Properties

Label 1632.2.l.a.1393.18
Level $1632$
Weight $2$
Character 1632.1393
Analytic conductor $13.032$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1632,2,Mod(1393,1632)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1632, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1632.1393");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1632 = 2^{5} \cdot 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1632.l (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.0315856099\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - x^{16} - 2x^{14} + 2x^{12} - 4x^{11} + 4x^{10} + 8x^{8} - 16x^{7} + 16x^{6} - 64x^{4} - 128x^{2} + 512 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2^{17} \)
Twist minimal: no (minimal twist has level 408)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1393.18
Root \(0.937200 - 1.05908i\) of defining polynomial
Character \(\chi\) \(=\) 1632.1393
Dual form 1632.2.l.a.1393.17

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} +4.06326 q^{5} +1.33474i q^{7} +1.00000 q^{9} +1.38281 q^{11} +2.52933i q^{13} -4.06326 q^{15} +(0.873177 + 4.02959i) q^{17} +4.60881i q^{19} -1.33474i q^{21} -3.08302i q^{23} +11.5101 q^{25} -1.00000 q^{27} -4.59613 q^{29} +2.64041i q^{31} -1.38281 q^{33} +5.42340i q^{35} -7.56937 q^{37} -2.52933i q^{39} -1.67814i q^{41} +10.9014i q^{43} +4.06326 q^{45} +2.19704 q^{47} +5.21846 q^{49} +(-0.873177 - 4.02959i) q^{51} -3.93905i q^{53} +5.61870 q^{55} -4.60881i q^{57} -12.8504i q^{59} -7.00079 q^{61} +1.33474i q^{63} +10.2773i q^{65} -2.01087i q^{67} +3.08302i q^{69} -3.38152i q^{71} -12.6981i q^{73} -11.5101 q^{75} +1.84569i q^{77} -10.0914i q^{79} +1.00000 q^{81} +13.3967i q^{83} +(3.54794 + 16.3732i) q^{85} +4.59613 q^{87} +10.8271 q^{89} -3.37601 q^{91} -2.64041i q^{93} +18.7268i q^{95} +11.8383i q^{97} +1.38281 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 18 q^{3} - 4 q^{5} + 18 q^{9} + 4 q^{15} - 2 q^{17} + 22 q^{25} - 18 q^{27} + 12 q^{29} - 16 q^{37} - 4 q^{45} - 18 q^{49} + 2 q^{51} + 16 q^{55} - 16 q^{61} - 22 q^{75} + 18 q^{81} + 16 q^{85} - 12 q^{87}+ \cdots + 20 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1632\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(545\) \(613\) \(1057\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) 4.06326 1.81714 0.908572 0.417728i \(-0.137173\pi\)
0.908572 + 0.417728i \(0.137173\pi\)
\(6\) 0 0
\(7\) 1.33474i 0.504485i 0.967664 + 0.252243i \(0.0811681\pi\)
−0.967664 + 0.252243i \(0.918832\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 1.38281 0.416932 0.208466 0.978030i \(-0.433153\pi\)
0.208466 + 0.978030i \(0.433153\pi\)
\(12\) 0 0
\(13\) 2.52933i 0.701511i 0.936467 + 0.350756i \(0.114075\pi\)
−0.936467 + 0.350756i \(0.885925\pi\)
\(14\) 0 0
\(15\) −4.06326 −1.04913
\(16\) 0 0
\(17\) 0.873177 + 4.02959i 0.211777 + 0.977318i
\(18\) 0 0
\(19\) 4.60881i 1.05733i 0.848830 + 0.528667i \(0.177308\pi\)
−0.848830 + 0.528667i \(0.822692\pi\)
\(20\) 0 0
\(21\) 1.33474i 0.291265i
\(22\) 0 0
\(23\) 3.08302i 0.642854i −0.946934 0.321427i \(-0.895837\pi\)
0.946934 0.321427i \(-0.104163\pi\)
\(24\) 0 0
\(25\) 11.5101 2.30201
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −4.59613 −0.853479 −0.426740 0.904374i \(-0.640338\pi\)
−0.426740 + 0.904374i \(0.640338\pi\)
\(30\) 0 0
\(31\) 2.64041i 0.474231i 0.971481 + 0.237116i \(0.0762020\pi\)
−0.971481 + 0.237116i \(0.923798\pi\)
\(32\) 0 0
\(33\) −1.38281 −0.240716
\(34\) 0 0
\(35\) 5.42340i 0.916722i
\(36\) 0 0
\(37\) −7.56937 −1.24440 −0.622198 0.782860i \(-0.713760\pi\)
−0.622198 + 0.782860i \(0.713760\pi\)
\(38\) 0 0
\(39\) 2.52933i 0.405018i
\(40\) 0 0
\(41\) 1.67814i 0.262082i −0.991377 0.131041i \(-0.958168\pi\)
0.991377 0.131041i \(-0.0418320\pi\)
\(42\) 0 0
\(43\) 10.9014i 1.66245i 0.555939 + 0.831223i \(0.312359\pi\)
−0.555939 + 0.831223i \(0.687641\pi\)
\(44\) 0 0
\(45\) 4.06326 0.605715
\(46\) 0 0
\(47\) 2.19704 0.320471 0.160235 0.987079i \(-0.448775\pi\)
0.160235 + 0.987079i \(0.448775\pi\)
\(48\) 0 0
\(49\) 5.21846 0.745495
\(50\) 0 0
\(51\) −0.873177 4.02959i −0.122269 0.564255i
\(52\) 0 0
\(53\) 3.93905i 0.541070i −0.962710 0.270535i \(-0.912799\pi\)
0.962710 0.270535i \(-0.0872006\pi\)
\(54\) 0 0
\(55\) 5.61870 0.757625
\(56\) 0 0
\(57\) 4.60881i 0.610452i
\(58\) 0 0
\(59\) 12.8504i 1.67298i −0.547979 0.836492i \(-0.684603\pi\)
0.547979 0.836492i \(-0.315397\pi\)
\(60\) 0 0
\(61\) −7.00079 −0.896360 −0.448180 0.893943i \(-0.647928\pi\)
−0.448180 + 0.893943i \(0.647928\pi\)
\(62\) 0 0
\(63\) 1.33474i 0.168162i
\(64\) 0 0
\(65\) 10.2773i 1.27475i
\(66\) 0 0
\(67\) 2.01087i 0.245666i −0.992427 0.122833i \(-0.960802\pi\)
0.992427 0.122833i \(-0.0391980\pi\)
\(68\) 0 0
\(69\) 3.08302i 0.371152i
\(70\) 0 0
\(71\) 3.38152i 0.401312i −0.979662 0.200656i \(-0.935693\pi\)
0.979662 0.200656i \(-0.0643074\pi\)
\(72\) 0 0
\(73\) 12.6981i 1.48620i −0.669179 0.743101i \(-0.733354\pi\)
0.669179 0.743101i \(-0.266646\pi\)
\(74\) 0 0
\(75\) −11.5101 −1.32907
\(76\) 0 0
\(77\) 1.84569i 0.210336i
\(78\) 0 0
\(79\) 10.0914i 1.13537i −0.823244 0.567687i \(-0.807838\pi\)
0.823244 0.567687i \(-0.192162\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 13.3967i 1.47048i 0.677808 + 0.735239i \(0.262930\pi\)
−0.677808 + 0.735239i \(0.737070\pi\)
\(84\) 0 0
\(85\) 3.54794 + 16.3732i 0.384829 + 1.77593i
\(86\) 0 0
\(87\) 4.59613 0.492757
\(88\) 0 0
\(89\) 10.8271 1.14767 0.573837 0.818970i \(-0.305454\pi\)
0.573837 + 0.818970i \(0.305454\pi\)
\(90\) 0 0
\(91\) −3.37601 −0.353902
\(92\) 0 0
\(93\) 2.64041i 0.273797i
\(94\) 0 0
\(95\) 18.7268i 1.92133i
\(96\) 0 0
\(97\) 11.8383i 1.20200i 0.799248 + 0.601001i \(0.205231\pi\)
−0.799248 + 0.601001i \(0.794769\pi\)
\(98\) 0 0
\(99\) 1.38281 0.138977
\(100\) 0 0
\(101\) 19.2918i 1.91960i 0.280683 + 0.959801i \(0.409439\pi\)
−0.280683 + 0.959801i \(0.590561\pi\)
\(102\) 0 0
\(103\) 11.3576 1.11909 0.559547 0.828799i \(-0.310975\pi\)
0.559547 + 0.828799i \(0.310975\pi\)
\(104\) 0 0
\(105\) 5.42340i 0.529270i
\(106\) 0 0
\(107\) 0.539159 0.0521224 0.0260612 0.999660i \(-0.491704\pi\)
0.0260612 + 0.999660i \(0.491704\pi\)
\(108\) 0 0
\(109\) −9.10216 −0.871828 −0.435914 0.899988i \(-0.643575\pi\)
−0.435914 + 0.899988i \(0.643575\pi\)
\(110\) 0 0
\(111\) 7.56937 0.718453
\(112\) 0 0
\(113\) 6.53188i 0.614468i 0.951634 + 0.307234i \(0.0994034\pi\)
−0.951634 + 0.307234i \(0.900597\pi\)
\(114\) 0 0
\(115\) 12.5271i 1.16816i
\(116\) 0 0
\(117\) 2.52933i 0.233837i
\(118\) 0 0
\(119\) −5.37846 + 1.16547i −0.493042 + 0.106838i
\(120\) 0 0
\(121\) −9.08785 −0.826168
\(122\) 0 0
\(123\) 1.67814i 0.151313i
\(124\) 0 0
\(125\) 26.4521 2.36595
\(126\) 0 0
\(127\) 12.5968 1.11779 0.558894 0.829239i \(-0.311226\pi\)
0.558894 + 0.829239i \(0.311226\pi\)
\(128\) 0 0
\(129\) 10.9014i 0.959814i
\(130\) 0 0
\(131\) 15.0923 1.31862 0.659311 0.751870i \(-0.270848\pi\)
0.659311 + 0.751870i \(0.270848\pi\)
\(132\) 0 0
\(133\) −6.15157 −0.533409
\(134\) 0 0
\(135\) −4.06326 −0.349710
\(136\) 0 0
\(137\) 1.12940 0.0964912 0.0482456 0.998836i \(-0.484637\pi\)
0.0482456 + 0.998836i \(0.484637\pi\)
\(138\) 0 0
\(139\) 10.6515 0.903450 0.451725 0.892157i \(-0.350809\pi\)
0.451725 + 0.892157i \(0.350809\pi\)
\(140\) 0 0
\(141\) −2.19704 −0.185024
\(142\) 0 0
\(143\) 3.49758i 0.292482i
\(144\) 0 0
\(145\) −18.6753 −1.55090
\(146\) 0 0
\(147\) −5.21846 −0.430412
\(148\) 0 0
\(149\) 0.280184i 0.0229536i −0.999934 0.0114768i \(-0.996347\pi\)
0.999934 0.0114768i \(-0.00365325\pi\)
\(150\) 0 0
\(151\) −9.48355 −0.771760 −0.385880 0.922549i \(-0.626102\pi\)
−0.385880 + 0.922549i \(0.626102\pi\)
\(152\) 0 0
\(153\) 0.873177 + 4.02959i 0.0705922 + 0.325773i
\(154\) 0 0
\(155\) 10.7287i 0.861746i
\(156\) 0 0
\(157\) 23.6841i 1.89019i −0.326789 0.945097i \(-0.605967\pi\)
0.326789 0.945097i \(-0.394033\pi\)
\(158\) 0 0
\(159\) 3.93905i 0.312387i
\(160\) 0 0
\(161\) 4.11504 0.324310
\(162\) 0 0
\(163\) 18.4216 1.44289 0.721446 0.692471i \(-0.243478\pi\)
0.721446 + 0.692471i \(0.243478\pi\)
\(164\) 0 0
\(165\) −5.61870 −0.437415
\(166\) 0 0
\(167\) 9.89324i 0.765562i −0.923839 0.382781i \(-0.874966\pi\)
0.923839 0.382781i \(-0.125034\pi\)
\(168\) 0 0
\(169\) 6.60246 0.507882
\(170\) 0 0
\(171\) 4.60881i 0.352444i
\(172\) 0 0
\(173\) 18.5486 1.41022 0.705111 0.709097i \(-0.250897\pi\)
0.705111 + 0.709097i \(0.250897\pi\)
\(174\) 0 0
\(175\) 15.3630i 1.16133i
\(176\) 0 0
\(177\) 12.8504i 0.965897i
\(178\) 0 0
\(179\) 9.68489i 0.723883i 0.932201 + 0.361941i \(0.117886\pi\)
−0.932201 + 0.361941i \(0.882114\pi\)
\(180\) 0 0
\(181\) 6.22823 0.462941 0.231470 0.972842i \(-0.425646\pi\)
0.231470 + 0.972842i \(0.425646\pi\)
\(182\) 0 0
\(183\) 7.00079 0.517514
\(184\) 0 0
\(185\) −30.7563 −2.26125
\(186\) 0 0
\(187\) 1.20743 + 5.57214i 0.0882964 + 0.407475i
\(188\) 0 0
\(189\) 1.33474i 0.0970882i
\(190\) 0 0
\(191\) 18.5765 1.34415 0.672074 0.740484i \(-0.265404\pi\)
0.672074 + 0.740484i \(0.265404\pi\)
\(192\) 0 0
\(193\) 13.6072i 0.979471i 0.871871 + 0.489736i \(0.162907\pi\)
−0.871871 + 0.489736i \(0.837093\pi\)
\(194\) 0 0
\(195\) 10.2773i 0.735976i
\(196\) 0 0
\(197\) −7.88624 −0.561871 −0.280936 0.959727i \(-0.590645\pi\)
−0.280936 + 0.959727i \(0.590645\pi\)
\(198\) 0 0
\(199\) 19.7275i 1.39844i −0.714906 0.699221i \(-0.753530\pi\)
0.714906 0.699221i \(-0.246470\pi\)
\(200\) 0 0
\(201\) 2.01087i 0.141836i
\(202\) 0 0
\(203\) 6.13465i 0.430568i
\(204\) 0 0
\(205\) 6.81873i 0.476241i
\(206\) 0 0
\(207\) 3.08302i 0.214285i
\(208\) 0 0
\(209\) 6.37309i 0.440836i
\(210\) 0 0
\(211\) −23.9727 −1.65035 −0.825175 0.564877i \(-0.808924\pi\)
−0.825175 + 0.564877i \(0.808924\pi\)
\(212\) 0 0
\(213\) 3.38152i 0.231698i
\(214\) 0 0
\(215\) 44.2952i 3.02090i
\(216\) 0 0
\(217\) −3.52426 −0.239243
\(218\) 0 0
\(219\) 12.6981i 0.858060i
\(220\) 0 0
\(221\) −10.1922 + 2.20856i −0.685600 + 0.148564i
\(222\) 0 0
\(223\) −17.6208 −1.17997 −0.589987 0.807413i \(-0.700867\pi\)
−0.589987 + 0.807413i \(0.700867\pi\)
\(224\) 0 0
\(225\) 11.5101 0.767338
\(226\) 0 0
\(227\) −14.7789 −0.980911 −0.490456 0.871466i \(-0.663170\pi\)
−0.490456 + 0.871466i \(0.663170\pi\)
\(228\) 0 0
\(229\) 21.7445i 1.43692i −0.695569 0.718459i \(-0.744848\pi\)
0.695569 0.718459i \(-0.255152\pi\)
\(230\) 0 0
\(231\) 1.84569i 0.121438i
\(232\) 0 0
\(233\) 10.4914i 0.687314i −0.939095 0.343657i \(-0.888334\pi\)
0.939095 0.343657i \(-0.111666\pi\)
\(234\) 0 0
\(235\) 8.92713 0.582342
\(236\) 0 0
\(237\) 10.0914i 0.655509i
\(238\) 0 0
\(239\) −14.7604 −0.954770 −0.477385 0.878694i \(-0.658415\pi\)
−0.477385 + 0.878694i \(0.658415\pi\)
\(240\) 0 0
\(241\) 21.7730i 1.40252i −0.712903 0.701262i \(-0.752620\pi\)
0.712903 0.701262i \(-0.247380\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) 21.2040 1.35467
\(246\) 0 0
\(247\) −11.6572 −0.741731
\(248\) 0 0
\(249\) 13.3967i 0.848981i
\(250\) 0 0
\(251\) 18.0029i 1.13634i −0.822913 0.568168i \(-0.807653\pi\)
0.822913 0.568168i \(-0.192347\pi\)
\(252\) 0 0
\(253\) 4.26322i 0.268026i
\(254\) 0 0
\(255\) −3.54794 16.3732i −0.222181 1.02533i
\(256\) 0 0
\(257\) 4.44516 0.277281 0.138641 0.990343i \(-0.455727\pi\)
0.138641 + 0.990343i \(0.455727\pi\)
\(258\) 0 0
\(259\) 10.1032i 0.627780i
\(260\) 0 0
\(261\) −4.59613 −0.284493
\(262\) 0 0
\(263\) 18.7200 1.15433 0.577163 0.816629i \(-0.304160\pi\)
0.577163 + 0.816629i \(0.304160\pi\)
\(264\) 0 0
\(265\) 16.0054i 0.983203i
\(266\) 0 0
\(267\) −10.8271 −0.662610
\(268\) 0 0
\(269\) 9.33536 0.569187 0.284594 0.958648i \(-0.408141\pi\)
0.284594 + 0.958648i \(0.408141\pi\)
\(270\) 0 0
\(271\) −12.0895 −0.734388 −0.367194 0.930144i \(-0.619681\pi\)
−0.367194 + 0.930144i \(0.619681\pi\)
\(272\) 0 0
\(273\) 3.37601 0.204325
\(274\) 0 0
\(275\) 15.9162 0.959783
\(276\) 0 0
\(277\) −21.2973 −1.27963 −0.639816 0.768528i \(-0.720989\pi\)
−0.639816 + 0.768528i \(0.720989\pi\)
\(278\) 0 0
\(279\) 2.64041i 0.158077i
\(280\) 0 0
\(281\) 7.37238 0.439799 0.219900 0.975522i \(-0.429427\pi\)
0.219900 + 0.975522i \(0.429427\pi\)
\(282\) 0 0
\(283\) −22.3443 −1.32823 −0.664114 0.747631i \(-0.731191\pi\)
−0.664114 + 0.747631i \(0.731191\pi\)
\(284\) 0 0
\(285\) 18.7268i 1.10928i
\(286\) 0 0
\(287\) 2.23989 0.132216
\(288\) 0 0
\(289\) −15.4751 + 7.03708i −0.910301 + 0.413946i
\(290\) 0 0
\(291\) 11.8383i 0.693976i
\(292\) 0 0
\(293\) 0.823580i 0.0481141i −0.999711 0.0240570i \(-0.992342\pi\)
0.999711 0.0240570i \(-0.00765833\pi\)
\(294\) 0 0
\(295\) 52.2146i 3.04005i
\(296\) 0 0
\(297\) −1.38281 −0.0802386
\(298\) 0 0
\(299\) 7.79799 0.450969
\(300\) 0 0
\(301\) −14.5505 −0.838679
\(302\) 0 0
\(303\) 19.2918i 1.10828i
\(304\) 0 0
\(305\) −28.4460 −1.62882
\(306\) 0 0
\(307\) 1.85701i 0.105985i −0.998595 0.0529925i \(-0.983124\pi\)
0.998595 0.0529925i \(-0.0168759\pi\)
\(308\) 0 0
\(309\) −11.3576 −0.646109
\(310\) 0 0
\(311\) 4.96908i 0.281771i −0.990026 0.140885i \(-0.955005\pi\)
0.990026 0.140885i \(-0.0449949\pi\)
\(312\) 0 0
\(313\) 4.54467i 0.256880i 0.991717 + 0.128440i \(0.0409969\pi\)
−0.991717 + 0.128440i \(0.959003\pi\)
\(314\) 0 0
\(315\) 5.42340i 0.305574i
\(316\) 0 0
\(317\) −24.5554 −1.37917 −0.689585 0.724205i \(-0.742207\pi\)
−0.689585 + 0.724205i \(0.742207\pi\)
\(318\) 0 0
\(319\) −6.35556 −0.355843
\(320\) 0 0
\(321\) −0.539159 −0.0300929
\(322\) 0 0
\(323\) −18.5716 + 4.02431i −1.03335 + 0.223918i
\(324\) 0 0
\(325\) 29.1128i 1.61489i
\(326\) 0 0
\(327\) 9.10216 0.503350
\(328\) 0 0
\(329\) 2.93248i 0.161673i
\(330\) 0 0
\(331\) 23.9681i 1.31740i −0.752404 0.658702i \(-0.771106\pi\)
0.752404 0.658702i \(-0.228894\pi\)
\(332\) 0 0
\(333\) −7.56937 −0.414799
\(334\) 0 0
\(335\) 8.17067i 0.446411i
\(336\) 0 0
\(337\) 31.1833i 1.69866i −0.527861 0.849331i \(-0.677006\pi\)
0.527861 0.849331i \(-0.322994\pi\)
\(338\) 0 0
\(339\) 6.53188i 0.354763i
\(340\) 0 0
\(341\) 3.65117i 0.197722i
\(342\) 0 0
\(343\) 16.3085i 0.880576i
\(344\) 0 0
\(345\) 12.5271i 0.674437i
\(346\) 0 0
\(347\) 29.7572 1.59745 0.798726 0.601695i \(-0.205508\pi\)
0.798726 + 0.601695i \(0.205508\pi\)
\(348\) 0 0
\(349\) 17.3027i 0.926191i −0.886308 0.463095i \(-0.846739\pi\)
0.886308 0.463095i \(-0.153261\pi\)
\(350\) 0 0
\(351\) 2.52933i 0.135006i
\(352\) 0 0
\(353\) 16.4532 0.875713 0.437857 0.899045i \(-0.355738\pi\)
0.437857 + 0.899045i \(0.355738\pi\)
\(354\) 0 0
\(355\) 13.7400i 0.729242i
\(356\) 0 0
\(357\) 5.37846 1.16547i 0.284658 0.0616830i
\(358\) 0 0
\(359\) −23.2851 −1.22894 −0.614472 0.788939i \(-0.710631\pi\)
−0.614472 + 0.788939i \(0.710631\pi\)
\(360\) 0 0
\(361\) −2.24111 −0.117953
\(362\) 0 0
\(363\) 9.08785 0.476988
\(364\) 0 0
\(365\) 51.5958i 2.70065i
\(366\) 0 0
\(367\) 4.59048i 0.239621i 0.992797 + 0.119811i \(0.0382287\pi\)
−0.992797 + 0.119811i \(0.961771\pi\)
\(368\) 0 0
\(369\) 1.67814i 0.0873607i
\(370\) 0 0
\(371\) 5.25762 0.272962
\(372\) 0 0
\(373\) 15.3977i 0.797263i 0.917111 + 0.398631i \(0.130515\pi\)
−0.917111 + 0.398631i \(0.869485\pi\)
\(374\) 0 0
\(375\) −26.4521 −1.36598
\(376\) 0 0
\(377\) 11.6251i 0.598726i
\(378\) 0 0
\(379\) −1.84157 −0.0945951 −0.0472975 0.998881i \(-0.515061\pi\)
−0.0472975 + 0.998881i \(0.515061\pi\)
\(380\) 0 0
\(381\) −12.5968 −0.645356
\(382\) 0 0
\(383\) −34.1856 −1.74680 −0.873401 0.487002i \(-0.838090\pi\)
−0.873401 + 0.487002i \(0.838090\pi\)
\(384\) 0 0
\(385\) 7.49952i 0.382211i
\(386\) 0 0
\(387\) 10.9014i 0.554149i
\(388\) 0 0
\(389\) 10.1711i 0.515693i 0.966186 + 0.257846i \(0.0830129\pi\)
−0.966186 + 0.257846i \(0.916987\pi\)
\(390\) 0 0
\(391\) 12.4233 2.69202i 0.628273 0.136141i
\(392\) 0 0
\(393\) −15.0923 −0.761307
\(394\) 0 0
\(395\) 41.0041i 2.06314i
\(396\) 0 0
\(397\) 24.1191 1.21050 0.605252 0.796034i \(-0.293072\pi\)
0.605252 + 0.796034i \(0.293072\pi\)
\(398\) 0 0
\(399\) 6.15157 0.307964
\(400\) 0 0
\(401\) 12.1154i 0.605013i −0.953147 0.302506i \(-0.902177\pi\)
0.953147 0.302506i \(-0.0978234\pi\)
\(402\) 0 0
\(403\) −6.67847 −0.332678
\(404\) 0 0
\(405\) 4.06326 0.201905
\(406\) 0 0
\(407\) −10.4670 −0.518829
\(408\) 0 0
\(409\) 5.35379 0.264728 0.132364 0.991201i \(-0.457743\pi\)
0.132364 + 0.991201i \(0.457743\pi\)
\(410\) 0 0
\(411\) −1.12940 −0.0557092
\(412\) 0 0
\(413\) 17.1520 0.843995
\(414\) 0 0
\(415\) 54.4342i 2.67207i
\(416\) 0 0
\(417\) −10.6515 −0.521607
\(418\) 0 0
\(419\) −18.3063 −0.894322 −0.447161 0.894454i \(-0.647565\pi\)
−0.447161 + 0.894454i \(0.647565\pi\)
\(420\) 0 0
\(421\) 2.57989i 0.125736i 0.998022 + 0.0628682i \(0.0200248\pi\)
−0.998022 + 0.0628682i \(0.979975\pi\)
\(422\) 0 0
\(423\) 2.19704 0.106824
\(424\) 0 0
\(425\) 10.0503 + 46.3808i 0.487512 + 2.24980i
\(426\) 0 0
\(427\) 9.34425i 0.452200i
\(428\) 0 0
\(429\) 3.49758i 0.168865i
\(430\) 0 0
\(431\) 23.8390i 1.14829i −0.818755 0.574143i \(-0.805335\pi\)
0.818755 0.574143i \(-0.194665\pi\)
\(432\) 0 0
\(433\) 19.7075 0.947084 0.473542 0.880771i \(-0.342975\pi\)
0.473542 + 0.880771i \(0.342975\pi\)
\(434\) 0 0
\(435\) 18.6753 0.895410
\(436\) 0 0
\(437\) 14.2090 0.679711
\(438\) 0 0
\(439\) 11.3880i 0.543518i −0.962365 0.271759i \(-0.912395\pi\)
0.962365 0.271759i \(-0.0876054\pi\)
\(440\) 0 0
\(441\) 5.21846 0.248498
\(442\) 0 0
\(443\) 3.77327i 0.179273i 0.995975 + 0.0896367i \(0.0285706\pi\)
−0.995975 + 0.0896367i \(0.971429\pi\)
\(444\) 0 0
\(445\) 43.9934 2.08549
\(446\) 0 0
\(447\) 0.280184i 0.0132522i
\(448\) 0 0
\(449\) 16.5349i 0.780331i −0.920745 0.390165i \(-0.872418\pi\)
0.920745 0.390165i \(-0.127582\pi\)
\(450\) 0 0
\(451\) 2.32055i 0.109270i
\(452\) 0 0
\(453\) 9.48355 0.445576
\(454\) 0 0
\(455\) −13.7176 −0.643091
\(456\) 0 0
\(457\) −7.78148 −0.364002 −0.182001 0.983298i \(-0.558257\pi\)
−0.182001 + 0.983298i \(0.558257\pi\)
\(458\) 0 0
\(459\) −0.873177 4.02959i −0.0407564 0.188085i
\(460\) 0 0
\(461\) 9.02457i 0.420316i −0.977667 0.210158i \(-0.932602\pi\)
0.977667 0.210158i \(-0.0673978\pi\)
\(462\) 0 0
\(463\) −4.13029 −0.191951 −0.0959754 0.995384i \(-0.530597\pi\)
−0.0959754 + 0.995384i \(0.530597\pi\)
\(464\) 0 0
\(465\) 10.7287i 0.497530i
\(466\) 0 0
\(467\) 26.5850i 1.23021i 0.788447 + 0.615103i \(0.210885\pi\)
−0.788447 + 0.615103i \(0.789115\pi\)
\(468\) 0 0
\(469\) 2.68399 0.123935
\(470\) 0 0
\(471\) 23.6841i 1.09130i
\(472\) 0 0
\(473\) 15.0745i 0.693127i
\(474\) 0 0
\(475\) 53.0477i 2.43399i
\(476\) 0 0
\(477\) 3.93905i 0.180357i
\(478\) 0 0
\(479\) 9.58908i 0.438136i 0.975710 + 0.219068i \(0.0703017\pi\)
−0.975710 + 0.219068i \(0.929698\pi\)
\(480\) 0 0
\(481\) 19.1455i 0.872958i
\(482\) 0 0
\(483\) −4.11504 −0.187241
\(484\) 0 0
\(485\) 48.1023i 2.18421i
\(486\) 0 0
\(487\) 11.3135i 0.512663i −0.966589 0.256331i \(-0.917486\pi\)
0.966589 0.256331i \(-0.0825138\pi\)
\(488\) 0 0
\(489\) −18.4216 −0.833054
\(490\) 0 0
\(491\) 12.2851i 0.554421i −0.960809 0.277210i \(-0.910590\pi\)
0.960809 0.277210i \(-0.0894099\pi\)
\(492\) 0 0
\(493\) −4.01323 18.5205i −0.180747 0.834121i
\(494\) 0 0
\(495\) 5.61870 0.252542
\(496\) 0 0
\(497\) 4.51345 0.202456
\(498\) 0 0
\(499\) 7.65944 0.342884 0.171442 0.985194i \(-0.445157\pi\)
0.171442 + 0.985194i \(0.445157\pi\)
\(500\) 0 0
\(501\) 9.89324i 0.441997i
\(502\) 0 0
\(503\) 39.8142i 1.77523i 0.460589 + 0.887614i \(0.347638\pi\)
−0.460589 + 0.887614i \(0.652362\pi\)
\(504\) 0 0
\(505\) 78.3874i 3.48819i
\(506\) 0 0
\(507\) −6.60246 −0.293226
\(508\) 0 0
\(509\) 25.2357i 1.11855i −0.828982 0.559275i \(-0.811079\pi\)
0.828982 0.559275i \(-0.188921\pi\)
\(510\) 0 0
\(511\) 16.9487 0.749767
\(512\) 0 0
\(513\) 4.60881i 0.203484i
\(514\) 0 0
\(515\) 46.1487 2.03355
\(516\) 0 0
\(517\) 3.03808 0.133615
\(518\) 0 0
\(519\) −18.5486 −0.814192
\(520\) 0 0
\(521\) 25.5294i 1.11846i 0.829012 + 0.559231i \(0.188904\pi\)
−0.829012 + 0.559231i \(0.811096\pi\)
\(522\) 0 0
\(523\) 4.68453i 0.204840i 0.994741 + 0.102420i \(0.0326586\pi\)
−0.994741 + 0.102420i \(0.967341\pi\)
\(524\) 0 0
\(525\) 15.3630i 0.670495i
\(526\) 0 0
\(527\) −10.6397 + 2.30554i −0.463475 + 0.100431i
\(528\) 0 0
\(529\) 13.4950 0.586739
\(530\) 0 0
\(531\) 12.8504i 0.557661i
\(532\) 0 0
\(533\) 4.24459 0.183854
\(534\) 0 0
\(535\) 2.19074 0.0947140
\(536\) 0 0
\(537\) 9.68489i 0.417934i
\(538\) 0 0
\(539\) 7.21613 0.310821
\(540\) 0 0
\(541\) 30.5595 1.31386 0.656929 0.753953i \(-0.271855\pi\)
0.656929 + 0.753953i \(0.271855\pi\)
\(542\) 0 0
\(543\) −6.22823 −0.267279
\(544\) 0 0
\(545\) −36.9844 −1.58424
\(546\) 0 0
\(547\) −19.1292 −0.817904 −0.408952 0.912556i \(-0.634106\pi\)
−0.408952 + 0.912556i \(0.634106\pi\)
\(548\) 0 0
\(549\) −7.00079 −0.298787
\(550\) 0 0
\(551\) 21.1827i 0.902412i
\(552\) 0 0
\(553\) 13.4695 0.572780
\(554\) 0 0
\(555\) 30.7563 1.30553
\(556\) 0 0
\(557\) 14.9766i 0.634581i −0.948328 0.317290i \(-0.897227\pi\)
0.948328 0.317290i \(-0.102773\pi\)
\(558\) 0 0
\(559\) −27.5733 −1.16622
\(560\) 0 0
\(561\) −1.20743 5.57214i −0.0509779 0.235256i
\(562\) 0 0
\(563\) 16.9215i 0.713157i 0.934265 + 0.356578i \(0.116057\pi\)
−0.934265 + 0.356578i \(0.883943\pi\)
\(564\) 0 0
\(565\) 26.5407i 1.11658i
\(566\) 0 0
\(567\) 1.33474i 0.0560539i
\(568\) 0 0
\(569\) 2.45534 0.102933 0.0514667 0.998675i \(-0.483610\pi\)
0.0514667 + 0.998675i \(0.483610\pi\)
\(570\) 0 0
\(571\) −16.2429 −0.679744 −0.339872 0.940472i \(-0.610384\pi\)
−0.339872 + 0.940472i \(0.610384\pi\)
\(572\) 0 0
\(573\) −18.5765 −0.776044
\(574\) 0 0
\(575\) 35.4858i 1.47986i
\(576\) 0 0
\(577\) −19.8321 −0.825619 −0.412810 0.910817i \(-0.635453\pi\)
−0.412810 + 0.910817i \(0.635453\pi\)
\(578\) 0 0
\(579\) 13.6072i 0.565498i
\(580\) 0 0
\(581\) −17.8811 −0.741834
\(582\) 0 0
\(583\) 5.44695i 0.225589i
\(584\) 0 0
\(585\) 10.2773i 0.424916i
\(586\) 0 0
\(587\) 16.1112i 0.664982i −0.943106 0.332491i \(-0.892111\pi\)
0.943106 0.332491i \(-0.107889\pi\)
\(588\) 0 0
\(589\) −12.1691 −0.501420
\(590\) 0 0
\(591\) 7.88624 0.324397
\(592\) 0 0
\(593\) 27.2516 1.11909 0.559544 0.828801i \(-0.310976\pi\)
0.559544 + 0.828801i \(0.310976\pi\)
\(594\) 0 0
\(595\) −21.8541 + 4.73559i −0.895929 + 0.194140i
\(596\) 0 0
\(597\) 19.7275i 0.807391i
\(598\) 0 0
\(599\) −20.5532 −0.839780 −0.419890 0.907575i \(-0.637931\pi\)
−0.419890 + 0.907575i \(0.637931\pi\)
\(600\) 0 0
\(601\) 9.92222i 0.404736i −0.979310 0.202368i \(-0.935136\pi\)
0.979310 0.202368i \(-0.0648637\pi\)
\(602\) 0 0
\(603\) 2.01087i 0.0818888i
\(604\) 0 0
\(605\) −36.9263 −1.50127
\(606\) 0 0
\(607\) 21.2113i 0.860938i 0.902605 + 0.430469i \(0.141652\pi\)
−0.902605 + 0.430469i \(0.858348\pi\)
\(608\) 0 0
\(609\) 6.13465i 0.248588i
\(610\) 0 0
\(611\) 5.55704i 0.224814i
\(612\) 0 0
\(613\) 5.72825i 0.231362i −0.993286 0.115681i \(-0.963095\pi\)
0.993286 0.115681i \(-0.0369050\pi\)
\(614\) 0 0
\(615\) 6.81873i 0.274958i
\(616\) 0 0
\(617\) 28.9519i 1.16556i −0.812631 0.582779i \(-0.801965\pi\)
0.812631 0.582779i \(-0.198035\pi\)
\(618\) 0 0
\(619\) −33.2069 −1.33470 −0.667349 0.744746i \(-0.732571\pi\)
−0.667349 + 0.744746i \(0.732571\pi\)
\(620\) 0 0
\(621\) 3.08302i 0.123717i
\(622\) 0 0
\(623\) 14.4514i 0.578984i
\(624\) 0 0
\(625\) 49.9313 1.99725
\(626\) 0 0
\(627\) 6.37309i 0.254517i
\(628\) 0 0
\(629\) −6.60940 30.5014i −0.263534 1.21617i
\(630\) 0 0
\(631\) 9.18742 0.365745 0.182873 0.983137i \(-0.441460\pi\)
0.182873 + 0.983137i \(0.441460\pi\)
\(632\) 0 0
\(633\) 23.9727 0.952830
\(634\) 0 0
\(635\) 51.1842 2.03118
\(636\) 0 0
\(637\) 13.1992i 0.522973i
\(638\) 0 0
\(639\) 3.38152i 0.133771i
\(640\) 0 0
\(641\) 1.98751i 0.0785019i 0.999229 + 0.0392509i \(0.0124972\pi\)
−0.999229 + 0.0392509i \(0.987503\pi\)
\(642\) 0 0
\(643\) 15.6525 0.617274 0.308637 0.951180i \(-0.400127\pi\)
0.308637 + 0.951180i \(0.400127\pi\)
\(644\) 0 0
\(645\) 44.2952i 1.74412i
\(646\) 0 0
\(647\) 50.3006 1.97752 0.988760 0.149512i \(-0.0477703\pi\)
0.988760 + 0.149512i \(0.0477703\pi\)
\(648\) 0 0
\(649\) 17.7697i 0.697520i
\(650\) 0 0
\(651\) 3.52426 0.138127
\(652\) 0 0
\(653\) −9.17554 −0.359067 −0.179533 0.983752i \(-0.557459\pi\)
−0.179533 + 0.983752i \(0.557459\pi\)
\(654\) 0 0
\(655\) 61.3240 2.39613
\(656\) 0 0
\(657\) 12.6981i 0.495401i
\(658\) 0 0
\(659\) 20.4499i 0.796616i 0.917252 + 0.398308i \(0.130403\pi\)
−0.917252 + 0.398308i \(0.869597\pi\)
\(660\) 0 0
\(661\) 41.2625i 1.60492i 0.596703 + 0.802462i \(0.296477\pi\)
−0.596703 + 0.802462i \(0.703523\pi\)
\(662\) 0 0
\(663\) 10.1922 2.20856i 0.395831 0.0857733i
\(664\) 0 0
\(665\) −24.9954 −0.969281
\(666\) 0 0
\(667\) 14.1700i 0.548663i
\(668\) 0 0
\(669\) 17.6208 0.681258
\(670\) 0 0
\(671\) −9.68074 −0.373721
\(672\) 0 0
\(673\) 23.7133i 0.914079i −0.889446 0.457040i \(-0.848910\pi\)
0.889446 0.457040i \(-0.151090\pi\)
\(674\) 0 0
\(675\) −11.5101 −0.443023
\(676\) 0 0
\(677\) −14.9173 −0.573317 −0.286659 0.958033i \(-0.592545\pi\)
−0.286659 + 0.958033i \(0.592545\pi\)
\(678\) 0 0
\(679\) −15.8011 −0.606392
\(680\) 0 0
\(681\) 14.7789 0.566329
\(682\) 0 0
\(683\) −7.24088 −0.277065 −0.138532 0.990358i \(-0.544238\pi\)
−0.138532 + 0.990358i \(0.544238\pi\)
\(684\) 0 0
\(685\) 4.58905 0.175338
\(686\) 0 0
\(687\) 21.7445i 0.829605i
\(688\) 0 0
\(689\) 9.96318 0.379567
\(690\) 0 0
\(691\) 17.5509 0.667666 0.333833 0.942632i \(-0.391658\pi\)
0.333833 + 0.942632i \(0.391658\pi\)
\(692\) 0 0
\(693\) 1.84569i 0.0701120i
\(694\) 0 0
\(695\) 43.2799 1.64170
\(696\) 0 0
\(697\) 6.76223 1.46532i 0.256138 0.0555028i
\(698\) 0 0
\(699\) 10.4914i 0.396821i
\(700\) 0 0
\(701\) 22.1815i 0.837783i 0.908036 + 0.418891i \(0.137581\pi\)
−0.908036 + 0.418891i \(0.862419\pi\)
\(702\) 0 0
\(703\) 34.8858i 1.31574i
\(704\) 0 0
\(705\) −8.92713 −0.336215
\(706\) 0 0
\(707\) −25.7495 −0.968410
\(708\) 0 0
\(709\) −4.78270 −0.179618 −0.0898091 0.995959i \(-0.528626\pi\)
−0.0898091 + 0.995959i \(0.528626\pi\)
\(710\) 0 0
\(711\) 10.0914i 0.378458i
\(712\) 0 0
\(713\) 8.14043 0.304861
\(714\) 0 0
\(715\) 14.2116i 0.531483i
\(716\) 0 0
\(717\) 14.7604 0.551237
\(718\) 0 0
\(719\) 40.8961i 1.52517i −0.646889 0.762584i \(-0.723930\pi\)
0.646889 0.762584i \(-0.276070\pi\)
\(720\) 0 0
\(721\) 15.1594i 0.564566i
\(722\) 0 0
\(723\) 21.7730i 0.809748i
\(724\) 0 0
\(725\) −52.9017 −1.96472
\(726\) 0 0
\(727\) 10.7907 0.400204 0.200102 0.979775i \(-0.435873\pi\)
0.200102 + 0.979775i \(0.435873\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −43.9281 + 9.51884i −1.62474 + 0.352067i
\(732\) 0 0
\(733\) 8.86600i 0.327473i 0.986504 + 0.163737i \(0.0523547\pi\)
−0.986504 + 0.163737i \(0.947645\pi\)
\(734\) 0 0
\(735\) −21.2040 −0.782120
\(736\) 0 0
\(737\) 2.78064i 0.102426i
\(738\) 0 0
\(739\) 14.2082i 0.522656i −0.965250 0.261328i \(-0.915840\pi\)
0.965250 0.261328i \(-0.0841604\pi\)
\(740\) 0 0
\(741\) 11.6572 0.428239
\(742\) 0 0
\(743\) 33.9021i 1.24375i −0.783118 0.621874i \(-0.786372\pi\)
0.783118 0.621874i \(-0.213628\pi\)
\(744\) 0 0
\(745\) 1.13846i 0.0417099i
\(746\) 0 0
\(747\) 13.3967i 0.490159i
\(748\) 0 0
\(749\) 0.719638i 0.0262950i
\(750\) 0 0
\(751\) 0.832425i 0.0303756i 0.999885 + 0.0151878i \(0.00483462\pi\)
−0.999885 + 0.0151878i \(0.995165\pi\)
\(752\) 0 0
\(753\) 18.0029i 0.656063i
\(754\) 0 0
\(755\) −38.5341 −1.40240
\(756\) 0 0
\(757\) 26.1220i 0.949420i −0.880142 0.474710i \(-0.842553\pi\)
0.880142 0.474710i \(-0.157447\pi\)
\(758\) 0 0
\(759\) 4.26322i 0.154745i
\(760\) 0 0
\(761\) −36.9537 −1.33957 −0.669784 0.742556i \(-0.733614\pi\)
−0.669784 + 0.742556i \(0.733614\pi\)
\(762\) 0 0
\(763\) 12.1490i 0.439824i
\(764\) 0 0
\(765\) 3.54794 + 16.3732i 0.128276 + 0.591976i
\(766\) 0 0
\(767\) 32.5030 1.17362
\(768\) 0 0
\(769\) −51.3629 −1.85219 −0.926097 0.377285i \(-0.876858\pi\)
−0.926097 + 0.377285i \(0.876858\pi\)
\(770\) 0 0
\(771\) −4.44516 −0.160088
\(772\) 0 0
\(773\) 47.0804i 1.69336i 0.532100 + 0.846682i \(0.321403\pi\)
−0.532100 + 0.846682i \(0.678597\pi\)
\(774\) 0 0
\(775\) 30.3913i 1.09169i
\(776\) 0 0
\(777\) 10.1032i 0.362449i
\(778\) 0 0
\(779\) 7.73424 0.277108
\(780\) 0 0
\(781\) 4.67599i 0.167320i
\(782\) 0 0
\(783\) 4.59613 0.164252
\(784\) 0 0
\(785\) 96.2345i 3.43476i
\(786\) 0 0
\(787\) 21.2273 0.756671 0.378336 0.925669i \(-0.376497\pi\)
0.378336 + 0.925669i \(0.376497\pi\)
\(788\) 0 0
\(789\) −18.7200 −0.666450
\(790\) 0 0
\(791\) −8.71838 −0.309990
\(792\) 0 0
\(793\) 17.7074i 0.628807i
\(794\) 0 0
\(795\) 16.0054i 0.567652i
\(796\) 0 0
\(797\) 1.24847i 0.0442232i −0.999756 0.0221116i \(-0.992961\pi\)
0.999756 0.0221116i \(-0.00703891\pi\)
\(798\) 0 0
\(799\) 1.91840 + 8.85315i 0.0678682 + 0.313202i
\(800\) 0 0
\(801\) 10.8271 0.382558
\(802\) 0 0
\(803\) 17.5591i 0.619645i
\(804\) 0 0
\(805\) 16.7205 0.589319
\(806\) 0 0
\(807\) −9.33536 −0.328620
\(808\) 0 0
\(809\) 3.89688i 0.137007i 0.997651 + 0.0685034i \(0.0218224\pi\)
−0.997651 + 0.0685034i \(0.978178\pi\)
\(810\) 0 0
\(811\) −39.7545 −1.39597 −0.697985 0.716112i \(-0.745920\pi\)
−0.697985 + 0.716112i \(0.745920\pi\)
\(812\) 0 0
\(813\) 12.0895 0.423999
\(814\) 0 0
\(815\) 74.8517 2.62194
\(816\) 0 0
\(817\) −50.2424 −1.75776
\(818\) 0 0
\(819\) −3.37601 −0.117967
\(820\) 0 0
\(821\) −7.68119 −0.268076 −0.134038 0.990976i \(-0.542794\pi\)
−0.134038 + 0.990976i \(0.542794\pi\)
\(822\) 0 0
\(823\) 23.9730i 0.835647i 0.908528 + 0.417824i \(0.137207\pi\)
−0.908528 + 0.417824i \(0.862793\pi\)
\(824\) 0 0
\(825\) −15.9162 −0.554131
\(826\) 0 0
\(827\) −53.2001 −1.84995 −0.924974 0.380030i \(-0.875914\pi\)
−0.924974 + 0.380030i \(0.875914\pi\)
\(828\) 0 0
\(829\) 5.80159i 0.201498i −0.994912 0.100749i \(-0.967876\pi\)
0.994912 0.100749i \(-0.0321238\pi\)
\(830\) 0 0
\(831\) 21.2973 0.738796
\(832\) 0 0
\(833\) 4.55664 + 21.0282i 0.157878 + 0.728586i
\(834\) 0 0
\(835\) 40.1988i 1.39114i
\(836\) 0 0
\(837\) 2.64041i 0.0912658i
\(838\) 0 0
\(839\) 21.8766i 0.755264i 0.925956 + 0.377632i \(0.123262\pi\)
−0.925956 + 0.377632i \(0.876738\pi\)
\(840\) 0 0
\(841\) −7.87561 −0.271573
\(842\) 0 0
\(843\) −7.37238 −0.253918
\(844\) 0 0
\(845\) 26.8275 0.922895
\(846\) 0 0
\(847\) 12.1299i 0.416789i
\(848\) 0 0
\(849\) 22.3443 0.766853
\(850\) 0 0
\(851\) 23.3365i 0.799966i
\(852\) 0 0
\(853\) 13.3416 0.456809 0.228405 0.973566i \(-0.426649\pi\)
0.228405 + 0.973566i \(0.426649\pi\)
\(854\) 0 0
\(855\) 18.7268i 0.640442i
\(856\) 0 0
\(857\) 0.322155i 0.0110046i −0.999985 0.00550230i \(-0.998249\pi\)
0.999985 0.00550230i \(-0.00175145\pi\)
\(858\) 0 0
\(859\) 28.0802i 0.958085i −0.877792 0.479043i \(-0.840984\pi\)
0.877792 0.479043i \(-0.159016\pi\)
\(860\) 0 0
\(861\) −2.23989 −0.0763352
\(862\) 0 0
\(863\) 27.1517 0.924255 0.462127 0.886814i \(-0.347086\pi\)
0.462127 + 0.886814i \(0.347086\pi\)
\(864\) 0 0
\(865\) 75.3676 2.56258
\(866\) 0 0
\(867\) 15.4751 7.03708i 0.525563 0.238992i
\(868\) 0 0
\(869\) 13.9545i 0.473374i
\(870\) 0 0
\(871\) 5.08616 0.172338
\(872\) 0 0
\(873\) 11.8383i 0.400667i
\(874\) 0 0
\(875\) 35.3067i 1.19358i
\(876\) 0 0
\(877\) 25.4455 0.859233 0.429617 0.903011i \(-0.358649\pi\)
0.429617 + 0.903011i \(0.358649\pi\)
\(878\) 0 0
\(879\) 0.823580i 0.0277787i
\(880\) 0 0
\(881\) 15.2859i 0.514995i 0.966279 + 0.257498i \(0.0828979\pi\)
−0.966279 + 0.257498i \(0.917102\pi\)
\(882\) 0 0
\(883\) 13.6008i 0.457703i 0.973461 + 0.228852i \(0.0734970\pi\)
−0.973461 + 0.228852i \(0.926503\pi\)
\(884\) 0 0
\(885\) 52.2146i 1.75518i
\(886\) 0 0
\(887\) 22.2405i 0.746764i −0.927678 0.373382i \(-0.878198\pi\)
0.927678 0.373382i \(-0.121802\pi\)
\(888\) 0 0
\(889\) 16.8135i 0.563908i
\(890\) 0 0
\(891\) 1.38281 0.0463258
\(892\) 0 0
\(893\) 10.1257i 0.338844i
\(894\) 0 0
\(895\) 39.3522i 1.31540i
\(896\) 0 0
\(897\) −7.79799 −0.260367
\(898\) 0 0
\(899\) 12.1356i 0.404747i
\(900\) 0 0
\(901\) 15.8727 3.43949i 0.528798 0.114586i
\(902\) 0 0
\(903\) 14.5505 0.484212
\(904\) 0 0
\(905\) 25.3069 0.841230
\(906\) 0 0
\(907\) −1.22779 −0.0407680 −0.0203840 0.999792i \(-0.506489\pi\)
−0.0203840 + 0.999792i \(0.506489\pi\)
\(908\) 0 0
\(909\) 19.2918i 0.639867i
\(910\) 0 0
\(911\) 4.50510i 0.149261i −0.997211 0.0746304i \(-0.976222\pi\)
0.997211 0.0746304i \(-0.0237777\pi\)
\(912\) 0 0
\(913\) 18.5250i 0.613089i
\(914\) 0 0
\(915\) 28.4460 0.940397
\(916\) 0 0
\(917\) 20.1444i 0.665225i
\(918\) 0 0
\(919\) −24.2454 −0.799781 −0.399890 0.916563i \(-0.630952\pi\)
−0.399890 + 0.916563i \(0.630952\pi\)
\(920\) 0 0
\(921\) 1.85701i 0.0611905i
\(922\) 0 0
\(923\) 8.55299 0.281525
\(924\) 0 0
\(925\) −87.1239 −2.86462
\(926\) 0 0
\(927\) 11.3576 0.373031
\(928\) 0 0
\(929\) 55.5044i 1.82104i 0.413463 + 0.910521i \(0.364319\pi\)
−0.413463 + 0.910521i \(0.635681\pi\)
\(930\) 0 0
\(931\) 24.0509i 0.788236i
\(932\) 0 0
\(933\) 4.96908i 0.162680i
\(934\) 0 0
\(935\) 4.90612 + 22.6410i 0.160447 + 0.740441i
\(936\) 0 0
\(937\) −18.5511 −0.606038 −0.303019 0.952985i \(-0.597995\pi\)
−0.303019 + 0.952985i \(0.597995\pi\)
\(938\) 0 0
\(939\) 4.54467i 0.148310i
\(940\) 0 0
\(941\) −35.9106 −1.17065 −0.585327 0.810798i \(-0.699034\pi\)
−0.585327 + 0.810798i \(0.699034\pi\)
\(942\) 0 0
\(943\) −5.17375 −0.168481
\(944\) 0 0
\(945\) 5.42340i 0.176423i
\(946\) 0 0
\(947\) −13.4238 −0.436216 −0.218108 0.975925i \(-0.569988\pi\)
−0.218108 + 0.975925i \(0.569988\pi\)
\(948\) 0 0
\(949\) 32.1178 1.04259
\(950\) 0 0
\(951\) 24.5554 0.796264
\(952\) 0 0
\(953\) 52.8115 1.71073 0.855366 0.518024i \(-0.173332\pi\)
0.855366 + 0.518024i \(0.173332\pi\)
\(954\) 0 0
\(955\) 75.4811 2.44251
\(956\) 0 0
\(957\) 6.35556 0.205446
\(958\) 0 0
\(959\) 1.50746i 0.0486784i
\(960\) 0 0
\(961\) 24.0282 0.775105
\(962\) 0 0
\(963\) 0.539159 0.0173741
\(964\) 0 0
\(965\) 55.2898i 1.77984i
\(966\) 0 0
\(967\) 7.20225 0.231609 0.115804 0.993272i \(-0.463055\pi\)
0.115804 + 0.993272i \(0.463055\pi\)
\(968\) 0 0
\(969\) 18.5716 4.02431i 0.596605 0.129279i
\(970\) 0 0
\(971\) 53.5069i 1.71712i 0.512715 + 0.858559i \(0.328640\pi\)
−0.512715 + 0.858559i \(0.671360\pi\)
\(972\) 0 0
\(973\) 14.2170i 0.455777i
\(974\) 0 0
\(975\) 29.1128i 0.932356i
\(976\) 0 0
\(977\) −0.640518 −0.0204920 −0.0102460 0.999948i \(-0.503261\pi\)
−0.0102460 + 0.999948i \(0.503261\pi\)
\(978\) 0 0
\(979\) 14.9718 0.478502
\(980\) 0 0
\(981\) −9.10216 −0.290609
\(982\) 0 0
\(983\) 16.1739i 0.515866i 0.966163 + 0.257933i \(0.0830414\pi\)
−0.966163 + 0.257933i \(0.916959\pi\)
\(984\) 0 0
\(985\) −32.0438 −1.02100
\(986\) 0 0
\(987\) 2.93248i 0.0933418i
\(988\) 0 0
\(989\) 33.6092 1.06871
\(990\) 0 0
\(991\) 4.18546i 0.132955i 0.997788 + 0.0664777i \(0.0211761\pi\)
−0.997788 + 0.0664777i \(0.978824\pi\)
\(992\) 0 0
\(993\) 23.9681i 0.760603i
\(994\) 0 0
\(995\) 80.1577i 2.54117i
\(996\) 0 0
\(997\) −36.1353 −1.14442 −0.572209 0.820108i \(-0.693913\pi\)
−0.572209 + 0.820108i \(0.693913\pi\)
\(998\) 0 0
\(999\) 7.56937 0.239484
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1632.2.l.a.1393.18 18
3.2 odd 2 4896.2.l.d.3025.2 18
4.3 odd 2 408.2.l.b.373.5 yes 18
8.3 odd 2 408.2.l.a.373.6 yes 18
8.5 even 2 1632.2.l.b.1393.2 18
12.11 even 2 1224.2.l.d.1189.14 18
17.16 even 2 1632.2.l.b.1393.1 18
24.5 odd 2 4896.2.l.c.3025.18 18
24.11 even 2 1224.2.l.c.1189.13 18
51.50 odd 2 4896.2.l.c.3025.17 18
68.67 odd 2 408.2.l.a.373.5 18
136.67 odd 2 408.2.l.b.373.6 yes 18
136.101 even 2 inner 1632.2.l.a.1393.17 18
204.203 even 2 1224.2.l.c.1189.14 18
408.101 odd 2 4896.2.l.d.3025.1 18
408.203 even 2 1224.2.l.d.1189.13 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
408.2.l.a.373.5 18 68.67 odd 2
408.2.l.a.373.6 yes 18 8.3 odd 2
408.2.l.b.373.5 yes 18 4.3 odd 2
408.2.l.b.373.6 yes 18 136.67 odd 2
1224.2.l.c.1189.13 18 24.11 even 2
1224.2.l.c.1189.14 18 204.203 even 2
1224.2.l.d.1189.13 18 408.203 even 2
1224.2.l.d.1189.14 18 12.11 even 2
1632.2.l.a.1393.17 18 136.101 even 2 inner
1632.2.l.a.1393.18 18 1.1 even 1 trivial
1632.2.l.b.1393.1 18 17.16 even 2
1632.2.l.b.1393.2 18 8.5 even 2
4896.2.l.c.3025.17 18 51.50 odd 2
4896.2.l.c.3025.18 18 24.5 odd 2
4896.2.l.d.3025.1 18 408.101 odd 2
4896.2.l.d.3025.2 18 3.2 odd 2