Properties

Label 1629.2.a.e.1.7
Level $1629$
Weight $2$
Character 1629.1
Self dual yes
Analytic conductor $13.008$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1629,2,Mod(1,1629)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1629, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1629.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1629 = 3^{2} \cdot 181 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1629.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.0076304893\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} - 6x^{6} + 21x^{5} + 5x^{4} - 35x^{3} + 10x^{2} + 4x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 543)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(-1.57409\) of defining polynomial
Character \(\chi\) \(=\) 1629.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.57409 q^{2} +0.477759 q^{4} -2.61079 q^{5} +3.43627 q^{7} -2.39614 q^{8} -4.10962 q^{10} -0.961440 q^{11} -2.19899 q^{13} +5.40900 q^{14} -4.72726 q^{16} -1.38921 q^{17} -1.29785 q^{19} -1.24733 q^{20} -1.51339 q^{22} +1.03393 q^{23} +1.81623 q^{25} -3.46140 q^{26} +1.64171 q^{28} -10.3621 q^{29} +1.46354 q^{31} -2.64885 q^{32} -2.18674 q^{34} -8.97139 q^{35} +0.102931 q^{37} -2.04293 q^{38} +6.25583 q^{40} -2.19969 q^{41} -5.89954 q^{43} -0.459336 q^{44} +1.62749 q^{46} -4.32862 q^{47} +4.80796 q^{49} +2.85891 q^{50} -1.05059 q^{52} -9.97667 q^{53} +2.51012 q^{55} -8.23380 q^{56} -16.3109 q^{58} -3.19012 q^{59} -7.75991 q^{61} +2.30375 q^{62} +5.28500 q^{64} +5.74110 q^{65} +4.55325 q^{67} -0.663707 q^{68} -14.1218 q^{70} +13.5850 q^{71} +1.86716 q^{73} +0.162023 q^{74} -0.620058 q^{76} -3.30377 q^{77} +1.27450 q^{79} +12.3419 q^{80} -3.46252 q^{82} -6.39088 q^{83} +3.62693 q^{85} -9.28640 q^{86} +2.30375 q^{88} -0.429627 q^{89} -7.55632 q^{91} +0.493968 q^{92} -6.81364 q^{94} +3.38841 q^{95} +7.74609 q^{97} +7.56817 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 3 q^{2} + 5 q^{4} - 5 q^{5} - 3 q^{7} - 6 q^{8} + 2 q^{10} - 4 q^{11} + 13 q^{13} - 5 q^{14} + 3 q^{16} - 27 q^{17} - 10 q^{19} - 21 q^{20} + 11 q^{22} - 3 q^{23} + 13 q^{25} - 11 q^{26} - 3 q^{28}+ \cdots + 51 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.57409 1.11305 0.556525 0.830831i \(-0.312134\pi\)
0.556525 + 0.830831i \(0.312134\pi\)
\(3\) 0 0
\(4\) 0.477759 0.238880
\(5\) −2.61079 −1.16758 −0.583791 0.811904i \(-0.698431\pi\)
−0.583791 + 0.811904i \(0.698431\pi\)
\(6\) 0 0
\(7\) 3.43627 1.29879 0.649394 0.760452i \(-0.275022\pi\)
0.649394 + 0.760452i \(0.275022\pi\)
\(8\) −2.39614 −0.847165
\(9\) 0 0
\(10\) −4.10962 −1.29958
\(11\) −0.961440 −0.289885 −0.144942 0.989440i \(-0.546300\pi\)
−0.144942 + 0.989440i \(0.546300\pi\)
\(12\) 0 0
\(13\) −2.19899 −0.609889 −0.304945 0.952370i \(-0.598638\pi\)
−0.304945 + 0.952370i \(0.598638\pi\)
\(14\) 5.40900 1.44562
\(15\) 0 0
\(16\) −4.72726 −1.18182
\(17\) −1.38921 −0.336933 −0.168466 0.985707i \(-0.553881\pi\)
−0.168466 + 0.985707i \(0.553881\pi\)
\(18\) 0 0
\(19\) −1.29785 −0.297746 −0.148873 0.988856i \(-0.547565\pi\)
−0.148873 + 0.988856i \(0.547565\pi\)
\(20\) −1.24733 −0.278911
\(21\) 0 0
\(22\) −1.51339 −0.322656
\(23\) 1.03393 0.215589 0.107794 0.994173i \(-0.465621\pi\)
0.107794 + 0.994173i \(0.465621\pi\)
\(24\) 0 0
\(25\) 1.81623 0.363246
\(26\) −3.46140 −0.678837
\(27\) 0 0
\(28\) 1.64171 0.310254
\(29\) −10.3621 −1.92420 −0.962099 0.272701i \(-0.912083\pi\)
−0.962099 + 0.272701i \(0.912083\pi\)
\(30\) 0 0
\(31\) 1.46354 0.262860 0.131430 0.991325i \(-0.458043\pi\)
0.131430 + 0.991325i \(0.458043\pi\)
\(32\) −2.64885 −0.468255
\(33\) 0 0
\(34\) −2.18674 −0.375023
\(35\) −8.97139 −1.51644
\(36\) 0 0
\(37\) 0.102931 0.0169218 0.00846089 0.999964i \(-0.497307\pi\)
0.00846089 + 0.999964i \(0.497307\pi\)
\(38\) −2.04293 −0.331407
\(39\) 0 0
\(40\) 6.25583 0.989134
\(41\) −2.19969 −0.343534 −0.171767 0.985138i \(-0.554948\pi\)
−0.171767 + 0.985138i \(0.554948\pi\)
\(42\) 0 0
\(43\) −5.89954 −0.899671 −0.449835 0.893111i \(-0.648517\pi\)
−0.449835 + 0.893111i \(0.648517\pi\)
\(44\) −0.459336 −0.0692476
\(45\) 0 0
\(46\) 1.62749 0.239961
\(47\) −4.32862 −0.631394 −0.315697 0.948860i \(-0.602238\pi\)
−0.315697 + 0.948860i \(0.602238\pi\)
\(48\) 0 0
\(49\) 4.80796 0.686852
\(50\) 2.85891 0.404311
\(51\) 0 0
\(52\) −1.05059 −0.145690
\(53\) −9.97667 −1.37040 −0.685200 0.728355i \(-0.740285\pi\)
−0.685200 + 0.728355i \(0.740285\pi\)
\(54\) 0 0
\(55\) 2.51012 0.338464
\(56\) −8.23380 −1.10029
\(57\) 0 0
\(58\) −16.3109 −2.14173
\(59\) −3.19012 −0.415319 −0.207659 0.978201i \(-0.566585\pi\)
−0.207659 + 0.978201i \(0.566585\pi\)
\(60\) 0 0
\(61\) −7.75991 −0.993555 −0.496778 0.867878i \(-0.665484\pi\)
−0.496778 + 0.867878i \(0.665484\pi\)
\(62\) 2.30375 0.292576
\(63\) 0 0
\(64\) 5.28500 0.660625
\(65\) 5.74110 0.712095
\(66\) 0 0
\(67\) 4.55325 0.556268 0.278134 0.960542i \(-0.410284\pi\)
0.278134 + 0.960542i \(0.410284\pi\)
\(68\) −0.663707 −0.0804863
\(69\) 0 0
\(70\) −14.1218 −1.68787
\(71\) 13.5850 1.61224 0.806121 0.591751i \(-0.201563\pi\)
0.806121 + 0.591751i \(0.201563\pi\)
\(72\) 0 0
\(73\) 1.86716 0.218535 0.109267 0.994012i \(-0.465149\pi\)
0.109267 + 0.994012i \(0.465149\pi\)
\(74\) 0.162023 0.0188348
\(75\) 0 0
\(76\) −0.620058 −0.0711255
\(77\) −3.30377 −0.376499
\(78\) 0 0
\(79\) 1.27450 0.143393 0.0716964 0.997427i \(-0.477159\pi\)
0.0716964 + 0.997427i \(0.477159\pi\)
\(80\) 12.3419 1.37987
\(81\) 0 0
\(82\) −3.46252 −0.382371
\(83\) −6.39088 −0.701490 −0.350745 0.936471i \(-0.614072\pi\)
−0.350745 + 0.936471i \(0.614072\pi\)
\(84\) 0 0
\(85\) 3.62693 0.393396
\(86\) −9.28640 −1.00138
\(87\) 0 0
\(88\) 2.30375 0.245580
\(89\) −0.429627 −0.0455404 −0.0227702 0.999741i \(-0.507249\pi\)
−0.0227702 + 0.999741i \(0.507249\pi\)
\(90\) 0 0
\(91\) −7.55632 −0.792118
\(92\) 0.493968 0.0514997
\(93\) 0 0
\(94\) −6.81364 −0.702773
\(95\) 3.38841 0.347643
\(96\) 0 0
\(97\) 7.74609 0.786496 0.393248 0.919432i \(-0.371351\pi\)
0.393248 + 0.919432i \(0.371351\pi\)
\(98\) 7.56817 0.764500
\(99\) 0 0
\(100\) 0.867720 0.0867720
\(101\) −8.32864 −0.828731 −0.414365 0.910111i \(-0.635996\pi\)
−0.414365 + 0.910111i \(0.635996\pi\)
\(102\) 0 0
\(103\) 13.5440 1.33453 0.667265 0.744821i \(-0.267465\pi\)
0.667265 + 0.744821i \(0.267465\pi\)
\(104\) 5.26909 0.516677
\(105\) 0 0
\(106\) −15.7042 −1.52532
\(107\) 11.6097 1.12235 0.561175 0.827697i \(-0.310350\pi\)
0.561175 + 0.827697i \(0.310350\pi\)
\(108\) 0 0
\(109\) −4.66299 −0.446633 −0.223317 0.974746i \(-0.571688\pi\)
−0.223317 + 0.974746i \(0.571688\pi\)
\(110\) 3.95115 0.376727
\(111\) 0 0
\(112\) −16.2442 −1.53493
\(113\) −10.9955 −1.03437 −0.517187 0.855872i \(-0.673021\pi\)
−0.517187 + 0.855872i \(0.673021\pi\)
\(114\) 0 0
\(115\) −2.69937 −0.251717
\(116\) −4.95060 −0.459651
\(117\) 0 0
\(118\) −5.02154 −0.462270
\(119\) −4.77370 −0.437604
\(120\) 0 0
\(121\) −10.0756 −0.915967
\(122\) −12.2148 −1.10588
\(123\) 0 0
\(124\) 0.699221 0.0627919
\(125\) 8.31216 0.743462
\(126\) 0 0
\(127\) 8.07470 0.716513 0.358257 0.933623i \(-0.383371\pi\)
0.358257 + 0.933623i \(0.383371\pi\)
\(128\) 13.6168 1.20356
\(129\) 0 0
\(130\) 9.03700 0.792598
\(131\) 18.8695 1.64864 0.824320 0.566125i \(-0.191558\pi\)
0.824320 + 0.566125i \(0.191558\pi\)
\(132\) 0 0
\(133\) −4.45975 −0.386710
\(134\) 7.16723 0.619154
\(135\) 0 0
\(136\) 3.32875 0.285438
\(137\) −17.6058 −1.50417 −0.752085 0.659067i \(-0.770952\pi\)
−0.752085 + 0.659067i \(0.770952\pi\)
\(138\) 0 0
\(139\) −7.03888 −0.597030 −0.298515 0.954405i \(-0.596491\pi\)
−0.298515 + 0.954405i \(0.596491\pi\)
\(140\) −4.28616 −0.362247
\(141\) 0 0
\(142\) 21.3840 1.79451
\(143\) 2.11419 0.176798
\(144\) 0 0
\(145\) 27.0533 2.24666
\(146\) 2.93908 0.243240
\(147\) 0 0
\(148\) 0.0491763 0.00404227
\(149\) 6.74021 0.552180 0.276090 0.961132i \(-0.410961\pi\)
0.276090 + 0.961132i \(0.410961\pi\)
\(150\) 0 0
\(151\) 3.82904 0.311603 0.155802 0.987788i \(-0.450204\pi\)
0.155802 + 0.987788i \(0.450204\pi\)
\(152\) 3.10983 0.252240
\(153\) 0 0
\(154\) −5.20043 −0.419062
\(155\) −3.82100 −0.306910
\(156\) 0 0
\(157\) −2.71018 −0.216296 −0.108148 0.994135i \(-0.534492\pi\)
−0.108148 + 0.994135i \(0.534492\pi\)
\(158\) 2.00618 0.159603
\(159\) 0 0
\(160\) 6.91560 0.546726
\(161\) 3.55285 0.280004
\(162\) 0 0
\(163\) −24.5296 −1.92131 −0.960654 0.277749i \(-0.910412\pi\)
−0.960654 + 0.277749i \(0.910412\pi\)
\(164\) −1.05092 −0.0820633
\(165\) 0 0
\(166\) −10.0598 −0.780793
\(167\) 7.97488 0.617115 0.308557 0.951206i \(-0.400154\pi\)
0.308557 + 0.951206i \(0.400154\pi\)
\(168\) 0 0
\(169\) −8.16445 −0.628035
\(170\) 5.70912 0.437870
\(171\) 0 0
\(172\) −2.81856 −0.214913
\(173\) −23.6725 −1.79979 −0.899895 0.436107i \(-0.856357\pi\)
−0.899895 + 0.436107i \(0.856357\pi\)
\(174\) 0 0
\(175\) 6.24106 0.471779
\(176\) 4.54498 0.342591
\(177\) 0 0
\(178\) −0.676272 −0.0506887
\(179\) 14.7917 1.10558 0.552790 0.833320i \(-0.313563\pi\)
0.552790 + 0.833320i \(0.313563\pi\)
\(180\) 0 0
\(181\) 1.00000 0.0743294
\(182\) −11.8943 −0.881666
\(183\) 0 0
\(184\) −2.47744 −0.182639
\(185\) −0.268732 −0.0197576
\(186\) 0 0
\(187\) 1.33564 0.0976717
\(188\) −2.06804 −0.150827
\(189\) 0 0
\(190\) 5.33366 0.386944
\(191\) 16.3286 1.18150 0.590749 0.806855i \(-0.298832\pi\)
0.590749 + 0.806855i \(0.298832\pi\)
\(192\) 0 0
\(193\) 21.4797 1.54614 0.773070 0.634321i \(-0.218720\pi\)
0.773070 + 0.634321i \(0.218720\pi\)
\(194\) 12.1930 0.875409
\(195\) 0 0
\(196\) 2.29705 0.164075
\(197\) 0.649364 0.0462653 0.0231326 0.999732i \(-0.492636\pi\)
0.0231326 + 0.999732i \(0.492636\pi\)
\(198\) 0 0
\(199\) 13.6175 0.965321 0.482661 0.875807i \(-0.339670\pi\)
0.482661 + 0.875807i \(0.339670\pi\)
\(200\) −4.35195 −0.307729
\(201\) 0 0
\(202\) −13.1100 −0.922418
\(203\) −35.6071 −2.49913
\(204\) 0 0
\(205\) 5.74294 0.401104
\(206\) 21.3195 1.48540
\(207\) 0 0
\(208\) 10.3952 0.720777
\(209\) 1.24780 0.0863122
\(210\) 0 0
\(211\) 6.80702 0.468615 0.234307 0.972163i \(-0.424718\pi\)
0.234307 + 0.972163i \(0.424718\pi\)
\(212\) −4.76644 −0.327361
\(213\) 0 0
\(214\) 18.2747 1.24923
\(215\) 15.4025 1.05044
\(216\) 0 0
\(217\) 5.02913 0.341400
\(218\) −7.33996 −0.497125
\(219\) 0 0
\(220\) 1.19923 0.0808522
\(221\) 3.05485 0.205492
\(222\) 0 0
\(223\) −0.115112 −0.00770848 −0.00385424 0.999993i \(-0.501227\pi\)
−0.00385424 + 0.999993i \(0.501227\pi\)
\(224\) −9.10217 −0.608164
\(225\) 0 0
\(226\) −17.3080 −1.15131
\(227\) 10.4534 0.693815 0.346908 0.937899i \(-0.387232\pi\)
0.346908 + 0.937899i \(0.387232\pi\)
\(228\) 0 0
\(229\) 22.5933 1.49301 0.746504 0.665381i \(-0.231731\pi\)
0.746504 + 0.665381i \(0.231731\pi\)
\(230\) −4.24905 −0.280174
\(231\) 0 0
\(232\) 24.8291 1.63011
\(233\) 8.32806 0.545590 0.272795 0.962072i \(-0.412052\pi\)
0.272795 + 0.962072i \(0.412052\pi\)
\(234\) 0 0
\(235\) 11.3011 0.737204
\(236\) −1.52411 −0.0992112
\(237\) 0 0
\(238\) −7.51423 −0.487075
\(239\) −4.65178 −0.300899 −0.150449 0.988618i \(-0.548072\pi\)
−0.150449 + 0.988618i \(0.548072\pi\)
\(240\) 0 0
\(241\) −15.4970 −0.998251 −0.499125 0.866530i \(-0.666345\pi\)
−0.499125 + 0.866530i \(0.666345\pi\)
\(242\) −15.8600 −1.01952
\(243\) 0 0
\(244\) −3.70737 −0.237340
\(245\) −12.5526 −0.801956
\(246\) 0 0
\(247\) 2.85395 0.181592
\(248\) −3.50686 −0.222686
\(249\) 0 0
\(250\) 13.0841 0.827510
\(251\) 22.2885 1.40684 0.703420 0.710775i \(-0.251656\pi\)
0.703420 + 0.710775i \(0.251656\pi\)
\(252\) 0 0
\(253\) −0.994058 −0.0624959
\(254\) 12.7103 0.797515
\(255\) 0 0
\(256\) 10.8640 0.679001
\(257\) 21.9037 1.36631 0.683157 0.730271i \(-0.260606\pi\)
0.683157 + 0.730271i \(0.260606\pi\)
\(258\) 0 0
\(259\) 0.353700 0.0219778
\(260\) 2.74286 0.170105
\(261\) 0 0
\(262\) 29.7023 1.83502
\(263\) 4.62072 0.284926 0.142463 0.989800i \(-0.454498\pi\)
0.142463 + 0.989800i \(0.454498\pi\)
\(264\) 0 0
\(265\) 26.0470 1.60005
\(266\) −7.02005 −0.430427
\(267\) 0 0
\(268\) 2.17536 0.132881
\(269\) 15.4154 0.939895 0.469948 0.882694i \(-0.344273\pi\)
0.469948 + 0.882694i \(0.344273\pi\)
\(270\) 0 0
\(271\) −29.3414 −1.78237 −0.891183 0.453645i \(-0.850124\pi\)
−0.891183 + 0.453645i \(0.850124\pi\)
\(272\) 6.56716 0.398192
\(273\) 0 0
\(274\) −27.7132 −1.67421
\(275\) −1.74619 −0.105299
\(276\) 0 0
\(277\) 2.86762 0.172299 0.0861493 0.996282i \(-0.472544\pi\)
0.0861493 + 0.996282i \(0.472544\pi\)
\(278\) −11.0798 −0.664524
\(279\) 0 0
\(280\) 21.4967 1.28468
\(281\) −32.5003 −1.93881 −0.969404 0.245471i \(-0.921057\pi\)
−0.969404 + 0.245471i \(0.921057\pi\)
\(282\) 0 0
\(283\) −20.1377 −1.19706 −0.598532 0.801099i \(-0.704249\pi\)
−0.598532 + 0.801099i \(0.704249\pi\)
\(284\) 6.49035 0.385131
\(285\) 0 0
\(286\) 3.32793 0.196785
\(287\) −7.55875 −0.446179
\(288\) 0 0
\(289\) −15.0701 −0.886476
\(290\) 42.5844 2.50064
\(291\) 0 0
\(292\) 0.892054 0.0522035
\(293\) −18.9168 −1.10513 −0.552567 0.833468i \(-0.686352\pi\)
−0.552567 + 0.833468i \(0.686352\pi\)
\(294\) 0 0
\(295\) 8.32875 0.484918
\(296\) −0.246638 −0.0143355
\(297\) 0 0
\(298\) 10.6097 0.614603
\(299\) −2.27359 −0.131485
\(300\) 0 0
\(301\) −20.2724 −1.16848
\(302\) 6.02726 0.346830
\(303\) 0 0
\(304\) 6.13526 0.351881
\(305\) 20.2595 1.16006
\(306\) 0 0
\(307\) 6.24336 0.356327 0.178164 0.984001i \(-0.442984\pi\)
0.178164 + 0.984001i \(0.442984\pi\)
\(308\) −1.57840 −0.0899380
\(309\) 0 0
\(310\) −6.01460 −0.341607
\(311\) −7.45699 −0.422847 −0.211424 0.977395i \(-0.567810\pi\)
−0.211424 + 0.977395i \(0.567810\pi\)
\(312\) 0 0
\(313\) 28.5353 1.61291 0.806457 0.591293i \(-0.201382\pi\)
0.806457 + 0.591293i \(0.201382\pi\)
\(314\) −4.26606 −0.240748
\(315\) 0 0
\(316\) 0.608905 0.0342536
\(317\) −9.42774 −0.529515 −0.264757 0.964315i \(-0.585292\pi\)
−0.264757 + 0.964315i \(0.585292\pi\)
\(318\) 0 0
\(319\) 9.96255 0.557796
\(320\) −13.7980 −0.771333
\(321\) 0 0
\(322\) 5.59251 0.311658
\(323\) 1.80298 0.100321
\(324\) 0 0
\(325\) −3.99386 −0.221540
\(326\) −38.6118 −2.13851
\(327\) 0 0
\(328\) 5.27078 0.291030
\(329\) −14.8743 −0.820048
\(330\) 0 0
\(331\) −16.6458 −0.914934 −0.457467 0.889227i \(-0.651243\pi\)
−0.457467 + 0.889227i \(0.651243\pi\)
\(332\) −3.05330 −0.167572
\(333\) 0 0
\(334\) 12.5532 0.686879
\(335\) −11.8876 −0.649489
\(336\) 0 0
\(337\) −34.6785 −1.88906 −0.944530 0.328426i \(-0.893482\pi\)
−0.944530 + 0.328426i \(0.893482\pi\)
\(338\) −12.8516 −0.699034
\(339\) 0 0
\(340\) 1.73280 0.0939743
\(341\) −1.40711 −0.0761992
\(342\) 0 0
\(343\) −7.53243 −0.406713
\(344\) 14.1361 0.762169
\(345\) 0 0
\(346\) −37.2627 −2.00325
\(347\) 12.1433 0.651887 0.325944 0.945389i \(-0.394318\pi\)
0.325944 + 0.945389i \(0.394318\pi\)
\(348\) 0 0
\(349\) 9.00204 0.481868 0.240934 0.970541i \(-0.422546\pi\)
0.240934 + 0.970541i \(0.422546\pi\)
\(350\) 9.82398 0.525114
\(351\) 0 0
\(352\) 2.54671 0.135740
\(353\) −9.71810 −0.517242 −0.258621 0.965979i \(-0.583268\pi\)
−0.258621 + 0.965979i \(0.583268\pi\)
\(354\) 0 0
\(355\) −35.4676 −1.88242
\(356\) −0.205258 −0.0108787
\(357\) 0 0
\(358\) 23.2834 1.23057
\(359\) −27.7228 −1.46315 −0.731577 0.681759i \(-0.761215\pi\)
−0.731577 + 0.681759i \(0.761215\pi\)
\(360\) 0 0
\(361\) −17.3156 −0.911347
\(362\) 1.57409 0.0827323
\(363\) 0 0
\(364\) −3.61010 −0.189221
\(365\) −4.87477 −0.255157
\(366\) 0 0
\(367\) 7.47223 0.390047 0.195024 0.980799i \(-0.437522\pi\)
0.195024 + 0.980799i \(0.437522\pi\)
\(368\) −4.88765 −0.254786
\(369\) 0 0
\(370\) −0.423008 −0.0219911
\(371\) −34.2825 −1.77986
\(372\) 0 0
\(373\) −33.2179 −1.71996 −0.859978 0.510331i \(-0.829523\pi\)
−0.859978 + 0.510331i \(0.829523\pi\)
\(374\) 2.10242 0.108713
\(375\) 0 0
\(376\) 10.3720 0.534895
\(377\) 22.7862 1.17355
\(378\) 0 0
\(379\) −4.98384 −0.256003 −0.128001 0.991774i \(-0.540856\pi\)
−0.128001 + 0.991774i \(0.540856\pi\)
\(380\) 1.61884 0.0830448
\(381\) 0 0
\(382\) 25.7027 1.31507
\(383\) 18.1335 0.926577 0.463289 0.886207i \(-0.346669\pi\)
0.463289 + 0.886207i \(0.346669\pi\)
\(384\) 0 0
\(385\) 8.62545 0.439594
\(386\) 33.8109 1.72093
\(387\) 0 0
\(388\) 3.70076 0.187878
\(389\) 26.2513 1.33099 0.665496 0.746402i \(-0.268220\pi\)
0.665496 + 0.746402i \(0.268220\pi\)
\(390\) 0 0
\(391\) −1.43634 −0.0726389
\(392\) −11.5206 −0.581877
\(393\) 0 0
\(394\) 1.02216 0.0514955
\(395\) −3.32746 −0.167423
\(396\) 0 0
\(397\) −0.305813 −0.0153483 −0.00767416 0.999971i \(-0.502443\pi\)
−0.00767416 + 0.999971i \(0.502443\pi\)
\(398\) 21.4352 1.07445
\(399\) 0 0
\(400\) −8.58579 −0.429290
\(401\) 30.9766 1.54690 0.773448 0.633860i \(-0.218531\pi\)
0.773448 + 0.633860i \(0.218531\pi\)
\(402\) 0 0
\(403\) −3.21831 −0.160316
\(404\) −3.97908 −0.197967
\(405\) 0 0
\(406\) −56.0487 −2.78165
\(407\) −0.0989621 −0.00490537
\(408\) 0 0
\(409\) −4.93720 −0.244129 −0.122065 0.992522i \(-0.538951\pi\)
−0.122065 + 0.992522i \(0.538951\pi\)
\(410\) 9.03991 0.446449
\(411\) 0 0
\(412\) 6.47077 0.318792
\(413\) −10.9621 −0.539411
\(414\) 0 0
\(415\) 16.6852 0.819046
\(416\) 5.82479 0.285584
\(417\) 0 0
\(418\) 1.96415 0.0960698
\(419\) 26.3828 1.28888 0.644442 0.764653i \(-0.277090\pi\)
0.644442 + 0.764653i \(0.277090\pi\)
\(420\) 0 0
\(421\) −18.4529 −0.899337 −0.449668 0.893196i \(-0.648458\pi\)
−0.449668 + 0.893196i \(0.648458\pi\)
\(422\) 10.7149 0.521591
\(423\) 0 0
\(424\) 23.9055 1.16096
\(425\) −2.52312 −0.122389
\(426\) 0 0
\(427\) −26.6652 −1.29042
\(428\) 5.54662 0.268106
\(429\) 0 0
\(430\) 24.2448 1.16919
\(431\) −41.1292 −1.98112 −0.990562 0.137066i \(-0.956233\pi\)
−0.990562 + 0.137066i \(0.956233\pi\)
\(432\) 0 0
\(433\) −25.8354 −1.24157 −0.620784 0.783982i \(-0.713186\pi\)
−0.620784 + 0.783982i \(0.713186\pi\)
\(434\) 7.91630 0.379995
\(435\) 0 0
\(436\) −2.22778 −0.106692
\(437\) −1.34188 −0.0641907
\(438\) 0 0
\(439\) −12.4780 −0.595542 −0.297771 0.954637i \(-0.596243\pi\)
−0.297771 + 0.954637i \(0.596243\pi\)
\(440\) −6.01460 −0.286735
\(441\) 0 0
\(442\) 4.80861 0.228722
\(443\) −1.99221 −0.0946526 −0.0473263 0.998879i \(-0.515070\pi\)
−0.0473263 + 0.998879i \(0.515070\pi\)
\(444\) 0 0
\(445\) 1.12167 0.0531721
\(446\) −0.181197 −0.00857992
\(447\) 0 0
\(448\) 18.1607 0.858012
\(449\) −8.59158 −0.405462 −0.202731 0.979234i \(-0.564982\pi\)
−0.202731 + 0.979234i \(0.564982\pi\)
\(450\) 0 0
\(451\) 2.11487 0.0995855
\(452\) −5.25322 −0.247091
\(453\) 0 0
\(454\) 16.4546 0.772251
\(455\) 19.7280 0.924861
\(456\) 0 0
\(457\) −18.2645 −0.854378 −0.427189 0.904162i \(-0.640496\pi\)
−0.427189 + 0.904162i \(0.640496\pi\)
\(458\) 35.5639 1.66179
\(459\) 0 0
\(460\) −1.28965 −0.0601301
\(461\) 9.20255 0.428605 0.214303 0.976767i \(-0.431252\pi\)
0.214303 + 0.976767i \(0.431252\pi\)
\(462\) 0 0
\(463\) −7.76606 −0.360919 −0.180460 0.983582i \(-0.557759\pi\)
−0.180460 + 0.983582i \(0.557759\pi\)
\(464\) 48.9845 2.27405
\(465\) 0 0
\(466\) 13.1091 0.607268
\(467\) 8.59615 0.397782 0.198891 0.980022i \(-0.436266\pi\)
0.198891 + 0.980022i \(0.436266\pi\)
\(468\) 0 0
\(469\) 15.6462 0.722475
\(470\) 17.7890 0.820545
\(471\) 0 0
\(472\) 7.64400 0.351844
\(473\) 5.67205 0.260801
\(474\) 0 0
\(475\) −2.35719 −0.108155
\(476\) −2.28068 −0.104535
\(477\) 0 0
\(478\) −7.32232 −0.334915
\(479\) −21.8628 −0.998935 −0.499468 0.866333i \(-0.666471\pi\)
−0.499468 + 0.866333i \(0.666471\pi\)
\(480\) 0 0
\(481\) −0.226344 −0.0103204
\(482\) −24.3937 −1.11110
\(483\) 0 0
\(484\) −4.81372 −0.218806
\(485\) −20.2234 −0.918298
\(486\) 0 0
\(487\) −35.5574 −1.61126 −0.805629 0.592420i \(-0.798173\pi\)
−0.805629 + 0.592420i \(0.798173\pi\)
\(488\) 18.5939 0.841705
\(489\) 0 0
\(490\) −19.7589 −0.892616
\(491\) 23.8887 1.07808 0.539041 0.842279i \(-0.318787\pi\)
0.539041 + 0.842279i \(0.318787\pi\)
\(492\) 0 0
\(493\) 14.3952 0.648325
\(494\) 4.49237 0.202121
\(495\) 0 0
\(496\) −6.91855 −0.310652
\(497\) 46.6817 2.09396
\(498\) 0 0
\(499\) 25.1828 1.12734 0.563668 0.826002i \(-0.309390\pi\)
0.563668 + 0.826002i \(0.309390\pi\)
\(500\) 3.97121 0.177598
\(501\) 0 0
\(502\) 35.0841 1.56588
\(503\) 8.57635 0.382400 0.191200 0.981551i \(-0.438762\pi\)
0.191200 + 0.981551i \(0.438762\pi\)
\(504\) 0 0
\(505\) 21.7443 0.967610
\(506\) −1.56474 −0.0695610
\(507\) 0 0
\(508\) 3.85776 0.171160
\(509\) −2.70721 −0.119995 −0.0599975 0.998199i \(-0.519109\pi\)
−0.0599975 + 0.998199i \(0.519109\pi\)
\(510\) 0 0
\(511\) 6.41608 0.283831
\(512\) −10.1326 −0.447802
\(513\) 0 0
\(514\) 34.4784 1.52078
\(515\) −35.3605 −1.55817
\(516\) 0 0
\(517\) 4.16171 0.183032
\(518\) 0.556755 0.0244624
\(519\) 0 0
\(520\) −13.7565 −0.603262
\(521\) 26.8480 1.17623 0.588117 0.808776i \(-0.299869\pi\)
0.588117 + 0.808776i \(0.299869\pi\)
\(522\) 0 0
\(523\) −26.7930 −1.17157 −0.585787 0.810465i \(-0.699215\pi\)
−0.585787 + 0.810465i \(0.699215\pi\)
\(524\) 9.01509 0.393826
\(525\) 0 0
\(526\) 7.27343 0.317137
\(527\) −2.03317 −0.0885662
\(528\) 0 0
\(529\) −21.9310 −0.953522
\(530\) 41.0003 1.78094
\(531\) 0 0
\(532\) −2.13069 −0.0923770
\(533\) 4.83710 0.209518
\(534\) 0 0
\(535\) −30.3104 −1.31043
\(536\) −10.9103 −0.471251
\(537\) 0 0
\(538\) 24.2653 1.04615
\(539\) −4.62257 −0.199108
\(540\) 0 0
\(541\) −3.30744 −0.142198 −0.0710991 0.997469i \(-0.522651\pi\)
−0.0710991 + 0.997469i \(0.522651\pi\)
\(542\) −46.1861 −1.98386
\(543\) 0 0
\(544\) 3.67981 0.157770
\(545\) 12.1741 0.521481
\(546\) 0 0
\(547\) 5.26057 0.224926 0.112463 0.993656i \(-0.464126\pi\)
0.112463 + 0.993656i \(0.464126\pi\)
\(548\) −8.41135 −0.359315
\(549\) 0 0
\(550\) −2.74867 −0.117204
\(551\) 13.4484 0.572923
\(552\) 0 0
\(553\) 4.37954 0.186237
\(554\) 4.51389 0.191777
\(555\) 0 0
\(556\) −3.36289 −0.142618
\(557\) 9.12524 0.386649 0.193324 0.981135i \(-0.438073\pi\)
0.193324 + 0.981135i \(0.438073\pi\)
\(558\) 0 0
\(559\) 12.9730 0.548700
\(560\) 42.4101 1.79215
\(561\) 0 0
\(562\) −51.1585 −2.15799
\(563\) 8.22149 0.346495 0.173247 0.984878i \(-0.444574\pi\)
0.173247 + 0.984878i \(0.444574\pi\)
\(564\) 0 0
\(565\) 28.7071 1.20772
\(566\) −31.6986 −1.33239
\(567\) 0 0
\(568\) −32.5516 −1.36583
\(569\) −34.5974 −1.45040 −0.725198 0.688540i \(-0.758252\pi\)
−0.725198 + 0.688540i \(0.758252\pi\)
\(570\) 0 0
\(571\) −26.2483 −1.09846 −0.549229 0.835672i \(-0.685078\pi\)
−0.549229 + 0.835672i \(0.685078\pi\)
\(572\) 1.01008 0.0422334
\(573\) 0 0
\(574\) −11.8981 −0.496619
\(575\) 1.87785 0.0783117
\(576\) 0 0
\(577\) −28.7241 −1.19580 −0.597900 0.801570i \(-0.703998\pi\)
−0.597900 + 0.801570i \(0.703998\pi\)
\(578\) −23.7217 −0.986692
\(579\) 0 0
\(580\) 12.9250 0.536680
\(581\) −21.9608 −0.911087
\(582\) 0 0
\(583\) 9.59197 0.397259
\(584\) −4.47399 −0.185135
\(585\) 0 0
\(586\) −29.7768 −1.23007
\(587\) −17.2536 −0.712134 −0.356067 0.934460i \(-0.615883\pi\)
−0.356067 + 0.934460i \(0.615883\pi\)
\(588\) 0 0
\(589\) −1.89945 −0.0782656
\(590\) 13.1102 0.539738
\(591\) 0 0
\(592\) −0.486583 −0.0199984
\(593\) −37.5049 −1.54014 −0.770072 0.637957i \(-0.779780\pi\)
−0.770072 + 0.637957i \(0.779780\pi\)
\(594\) 0 0
\(595\) 12.4631 0.510939
\(596\) 3.22020 0.131904
\(597\) 0 0
\(598\) −3.57884 −0.146350
\(599\) −28.1640 −1.15075 −0.575375 0.817890i \(-0.695144\pi\)
−0.575375 + 0.817890i \(0.695144\pi\)
\(600\) 0 0
\(601\) 28.6925 1.17039 0.585196 0.810892i \(-0.301018\pi\)
0.585196 + 0.810892i \(0.301018\pi\)
\(602\) −31.9106 −1.30058
\(603\) 0 0
\(604\) 1.82936 0.0744356
\(605\) 26.3054 1.06947
\(606\) 0 0
\(607\) 44.1968 1.79389 0.896946 0.442141i \(-0.145781\pi\)
0.896946 + 0.442141i \(0.145781\pi\)
\(608\) 3.43780 0.139421
\(609\) 0 0
\(610\) 31.8903 1.29120
\(611\) 9.51858 0.385081
\(612\) 0 0
\(613\) 16.4282 0.663528 0.331764 0.943362i \(-0.392356\pi\)
0.331764 + 0.943362i \(0.392356\pi\)
\(614\) 9.82760 0.396610
\(615\) 0 0
\(616\) 7.91630 0.318957
\(617\) −29.6980 −1.19560 −0.597798 0.801647i \(-0.703958\pi\)
−0.597798 + 0.801647i \(0.703958\pi\)
\(618\) 0 0
\(619\) 22.7157 0.913021 0.456511 0.889718i \(-0.349099\pi\)
0.456511 + 0.889718i \(0.349099\pi\)
\(620\) −1.82552 −0.0733146
\(621\) 0 0
\(622\) −11.7380 −0.470650
\(623\) −1.47632 −0.0591473
\(624\) 0 0
\(625\) −30.7825 −1.23130
\(626\) 44.9172 1.79525
\(627\) 0 0
\(628\) −1.29481 −0.0516686
\(629\) −0.142993 −0.00570150
\(630\) 0 0
\(631\) 36.5102 1.45345 0.726724 0.686930i \(-0.241042\pi\)
0.726724 + 0.686930i \(0.241042\pi\)
\(632\) −3.05389 −0.121477
\(633\) 0 0
\(634\) −14.8401 −0.589376
\(635\) −21.0813 −0.836588
\(636\) 0 0
\(637\) −10.5727 −0.418904
\(638\) 15.6820 0.620855
\(639\) 0 0
\(640\) −35.5505 −1.40526
\(641\) −3.50020 −0.138250 −0.0691249 0.997608i \(-0.522021\pi\)
−0.0691249 + 0.997608i \(0.522021\pi\)
\(642\) 0 0
\(643\) 46.8651 1.84818 0.924089 0.382177i \(-0.124825\pi\)
0.924089 + 0.382177i \(0.124825\pi\)
\(644\) 1.69741 0.0668872
\(645\) 0 0
\(646\) 2.83805 0.111662
\(647\) −10.0298 −0.394310 −0.197155 0.980372i \(-0.563170\pi\)
−0.197155 + 0.980372i \(0.563170\pi\)
\(648\) 0 0
\(649\) 3.06711 0.120395
\(650\) −6.28670 −0.246585
\(651\) 0 0
\(652\) −11.7192 −0.458961
\(653\) 6.80902 0.266458 0.133229 0.991085i \(-0.457465\pi\)
0.133229 + 0.991085i \(0.457465\pi\)
\(654\) 0 0
\(655\) −49.2644 −1.92492
\(656\) 10.3985 0.405995
\(657\) 0 0
\(658\) −23.4135 −0.912754
\(659\) −39.5734 −1.54156 −0.770780 0.637101i \(-0.780133\pi\)
−0.770780 + 0.637101i \(0.780133\pi\)
\(660\) 0 0
\(661\) −29.3280 −1.14073 −0.570363 0.821393i \(-0.693198\pi\)
−0.570363 + 0.821393i \(0.693198\pi\)
\(662\) −26.2019 −1.01837
\(663\) 0 0
\(664\) 15.3135 0.594277
\(665\) 11.6435 0.451515
\(666\) 0 0
\(667\) −10.7137 −0.414835
\(668\) 3.81007 0.147416
\(669\) 0 0
\(670\) −18.7121 −0.722913
\(671\) 7.46069 0.288017
\(672\) 0 0
\(673\) 44.8722 1.72970 0.864848 0.502034i \(-0.167415\pi\)
0.864848 + 0.502034i \(0.167415\pi\)
\(674\) −54.5871 −2.10262
\(675\) 0 0
\(676\) −3.90064 −0.150025
\(677\) −19.9829 −0.768006 −0.384003 0.923332i \(-0.625455\pi\)
−0.384003 + 0.923332i \(0.625455\pi\)
\(678\) 0 0
\(679\) 26.6177 1.02149
\(680\) −8.69066 −0.333272
\(681\) 0 0
\(682\) −2.21491 −0.0848135
\(683\) −20.2488 −0.774800 −0.387400 0.921912i \(-0.626627\pi\)
−0.387400 + 0.921912i \(0.626627\pi\)
\(684\) 0 0
\(685\) 45.9652 1.75624
\(686\) −11.8567 −0.452692
\(687\) 0 0
\(688\) 27.8887 1.06325
\(689\) 21.9386 0.835793
\(690\) 0 0
\(691\) −36.5673 −1.39108 −0.695542 0.718485i \(-0.744836\pi\)
−0.695542 + 0.718485i \(0.744836\pi\)
\(692\) −11.3098 −0.429933
\(693\) 0 0
\(694\) 19.1147 0.725583
\(695\) 18.3770 0.697081
\(696\) 0 0
\(697\) 3.05584 0.115748
\(698\) 14.1700 0.536343
\(699\) 0 0
\(700\) 2.98172 0.112698
\(701\) 18.3854 0.694407 0.347204 0.937790i \(-0.387131\pi\)
0.347204 + 0.937790i \(0.387131\pi\)
\(702\) 0 0
\(703\) −0.133589 −0.00503840
\(704\) −5.08121 −0.191505
\(705\) 0 0
\(706\) −15.2972 −0.575716
\(707\) −28.6195 −1.07635
\(708\) 0 0
\(709\) −14.3088 −0.537380 −0.268690 0.963227i \(-0.586591\pi\)
−0.268690 + 0.963227i \(0.586591\pi\)
\(710\) −55.8291 −2.09523
\(711\) 0 0
\(712\) 1.02945 0.0385802
\(713\) 1.51320 0.0566696
\(714\) 0 0
\(715\) −5.51972 −0.206426
\(716\) 7.06685 0.264101
\(717\) 0 0
\(718\) −43.6382 −1.62856
\(719\) 14.5481 0.542552 0.271276 0.962502i \(-0.412554\pi\)
0.271276 + 0.962502i \(0.412554\pi\)
\(720\) 0 0
\(721\) 46.5409 1.73327
\(722\) −27.2563 −1.01437
\(723\) 0 0
\(724\) 0.477759 0.0177558
\(725\) −18.8200 −0.698957
\(726\) 0 0
\(727\) 21.9157 0.812810 0.406405 0.913693i \(-0.366782\pi\)
0.406405 + 0.913693i \(0.366782\pi\)
\(728\) 18.1060 0.671054
\(729\) 0 0
\(730\) −7.67333 −0.284003
\(731\) 8.19569 0.303129
\(732\) 0 0
\(733\) −37.9899 −1.40319 −0.701595 0.712576i \(-0.747528\pi\)
−0.701595 + 0.712576i \(0.747528\pi\)
\(734\) 11.7620 0.434142
\(735\) 0 0
\(736\) −2.73872 −0.100950
\(737\) −4.37768 −0.161254
\(738\) 0 0
\(739\) 49.5268 1.82187 0.910937 0.412545i \(-0.135360\pi\)
0.910937 + 0.412545i \(0.135360\pi\)
\(740\) −0.128389 −0.00471967
\(741\) 0 0
\(742\) −53.9638 −1.98107
\(743\) −24.6189 −0.903179 −0.451590 0.892226i \(-0.649143\pi\)
−0.451590 + 0.892226i \(0.649143\pi\)
\(744\) 0 0
\(745\) −17.5973 −0.644714
\(746\) −52.2879 −1.91440
\(747\) 0 0
\(748\) 0.638114 0.0233318
\(749\) 39.8940 1.45769
\(750\) 0 0
\(751\) −19.0575 −0.695418 −0.347709 0.937603i \(-0.613040\pi\)
−0.347709 + 0.937603i \(0.613040\pi\)
\(752\) 20.4625 0.746192
\(753\) 0 0
\(754\) 35.8675 1.30622
\(755\) −9.99683 −0.363822
\(756\) 0 0
\(757\) −5.82521 −0.211721 −0.105860 0.994381i \(-0.533760\pi\)
−0.105860 + 0.994381i \(0.533760\pi\)
\(758\) −7.84502 −0.284944
\(759\) 0 0
\(760\) −8.11911 −0.294511
\(761\) 40.9900 1.48589 0.742943 0.669355i \(-0.233429\pi\)
0.742943 + 0.669355i \(0.233429\pi\)
\(762\) 0 0
\(763\) −16.0233 −0.580082
\(764\) 7.80115 0.282236
\(765\) 0 0
\(766\) 28.5437 1.03133
\(767\) 7.01504 0.253299
\(768\) 0 0
\(769\) 1.22318 0.0441088 0.0220544 0.999757i \(-0.492979\pi\)
0.0220544 + 0.999757i \(0.492979\pi\)
\(770\) 13.5772 0.489289
\(771\) 0 0
\(772\) 10.2621 0.369341
\(773\) 21.7320 0.781645 0.390823 0.920466i \(-0.372191\pi\)
0.390823 + 0.920466i \(0.372191\pi\)
\(774\) 0 0
\(775\) 2.65813 0.0954828
\(776\) −18.5607 −0.666292
\(777\) 0 0
\(778\) 41.3218 1.48146
\(779\) 2.85487 0.102286
\(780\) 0 0
\(781\) −13.0611 −0.467365
\(782\) −2.26093 −0.0808507
\(783\) 0 0
\(784\) −22.7285 −0.811733
\(785\) 7.07571 0.252543
\(786\) 0 0
\(787\) −17.8059 −0.634712 −0.317356 0.948307i \(-0.602795\pi\)
−0.317356 + 0.948307i \(0.602795\pi\)
\(788\) 0.310239 0.0110518
\(789\) 0 0
\(790\) −5.23772 −0.186350
\(791\) −37.7837 −1.34343
\(792\) 0 0
\(793\) 17.0640 0.605959
\(794\) −0.481378 −0.0170835
\(795\) 0 0
\(796\) 6.50590 0.230595
\(797\) −9.71471 −0.344113 −0.172056 0.985087i \(-0.555041\pi\)
−0.172056 + 0.985087i \(0.555041\pi\)
\(798\) 0 0
\(799\) 6.01336 0.212737
\(800\) −4.81092 −0.170092
\(801\) 0 0
\(802\) 48.7599 1.72177
\(803\) −1.79517 −0.0633500
\(804\) 0 0
\(805\) −9.27576 −0.326927
\(806\) −5.06591 −0.178439
\(807\) 0 0
\(808\) 19.9566 0.702072
\(809\) 29.1858 1.02612 0.513060 0.858353i \(-0.328512\pi\)
0.513060 + 0.858353i \(0.328512\pi\)
\(810\) 0 0
\(811\) −42.0110 −1.47521 −0.737603 0.675235i \(-0.764042\pi\)
−0.737603 + 0.675235i \(0.764042\pi\)
\(812\) −17.0116 −0.596990
\(813\) 0 0
\(814\) −0.155775 −0.00545992
\(815\) 64.0417 2.24328
\(816\) 0 0
\(817\) 7.65669 0.267874
\(818\) −7.77160 −0.271728
\(819\) 0 0
\(820\) 2.74374 0.0958156
\(821\) 2.14389 0.0748222 0.0374111 0.999300i \(-0.488089\pi\)
0.0374111 + 0.999300i \(0.488089\pi\)
\(822\) 0 0
\(823\) 30.0484 1.04742 0.523711 0.851896i \(-0.324547\pi\)
0.523711 + 0.851896i \(0.324547\pi\)
\(824\) −32.4534 −1.13057
\(825\) 0 0
\(826\) −17.2554 −0.600392
\(827\) −32.3020 −1.12325 −0.561625 0.827392i \(-0.689824\pi\)
−0.561625 + 0.827392i \(0.689824\pi\)
\(828\) 0 0
\(829\) 30.2603 1.05098 0.525491 0.850799i \(-0.323882\pi\)
0.525491 + 0.850799i \(0.323882\pi\)
\(830\) 26.2641 0.911639
\(831\) 0 0
\(832\) −11.6216 −0.402908
\(833\) −6.67927 −0.231423
\(834\) 0 0
\(835\) −20.8207 −0.720531
\(836\) 0.596148 0.0206182
\(837\) 0 0
\(838\) 41.5289 1.43459
\(839\) 0.881464 0.0304315 0.0152158 0.999884i \(-0.495156\pi\)
0.0152158 + 0.999884i \(0.495156\pi\)
\(840\) 0 0
\(841\) 78.3735 2.70254
\(842\) −29.0464 −1.00101
\(843\) 0 0
\(844\) 3.25212 0.111942
\(845\) 21.3157 0.733282
\(846\) 0 0
\(847\) −34.6226 −1.18965
\(848\) 47.1623 1.61956
\(849\) 0 0
\(850\) −3.97162 −0.136225
\(851\) 0.106423 0.00364814
\(852\) 0 0
\(853\) −3.10967 −0.106473 −0.0532365 0.998582i \(-0.516954\pi\)
−0.0532365 + 0.998582i \(0.516954\pi\)
\(854\) −41.9734 −1.43630
\(855\) 0 0
\(856\) −27.8184 −0.950815
\(857\) −31.5844 −1.07890 −0.539451 0.842017i \(-0.681368\pi\)
−0.539451 + 0.842017i \(0.681368\pi\)
\(858\) 0 0
\(859\) −10.4583 −0.356831 −0.178416 0.983955i \(-0.557097\pi\)
−0.178416 + 0.983955i \(0.557097\pi\)
\(860\) 7.35866 0.250928
\(861\) 0 0
\(862\) −64.7411 −2.20509
\(863\) −29.2721 −0.996433 −0.498217 0.867053i \(-0.666012\pi\)
−0.498217 + 0.867053i \(0.666012\pi\)
\(864\) 0 0
\(865\) 61.8040 2.10140
\(866\) −40.6672 −1.38193
\(867\) 0 0
\(868\) 2.40271 0.0815534
\(869\) −1.22536 −0.0415674
\(870\) 0 0
\(871\) −10.0125 −0.339262
\(872\) 11.1732 0.378372
\(873\) 0 0
\(874\) −2.11224 −0.0714475
\(875\) 28.5628 0.965600
\(876\) 0 0
\(877\) −17.6778 −0.596937 −0.298468 0.954419i \(-0.596476\pi\)
−0.298468 + 0.954419i \(0.596476\pi\)
\(878\) −19.6415 −0.662868
\(879\) 0 0
\(880\) −11.8660 −0.400002
\(881\) 3.04541 0.102602 0.0513012 0.998683i \(-0.483663\pi\)
0.0513012 + 0.998683i \(0.483663\pi\)
\(882\) 0 0
\(883\) −15.7628 −0.530459 −0.265230 0.964185i \(-0.585448\pi\)
−0.265230 + 0.964185i \(0.585448\pi\)
\(884\) 1.45948 0.0490878
\(885\) 0 0
\(886\) −3.13591 −0.105353
\(887\) 21.8406 0.733335 0.366667 0.930352i \(-0.380499\pi\)
0.366667 + 0.930352i \(0.380499\pi\)
\(888\) 0 0
\(889\) 27.7469 0.930600
\(890\) 1.76560 0.0591832
\(891\) 0 0
\(892\) −0.0549958 −0.00184140
\(893\) 5.61788 0.187995
\(894\) 0 0
\(895\) −38.6179 −1.29086
\(896\) 46.7909 1.56317
\(897\) 0 0
\(898\) −13.5239 −0.451299
\(899\) −15.1654 −0.505795
\(900\) 0 0
\(901\) 13.8597 0.461733
\(902\) 3.32900 0.110844
\(903\) 0 0
\(904\) 26.3469 0.876286
\(905\) −2.61079 −0.0867856
\(906\) 0 0
\(907\) −44.5734 −1.48003 −0.740017 0.672588i \(-0.765183\pi\)
−0.740017 + 0.672588i \(0.765183\pi\)
\(908\) 4.99420 0.165738
\(909\) 0 0
\(910\) 31.0536 1.02942
\(911\) 21.3786 0.708305 0.354153 0.935188i \(-0.384769\pi\)
0.354153 + 0.935188i \(0.384769\pi\)
\(912\) 0 0
\(913\) 6.14444 0.203351
\(914\) −28.7500 −0.950965
\(915\) 0 0
\(916\) 10.7942 0.356649
\(917\) 64.8409 2.14123
\(918\) 0 0
\(919\) −45.8883 −1.51371 −0.756857 0.653581i \(-0.773266\pi\)
−0.756857 + 0.653581i \(0.773266\pi\)
\(920\) 6.46807 0.213246
\(921\) 0 0
\(922\) 14.4856 0.477059
\(923\) −29.8732 −0.983289
\(924\) 0 0
\(925\) 0.186947 0.00614677
\(926\) −12.2245 −0.401721
\(927\) 0 0
\(928\) 27.4477 0.901015
\(929\) −9.13738 −0.299788 −0.149894 0.988702i \(-0.547893\pi\)
−0.149894 + 0.988702i \(0.547893\pi\)
\(930\) 0 0
\(931\) −6.24000 −0.204508
\(932\) 3.97881 0.130330
\(933\) 0 0
\(934\) 13.5311 0.442752
\(935\) −3.48708 −0.114040
\(936\) 0 0
\(937\) 34.6066 1.13055 0.565275 0.824903i \(-0.308770\pi\)
0.565275 + 0.824903i \(0.308770\pi\)
\(938\) 24.6286 0.804151
\(939\) 0 0
\(940\) 5.39921 0.176103
\(941\) −15.0445 −0.490437 −0.245219 0.969468i \(-0.578860\pi\)
−0.245219 + 0.969468i \(0.578860\pi\)
\(942\) 0 0
\(943\) −2.27432 −0.0740621
\(944\) 15.0806 0.490830
\(945\) 0 0
\(946\) 8.92831 0.290284
\(947\) −20.2433 −0.657820 −0.328910 0.944361i \(-0.606681\pi\)
−0.328910 + 0.944361i \(0.606681\pi\)
\(948\) 0 0
\(949\) −4.10587 −0.133282
\(950\) −3.71042 −0.120382
\(951\) 0 0
\(952\) 11.4385 0.370723
\(953\) 40.3903 1.30837 0.654185 0.756334i \(-0.273012\pi\)
0.654185 + 0.756334i \(0.273012\pi\)
\(954\) 0 0
\(955\) −42.6307 −1.37950
\(956\) −2.22243 −0.0718785
\(957\) 0 0
\(958\) −34.4140 −1.11186
\(959\) −60.4985 −1.95360
\(960\) 0 0
\(961\) −28.8580 −0.930905
\(962\) −0.356286 −0.0114871
\(963\) 0 0
\(964\) −7.40384 −0.238462
\(965\) −56.0789 −1.80524
\(966\) 0 0
\(967\) −21.2417 −0.683087 −0.341543 0.939866i \(-0.610950\pi\)
−0.341543 + 0.939866i \(0.610950\pi\)
\(968\) 24.1427 0.775975
\(969\) 0 0
\(970\) −31.8335 −1.02211
\(971\) −24.9595 −0.800990 −0.400495 0.916299i \(-0.631162\pi\)
−0.400495 + 0.916299i \(0.631162\pi\)
\(972\) 0 0
\(973\) −24.1875 −0.775416
\(974\) −55.9705 −1.79341
\(975\) 0 0
\(976\) 36.6832 1.17420
\(977\) 25.7236 0.822972 0.411486 0.911416i \(-0.365010\pi\)
0.411486 + 0.911416i \(0.365010\pi\)
\(978\) 0 0
\(979\) 0.413061 0.0132015
\(980\) −5.99711 −0.191571
\(981\) 0 0
\(982\) 37.6030 1.19996
\(983\) 48.1254 1.53496 0.767480 0.641073i \(-0.221510\pi\)
0.767480 + 0.641073i \(0.221510\pi\)
\(984\) 0 0
\(985\) −1.69535 −0.0540185
\(986\) 22.6593 0.721618
\(987\) 0 0
\(988\) 1.36350 0.0433787
\(989\) −6.09969 −0.193959
\(990\) 0 0
\(991\) 12.6416 0.401572 0.200786 0.979635i \(-0.435650\pi\)
0.200786 + 0.979635i \(0.435650\pi\)
\(992\) −3.87671 −0.123086
\(993\) 0 0
\(994\) 73.4812 2.33068
\(995\) −35.5525 −1.12709
\(996\) 0 0
\(997\) 34.3583 1.08814 0.544069 0.839041i \(-0.316883\pi\)
0.544069 + 0.839041i \(0.316883\pi\)
\(998\) 39.6399 1.25478
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1629.2.a.e.1.7 8
3.2 odd 2 543.2.a.d.1.2 8
12.11 even 2 8688.2.a.bf.1.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
543.2.a.d.1.2 8 3.2 odd 2
1629.2.a.e.1.7 8 1.1 even 1 trivial
8688.2.a.bf.1.6 8 12.11 even 2