(948\) 0 0
\(949\) −9609.61 −0.328705
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 15233.0 0.517782 0.258891 0.965907i \(-0.416643\pi\)
0.258891 + 0.965907i \(0.416643\pi\)
\(954\) 0 0
\(955\) −14955.1 −0.506740
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 3388.88 0.114111
\(960\) 0 0
\(961\) −21030.8 −0.705946
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −25278.9 −0.843273
\(966\) 0 0
\(967\) 18311.7 0.608959 0.304479 0.952519i \(-0.401518\pi\)
0.304479 + 0.952519i \(0.401518\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −37567.0 −1.24159 −0.620795 0.783973i \(-0.713190\pi\)
−0.620795 + 0.783973i \(0.713190\pi\)
\(972\) 0 0
\(973\) −10953.3 −0.360890
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −50040.0 −1.63861 −0.819305 0.573357i \(-0.805641\pi\)
−0.819305 + 0.573357i \(0.805641\pi\)
\(978\) 0 0
\(979\) 10125.2 0.330543
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 3328.05 0.107984 0.0539921 0.998541i \(-0.482805\pi\)
0.0539921 + 0.998541i \(0.482805\pi\)
\(984\) 0 0
\(985\) −18327.8 −0.592865
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 17158.8 0.551687
\(990\) 0 0
\(991\) 47485.9 1.52214 0.761069 0.648671i \(-0.224675\pi\)
0.761069 + 0.648671i \(0.224675\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 16089.6 0.512639
\(996\) 0 0
\(997\) 101.392 0.00322076 0.00161038 0.999999i \(-0.499487\pi\)
0.00161038 + 0.999999i \(0.499487\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1620.4.a.j.1.4 yes 6
3.2 odd 2 1620.4.a.i.1.4 6
9.2 odd 6 1620.4.i.x.1081.3 12
9.4 even 3 1620.4.i.w.541.3 12
9.5 odd 6 1620.4.i.x.541.3 12
9.7 even 3 1620.4.i.w.1081.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1620.4.a.i.1.4 6 3.2 odd 2
1620.4.a.j.1.4 yes 6 1.1 even 1 trivial
1620.4.i.w.541.3 12 9.4 even 3
1620.4.i.w.1081.3 12 9.7 even 3
1620.4.i.x.541.3 12 9.5 odd 6
1620.4.i.x.1081.3 12 9.2 odd 6