Properties

Label 163.3.b.a
Level 163163
Weight 33
Character orbit 163.b
Self dual yes
Analytic conductor 4.4414.441
Analytic rank 00
Dimension 11
CM discriminant -163
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [163,3,Mod(162,163)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(163, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("163.162");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: N N == 163 163
Weight: k k == 3 3
Character orbit: [χ][\chi] == 163.b (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 4.441428309074.44142830907
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+4q4+9q9+16q16+25q25+36q3681q4177q4369q47+49q4957q5341q61+64q6421q71+81q81+3q83+31q97+O(q100) q + 4 q^{4} + 9 q^{9} + 16 q^{16} + 25 q^{25} + 36 q^{36} - 81 q^{41} - 77 q^{43} - 69 q^{47} + 49 q^{49} - 57 q^{53} - 41 q^{61} + 64 q^{64} - 21 q^{71} + 81 q^{81} + 3 q^{83} + 31 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/163Z)×\left(\mathbb{Z}/163\mathbb{Z}\right)^\times.

nn 22
χ(n)\chi(n) 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
162.1
0
0 0 4.00000 0 0 0 0 9.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
163.b odd 2 1 CM by Q(163)\Q(\sqrt{-163})

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 163.3.b.a 1
163.b odd 2 1 CM 163.3.b.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
163.3.b.a 1 1.a even 1 1 trivial
163.3.b.a 1 163.b odd 2 1 CM

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T2 T_{2} acting on S3new(163,[χ])S_{3}^{\mathrm{new}}(163, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T T Copy content Toggle raw display
55 T T Copy content Toggle raw display
77 T T Copy content Toggle raw display
1111 T T Copy content Toggle raw display
1313 T T Copy content Toggle raw display
1717 T T Copy content Toggle raw display
1919 T T Copy content Toggle raw display
2323 T T Copy content Toggle raw display
2929 T T Copy content Toggle raw display
3131 T T Copy content Toggle raw display
3737 T T Copy content Toggle raw display
4141 T+81 T + 81 Copy content Toggle raw display
4343 T+77 T + 77 Copy content Toggle raw display
4747 T+69 T + 69 Copy content Toggle raw display
5353 T+57 T + 57 Copy content Toggle raw display
5959 T T Copy content Toggle raw display
6161 T+41 T + 41 Copy content Toggle raw display
6767 T T Copy content Toggle raw display
7171 T+21 T + 21 Copy content Toggle raw display
7373 T T Copy content Toggle raw display
7979 T T Copy content Toggle raw display
8383 T3 T - 3 Copy content Toggle raw display
8989 T T Copy content Toggle raw display
9797 T31 T - 31 Copy content Toggle raw display
show more
show less

Additional information

The Fourier coefficient an2a_{n^2} for this newform is n2n^2 for all n<41n < 41, and ap=0a_p = 0 for p<41p < 41, yielding a striking beginning to the qq-expansion.