Properties

Label 1224.2.l.c.1189.14
Level $1224$
Weight $2$
Character 1224.1189
Analytic conductor $9.774$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1224,2,Mod(1189,1224)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1224, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1224.1189");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1224 = 2^{3} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1224.l (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.77368920740\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - x^{16} - 2x^{14} + 2x^{12} - 4x^{11} + 4x^{10} + 8x^{8} - 16x^{7} + 16x^{6} - 64x^{4} - 128x^{2} + 512 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 408)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1189.14
Root \(0.937200 - 1.05908i\) of defining polynomial
Character \(\chi\) \(=\) 1224.1189
Dual form 1224.2.l.c.1189.13

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.937200 + 1.05908i) q^{2} +(-0.243310 + 1.98514i) q^{4} +4.06326 q^{5} +1.33474i q^{7} +(-2.33046 + 1.60279i) q^{8} +(3.80809 + 4.30332i) q^{10} -1.38281 q^{11} +2.52933i q^{13} +(-1.41360 + 1.25092i) q^{14} +(-3.88160 - 0.966013i) q^{16} +(-0.873177 + 4.02959i) q^{17} -4.60881i q^{19} +(-0.988633 + 8.06616i) q^{20} +(-1.29597 - 1.46451i) q^{22} +3.08302i q^{23} +11.5101 q^{25} +(-2.67877 + 2.37049i) q^{26} +(-2.64966 - 0.324757i) q^{28} -4.59613 q^{29} +2.64041i q^{31} +(-2.61475 - 5.01628i) q^{32} +(-5.08600 + 2.85176i) q^{34} +5.42340i q^{35} +7.56937 q^{37} +(4.88111 - 4.31938i) q^{38} +(-9.46927 + 6.51256i) q^{40} -1.67814i q^{41} -10.9014i q^{43} +(0.336451 - 2.74507i) q^{44} +(-3.26517 + 2.88941i) q^{46} +2.19704 q^{47} +5.21846 q^{49} +(10.7872 + 12.1901i) q^{50} +(-5.02110 - 0.615414i) q^{52} +3.93905i q^{53} -5.61870 q^{55} +(-2.13932 - 3.11057i) q^{56} +(-4.30749 - 4.86768i) q^{58} -12.8504i q^{59} +7.00079 q^{61} +(-2.79641 + 2.47459i) q^{62} +(2.86211 - 7.47050i) q^{64} +10.2773i q^{65} +2.01087i q^{67} +(-7.78686 - 2.71382i) q^{68} +(-5.74383 + 5.08281i) q^{70} +3.38152i q^{71} +12.6981i q^{73} +(7.09402 + 8.01658i) q^{74} +(9.14915 + 1.12137i) q^{76} -1.84569i q^{77} -10.0914i q^{79} +(-15.7719 - 3.92516i) q^{80} +(1.77729 - 1.57276i) q^{82} +13.3967i q^{83} +(-3.54794 + 16.3732i) q^{85} +(11.5455 - 10.2168i) q^{86} +(3.22258 - 2.21635i) q^{88} -10.8271 q^{89} -3.37601 q^{91} +(-6.12024 - 0.750131i) q^{92} +(2.05906 + 2.32684i) q^{94} -18.7268i q^{95} -11.8383i q^{97} +(4.89075 + 5.52678i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 2 q^{4} - 4 q^{5} + 8 q^{10} - 6 q^{14} + 10 q^{16} + 2 q^{17} - 2 q^{20} - 2 q^{22} + 22 q^{25} - 2 q^{26} + 10 q^{28} + 12 q^{29} - 30 q^{34} + 16 q^{37} + 34 q^{38} + 10 q^{40} + 12 q^{44} - 32 q^{46}+ \cdots + 60 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1224\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(613\) \(649\) \(919\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.937200 + 1.05908i 0.662701 + 0.748884i
\(3\) 0 0
\(4\) −0.243310 + 1.98514i −0.121655 + 0.992572i
\(5\) 4.06326 1.81714 0.908572 0.417728i \(-0.137173\pi\)
0.908572 + 0.417728i \(0.137173\pi\)
\(6\) 0 0
\(7\) 1.33474i 0.504485i 0.967664 + 0.252243i \(0.0811681\pi\)
−0.967664 + 0.252243i \(0.918832\pi\)
\(8\) −2.33046 + 1.60279i −0.823943 + 0.566673i
\(9\) 0 0
\(10\) 3.80809 + 4.30332i 1.20422 + 1.36083i
\(11\) −1.38281 −0.416932 −0.208466 0.978030i \(-0.566847\pi\)
−0.208466 + 0.978030i \(0.566847\pi\)
\(12\) 0 0
\(13\) 2.52933i 0.701511i 0.936467 + 0.350756i \(0.114075\pi\)
−0.936467 + 0.350756i \(0.885925\pi\)
\(14\) −1.41360 + 1.25092i −0.377801 + 0.334323i
\(15\) 0 0
\(16\) −3.88160 0.966013i −0.970400 0.241503i
\(17\) −0.873177 + 4.02959i −0.211777 + 0.977318i
\(18\) 0 0
\(19\) 4.60881i 1.05733i −0.848830 0.528667i \(-0.822692\pi\)
0.848830 0.528667i \(-0.177308\pi\)
\(20\) −0.988633 + 8.06616i −0.221065 + 1.80365i
\(21\) 0 0
\(22\) −1.29597 1.46451i −0.276301 0.312234i
\(23\) 3.08302i 0.642854i 0.946934 + 0.321427i \(0.104163\pi\)
−0.946934 + 0.321427i \(0.895837\pi\)
\(24\) 0 0
\(25\) 11.5101 2.30201
\(26\) −2.67877 + 2.37049i −0.525351 + 0.464892i
\(27\) 0 0
\(28\) −2.64966 0.324757i −0.500738 0.0613732i
\(29\) −4.59613 −0.853479 −0.426740 0.904374i \(-0.640338\pi\)
−0.426740 + 0.904374i \(0.640338\pi\)
\(30\) 0 0
\(31\) 2.64041i 0.474231i 0.971481 + 0.237116i \(0.0762020\pi\)
−0.971481 + 0.237116i \(0.923798\pi\)
\(32\) −2.61475 5.01628i −0.462227 0.886762i
\(33\) 0 0
\(34\) −5.08600 + 2.85176i −0.872243 + 0.489073i
\(35\) 5.42340i 0.916722i
\(36\) 0 0
\(37\) 7.56937 1.24440 0.622198 0.782860i \(-0.286240\pi\)
0.622198 + 0.782860i \(0.286240\pi\)
\(38\) 4.88111 4.31938i 0.791820 0.700695i
\(39\) 0 0
\(40\) −9.46927 + 6.51256i −1.49722 + 1.02973i
\(41\) 1.67814i 0.262082i −0.991377 0.131041i \(-0.958168\pi\)
0.991377 0.131041i \(-0.0418320\pi\)
\(42\) 0 0
\(43\) 10.9014i 1.66245i −0.555939 0.831223i \(-0.687641\pi\)
0.555939 0.831223i \(-0.312359\pi\)
\(44\) 0.336451 2.74507i 0.0507219 0.413835i
\(45\) 0 0
\(46\) −3.26517 + 2.88941i −0.481423 + 0.426020i
\(47\) 2.19704 0.320471 0.160235 0.987079i \(-0.448775\pi\)
0.160235 + 0.987079i \(0.448775\pi\)
\(48\) 0 0
\(49\) 5.21846 0.745495
\(50\) 10.7872 + 12.1901i 1.52555 + 1.72394i
\(51\) 0 0
\(52\) −5.02110 0.615414i −0.696301 0.0853425i
\(53\) 3.93905i 0.541070i 0.962710 + 0.270535i \(0.0872006\pi\)
−0.962710 + 0.270535i \(0.912799\pi\)
\(54\) 0 0
\(55\) −5.61870 −0.757625
\(56\) −2.13932 3.11057i −0.285878 0.415667i
\(57\) 0 0
\(58\) −4.30749 4.86768i −0.565602 0.639157i
\(59\) 12.8504i 1.67298i −0.547979 0.836492i \(-0.684603\pi\)
0.547979 0.836492i \(-0.315397\pi\)
\(60\) 0 0
\(61\) 7.00079 0.896360 0.448180 0.893943i \(-0.352072\pi\)
0.448180 + 0.893943i \(0.352072\pi\)
\(62\) −2.79641 + 2.47459i −0.355144 + 0.314273i
\(63\) 0 0
\(64\) 2.86211 7.47050i 0.357764 0.933812i
\(65\) 10.2773i 1.27475i
\(66\) 0 0
\(67\) 2.01087i 0.245666i 0.992427 + 0.122833i \(0.0391980\pi\)
−0.992427 + 0.122833i \(0.960802\pi\)
\(68\) −7.78686 2.71382i −0.944295 0.329099i
\(69\) 0 0
\(70\) −5.74383 + 5.08281i −0.686519 + 0.607513i
\(71\) 3.38152i 0.401312i 0.979662 + 0.200656i \(0.0643074\pi\)
−0.979662 + 0.200656i \(0.935693\pi\)
\(72\) 0 0
\(73\) 12.6981i 1.48620i 0.669179 + 0.743101i \(0.266646\pi\)
−0.669179 + 0.743101i \(0.733354\pi\)
\(74\) 7.09402 + 8.01658i 0.824663 + 0.931909i
\(75\) 0 0
\(76\) 9.14915 + 1.12137i 1.04948 + 0.128630i
\(77\) 1.84569i 0.210336i
\(78\) 0 0
\(79\) 10.0914i 1.13537i −0.823244 0.567687i \(-0.807838\pi\)
0.823244 0.567687i \(-0.192162\pi\)
\(80\) −15.7719 3.92516i −1.76336 0.438846i
\(81\) 0 0
\(82\) 1.77729 1.57276i 0.196269 0.173682i
\(83\) 13.3967i 1.47048i 0.677808 + 0.735239i \(0.262930\pi\)
−0.677808 + 0.735239i \(0.737070\pi\)
\(84\) 0 0
\(85\) −3.54794 + 16.3732i −0.384829 + 1.77593i
\(86\) 11.5455 10.2168i 1.24498 1.10170i
\(87\) 0 0
\(88\) 3.22258 2.21635i 0.343528 0.236264i
\(89\) −10.8271 −1.14767 −0.573837 0.818970i \(-0.694546\pi\)
−0.573837 + 0.818970i \(0.694546\pi\)
\(90\) 0 0
\(91\) −3.37601 −0.353902
\(92\) −6.12024 0.750131i −0.638079 0.0782066i
\(93\) 0 0
\(94\) 2.05906 + 2.32684i 0.212376 + 0.239996i
\(95\) 18.7268i 1.92133i
\(96\) 0 0
\(97\) 11.8383i 1.20200i −0.799248 0.601001i \(-0.794769\pi\)
0.799248 0.601001i \(-0.205231\pi\)
\(98\) 4.89075 + 5.52678i 0.494040 + 0.558289i
\(99\) 0 0
\(100\) −2.80052 + 22.8491i −0.280052 + 2.28491i
\(101\) 19.2918i 1.91960i −0.280683 0.959801i \(-0.590561\pi\)
0.280683 0.959801i \(-0.409439\pi\)
\(102\) 0 0
\(103\) −11.3576 −1.11909 −0.559547 0.828799i \(-0.689025\pi\)
−0.559547 + 0.828799i \(0.689025\pi\)
\(104\) −4.05400 5.89452i −0.397527 0.578005i
\(105\) 0 0
\(106\) −4.17178 + 3.69168i −0.405199 + 0.358568i
\(107\) −0.539159 −0.0521224 −0.0260612 0.999660i \(-0.508296\pi\)
−0.0260612 + 0.999660i \(0.508296\pi\)
\(108\) 0 0
\(109\) 9.10216 0.871828 0.435914 0.899988i \(-0.356425\pi\)
0.435914 + 0.899988i \(0.356425\pi\)
\(110\) −5.26585 5.95067i −0.502079 0.567374i
\(111\) 0 0
\(112\) 1.28938 5.18094i 0.121835 0.489552i
\(113\) 6.53188i 0.614468i 0.951634 + 0.307234i \(0.0994034\pi\)
−0.951634 + 0.307234i \(0.900597\pi\)
\(114\) 0 0
\(115\) 12.5271i 1.16816i
\(116\) 1.11829 9.12398i 0.103830 0.847140i
\(117\) 0 0
\(118\) 13.6097 12.0434i 1.25287 1.10869i
\(119\) −5.37846 1.16547i −0.493042 0.106838i
\(120\) 0 0
\(121\) −9.08785 −0.826168
\(122\) 6.56115 + 7.41442i 0.594018 + 0.671270i
\(123\) 0 0
\(124\) −5.24159 0.642439i −0.470709 0.0576927i
\(125\) 26.4521 2.36595
\(126\) 0 0
\(127\) −12.5968 −1.11779 −0.558894 0.829239i \(-0.688774\pi\)
−0.558894 + 0.829239i \(0.688774\pi\)
\(128\) 10.5942 3.97014i 0.936408 0.350914i
\(129\) 0 0
\(130\) −10.8845 + 9.63193i −0.954638 + 0.844776i
\(131\) −15.0923 −1.31862 −0.659311 0.751870i \(-0.729152\pi\)
−0.659311 + 0.751870i \(0.729152\pi\)
\(132\) 0 0
\(133\) 6.15157 0.533409
\(134\) −2.12967 + 1.88459i −0.183976 + 0.162803i
\(135\) 0 0
\(136\) −4.42369 10.7903i −0.379328 0.925262i
\(137\) −1.12940 −0.0964912 −0.0482456 0.998836i \(-0.515363\pi\)
−0.0482456 + 0.998836i \(0.515363\pi\)
\(138\) 0 0
\(139\) 10.6515 0.903450 0.451725 0.892157i \(-0.350809\pi\)
0.451725 + 0.892157i \(0.350809\pi\)
\(140\) −10.7662 1.31957i −0.909913 0.111524i
\(141\) 0 0
\(142\) −3.58131 + 3.16916i −0.300537 + 0.265950i
\(143\) 3.49758i 0.292482i
\(144\) 0 0
\(145\) −18.6753 −1.55090
\(146\) −13.4484 + 11.9007i −1.11299 + 0.984908i
\(147\) 0 0
\(148\) −1.84171 + 15.0263i −0.151387 + 1.23515i
\(149\) 0.280184i 0.0229536i 0.999934 + 0.0114768i \(0.00365325\pi\)
−0.999934 + 0.0114768i \(0.996347\pi\)
\(150\) 0 0
\(151\) 9.48355 0.771760 0.385880 0.922549i \(-0.373898\pi\)
0.385880 + 0.922549i \(0.373898\pi\)
\(152\) 7.38696 + 10.7407i 0.599162 + 0.871182i
\(153\) 0 0
\(154\) 1.95474 1.72978i 0.157517 0.139390i
\(155\) 10.7287i 0.861746i
\(156\) 0 0
\(157\) 23.6841i 1.89019i −0.326789 0.945097i \(-0.605967\pi\)
0.326789 0.945097i \(-0.394033\pi\)
\(158\) 10.6877 9.45769i 0.850264 0.752414i
\(159\) 0 0
\(160\) −10.6244 20.3824i −0.839933 1.61137i
\(161\) −4.11504 −0.324310
\(162\) 0 0
\(163\) 18.4216 1.44289 0.721446 0.692471i \(-0.243478\pi\)
0.721446 + 0.692471i \(0.243478\pi\)
\(164\) 3.33136 + 0.408310i 0.260135 + 0.0318837i
\(165\) 0 0
\(166\) −14.1882 + 12.5554i −1.10122 + 0.974487i
\(167\) 9.89324i 0.765562i 0.923839 + 0.382781i \(0.125034\pi\)
−0.923839 + 0.382781i \(0.874966\pi\)
\(168\) 0 0
\(169\) 6.60246 0.507882
\(170\) −20.6658 + 11.5875i −1.58499 + 0.888717i
\(171\) 0 0
\(172\) 21.6408 + 2.65242i 1.65010 + 0.202245i
\(173\) 18.5486 1.41022 0.705111 0.709097i \(-0.250897\pi\)
0.705111 + 0.709097i \(0.250897\pi\)
\(174\) 0 0
\(175\) 15.3630i 1.16133i
\(176\) 5.36750 + 1.33581i 0.404591 + 0.100690i
\(177\) 0 0
\(178\) −10.1472 11.4668i −0.760564 0.859475i
\(179\) 9.68489i 0.723883i 0.932201 + 0.361941i \(0.117886\pi\)
−0.932201 + 0.361941i \(0.882114\pi\)
\(180\) 0 0
\(181\) −6.22823 −0.462941 −0.231470 0.972842i \(-0.574354\pi\)
−0.231470 + 0.972842i \(0.574354\pi\)
\(182\) −3.16400 3.57547i −0.234531 0.265032i
\(183\) 0 0
\(184\) −4.94144 7.18486i −0.364288 0.529675i
\(185\) 30.7563 2.26125
\(186\) 0 0
\(187\) 1.20743 5.57214i 0.0882964 0.407475i
\(188\) −0.534562 + 4.36144i −0.0389870 + 0.318091i
\(189\) 0 0
\(190\) 19.8332 17.5507i 1.43885 1.27326i
\(191\) 18.5765 1.34415 0.672074 0.740484i \(-0.265404\pi\)
0.672074 + 0.740484i \(0.265404\pi\)
\(192\) 0 0
\(193\) 13.6072i 0.979471i −0.871871 0.489736i \(-0.837093\pi\)
0.871871 0.489736i \(-0.162907\pi\)
\(194\) 12.5378 11.0949i 0.900160 0.796568i
\(195\) 0 0
\(196\) −1.26971 + 10.3594i −0.0906933 + 0.739958i
\(197\) −7.88624 −0.561871 −0.280936 0.959727i \(-0.590645\pi\)
−0.280936 + 0.959727i \(0.590645\pi\)
\(198\) 0 0
\(199\) 19.7275i 1.39844i −0.714906 0.699221i \(-0.753530\pi\)
0.714906 0.699221i \(-0.246470\pi\)
\(200\) −26.8238 + 18.4483i −1.89673 + 1.30449i
\(201\) 0 0
\(202\) 20.4316 18.0802i 1.43756 1.27212i
\(203\) 6.13465i 0.430568i
\(204\) 0 0
\(205\) 6.81873i 0.476241i
\(206\) −10.6443 12.0286i −0.741624 0.838071i
\(207\) 0 0
\(208\) 2.44337 9.81787i 0.169417 0.680747i
\(209\) 6.37309i 0.440836i
\(210\) 0 0
\(211\) −23.9727 −1.65035 −0.825175 0.564877i \(-0.808924\pi\)
−0.825175 + 0.564877i \(0.808924\pi\)
\(212\) −7.81959 0.958412i −0.537051 0.0658240i
\(213\) 0 0
\(214\) −0.505300 0.571013i −0.0345416 0.0390337i
\(215\) 44.2952i 3.02090i
\(216\) 0 0
\(217\) −3.52426 −0.239243
\(218\) 8.53055 + 9.63993i 0.577761 + 0.652899i
\(219\) 0 0
\(220\) 1.36709 11.1539i 0.0921691 0.751998i
\(221\) −10.1922 2.20856i −0.685600 0.148564i
\(222\) 0 0
\(223\) 17.6208 1.17997 0.589987 0.807413i \(-0.299133\pi\)
0.589987 + 0.807413i \(0.299133\pi\)
\(224\) 6.69544 3.49002i 0.447358 0.233187i
\(225\) 0 0
\(226\) −6.91780 + 6.12168i −0.460165 + 0.407208i
\(227\) 14.7789 0.980911 0.490456 0.871466i \(-0.336830\pi\)
0.490456 + 0.871466i \(0.336830\pi\)
\(228\) 0 0
\(229\) 21.7445i 1.43692i −0.695569 0.718459i \(-0.744848\pi\)
0.695569 0.718459i \(-0.255152\pi\)
\(230\) −13.2672 + 11.7404i −0.874816 + 0.774140i
\(231\) 0 0
\(232\) 10.7111 7.36664i 0.703218 0.483644i
\(233\) 10.4914i 0.687314i −0.939095 0.343657i \(-0.888334\pi\)
0.939095 0.343657i \(-0.111666\pi\)
\(234\) 0 0
\(235\) 8.92713 0.582342
\(236\) 25.5100 + 3.12664i 1.66056 + 0.203527i
\(237\) 0 0
\(238\) −3.80637 6.78850i −0.246730 0.440033i
\(239\) −14.7604 −0.954770 −0.477385 0.878694i \(-0.658415\pi\)
−0.477385 + 0.878694i \(0.658415\pi\)
\(240\) 0 0
\(241\) 21.7730i 1.40252i 0.712903 + 0.701262i \(0.247380\pi\)
−0.712903 + 0.701262i \(0.752620\pi\)
\(242\) −8.51713 9.62478i −0.547502 0.618704i
\(243\) 0 0
\(244\) −1.70337 + 13.8976i −0.109047 + 0.889702i
\(245\) 21.2040 1.35467
\(246\) 0 0
\(247\) 11.6572 0.741731
\(248\) −4.23203 6.15337i −0.268734 0.390739i
\(249\) 0 0
\(250\) 24.7909 + 28.0149i 1.56791 + 1.77182i
\(251\) 18.0029i 1.13634i −0.822913 0.568168i \(-0.807653\pi\)
0.822913 0.568168i \(-0.192347\pi\)
\(252\) 0 0
\(253\) 4.26322i 0.268026i
\(254\) −11.8058 13.3411i −0.740759 0.837094i
\(255\) 0 0
\(256\) 14.1336 + 7.49935i 0.883352 + 0.468709i
\(257\) −4.44516 −0.277281 −0.138641 0.990343i \(-0.544273\pi\)
−0.138641 + 0.990343i \(0.544273\pi\)
\(258\) 0 0
\(259\) 10.1032i 0.627780i
\(260\) −20.4020 2.50058i −1.26528 0.155080i
\(261\) 0 0
\(262\) −14.1445 15.9840i −0.873852 0.987495i
\(263\) 18.7200 1.15433 0.577163 0.816629i \(-0.304160\pi\)
0.577163 + 0.816629i \(0.304160\pi\)
\(264\) 0 0
\(265\) 16.0054i 0.983203i
\(266\) 5.76525 + 6.51502i 0.353490 + 0.399461i
\(267\) 0 0
\(268\) −3.99186 0.489265i −0.243842 0.0298866i
\(269\) 9.33536 0.569187 0.284594 0.958648i \(-0.408141\pi\)
0.284594 + 0.958648i \(0.408141\pi\)
\(270\) 0 0
\(271\) 12.0895 0.734388 0.367194 0.930144i \(-0.380319\pi\)
0.367194 + 0.930144i \(0.380319\pi\)
\(272\) 7.28196 14.7977i 0.441533 0.897245i
\(273\) 0 0
\(274\) −1.05847 1.19613i −0.0639448 0.0722607i
\(275\) −15.9162 −0.959783
\(276\) 0 0
\(277\) 21.2973 1.27963 0.639816 0.768528i \(-0.279011\pi\)
0.639816 + 0.768528i \(0.279011\pi\)
\(278\) 9.98261 + 11.2808i 0.598717 + 0.676580i
\(279\) 0 0
\(280\) −8.69259 12.6390i −0.519482 0.755327i
\(281\) −7.37238 −0.439799 −0.219900 0.975522i \(-0.570573\pi\)
−0.219900 + 0.975522i \(0.570573\pi\)
\(282\) 0 0
\(283\) −22.3443 −1.32823 −0.664114 0.747631i \(-0.731191\pi\)
−0.664114 + 0.747631i \(0.731191\pi\)
\(284\) −6.71280 0.822759i −0.398332 0.0488217i
\(285\) 0 0
\(286\) 3.70423 3.27793i 0.219035 0.193828i
\(287\) 2.23989 0.132216
\(288\) 0 0
\(289\) −15.4751 7.03708i −0.910301 0.413946i
\(290\) −17.5025 19.7786i −1.02778 1.16144i
\(291\) 0 0
\(292\) −25.2076 3.08959i −1.47516 0.180804i
\(293\) 0.823580i 0.0481141i 0.999711 + 0.0240570i \(0.00765833\pi\)
−0.999711 + 0.0240570i \(0.992342\pi\)
\(294\) 0 0
\(295\) 52.2146i 3.04005i
\(296\) −17.6401 + 12.1321i −1.02531 + 0.705166i
\(297\) 0 0
\(298\) −0.296738 + 0.262588i −0.0171896 + 0.0152113i
\(299\) −7.79799 −0.450969
\(300\) 0 0
\(301\) 14.5505 0.838679
\(302\) 8.88799 + 10.0439i 0.511446 + 0.577959i
\(303\) 0 0
\(304\) −4.45217 + 17.8895i −0.255349 + 1.02604i
\(305\) 28.4460 1.62882
\(306\) 0 0
\(307\) 1.85701i 0.105985i 0.998595 + 0.0529925i \(0.0168759\pi\)
−0.998595 + 0.0529925i \(0.983124\pi\)
\(308\) 3.66396 + 0.449076i 0.208774 + 0.0255885i
\(309\) 0 0
\(310\) −11.3625 + 10.0549i −0.645348 + 0.571080i
\(311\) 4.96908i 0.281771i 0.990026 + 0.140885i \(0.0449949\pi\)
−0.990026 + 0.140885i \(0.955005\pi\)
\(312\) 0 0
\(313\) 4.54467i 0.256880i −0.991717 0.128440i \(-0.959003\pi\)
0.991717 0.128440i \(-0.0409969\pi\)
\(314\) 25.0834 22.1967i 1.41554 1.25263i
\(315\) 0 0
\(316\) 20.0330 + 2.45535i 1.12694 + 0.138124i
\(317\) −24.5554 −1.37917 −0.689585 0.724205i \(-0.742207\pi\)
−0.689585 + 0.724205i \(0.742207\pi\)
\(318\) 0 0
\(319\) 6.35556 0.355843
\(320\) 11.6295 30.3546i 0.650108 1.69687i
\(321\) 0 0
\(322\) −3.85661 4.35816i −0.214921 0.242871i
\(323\) 18.5716 + 4.02431i 1.03335 + 0.223918i
\(324\) 0 0
\(325\) 29.1128i 1.61489i
\(326\) 17.2647 + 19.5100i 0.956205 + 1.08056i
\(327\) 0 0
\(328\) 2.68972 + 3.91085i 0.148515 + 0.215941i
\(329\) 2.93248i 0.161673i
\(330\) 0 0
\(331\) 23.9681i 1.31740i 0.752404 + 0.658702i \(0.228894\pi\)
−0.752404 + 0.658702i \(0.771106\pi\)
\(332\) −26.5944 3.25955i −1.45956 0.178891i
\(333\) 0 0
\(334\) −10.4778 + 9.27195i −0.573317 + 0.507339i
\(335\) 8.17067i 0.446411i
\(336\) 0 0
\(337\) 31.1833i 1.69866i 0.527861 + 0.849331i \(0.322994\pi\)
−0.527861 + 0.849331i \(0.677006\pi\)
\(338\) 6.18783 + 6.99255i 0.336574 + 0.380345i
\(339\) 0 0
\(340\) −31.6400 11.0270i −1.71592 0.598021i
\(341\) 3.65117i 0.197722i
\(342\) 0 0
\(343\) 16.3085i 0.880576i
\(344\) 17.4727 + 25.4053i 0.942063 + 1.36976i
\(345\) 0 0
\(346\) 17.3837 + 19.6445i 0.934555 + 1.05609i
\(347\) −29.7572 −1.59745 −0.798726 0.601695i \(-0.794492\pi\)
−0.798726 + 0.601695i \(0.794492\pi\)
\(348\) 0 0
\(349\) 17.3027i 0.926191i −0.886308 0.463095i \(-0.846739\pi\)
0.886308 0.463095i \(-0.153261\pi\)
\(350\) −16.2706 + 14.3982i −0.869703 + 0.769615i
\(351\) 0 0
\(352\) 3.61569 + 6.93655i 0.192717 + 0.369719i
\(353\) −16.4532 −0.875713 −0.437857 0.899045i \(-0.644262\pi\)
−0.437857 + 0.899045i \(0.644262\pi\)
\(354\) 0 0
\(355\) 13.7400i 0.729242i
\(356\) 2.63435 21.4934i 0.139621 1.13915i
\(357\) 0 0
\(358\) −10.2571 + 9.07669i −0.542104 + 0.479718i
\(359\) −23.2851 −1.22894 −0.614472 0.788939i \(-0.710631\pi\)
−0.614472 + 0.788939i \(0.710631\pi\)
\(360\) 0 0
\(361\) −2.24111 −0.117953
\(362\) −5.83710 6.59621i −0.306791 0.346689i
\(363\) 0 0
\(364\) 0.821419 6.70187i 0.0430540 0.351273i
\(365\) 51.5958i 2.70065i
\(366\) 0 0
\(367\) 4.59048i 0.239621i 0.992797 + 0.119811i \(0.0382287\pi\)
−0.992797 + 0.119811i \(0.961771\pi\)
\(368\) 2.97824 11.9671i 0.155251 0.623826i
\(369\) 0 0
\(370\) 28.8248 + 32.5735i 1.49853 + 1.69341i
\(371\) −5.25762 −0.272962
\(372\) 0 0
\(373\) 15.3977i 0.797263i 0.917111 + 0.398631i \(0.130515\pi\)
−0.917111 + 0.398631i \(0.869485\pi\)
\(374\) 7.03296 3.94344i 0.363666 0.203910i
\(375\) 0 0
\(376\) −5.12011 + 3.52140i −0.264050 + 0.181602i
\(377\) 11.6251i 0.598726i
\(378\) 0 0
\(379\) −1.84157 −0.0945951 −0.0472975 0.998881i \(-0.515061\pi\)
−0.0472975 + 0.998881i \(0.515061\pi\)
\(380\) 37.1754 + 4.55642i 1.90706 + 0.233739i
\(381\) 0 0
\(382\) 17.4099 + 19.6740i 0.890768 + 1.00661i
\(383\) −34.1856 −1.74680 −0.873401 0.487002i \(-0.838090\pi\)
−0.873401 + 0.487002i \(0.838090\pi\)
\(384\) 0 0
\(385\) 7.49952i 0.382211i
\(386\) 14.4112 12.7527i 0.733510 0.649096i
\(387\) 0 0
\(388\) 23.5008 + 2.88039i 1.19307 + 0.146230i
\(389\) 10.1711i 0.515693i −0.966186 0.257846i \(-0.916987\pi\)
0.966186 0.257846i \(-0.0830129\pi\)
\(390\) 0 0
\(391\) −12.4233 2.69202i −0.628273 0.136141i
\(392\) −12.1614 + 8.36412i −0.614245 + 0.422452i
\(393\) 0 0
\(394\) −7.39099 8.35218i −0.372353 0.420777i
\(395\) 41.0041i 2.06314i
\(396\) 0 0
\(397\) −24.1191 −1.21050 −0.605252 0.796034i \(-0.706928\pi\)
−0.605252 + 0.796034i \(0.706928\pi\)
\(398\) 20.8930 18.4886i 1.04727 0.926749i
\(399\) 0 0
\(400\) −44.6775 11.1189i −2.23387 0.555944i
\(401\) 12.1154i 0.605013i −0.953147 0.302506i \(-0.902177\pi\)
0.953147 0.302506i \(-0.0978234\pi\)
\(402\) 0 0
\(403\) −6.67847 −0.332678
\(404\) 38.2969 + 4.69389i 1.90534 + 0.233530i
\(405\) 0 0
\(406\) 6.49709 5.74939i 0.322445 0.285338i
\(407\) −10.4670 −0.518829
\(408\) 0 0
\(409\) 5.35379 0.264728 0.132364 0.991201i \(-0.457743\pi\)
0.132364 + 0.991201i \(0.457743\pi\)
\(410\) 7.22160 6.39052i 0.356649 0.315605i
\(411\) 0 0
\(412\) 2.76341 22.5464i 0.136144 1.11078i
\(413\) 17.1520 0.843995
\(414\) 0 0
\(415\) 54.4342i 2.67207i
\(416\) 12.6879 6.61358i 0.622073 0.324257i
\(417\) 0 0
\(418\) −6.74963 + 5.97286i −0.330135 + 0.292142i
\(419\) 18.3063 0.894322 0.447161 0.894454i \(-0.352435\pi\)
0.447161 + 0.894454i \(0.352435\pi\)
\(420\) 0 0
\(421\) 2.57989i 0.125736i 0.998022 + 0.0628682i \(0.0200248\pi\)
−0.998022 + 0.0628682i \(0.979975\pi\)
\(422\) −22.4673 25.3891i −1.09369 1.23592i
\(423\) 0 0
\(424\) −6.31348 9.17981i −0.306610 0.445811i
\(425\) −10.0503 + 46.3808i −0.487512 + 2.24980i
\(426\) 0 0
\(427\) 9.34425i 0.452200i
\(428\) 0.131183 1.07031i 0.00634097 0.0517353i
\(429\) 0 0
\(430\) 46.9122 41.5134i 2.26231 2.00196i
\(431\) 23.8390i 1.14829i 0.818755 + 0.574143i \(0.194665\pi\)
−0.818755 + 0.574143i \(0.805335\pi\)
\(432\) 0 0
\(433\) 19.7075 0.947084 0.473542 0.880771i \(-0.342975\pi\)
0.473542 + 0.880771i \(0.342975\pi\)
\(434\) −3.30294 3.73248i −0.158546 0.179165i
\(435\) 0 0
\(436\) −2.21465 + 18.0691i −0.106062 + 0.865353i
\(437\) 14.2090 0.679711
\(438\) 0 0
\(439\) 11.3880i 0.543518i −0.962365 0.271759i \(-0.912395\pi\)
0.962365 0.271759i \(-0.0876054\pi\)
\(440\) 13.0942 9.00561i 0.624240 0.429326i
\(441\) 0 0
\(442\) −7.21307 12.8642i −0.343091 0.611888i
\(443\) 3.77327i 0.179273i 0.995975 + 0.0896367i \(0.0285706\pi\)
−0.995975 + 0.0896367i \(0.971429\pi\)
\(444\) 0 0
\(445\) −43.9934 −2.08549
\(446\) 16.5142 + 18.6618i 0.781970 + 0.883664i
\(447\) 0 0
\(448\) 9.97119 + 3.82018i 0.471094 + 0.180486i
\(449\) 16.5349i 0.780331i −0.920745 0.390165i \(-0.872418\pi\)
0.920745 0.390165i \(-0.127582\pi\)
\(450\) 0 0
\(451\) 2.32055i 0.109270i
\(452\) −12.9667 1.58927i −0.609904 0.0747532i
\(453\) 0 0
\(454\) 13.8508 + 15.6521i 0.650051 + 0.734589i
\(455\) −13.7176 −0.643091
\(456\) 0 0
\(457\) −7.78148 −0.364002 −0.182001 0.983298i \(-0.558257\pi\)
−0.182001 + 0.983298i \(0.558257\pi\)
\(458\) 23.0292 20.3790i 1.07609 0.952247i
\(459\) 0 0
\(460\) −24.8681 3.04798i −1.15948 0.142113i
\(461\) 9.02457i 0.420316i 0.977667 + 0.210158i \(0.0673978\pi\)
−0.977667 + 0.210158i \(0.932602\pi\)
\(462\) 0 0
\(463\) 4.13029 0.191951 0.0959754 0.995384i \(-0.469403\pi\)
0.0959754 + 0.995384i \(0.469403\pi\)
\(464\) 17.8403 + 4.43992i 0.828217 + 0.206118i
\(465\) 0 0
\(466\) 11.1112 9.83253i 0.514718 0.455483i
\(467\) 26.5850i 1.23021i 0.788447 + 0.615103i \(0.210885\pi\)
−0.788447 + 0.615103i \(0.789115\pi\)
\(468\) 0 0
\(469\) −2.68399 −0.123935
\(470\) 8.36651 + 9.45457i 0.385918 + 0.436107i
\(471\) 0 0
\(472\) 20.5966 + 29.9474i 0.948034 + 1.37844i
\(473\) 15.0745i 0.693127i
\(474\) 0 0
\(475\) 53.0477i 2.43399i
\(476\) 3.62225 10.3934i 0.166026 0.476383i
\(477\) 0 0
\(478\) −13.8334 15.6325i −0.632727 0.715012i
\(479\) 9.58908i 0.438136i −0.975710 0.219068i \(-0.929698\pi\)
0.975710 0.219068i \(-0.0703017\pi\)
\(480\) 0 0
\(481\) 19.1455i 0.872958i
\(482\) −23.0594 + 20.4057i −1.05033 + 0.929454i
\(483\) 0 0
\(484\) 2.21117 18.0407i 0.100508 0.820031i
\(485\) 48.1023i 2.18421i
\(486\) 0 0
\(487\) 11.3135i 0.512663i −0.966589 0.256331i \(-0.917486\pi\)
0.966589 0.256331i \(-0.0825138\pi\)
\(488\) −16.3151 + 11.2208i −0.738549 + 0.507943i
\(489\) 0 0
\(490\) 19.8724 + 22.4567i 0.897742 + 1.01449i
\(491\) 12.2851i 0.554421i −0.960809 0.277210i \(-0.910590\pi\)
0.960809 0.277210i \(-0.0894099\pi\)
\(492\) 0 0
\(493\) 4.01323 18.5205i 0.180747 0.834121i
\(494\) 10.9252 + 12.3460i 0.491546 + 0.555471i
\(495\) 0 0
\(496\) 2.55067 10.2490i 0.114528 0.460194i
\(497\) −4.51345 −0.202456
\(498\) 0 0
\(499\) 7.65944 0.342884 0.171442 0.985194i \(-0.445157\pi\)
0.171442 + 0.985194i \(0.445157\pi\)
\(500\) −6.43607 + 52.5112i −0.287830 + 2.34837i
\(501\) 0 0
\(502\) 19.0666 16.8724i 0.850983 0.753050i
\(503\) 39.8142i 1.77523i −0.460589 0.887614i \(-0.652362\pi\)
0.460589 0.887614i \(-0.347638\pi\)
\(504\) 0 0
\(505\) 78.3874i 3.48819i
\(506\) 4.51510 3.99549i 0.200721 0.177621i
\(507\) 0 0
\(508\) 3.06494 25.0065i 0.135985 1.10949i
\(509\) 25.2357i 1.11855i 0.828982 + 0.559275i \(0.188921\pi\)
−0.828982 + 0.559275i \(0.811079\pi\)
\(510\) 0 0
\(511\) −16.9487 −0.749767
\(512\) 5.30362 + 21.9971i 0.234389 + 0.972143i
\(513\) 0 0
\(514\) −4.16600 4.70779i −0.183755 0.207652i
\(515\) −46.1487 −2.03355
\(516\) 0 0
\(517\) −3.03808 −0.133615
\(518\) −10.7001 + 9.46868i −0.470134 + 0.416030i
\(519\) 0 0
\(520\) −16.4724 23.9510i −0.722365 1.05032i
\(521\) 25.5294i 1.11846i 0.829012 + 0.559231i \(0.188904\pi\)
−0.829012 + 0.559231i \(0.811096\pi\)
\(522\) 0 0
\(523\) 4.68453i 0.204840i −0.994741 0.102420i \(-0.967341\pi\)
0.994741 0.102420i \(-0.0326586\pi\)
\(524\) 3.67212 29.9604i 0.160417 1.30883i
\(525\) 0 0
\(526\) 17.5444 + 19.8260i 0.764972 + 0.864456i
\(527\) −10.6397 2.30554i −0.463475 0.100431i
\(528\) 0 0
\(529\) 13.4950 0.586739
\(530\) −16.9510 + 15.0002i −0.736305 + 0.651569i
\(531\) 0 0
\(532\) −1.49674 + 12.2118i −0.0648920 + 0.529447i
\(533\) 4.24459 0.183854
\(534\) 0 0
\(535\) −2.19074 −0.0947140
\(536\) −3.22300 4.68625i −0.139213 0.202415i
\(537\) 0 0
\(538\) 8.74911 + 9.88692i 0.377201 + 0.426255i
\(539\) −7.21613 −0.310821
\(540\) 0 0
\(541\) −30.5595 −1.31386 −0.656929 0.753953i \(-0.728145\pi\)
−0.656929 + 0.753953i \(0.728145\pi\)
\(542\) 11.3303 + 12.8038i 0.486679 + 0.549971i
\(543\) 0 0
\(544\) 22.4967 6.15626i 0.964537 0.263947i
\(545\) 36.9844 1.58424
\(546\) 0 0
\(547\) −19.1292 −0.817904 −0.408952 0.912556i \(-0.634106\pi\)
−0.408952 + 0.912556i \(0.634106\pi\)
\(548\) 0.274795 2.24202i 0.0117387 0.0957745i
\(549\) 0 0
\(550\) −14.9167 16.8566i −0.636049 0.718766i
\(551\) 21.1827i 0.902412i
\(552\) 0 0
\(553\) 13.4695 0.572780
\(554\) 19.9599 + 22.5556i 0.848013 + 0.958296i
\(555\) 0 0
\(556\) −2.59163 + 21.1448i −0.109909 + 0.896740i
\(557\) 14.9766i 0.634581i 0.948328 + 0.317290i \(0.102773\pi\)
−0.948328 + 0.317290i \(0.897227\pi\)
\(558\) 0 0
\(559\) 27.5733 1.16622
\(560\) 5.23908 21.0515i 0.221391 0.889587i
\(561\) 0 0
\(562\) −6.90940 7.80796i −0.291455 0.329359i
\(563\) 16.9215i 0.713157i 0.934265 + 0.356578i \(0.116057\pi\)
−0.934265 + 0.356578i \(0.883943\pi\)
\(564\) 0 0
\(565\) 26.5407i 1.11658i
\(566\) −20.9411 23.6644i −0.880218 0.994690i
\(567\) 0 0
\(568\) −5.41987 7.88050i −0.227413 0.330658i
\(569\) −2.45534 −0.102933 −0.0514667 0.998675i \(-0.516390\pi\)
−0.0514667 + 0.998675i \(0.516390\pi\)
\(570\) 0 0
\(571\) −16.2429 −0.679744 −0.339872 0.940472i \(-0.610384\pi\)
−0.339872 + 0.940472i \(0.610384\pi\)
\(572\) 6.94321 + 0.850998i 0.290310 + 0.0355820i
\(573\) 0 0
\(574\) 2.09923 + 2.37223i 0.0876200 + 0.0990149i
\(575\) 35.4858i 1.47986i
\(576\) 0 0
\(577\) −19.8321 −0.825619 −0.412810 0.910817i \(-0.635453\pi\)
−0.412810 + 0.910817i \(0.635453\pi\)
\(578\) −7.05044 22.9846i −0.293260 0.956033i
\(579\) 0 0
\(580\) 4.54388 37.0731i 0.188675 1.53938i
\(581\) −17.8811 −0.741834
\(582\) 0 0
\(583\) 5.44695i 0.225589i
\(584\) −20.3525 29.5925i −0.842191 1.22455i
\(585\) 0 0
\(586\) −0.872239 + 0.771860i −0.0360319 + 0.0318852i
\(587\) 16.1112i 0.664982i −0.943106 0.332491i \(-0.892111\pi\)
0.943106 0.332491i \(-0.107889\pi\)
\(588\) 0 0
\(589\) 12.1691 0.501420
\(590\) 55.2996 48.9356i 2.27665 2.01465i
\(591\) 0 0
\(592\) −29.3813 7.31211i −1.20756 0.300526i
\(593\) −27.2516 −1.11909 −0.559544 0.828801i \(-0.689024\pi\)
−0.559544 + 0.828801i \(0.689024\pi\)
\(594\) 0 0
\(595\) −21.8541 4.73559i −0.895929 0.194140i
\(596\) −0.556206 0.0681717i −0.0227831 0.00279242i
\(597\) 0 0
\(598\) −7.30828 8.25871i −0.298858 0.337724i
\(599\) −20.5532 −0.839780 −0.419890 0.907575i \(-0.637931\pi\)
−0.419890 + 0.907575i \(0.637931\pi\)
\(600\) 0 0
\(601\) 9.92222i 0.404736i 0.979310 + 0.202368i \(0.0648637\pi\)
−0.979310 + 0.202368i \(0.935136\pi\)
\(602\) 13.6368 + 15.4102i 0.555793 + 0.628074i
\(603\) 0 0
\(604\) −2.30745 + 18.8262i −0.0938887 + 0.766028i
\(605\) −36.9263 −1.50127
\(606\) 0 0
\(607\) 21.2113i 0.860938i 0.902605 + 0.430469i \(0.141652\pi\)
−0.902605 + 0.430469i \(0.858348\pi\)
\(608\) −23.1191 + 12.0509i −0.937602 + 0.488728i
\(609\) 0 0
\(610\) 26.6596 + 30.1267i 1.07942 + 1.21979i
\(611\) 5.55704i 0.224814i
\(612\) 0 0
\(613\) 5.72825i 0.231362i −0.993286 0.115681i \(-0.963095\pi\)
0.993286 0.115681i \(-0.0369050\pi\)
\(614\) −1.96672 + 1.74039i −0.0793705 + 0.0702364i
\(615\) 0 0
\(616\) 2.95826 + 4.30131i 0.119192 + 0.173305i
\(617\) 28.9519i 1.16556i −0.812631 0.582779i \(-0.801965\pi\)
0.812631 0.582779i \(-0.198035\pi\)
\(618\) 0 0
\(619\) −33.2069 −1.33470 −0.667349 0.744746i \(-0.732571\pi\)
−0.667349 + 0.744746i \(0.732571\pi\)
\(620\) −21.2979 2.61039i −0.855346 0.104836i
\(621\) 0 0
\(622\) −5.26266 + 4.65702i −0.211014 + 0.186730i
\(623\) 14.4514i 0.578984i
\(624\) 0 0
\(625\) 49.9313 1.99725
\(626\) 4.81317 4.25926i 0.192373 0.170234i
\(627\) 0 0
\(628\) 47.0163 + 5.76258i 1.87615 + 0.229952i
\(629\) −6.60940 + 30.5014i −0.263534 + 1.21617i
\(630\) 0 0
\(631\) −9.18742 −0.365745 −0.182873 0.983137i \(-0.558540\pi\)
−0.182873 + 0.983137i \(0.558540\pi\)
\(632\) 16.1745 + 23.5177i 0.643386 + 0.935484i
\(633\) 0 0
\(634\) −23.0133 26.0062i −0.913977 1.03284i
\(635\) −51.1842 −2.03118
\(636\) 0 0
\(637\) 13.1992i 0.522973i
\(638\) 5.95643 + 6.73106i 0.235817 + 0.266485i
\(639\) 0 0
\(640\) 43.0471 16.1317i 1.70159 0.637662i
\(641\) 1.98751i 0.0785019i 0.999229 + 0.0392509i \(0.0124972\pi\)
−0.999229 + 0.0392509i \(0.987503\pi\)
\(642\) 0 0
\(643\) 15.6525 0.617274 0.308637 0.951180i \(-0.400127\pi\)
0.308637 + 0.951180i \(0.400127\pi\)
\(644\) 1.00123 8.16894i 0.0394540 0.321902i
\(645\) 0 0
\(646\) 13.1432 + 23.4404i 0.517113 + 0.922251i
\(647\) 50.3006 1.97752 0.988760 0.149512i \(-0.0477703\pi\)
0.988760 + 0.149512i \(0.0477703\pi\)
\(648\) 0 0
\(649\) 17.7697i 0.697520i
\(650\) −30.8329 + 27.2845i −1.20936 + 1.07019i
\(651\) 0 0
\(652\) −4.48217 + 36.5696i −0.175535 + 1.43217i
\(653\) −9.17554 −0.359067 −0.179533 0.983752i \(-0.557459\pi\)
−0.179533 + 0.983752i \(0.557459\pi\)
\(654\) 0 0
\(655\) −61.3240 −2.39613
\(656\) −1.62111 + 6.51388i −0.0632937 + 0.254324i
\(657\) 0 0
\(658\) −3.10574 + 2.74832i −0.121074 + 0.107141i
\(659\) 20.4499i 0.796616i 0.917252 + 0.398308i \(0.130403\pi\)
−0.917252 + 0.398308i \(0.869597\pi\)
\(660\) 0 0
\(661\) 41.2625i 1.60492i 0.596703 + 0.802462i \(0.296477\pi\)
−0.596703 + 0.802462i \(0.703523\pi\)
\(662\) −25.3841 + 22.4629i −0.986583 + 0.873044i
\(663\) 0 0
\(664\) −21.4721 31.2205i −0.833280 1.21159i
\(665\) 24.9954 0.969281
\(666\) 0 0
\(667\) 14.1700i 0.548663i
\(668\) −19.6395 2.40713i −0.759876 0.0931346i
\(669\) 0 0
\(670\) −8.65341 + 7.65756i −0.334310 + 0.295837i
\(671\) −9.68074 −0.373721
\(672\) 0 0
\(673\) 23.7133i 0.914079i 0.889446 + 0.457040i \(0.151090\pi\)
−0.889446 + 0.457040i \(0.848910\pi\)
\(674\) −33.0257 + 29.2250i −1.27210 + 1.12570i
\(675\) 0 0
\(676\) −1.60645 + 13.1068i −0.0617865 + 0.504110i
\(677\) −14.9173 −0.573317 −0.286659 0.958033i \(-0.592545\pi\)
−0.286659 + 0.958033i \(0.592545\pi\)
\(678\) 0 0
\(679\) 15.8011 0.606392
\(680\) −17.9746 43.8439i −0.689294 1.68134i
\(681\) 0 0
\(682\) 3.86689 3.42188i 0.148071 0.131031i
\(683\) 7.24088 0.277065 0.138532 0.990358i \(-0.455762\pi\)
0.138532 + 0.990358i \(0.455762\pi\)
\(684\) 0 0
\(685\) −4.58905 −0.175338
\(686\) −17.2720 + 15.2843i −0.659450 + 0.583559i
\(687\) 0 0
\(688\) −10.5309 + 42.3148i −0.401486 + 1.61324i
\(689\) −9.96318 −0.379567
\(690\) 0 0
\(691\) 17.5509 0.667666 0.333833 0.942632i \(-0.391658\pi\)
0.333833 + 0.942632i \(0.391658\pi\)
\(692\) −4.51306 + 36.8216i −0.171561 + 1.39975i
\(693\) 0 0
\(694\) −27.8885 31.5154i −1.05863 1.19631i
\(695\) 43.2799 1.64170
\(696\) 0 0
\(697\) 6.76223 + 1.46532i 0.256138 + 0.0555028i
\(698\) 18.3249 16.2161i 0.693610 0.613787i
\(699\) 0 0
\(700\) −30.4977 3.73797i −1.15271 0.141282i
\(701\) 22.1815i 0.837783i −0.908036 0.418891i \(-0.862419\pi\)
0.908036 0.418891i \(-0.137581\pi\)
\(702\) 0 0
\(703\) 34.8858i 1.31574i
\(704\) −3.95774 + 10.3303i −0.149163 + 0.389336i
\(705\) 0 0
\(706\) −15.4199 17.4253i −0.580336 0.655808i
\(707\) 25.7495 0.968410
\(708\) 0 0
\(709\) 4.78270 0.179618 0.0898091 0.995959i \(-0.471374\pi\)
0.0898091 + 0.995959i \(0.471374\pi\)
\(710\) −14.5518 + 12.8771i −0.546118 + 0.483270i
\(711\) 0 0
\(712\) 25.2322 17.3537i 0.945618 0.650356i
\(713\) −8.14043 −0.304861
\(714\) 0 0
\(715\) 14.2116i 0.531483i
\(716\) −19.2259 2.35644i −0.718506 0.0880641i
\(717\) 0 0
\(718\) −21.8229 24.6609i −0.814422 0.920336i
\(719\) 40.8961i 1.52517i 0.646889 + 0.762584i \(0.276070\pi\)
−0.646889 + 0.762584i \(0.723930\pi\)
\(720\) 0 0
\(721\) 15.1594i 0.564566i
\(722\) −2.10037 2.37352i −0.0781677 0.0883333i
\(723\) 0 0
\(724\) 1.51539 12.3639i 0.0563192 0.459502i
\(725\) −52.9017 −1.96472
\(726\) 0 0
\(727\) −10.7907 −0.400204 −0.200102 0.979775i \(-0.564127\pi\)
−0.200102 + 0.979775i \(0.564127\pi\)
\(728\) 7.86766 5.41104i 0.291595 0.200547i
\(729\) 0 0
\(730\) −54.6441 + 48.3556i −2.02247 + 1.78972i
\(731\) 43.9281 + 9.51884i 1.62474 + 0.352067i
\(732\) 0 0
\(733\) 8.86600i 0.327473i 0.986504 + 0.163737i \(0.0523547\pi\)
−0.986504 + 0.163737i \(0.947645\pi\)
\(734\) −4.86170 + 4.30220i −0.179449 + 0.158797i
\(735\) 0 0
\(736\) 15.4653 8.06133i 0.570058 0.297145i
\(737\) 2.78064i 0.102426i
\(738\) 0 0
\(739\) 14.2082i 0.522656i 0.965250 + 0.261328i \(0.0841604\pi\)
−0.965250 + 0.261328i \(0.915840\pi\)
\(740\) −7.48333 + 61.0557i −0.275093 + 2.24445i
\(741\) 0 0
\(742\) −4.92744 5.56825i −0.180892 0.204417i
\(743\) 33.9021i 1.24375i 0.783118 + 0.621874i \(0.213628\pi\)
−0.783118 + 0.621874i \(0.786372\pi\)
\(744\) 0 0
\(745\) 1.13846i 0.0417099i
\(746\) −16.3074 + 14.4307i −0.597057 + 0.528347i
\(747\) 0 0
\(748\) 10.7677 + 3.75269i 0.393707 + 0.137212i
\(749\) 0.719638i 0.0262950i
\(750\) 0 0
\(751\) 0.832425i 0.0303756i 0.999885 + 0.0151878i \(0.00483462\pi\)
−0.999885 + 0.0151878i \(0.995165\pi\)
\(752\) −8.52802 2.12237i −0.310985 0.0773947i
\(753\) 0 0
\(754\) 12.3120 10.8951i 0.448376 0.396776i
\(755\) 38.5341 1.40240
\(756\) 0 0
\(757\) 26.1220i 0.949420i −0.880142 0.474710i \(-0.842553\pi\)
0.880142 0.474710i \(-0.157447\pi\)
\(758\) −1.72592 1.95037i −0.0626882 0.0708408i
\(759\) 0 0
\(760\) 30.0151 + 43.6420i 1.08876 + 1.58306i
\(761\) 36.9537 1.33957 0.669784 0.742556i \(-0.266386\pi\)
0.669784 + 0.742556i \(0.266386\pi\)
\(762\) 0 0
\(763\) 12.1490i 0.439824i
\(764\) −4.51985 + 36.8770i −0.163523 + 1.33416i
\(765\) 0 0
\(766\) −32.0387 36.2053i −1.15761 1.30815i
\(767\) 32.5030 1.17362
\(768\) 0 0
\(769\) −51.3629 −1.85219 −0.926097 0.377285i \(-0.876858\pi\)
−0.926097 + 0.377285i \(0.876858\pi\)
\(770\) 7.94260 7.02855i 0.286232 0.253291i
\(771\) 0 0
\(772\) 27.0124 + 3.31079i 0.972196 + 0.119158i
\(773\) 47.0804i 1.69336i −0.532100 0.846682i \(-0.678597\pi\)
0.532100 0.846682i \(-0.321403\pi\)
\(774\) 0 0
\(775\) 30.3913i 1.09169i
\(776\) 18.9744 + 27.5888i 0.681142 + 0.990381i
\(777\) 0 0
\(778\) 10.7720 9.53232i 0.386194 0.341750i
\(779\) −7.73424 −0.277108
\(780\) 0 0
\(781\) 4.67599i 0.167320i
\(782\) −8.79205 15.6803i −0.314403 0.560725i
\(783\) 0 0
\(784\) −20.2560 5.04110i −0.723428 0.180039i
\(785\) 96.2345i 3.43476i
\(786\) 0 0
\(787\) 21.2273 0.756671 0.378336 0.925669i \(-0.376497\pi\)
0.378336 + 0.925669i \(0.376497\pi\)
\(788\) 1.91880 15.6553i 0.0683546 0.557698i
\(789\) 0 0
\(790\) 43.4267 38.4291i 1.54505 1.36724i
\(791\) −8.71838 −0.309990
\(792\) 0 0
\(793\) 17.7074i 0.628807i
\(794\) −22.6044 25.5441i −0.802202 0.906527i
\(795\) 0 0
\(796\) 39.1618 + 4.79989i 1.38805 + 0.170128i
\(797\) 1.24847i 0.0442232i 0.999756 + 0.0221116i \(0.00703891\pi\)
−0.999756 + 0.0221116i \(0.992961\pi\)
\(798\) 0 0
\(799\) −1.91840 + 8.85315i −0.0678682 + 0.313202i
\(800\) −30.0960 57.7377i −1.06405 2.04134i
\(801\) 0 0
\(802\) 12.8312 11.3545i 0.453085 0.400943i
\(803\) 17.5591i 0.619645i
\(804\) 0 0
\(805\) −16.7205 −0.589319
\(806\) −6.25907 7.07305i −0.220466 0.249138i
\(807\) 0 0
\(808\) 30.9207 + 44.9587i 1.08779 + 1.58164i
\(809\) 3.89688i 0.137007i 0.997651 + 0.0685034i \(0.0218224\pi\)
−0.997651 + 0.0685034i \(0.978178\pi\)
\(810\) 0 0
\(811\) −39.7545 −1.39597 −0.697985 0.716112i \(-0.745920\pi\)
−0.697985 + 0.716112i \(0.745920\pi\)
\(812\) 12.1782 + 1.49262i 0.427370 + 0.0523808i
\(813\) 0 0
\(814\) −9.80965 11.0854i −0.343828 0.388543i
\(815\) 74.8517 2.62194
\(816\) 0 0
\(817\) −50.2424 −1.75776
\(818\) 5.01757 + 5.67010i 0.175435 + 0.198250i
\(819\) 0 0
\(820\) 13.5362 + 1.65907i 0.472704 + 0.0579372i
\(821\) −7.68119 −0.268076 −0.134038 0.990976i \(-0.542794\pi\)
−0.134038 + 0.990976i \(0.542794\pi\)
\(822\) 0 0
\(823\) 23.9730i 0.835647i 0.908528 + 0.417824i \(0.137207\pi\)
−0.908528 + 0.417824i \(0.862793\pi\)
\(824\) 26.4684 18.2038i 0.922069 0.634160i
\(825\) 0 0
\(826\) 16.0749 + 18.1654i 0.559316 + 0.632055i
\(827\) 53.2001 1.84995 0.924974 0.380030i \(-0.124086\pi\)
0.924974 + 0.380030i \(0.124086\pi\)
\(828\) 0 0
\(829\) 5.80159i 0.201498i −0.994912 0.100749i \(-0.967876\pi\)
0.994912 0.100749i \(-0.0321238\pi\)
\(830\) −57.6503 + 51.0158i −2.00107 + 1.77078i
\(831\) 0 0
\(832\) 18.8954 + 7.23923i 0.655080 + 0.250975i
\(833\) −4.55664 + 21.0282i −0.157878 + 0.728586i
\(834\) 0 0
\(835\) 40.1988i 1.39114i
\(836\) −12.6515 1.55064i −0.437562 0.0536300i
\(837\) 0 0
\(838\) 17.1567 + 19.3879i 0.592668 + 0.669743i
\(839\) 21.8766i 0.755264i −0.925956 0.377632i \(-0.876738\pi\)
0.925956 0.377632i \(-0.123262\pi\)
\(840\) 0 0
\(841\) −7.87561 −0.271573
\(842\) −2.73232 + 2.41788i −0.0941620 + 0.0833256i
\(843\) 0 0
\(844\) 5.83282 47.5893i 0.200774 1.63809i
\(845\) 26.8275 0.922895
\(846\) 0 0
\(847\) 12.1299i 0.416789i
\(848\) 3.80517 15.2898i 0.130670 0.525055i
\(849\) 0 0
\(850\) −58.5403 + 32.8240i −2.00791 + 1.12585i
\(851\) 23.3365i 0.799966i
\(852\) 0 0
\(853\) −13.3416 −0.456809 −0.228405 0.973566i \(-0.573351\pi\)
−0.228405 + 0.973566i \(0.573351\pi\)
\(854\) −9.89633 + 8.75744i −0.338646 + 0.299673i
\(855\) 0 0
\(856\) 1.25649 0.864160i 0.0429459 0.0295364i
\(857\) 0.322155i 0.0110046i −0.999985 0.00550230i \(-0.998249\pi\)
0.999985 0.00550230i \(-0.00175145\pi\)
\(858\) 0 0
\(859\) 28.0802i 0.958085i 0.877792 + 0.479043i \(0.159016\pi\)
−0.877792 + 0.479043i \(0.840984\pi\)
\(860\) 87.9323 + 10.7775i 2.99847 + 0.367509i
\(861\) 0 0
\(862\) −25.2475 + 22.3419i −0.859933 + 0.760970i
\(863\) 27.1517 0.924255 0.462127 0.886814i \(-0.347086\pi\)
0.462127 + 0.886814i \(0.347086\pi\)
\(864\) 0 0
\(865\) 75.3676 2.56258
\(866\) 18.4699 + 20.8719i 0.627633 + 0.709256i
\(867\) 0 0
\(868\) 0.857490 6.99617i 0.0291051 0.237466i
\(869\) 13.9545i 0.473374i
\(870\) 0 0
\(871\) −5.08616 −0.172338
\(872\) −21.2122 + 14.5889i −0.718337 + 0.494042i
\(873\) 0 0
\(874\) 13.3167 + 15.0486i 0.450445 + 0.509025i
\(875\) 35.3067i 1.19358i
\(876\) 0 0
\(877\) −25.4455 −0.859233 −0.429617 0.903011i \(-0.641351\pi\)
−0.429617 + 0.903011i \(0.641351\pi\)
\(878\) 12.0608 10.6728i 0.407032 0.360190i
\(879\) 0 0
\(880\) 21.8095 + 5.42774i 0.735200 + 0.182969i
\(881\) 15.2859i 0.514995i 0.966279 + 0.257498i \(0.0828979\pi\)
−0.966279 + 0.257498i \(0.917102\pi\)
\(882\) 0 0
\(883\) 13.6008i 0.457703i −0.973461 0.228852i \(-0.926503\pi\)
0.973461 0.228852i \(-0.0734970\pi\)
\(884\) 6.86417 19.6956i 0.230867 0.662434i
\(885\) 0 0
\(886\) −3.99620 + 3.53631i −0.134255 + 0.118805i
\(887\) 22.2405i 0.746764i 0.927678 + 0.373382i \(0.121802\pi\)
−0.927678 + 0.373382i \(0.878198\pi\)
\(888\) 0 0
\(889\) 16.8135i 0.563908i
\(890\) −41.2307 46.5927i −1.38206 1.56179i
\(891\) 0 0
\(892\) −4.28732 + 34.9798i −0.143550 + 1.17121i
\(893\) 10.1257i 0.338844i
\(894\) 0 0
\(895\) 39.3522i 1.31540i
\(896\) 5.29912 + 14.1406i 0.177031 + 0.472404i
\(897\) 0 0
\(898\) 17.5118 15.4965i 0.584377 0.517126i
\(899\) 12.1356i 0.404747i
\(900\) 0 0
\(901\) −15.8727 3.43949i −0.528798 0.114586i
\(902\) −2.45765 + 2.17482i −0.0818309 + 0.0724136i
\(903\) 0 0
\(904\) −10.4693 15.2223i −0.348202 0.506286i
\(905\) −25.3069 −0.841230
\(906\) 0 0
\(907\) −1.22779 −0.0407680 −0.0203840 0.999792i \(-0.506489\pi\)
−0.0203840 + 0.999792i \(0.506489\pi\)
\(908\) −3.59587 + 29.3383i −0.119333 + 0.973626i
\(909\) 0 0
\(910\) −12.8561 14.5281i −0.426177 0.481601i
\(911\) 4.50510i 0.149261i 0.997211 + 0.0746304i \(0.0237777\pi\)
−0.997211 + 0.0746304i \(0.976222\pi\)
\(912\) 0 0
\(913\) 18.5250i 0.613089i
\(914\) −7.29281 8.24123i −0.241225 0.272596i
\(915\) 0 0
\(916\) 43.1660 + 5.29067i 1.42625 + 0.174809i
\(917\) 20.1444i 0.665225i
\(918\) 0 0
\(919\) 24.2454 0.799781 0.399890 0.916563i \(-0.369048\pi\)
0.399890 + 0.916563i \(0.369048\pi\)
\(920\) −20.0784 29.1940i −0.661964 0.962496i
\(921\) 0 0
\(922\) −9.55776 + 8.45783i −0.314768 + 0.278544i
\(923\) −8.55299 −0.281525
\(924\) 0 0
\(925\) 87.1239 2.86462
\(926\) 3.87091 + 4.37431i 0.127206 + 0.143749i
\(927\) 0 0
\(928\) 12.0177 + 23.0555i 0.394501 + 0.756833i
\(929\) 55.5044i 1.82104i 0.413463 + 0.910521i \(0.364319\pi\)
−0.413463 + 0.910521i \(0.635681\pi\)
\(930\) 0 0
\(931\) 24.0509i 0.788236i
\(932\) 20.8269 + 2.55266i 0.682209 + 0.0836153i
\(933\) 0 0
\(934\) −28.1557 + 24.9154i −0.921281 + 0.815258i
\(935\) 4.90612 22.6410i 0.160447 0.740441i
\(936\) 0 0
\(937\) −18.5511 −0.606038 −0.303019 0.952985i \(-0.597995\pi\)
−0.303019 + 0.952985i \(0.597995\pi\)
\(938\) −2.51544 2.84256i −0.0821319 0.0928130i
\(939\) 0 0
\(940\) −2.17206 + 17.7216i −0.0708449 + 0.578016i
\(941\) −35.9106 −1.17065 −0.585327 0.810798i \(-0.699034\pi\)
−0.585327 + 0.810798i \(0.699034\pi\)
\(942\) 0 0
\(943\) 5.17375 0.168481
\(944\) −12.4137 + 49.8802i −0.404031 + 1.62346i
\(945\) 0 0
\(946\) −15.9651 + 14.1278i −0.519072 + 0.459336i
\(947\) 13.4238 0.436216 0.218108 0.975925i \(-0.430012\pi\)
0.218108 + 0.975925i \(0.430012\pi\)
\(948\) 0 0
\(949\) −32.1178 −1.04259
\(950\) 56.1819 49.7163i 1.82278 1.61301i
\(951\) 0 0
\(952\) 14.4023 5.90448i 0.466781 0.191365i
\(953\) −52.8115 −1.71073 −0.855366 0.518024i \(-0.826668\pi\)
−0.855366 + 0.518024i \(0.826668\pi\)
\(954\) 0 0
\(955\) 75.4811 2.44251
\(956\) 3.59135 29.3015i 0.116153 0.947678i
\(957\) 0 0
\(958\) 10.1556 8.98689i 0.328113 0.290353i
\(959\) 1.50746i 0.0486784i
\(960\) 0 0
\(961\) 24.0282 0.775105
\(962\) −20.2766 + 17.9431i −0.653745 + 0.578510i
\(963\) 0 0
\(964\) −43.2226 5.29761i −1.39211 0.170624i
\(965\) 55.2898i 1.77984i
\(966\) 0 0
\(967\) −7.20225 −0.231609 −0.115804 0.993272i \(-0.536945\pi\)
−0.115804 + 0.993272i \(0.536945\pi\)
\(968\) 21.1789 14.5659i 0.680715 0.468167i
\(969\) 0 0
\(970\) 50.9442 45.0815i 1.63572 1.44748i
\(971\) 53.5069i 1.71712i 0.512715 + 0.858559i \(0.328640\pi\)
−0.512715 + 0.858559i \(0.671360\pi\)
\(972\) 0 0
\(973\) 14.2170i 0.455777i
\(974\) 11.9819 10.6030i 0.383925 0.339742i
\(975\) 0 0
\(976\) −27.1743 6.76286i −0.869828 0.216474i
\(977\) 0.640518 0.0204920 0.0102460 0.999948i \(-0.496739\pi\)
0.0102460 + 0.999948i \(0.496739\pi\)
\(978\) 0 0
\(979\) 14.9718 0.478502
\(980\) −5.15915 + 42.0929i −0.164803 + 1.34461i
\(981\) 0 0
\(982\) 13.0110 11.5136i 0.415197 0.367415i
\(983\) 16.1739i 0.515866i −0.966163 0.257933i \(-0.916959\pi\)
0.966163 0.257933i \(-0.0830414\pi\)
\(984\) 0 0
\(985\) −32.0438 −1.02100
\(986\) 23.3759 13.1071i 0.744441 0.417414i
\(987\) 0 0
\(988\) −2.83632 + 23.1413i −0.0902355 + 0.736222i
\(989\) 33.6092 1.06871
\(990\) 0 0
\(991\) 4.18546i 0.132955i 0.997788 + 0.0664777i \(0.0211761\pi\)
−0.997788 + 0.0664777i \(0.978824\pi\)
\(992\) 13.2450 6.90401i 0.420530 0.219202i
\(993\) 0 0
\(994\) −4.23001 4.78012i −0.134168 0.151616i
\(995\) 80.1577i 2.54117i
\(996\) 0 0
\(997\) 36.1353 1.14442 0.572209 0.820108i \(-0.306087\pi\)
0.572209 + 0.820108i \(0.306087\pi\)
\(998\) 7.17843 + 8.11198i 0.227229 + 0.256780i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1224.2.l.c.1189.14 18
3.2 odd 2 408.2.l.a.373.5 18
4.3 odd 2 4896.2.l.c.3025.17 18
8.3 odd 2 4896.2.l.d.3025.1 18
8.5 even 2 1224.2.l.d.1189.13 18
12.11 even 2 1632.2.l.b.1393.1 18
17.16 even 2 1224.2.l.d.1189.14 18
24.5 odd 2 408.2.l.b.373.6 yes 18
24.11 even 2 1632.2.l.a.1393.17 18
51.50 odd 2 408.2.l.b.373.5 yes 18
68.67 odd 2 4896.2.l.d.3025.2 18
136.67 odd 2 4896.2.l.c.3025.18 18
136.101 even 2 inner 1224.2.l.c.1189.13 18
204.203 even 2 1632.2.l.a.1393.18 18
408.101 odd 2 408.2.l.a.373.6 yes 18
408.203 even 2 1632.2.l.b.1393.2 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
408.2.l.a.373.5 18 3.2 odd 2
408.2.l.a.373.6 yes 18 408.101 odd 2
408.2.l.b.373.5 yes 18 51.50 odd 2
408.2.l.b.373.6 yes 18 24.5 odd 2
1224.2.l.c.1189.13 18 136.101 even 2 inner
1224.2.l.c.1189.14 18 1.1 even 1 trivial
1224.2.l.d.1189.13 18 8.5 even 2
1224.2.l.d.1189.14 18 17.16 even 2
1632.2.l.a.1393.17 18 24.11 even 2
1632.2.l.a.1393.18 18 204.203 even 2
1632.2.l.b.1393.1 18 12.11 even 2
1632.2.l.b.1393.2 18 408.203 even 2
4896.2.l.c.3025.17 18 4.3 odd 2
4896.2.l.c.3025.18 18 136.67 odd 2
4896.2.l.d.3025.1 18 8.3 odd 2
4896.2.l.d.3025.2 18 68.67 odd 2