Properties

Label 1632.2.l.b.1393.4
Level $1632$
Weight $2$
Character 1632.1393
Analytic conductor $13.032$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1632,2,Mod(1393,1632)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1632, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1632.1393");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1632 = 2^{5} \cdot 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1632.l (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.0315856099\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - x^{16} - 2x^{14} + 2x^{12} - 4x^{11} + 4x^{10} + 8x^{8} - 16x^{7} + 16x^{6} - 64x^{4} - 128x^{2} + 512 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2^{17} \)
Twist minimal: no (minimal twist has level 408)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1393.4
Root \(-0.943929 + 1.05309i\) of defining polynomial
Character \(\chi\) \(=\) 1632.1393
Dual form 1632.2.l.b.1393.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} -1.57273 q^{5} +1.68207i q^{7} +1.00000 q^{9} +3.33403 q^{11} -0.177520i q^{13} -1.57273 q^{15} +(-3.53017 + 2.13024i) q^{17} +2.58556i q^{19} +1.68207i q^{21} +3.40373i q^{23} -2.52653 q^{25} +1.00000 q^{27} +2.46715 q^{29} +4.84803i q^{31} +3.33403 q^{33} -2.64545i q^{35} +5.33914 q^{37} -0.177520i q^{39} -4.79275i q^{41} +5.48185i q^{43} -1.57273 q^{45} -5.72051 q^{47} +4.17063 q^{49} +(-3.53017 + 2.13024i) q^{51} +4.52038i q^{53} -5.24353 q^{55} +2.58556i q^{57} -6.32370i q^{59} +6.28670 q^{61} +1.68207i q^{63} +0.279190i q^{65} +15.8300i q^{67} +3.40373i q^{69} +13.3194i q^{71} +4.38096i q^{73} -2.52653 q^{75} +5.60809i q^{77} +7.47987i q^{79} +1.00000 q^{81} -6.58394i q^{83} +(5.55199 - 3.35029i) q^{85} +2.46715 q^{87} -8.64940 q^{89} +0.298601 q^{91} +4.84803i q^{93} -4.06638i q^{95} +13.1686i q^{97} +3.33403 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 18 q^{3} + 4 q^{5} + 18 q^{9} + 4 q^{15} - 2 q^{17} + 22 q^{25} + 18 q^{27} - 12 q^{29} + 16 q^{37} + 4 q^{45} - 18 q^{49} - 2 q^{51} + 16 q^{55} + 16 q^{61} + 22 q^{75} + 18 q^{81} - 16 q^{85} - 12 q^{87}+ \cdots + 20 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1632\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(545\) \(613\) \(1057\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) −1.57273 −0.703346 −0.351673 0.936123i \(-0.614387\pi\)
−0.351673 + 0.936123i \(0.614387\pi\)
\(6\) 0 0
\(7\) 1.68207i 0.635764i 0.948130 + 0.317882i \(0.102972\pi\)
−0.948130 + 0.317882i \(0.897028\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 3.33403 1.00525 0.502624 0.864505i \(-0.332368\pi\)
0.502624 + 0.864505i \(0.332368\pi\)
\(12\) 0 0
\(13\) 0.177520i 0.0492351i −0.999697 0.0246175i \(-0.992163\pi\)
0.999697 0.0246175i \(-0.00783680\pi\)
\(14\) 0 0
\(15\) −1.57273 −0.406077
\(16\) 0 0
\(17\) −3.53017 + 2.13024i −0.856191 + 0.516659i
\(18\) 0 0
\(19\) 2.58556i 0.593168i 0.955007 + 0.296584i \(0.0958475\pi\)
−0.955007 + 0.296584i \(0.904152\pi\)
\(20\) 0 0
\(21\) 1.68207i 0.367059i
\(22\) 0 0
\(23\) 3.40373i 0.709726i 0.934918 + 0.354863i \(0.115473\pi\)
−0.934918 + 0.354863i \(0.884527\pi\)
\(24\) 0 0
\(25\) −2.52653 −0.505305
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 2.46715 0.458138 0.229069 0.973410i \(-0.426432\pi\)
0.229069 + 0.973410i \(0.426432\pi\)
\(30\) 0 0
\(31\) 4.84803i 0.870731i 0.900254 + 0.435366i \(0.143381\pi\)
−0.900254 + 0.435366i \(0.856619\pi\)
\(32\) 0 0
\(33\) 3.33403 0.580380
\(34\) 0 0
\(35\) 2.64545i 0.447162i
\(36\) 0 0
\(37\) 5.33914 0.877750 0.438875 0.898548i \(-0.355377\pi\)
0.438875 + 0.898548i \(0.355377\pi\)
\(38\) 0 0
\(39\) 0.177520i 0.0284259i
\(40\) 0 0
\(41\) 4.79275i 0.748502i −0.927327 0.374251i \(-0.877900\pi\)
0.927327 0.374251i \(-0.122100\pi\)
\(42\) 0 0
\(43\) 5.48185i 0.835975i 0.908453 + 0.417987i \(0.137264\pi\)
−0.908453 + 0.417987i \(0.862736\pi\)
\(44\) 0 0
\(45\) −1.57273 −0.234449
\(46\) 0 0
\(47\) −5.72051 −0.834422 −0.417211 0.908810i \(-0.636992\pi\)
−0.417211 + 0.908810i \(0.636992\pi\)
\(48\) 0 0
\(49\) 4.17063 0.595804
\(50\) 0 0
\(51\) −3.53017 + 2.13024i −0.494322 + 0.298293i
\(52\) 0 0
\(53\) 4.52038i 0.620922i 0.950586 + 0.310461i \(0.100483\pi\)
−0.950586 + 0.310461i \(0.899517\pi\)
\(54\) 0 0
\(55\) −5.24353 −0.707037
\(56\) 0 0
\(57\) 2.58556i 0.342466i
\(58\) 0 0
\(59\) 6.32370i 0.823276i −0.911348 0.411638i \(-0.864957\pi\)
0.911348 0.411638i \(-0.135043\pi\)
\(60\) 0 0
\(61\) 6.28670 0.804929 0.402464 0.915436i \(-0.368154\pi\)
0.402464 + 0.915436i \(0.368154\pi\)
\(62\) 0 0
\(63\) 1.68207i 0.211921i
\(64\) 0 0
\(65\) 0.279190i 0.0346293i
\(66\) 0 0
\(67\) 15.8300i 1.93395i 0.254875 + 0.966974i \(0.417966\pi\)
−0.254875 + 0.966974i \(0.582034\pi\)
\(68\) 0 0
\(69\) 3.40373i 0.409761i
\(70\) 0 0
\(71\) 13.3194i 1.58073i 0.612638 + 0.790364i \(0.290108\pi\)
−0.612638 + 0.790364i \(0.709892\pi\)
\(72\) 0 0
\(73\) 4.38096i 0.512752i 0.966577 + 0.256376i \(0.0825286\pi\)
−0.966577 + 0.256376i \(0.917471\pi\)
\(74\) 0 0
\(75\) −2.52653 −0.291738
\(76\) 0 0
\(77\) 5.60809i 0.639101i
\(78\) 0 0
\(79\) 7.47987i 0.841551i 0.907165 + 0.420776i \(0.138242\pi\)
−0.907165 + 0.420776i \(0.861758\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 6.58394i 0.722681i −0.932434 0.361341i \(-0.882319\pi\)
0.932434 0.361341i \(-0.117681\pi\)
\(84\) 0 0
\(85\) 5.55199 3.35029i 0.602198 0.363390i
\(86\) 0 0
\(87\) 2.46715 0.264506
\(88\) 0 0
\(89\) −8.64940 −0.916835 −0.458417 0.888737i \(-0.651584\pi\)
−0.458417 + 0.888737i \(0.651584\pi\)
\(90\) 0 0
\(91\) 0.298601 0.0313019
\(92\) 0 0
\(93\) 4.84803i 0.502717i
\(94\) 0 0
\(95\) 4.06638i 0.417202i
\(96\) 0 0
\(97\) 13.1686i 1.33707i 0.743680 + 0.668536i \(0.233079\pi\)
−0.743680 + 0.668536i \(0.766921\pi\)
\(98\) 0 0
\(99\) 3.33403 0.335083
\(100\) 0 0
\(101\) 1.10135i 0.109588i −0.998498 0.0547940i \(-0.982550\pi\)
0.998498 0.0547940i \(-0.0174502\pi\)
\(102\) 0 0
\(103\) −9.03960 −0.890698 −0.445349 0.895357i \(-0.646920\pi\)
−0.445349 + 0.895357i \(0.646920\pi\)
\(104\) 0 0
\(105\) 2.64545i 0.258169i
\(106\) 0 0
\(107\) 18.3379 1.77280 0.886398 0.462923i \(-0.153200\pi\)
0.886398 + 0.462923i \(0.153200\pi\)
\(108\) 0 0
\(109\) 1.67742 0.160668 0.0803340 0.996768i \(-0.474401\pi\)
0.0803340 + 0.996768i \(0.474401\pi\)
\(110\) 0 0
\(111\) 5.33914 0.506769
\(112\) 0 0
\(113\) 6.87985i 0.647202i −0.946194 0.323601i \(-0.895106\pi\)
0.946194 0.323601i \(-0.104894\pi\)
\(114\) 0 0
\(115\) 5.35314i 0.499183i
\(116\) 0 0
\(117\) 0.177520i 0.0164117i
\(118\) 0 0
\(119\) −3.58322 5.93800i −0.328473 0.544336i
\(120\) 0 0
\(121\) 0.115770 0.0105245
\(122\) 0 0
\(123\) 4.79275i 0.432148i
\(124\) 0 0
\(125\) 11.8372 1.05875
\(126\) 0 0
\(127\) 4.19770 0.372486 0.186243 0.982504i \(-0.440369\pi\)
0.186243 + 0.982504i \(0.440369\pi\)
\(128\) 0 0
\(129\) 5.48185i 0.482650i
\(130\) 0 0
\(131\) 3.59013 0.313671 0.156835 0.987625i \(-0.449871\pi\)
0.156835 + 0.987625i \(0.449871\pi\)
\(132\) 0 0
\(133\) −4.34910 −0.377115
\(134\) 0 0
\(135\) −1.57273 −0.135359
\(136\) 0 0
\(137\) −11.9023 −1.01688 −0.508441 0.861097i \(-0.669778\pi\)
−0.508441 + 0.861097i \(0.669778\pi\)
\(138\) 0 0
\(139\) −5.96225 −0.505711 −0.252856 0.967504i \(-0.581370\pi\)
−0.252856 + 0.967504i \(0.581370\pi\)
\(140\) 0 0
\(141\) −5.72051 −0.481754
\(142\) 0 0
\(143\) 0.591856i 0.0494935i
\(144\) 0 0
\(145\) −3.88016 −0.322230
\(146\) 0 0
\(147\) 4.17063 0.343987
\(148\) 0 0
\(149\) 22.1583i 1.81528i −0.419751 0.907639i \(-0.637883\pi\)
0.419751 0.907639i \(-0.362117\pi\)
\(150\) 0 0
\(151\) 4.16246 0.338736 0.169368 0.985553i \(-0.445827\pi\)
0.169368 + 0.985553i \(0.445827\pi\)
\(152\) 0 0
\(153\) −3.53017 + 2.13024i −0.285397 + 0.172220i
\(154\) 0 0
\(155\) 7.62463i 0.612425i
\(156\) 0 0
\(157\) 1.66640i 0.132993i −0.997787 0.0664964i \(-0.978818\pi\)
0.997787 0.0664964i \(-0.0211821\pi\)
\(158\) 0 0
\(159\) 4.52038i 0.358489i
\(160\) 0 0
\(161\) −5.72532 −0.451219
\(162\) 0 0
\(163\) 5.18018 0.405743 0.202871 0.979205i \(-0.434973\pi\)
0.202871 + 0.979205i \(0.434973\pi\)
\(164\) 0 0
\(165\) −5.24353 −0.408208
\(166\) 0 0
\(167\) 20.8328i 1.61209i −0.591854 0.806046i \(-0.701604\pi\)
0.591854 0.806046i \(-0.298396\pi\)
\(168\) 0 0
\(169\) 12.9685 0.997576
\(170\) 0 0
\(171\) 2.58556i 0.197723i
\(172\) 0 0
\(173\) 21.8618 1.66212 0.831062 0.556179i \(-0.187733\pi\)
0.831062 + 0.556179i \(0.187733\pi\)
\(174\) 0 0
\(175\) 4.24980i 0.321255i
\(176\) 0 0
\(177\) 6.32370i 0.475318i
\(178\) 0 0
\(179\) 4.38920i 0.328064i −0.986455 0.164032i \(-0.947550\pi\)
0.986455 0.164032i \(-0.0524500\pi\)
\(180\) 0 0
\(181\) −11.1107 −0.825852 −0.412926 0.910765i \(-0.635493\pi\)
−0.412926 + 0.910765i \(0.635493\pi\)
\(182\) 0 0
\(183\) 6.28670 0.464726
\(184\) 0 0
\(185\) −8.39702 −0.617361
\(186\) 0 0
\(187\) −11.7697 + 7.10229i −0.860685 + 0.519371i
\(188\) 0 0
\(189\) 1.68207i 0.122353i
\(190\) 0 0
\(191\) −11.5334 −0.834530 −0.417265 0.908785i \(-0.637011\pi\)
−0.417265 + 0.908785i \(0.637011\pi\)
\(192\) 0 0
\(193\) 13.5081i 0.972334i 0.873866 + 0.486167i \(0.161605\pi\)
−0.873866 + 0.486167i \(0.838395\pi\)
\(194\) 0 0
\(195\) 0.279190i 0.0199932i
\(196\) 0 0
\(197\) −20.9839 −1.49504 −0.747519 0.664240i \(-0.768755\pi\)
−0.747519 + 0.664240i \(0.768755\pi\)
\(198\) 0 0
\(199\) 27.9971i 1.98466i −0.123605 0.992332i \(-0.539445\pi\)
0.123605 0.992332i \(-0.460555\pi\)
\(200\) 0 0
\(201\) 15.8300i 1.11657i
\(202\) 0 0
\(203\) 4.14993i 0.291268i
\(204\) 0 0
\(205\) 7.53770i 0.526456i
\(206\) 0 0
\(207\) 3.40373i 0.236575i
\(208\) 0 0
\(209\) 8.62034i 0.596282i
\(210\) 0 0
\(211\) −14.4756 −0.996540 −0.498270 0.867022i \(-0.666031\pi\)
−0.498270 + 0.867022i \(0.666031\pi\)
\(212\) 0 0
\(213\) 13.3194i 0.912633i
\(214\) 0 0
\(215\) 8.62147i 0.587979i
\(216\) 0 0
\(217\) −8.15474 −0.553580
\(218\) 0 0
\(219\) 4.38096i 0.296038i
\(220\) 0 0
\(221\) 0.378159 + 0.626674i 0.0254377 + 0.0421546i
\(222\) 0 0
\(223\) 27.2591 1.82540 0.912702 0.408626i \(-0.133992\pi\)
0.912702 + 0.408626i \(0.133992\pi\)
\(224\) 0 0
\(225\) −2.52653 −0.168435
\(226\) 0 0
\(227\) 9.26818 0.615151 0.307575 0.951524i \(-0.400482\pi\)
0.307575 + 0.951524i \(0.400482\pi\)
\(228\) 0 0
\(229\) 19.8306i 1.31044i −0.755437 0.655222i \(-0.772575\pi\)
0.755437 0.655222i \(-0.227425\pi\)
\(230\) 0 0
\(231\) 5.60809i 0.368985i
\(232\) 0 0
\(233\) 9.37047i 0.613880i 0.951729 + 0.306940i \(0.0993051\pi\)
−0.951729 + 0.306940i \(0.900695\pi\)
\(234\) 0 0
\(235\) 8.99681 0.586887
\(236\) 0 0
\(237\) 7.47987i 0.485870i
\(238\) 0 0
\(239\) 7.48309 0.484041 0.242021 0.970271i \(-0.422190\pi\)
0.242021 + 0.970271i \(0.422190\pi\)
\(240\) 0 0
\(241\) 12.5710i 0.809768i −0.914368 0.404884i \(-0.867312\pi\)
0.914368 0.404884i \(-0.132688\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) −6.55926 −0.419056
\(246\) 0 0
\(247\) 0.458988 0.0292047
\(248\) 0 0
\(249\) 6.58394i 0.417240i
\(250\) 0 0
\(251\) 1.95634i 0.123483i 0.998092 + 0.0617416i \(0.0196655\pi\)
−0.998092 + 0.0617416i \(0.980335\pi\)
\(252\) 0 0
\(253\) 11.3481i 0.713451i
\(254\) 0 0
\(255\) 5.55199 3.35029i 0.347679 0.209803i
\(256\) 0 0
\(257\) 13.3326 0.831664 0.415832 0.909441i \(-0.363490\pi\)
0.415832 + 0.909441i \(0.363490\pi\)
\(258\) 0 0
\(259\) 8.98083i 0.558042i
\(260\) 0 0
\(261\) 2.46715 0.152713
\(262\) 0 0
\(263\) −19.5100 −1.20304 −0.601518 0.798859i \(-0.705437\pi\)
−0.601518 + 0.798859i \(0.705437\pi\)
\(264\) 0 0
\(265\) 7.10933i 0.436723i
\(266\) 0 0
\(267\) −8.64940 −0.529335
\(268\) 0 0
\(269\) 6.00877 0.366361 0.183180 0.983079i \(-0.441361\pi\)
0.183180 + 0.983079i \(0.441361\pi\)
\(270\) 0 0
\(271\) 13.9230 0.845760 0.422880 0.906186i \(-0.361019\pi\)
0.422880 + 0.906186i \(0.361019\pi\)
\(272\) 0 0
\(273\) 0.298601 0.0180722
\(274\) 0 0
\(275\) −8.42352 −0.507957
\(276\) 0 0
\(277\) −27.7674 −1.66838 −0.834192 0.551474i \(-0.814066\pi\)
−0.834192 + 0.551474i \(0.814066\pi\)
\(278\) 0 0
\(279\) 4.84803i 0.290244i
\(280\) 0 0
\(281\) 16.6843 0.995302 0.497651 0.867377i \(-0.334196\pi\)
0.497651 + 0.867377i \(0.334196\pi\)
\(282\) 0 0
\(283\) −9.70263 −0.576761 −0.288381 0.957516i \(-0.593117\pi\)
−0.288381 + 0.957516i \(0.593117\pi\)
\(284\) 0 0
\(285\) 4.06638i 0.240872i
\(286\) 0 0
\(287\) 8.06176 0.475871
\(288\) 0 0
\(289\) 7.92416 15.0402i 0.466127 0.884718i
\(290\) 0 0
\(291\) 13.1686i 0.771959i
\(292\) 0 0
\(293\) 31.3940i 1.83406i −0.398824 0.917028i \(-0.630582\pi\)
0.398824 0.917028i \(-0.369418\pi\)
\(294\) 0 0
\(295\) 9.94546i 0.579047i
\(296\) 0 0
\(297\) 3.33403 0.193460
\(298\) 0 0
\(299\) 0.604228 0.0349434
\(300\) 0 0
\(301\) −9.22089 −0.531483
\(302\) 0 0
\(303\) 1.10135i 0.0632707i
\(304\) 0 0
\(305\) −9.88727 −0.566143
\(306\) 0 0
\(307\) 1.53330i 0.0875099i 0.999042 + 0.0437549i \(0.0139321\pi\)
−0.999042 + 0.0437549i \(0.986068\pi\)
\(308\) 0 0
\(309\) −9.03960 −0.514245
\(310\) 0 0
\(311\) 1.74672i 0.0990472i 0.998773 + 0.0495236i \(0.0157703\pi\)
−0.998773 + 0.0495236i \(0.984230\pi\)
\(312\) 0 0
\(313\) 31.9640i 1.80671i −0.428894 0.903355i \(-0.641097\pi\)
0.428894 0.903355i \(-0.358903\pi\)
\(314\) 0 0
\(315\) 2.64545i 0.149054i
\(316\) 0 0
\(317\) −3.80550 −0.213738 −0.106869 0.994273i \(-0.534083\pi\)
−0.106869 + 0.994273i \(0.534083\pi\)
\(318\) 0 0
\(319\) 8.22556 0.460543
\(320\) 0 0
\(321\) 18.3379 1.02352
\(322\) 0 0
\(323\) −5.50786 9.12746i −0.306466 0.507865i
\(324\) 0 0
\(325\) 0.448508i 0.0248787i
\(326\) 0 0
\(327\) 1.67742 0.0927617
\(328\) 0 0
\(329\) 9.62232i 0.530496i
\(330\) 0 0
\(331\) 10.4319i 0.573388i −0.958022 0.286694i \(-0.907444\pi\)
0.958022 0.286694i \(-0.0925563\pi\)
\(332\) 0 0
\(333\) 5.33914 0.292583
\(334\) 0 0
\(335\) 24.8964i 1.36023i
\(336\) 0 0
\(337\) 21.4237i 1.16702i 0.812105 + 0.583511i \(0.198321\pi\)
−0.812105 + 0.583511i \(0.801679\pi\)
\(338\) 0 0
\(339\) 6.87985i 0.373662i
\(340\) 0 0
\(341\) 16.1635i 0.875301i
\(342\) 0 0
\(343\) 18.7898i 1.01456i
\(344\) 0 0
\(345\) 5.35314i 0.288203i
\(346\) 0 0
\(347\) −16.4230 −0.881632 −0.440816 0.897598i \(-0.645311\pi\)
−0.440816 + 0.897598i \(0.645311\pi\)
\(348\) 0 0
\(349\) 7.84717i 0.420050i 0.977696 + 0.210025i \(0.0673545\pi\)
−0.977696 + 0.210025i \(0.932646\pi\)
\(350\) 0 0
\(351\) 0.177520i 0.00947529i
\(352\) 0 0
\(353\) 15.0952 0.803438 0.401719 0.915763i \(-0.368413\pi\)
0.401719 + 0.915763i \(0.368413\pi\)
\(354\) 0 0
\(355\) 20.9479i 1.11180i
\(356\) 0 0
\(357\) −3.58322 5.93800i −0.189644 0.314272i
\(358\) 0 0
\(359\) −17.8645 −0.942850 −0.471425 0.881906i \(-0.656260\pi\)
−0.471425 + 0.881906i \(0.656260\pi\)
\(360\) 0 0
\(361\) 12.3149 0.648151
\(362\) 0 0
\(363\) 0.115770 0.00607635
\(364\) 0 0
\(365\) 6.89006i 0.360642i
\(366\) 0 0
\(367\) 17.8393i 0.931205i 0.884994 + 0.465602i \(0.154162\pi\)
−0.884994 + 0.465602i \(0.845838\pi\)
\(368\) 0 0
\(369\) 4.79275i 0.249501i
\(370\) 0 0
\(371\) −7.60361 −0.394760
\(372\) 0 0
\(373\) 4.99138i 0.258444i 0.991616 + 0.129222i \(0.0412480\pi\)
−0.991616 + 0.129222i \(0.958752\pi\)
\(374\) 0 0
\(375\) 11.8372 0.611269
\(376\) 0 0
\(377\) 0.437968i 0.0225565i
\(378\) 0 0
\(379\) 1.52394 0.0782793 0.0391396 0.999234i \(-0.487538\pi\)
0.0391396 + 0.999234i \(0.487538\pi\)
\(380\) 0 0
\(381\) 4.19770 0.215055
\(382\) 0 0
\(383\) −17.0544 −0.871438 −0.435719 0.900083i \(-0.643506\pi\)
−0.435719 + 0.900083i \(0.643506\pi\)
\(384\) 0 0
\(385\) 8.82000i 0.449509i
\(386\) 0 0
\(387\) 5.48185i 0.278658i
\(388\) 0 0
\(389\) 18.6459i 0.945383i −0.881228 0.472691i \(-0.843283\pi\)
0.881228 0.472691i \(-0.156717\pi\)
\(390\) 0 0
\(391\) −7.25075 12.0157i −0.366686 0.607661i
\(392\) 0 0
\(393\) 3.59013 0.181098
\(394\) 0 0
\(395\) 11.7638i 0.591901i
\(396\) 0 0
\(397\) 22.9158 1.15011 0.575057 0.818114i \(-0.304980\pi\)
0.575057 + 0.818114i \(0.304980\pi\)
\(398\) 0 0
\(399\) −4.34910 −0.217728
\(400\) 0 0
\(401\) 31.7440i 1.58522i −0.609728 0.792610i \(-0.708721\pi\)
0.609728 0.792610i \(-0.291279\pi\)
\(402\) 0 0
\(403\) 0.860619 0.0428705
\(404\) 0 0
\(405\) −1.57273 −0.0781495
\(406\) 0 0
\(407\) 17.8009 0.882357
\(408\) 0 0
\(409\) 27.8277 1.37599 0.687996 0.725715i \(-0.258491\pi\)
0.687996 + 0.725715i \(0.258491\pi\)
\(410\) 0 0
\(411\) −11.9023 −0.587097
\(412\) 0 0
\(413\) 10.6369 0.523409
\(414\) 0 0
\(415\) 10.3547i 0.508295i
\(416\) 0 0
\(417\) −5.96225 −0.291972
\(418\) 0 0
\(419\) −24.9157 −1.21721 −0.608605 0.793473i \(-0.708271\pi\)
−0.608605 + 0.793473i \(0.708271\pi\)
\(420\) 0 0
\(421\) 33.7977i 1.64720i 0.567171 + 0.823600i \(0.308038\pi\)
−0.567171 + 0.823600i \(0.691962\pi\)
\(422\) 0 0
\(423\) −5.72051 −0.278141
\(424\) 0 0
\(425\) 8.91906 5.38210i 0.432638 0.261070i
\(426\) 0 0
\(427\) 10.5747i 0.511745i
\(428\) 0 0
\(429\) 0.591856i 0.0285751i
\(430\) 0 0
\(431\) 6.65096i 0.320366i 0.987087 + 0.160183i \(0.0512084\pi\)
−0.987087 + 0.160183i \(0.948792\pi\)
\(432\) 0 0
\(433\) −19.5349 −0.938786 −0.469393 0.882989i \(-0.655527\pi\)
−0.469393 + 0.882989i \(0.655527\pi\)
\(434\) 0 0
\(435\) −3.88016 −0.186039
\(436\) 0 0
\(437\) −8.80054 −0.420987
\(438\) 0 0
\(439\) 0.431972i 0.0206169i 0.999947 + 0.0103085i \(0.00328134\pi\)
−0.999947 + 0.0103085i \(0.996719\pi\)
\(440\) 0 0
\(441\) 4.17063 0.198601
\(442\) 0 0
\(443\) 0.940818i 0.0446996i −0.999750 0.0223498i \(-0.992885\pi\)
0.999750 0.0223498i \(-0.00711476\pi\)
\(444\) 0 0
\(445\) 13.6032 0.644852
\(446\) 0 0
\(447\) 22.1583i 1.04805i
\(448\) 0 0
\(449\) 40.6689i 1.91928i −0.281227 0.959641i \(-0.590741\pi\)
0.281227 0.959641i \(-0.409259\pi\)
\(450\) 0 0
\(451\) 15.9792i 0.752431i
\(452\) 0 0
\(453\) 4.16246 0.195569
\(454\) 0 0
\(455\) −0.469618 −0.0220161
\(456\) 0 0
\(457\) −10.6020 −0.495940 −0.247970 0.968768i \(-0.579763\pi\)
−0.247970 + 0.968768i \(0.579763\pi\)
\(458\) 0 0
\(459\) −3.53017 + 2.13024i −0.164774 + 0.0994311i
\(460\) 0 0
\(461\) 6.90435i 0.321568i 0.986990 + 0.160784i \(0.0514022\pi\)
−0.986990 + 0.160784i \(0.948598\pi\)
\(462\) 0 0
\(463\) −5.01760 −0.233188 −0.116594 0.993180i \(-0.537198\pi\)
−0.116594 + 0.993180i \(0.537198\pi\)
\(464\) 0 0
\(465\) 7.62463i 0.353584i
\(466\) 0 0
\(467\) 35.3420i 1.63543i −0.575621 0.817717i \(-0.695240\pi\)
0.575621 0.817717i \(-0.304760\pi\)
\(468\) 0 0
\(469\) −26.6273 −1.22953
\(470\) 0 0
\(471\) 1.66640i 0.0767835i
\(472\) 0 0
\(473\) 18.2767i 0.840363i
\(474\) 0 0
\(475\) 6.53248i 0.299731i
\(476\) 0 0
\(477\) 4.52038i 0.206974i
\(478\) 0 0
\(479\) 40.1158i 1.83294i 0.400106 + 0.916469i \(0.368973\pi\)
−0.400106 + 0.916469i \(0.631027\pi\)
\(480\) 0 0
\(481\) 0.947802i 0.0432161i
\(482\) 0 0
\(483\) −5.72532 −0.260511
\(484\) 0 0
\(485\) 20.7107i 0.940424i
\(486\) 0 0
\(487\) 22.2766i 1.00945i −0.863281 0.504724i \(-0.831594\pi\)
0.863281 0.504724i \(-0.168406\pi\)
\(488\) 0 0
\(489\) 5.18018 0.234256
\(490\) 0 0
\(491\) 23.2548i 1.04947i 0.851265 + 0.524736i \(0.175836\pi\)
−0.851265 + 0.524736i \(0.824164\pi\)
\(492\) 0 0
\(493\) −8.70946 + 5.25562i −0.392254 + 0.236701i
\(494\) 0 0
\(495\) −5.24353 −0.235679
\(496\) 0 0
\(497\) −22.4043 −1.00497
\(498\) 0 0
\(499\) −4.16978 −0.186665 −0.0933324 0.995635i \(-0.529752\pi\)
−0.0933324 + 0.995635i \(0.529752\pi\)
\(500\) 0 0
\(501\) 20.8328i 0.930741i
\(502\) 0 0
\(503\) 2.70786i 0.120737i 0.998176 + 0.0603687i \(0.0192276\pi\)
−0.998176 + 0.0603687i \(0.980772\pi\)
\(504\) 0 0
\(505\) 1.73212i 0.0770782i
\(506\) 0 0
\(507\) 12.9685 0.575951
\(508\) 0 0
\(509\) 15.0471i 0.666952i −0.942759 0.333476i \(-0.891778\pi\)
0.942759 0.333476i \(-0.108222\pi\)
\(510\) 0 0
\(511\) −7.36910 −0.325990
\(512\) 0 0
\(513\) 2.58556i 0.114155i
\(514\) 0 0
\(515\) 14.2168 0.626469
\(516\) 0 0
\(517\) −19.0724 −0.838802
\(518\) 0 0
\(519\) 21.8618 0.959628
\(520\) 0 0
\(521\) 29.0171i 1.27126i −0.771993 0.635631i \(-0.780740\pi\)
0.771993 0.635631i \(-0.219260\pi\)
\(522\) 0 0
\(523\) 29.2097i 1.27725i −0.769518 0.638625i \(-0.779503\pi\)
0.769518 0.638625i \(-0.220497\pi\)
\(524\) 0 0
\(525\) 4.24980i 0.185477i
\(526\) 0 0
\(527\) −10.3275 17.1143i −0.449871 0.745512i
\(528\) 0 0
\(529\) 11.4146 0.496289
\(530\) 0 0
\(531\) 6.32370i 0.274425i
\(532\) 0 0
\(533\) −0.850807 −0.0368526
\(534\) 0 0
\(535\) −28.8406 −1.24689
\(536\) 0 0
\(537\) 4.38920i 0.189408i
\(538\) 0 0
\(539\) 13.9050 0.598931
\(540\) 0 0
\(541\) 30.5463 1.31329 0.656643 0.754202i \(-0.271976\pi\)
0.656643 + 0.754202i \(0.271976\pi\)
\(542\) 0 0
\(543\) −11.1107 −0.476806
\(544\) 0 0
\(545\) −2.63813 −0.113005
\(546\) 0 0
\(547\) 36.8589 1.57597 0.787986 0.615693i \(-0.211124\pi\)
0.787986 + 0.615693i \(0.211124\pi\)
\(548\) 0 0
\(549\) 6.28670 0.268310
\(550\) 0 0
\(551\) 6.37897i 0.271753i
\(552\) 0 0
\(553\) −12.5817 −0.535028
\(554\) 0 0
\(555\) −8.39702 −0.356434
\(556\) 0 0
\(557\) 11.1786i 0.473652i 0.971552 + 0.236826i \(0.0761071\pi\)
−0.971552 + 0.236826i \(0.923893\pi\)
\(558\) 0 0
\(559\) 0.973137 0.0411593
\(560\) 0 0
\(561\) −11.7697 + 7.10229i −0.496917 + 0.299859i
\(562\) 0 0
\(563\) 1.85190i 0.0780483i 0.999238 + 0.0390242i \(0.0124249\pi\)
−0.999238 + 0.0390242i \(0.987575\pi\)
\(564\) 0 0
\(565\) 10.8201i 0.455207i
\(566\) 0 0
\(567\) 1.68207i 0.0706405i
\(568\) 0 0
\(569\) −3.17782 −0.133221 −0.0666106 0.997779i \(-0.521219\pi\)
−0.0666106 + 0.997779i \(0.521219\pi\)
\(570\) 0 0
\(571\) 20.2381 0.846937 0.423468 0.905911i \(-0.360812\pi\)
0.423468 + 0.905911i \(0.360812\pi\)
\(572\) 0 0
\(573\) −11.5334 −0.481816
\(574\) 0 0
\(575\) 8.59960i 0.358628i
\(576\) 0 0
\(577\) −5.53369 −0.230371 −0.115185 0.993344i \(-0.536746\pi\)
−0.115185 + 0.993344i \(0.536746\pi\)
\(578\) 0 0
\(579\) 13.5081i 0.561377i
\(580\) 0 0
\(581\) 11.0747 0.459455
\(582\) 0 0
\(583\) 15.0711i 0.624181i
\(584\) 0 0
\(585\) 0.279190i 0.0115431i
\(586\) 0 0
\(587\) 32.8487i 1.35581i 0.735149 + 0.677905i \(0.237112\pi\)
−0.735149 + 0.677905i \(0.762888\pi\)
\(588\) 0 0
\(589\) −12.5349 −0.516490
\(590\) 0 0
\(591\) −20.9839 −0.863161
\(592\) 0 0
\(593\) −4.38985 −0.180269 −0.0901347 0.995930i \(-0.528730\pi\)
−0.0901347 + 0.995930i \(0.528730\pi\)
\(594\) 0 0
\(595\) 5.63543 + 9.33887i 0.231030 + 0.382856i
\(596\) 0 0
\(597\) 27.9971i 1.14585i
\(598\) 0 0
\(599\) 24.8193 1.01409 0.507044 0.861920i \(-0.330738\pi\)
0.507044 + 0.861920i \(0.330738\pi\)
\(600\) 0 0
\(601\) 43.9610i 1.79321i 0.442834 + 0.896603i \(0.353973\pi\)
−0.442834 + 0.896603i \(0.646027\pi\)
\(602\) 0 0
\(603\) 15.8300i 0.644649i
\(604\) 0 0
\(605\) −0.182075 −0.00740240
\(606\) 0 0
\(607\) 44.7140i 1.81488i −0.420177 0.907442i \(-0.638032\pi\)
0.420177 0.907442i \(-0.361968\pi\)
\(608\) 0 0
\(609\) 4.14993i 0.168164i
\(610\) 0 0
\(611\) 1.01550i 0.0410828i
\(612\) 0 0
\(613\) 39.2562i 1.58554i −0.609518 0.792772i \(-0.708637\pi\)
0.609518 0.792772i \(-0.291363\pi\)
\(614\) 0 0
\(615\) 7.53770i 0.303949i
\(616\) 0 0
\(617\) 33.5704i 1.35149i 0.737133 + 0.675747i \(0.236179\pi\)
−0.737133 + 0.675747i \(0.763821\pi\)
\(618\) 0 0
\(619\) −29.2701 −1.17647 −0.588233 0.808692i \(-0.700176\pi\)
−0.588233 + 0.808692i \(0.700176\pi\)
\(620\) 0 0
\(621\) 3.40373i 0.136587i
\(622\) 0 0
\(623\) 14.5489i 0.582891i
\(624\) 0 0
\(625\) −5.98405 −0.239362
\(626\) 0 0
\(627\) 8.62034i 0.344263i
\(628\) 0 0
\(629\) −18.8481 + 11.3737i −0.751522 + 0.453497i
\(630\) 0 0
\(631\) −11.2429 −0.447574 −0.223787 0.974638i \(-0.571842\pi\)
−0.223787 + 0.974638i \(0.571842\pi\)
\(632\) 0 0
\(633\) −14.4756 −0.575353
\(634\) 0 0
\(635\) −6.60185 −0.261986
\(636\) 0 0
\(637\) 0.740368i 0.0293344i
\(638\) 0 0
\(639\) 13.3194i 0.526909i
\(640\) 0 0
\(641\) 33.9330i 1.34027i 0.742237 + 0.670137i \(0.233765\pi\)
−0.742237 + 0.670137i \(0.766235\pi\)
\(642\) 0 0
\(643\) 35.2361 1.38958 0.694788 0.719214i \(-0.255498\pi\)
0.694788 + 0.719214i \(0.255498\pi\)
\(644\) 0 0
\(645\) 8.62147i 0.339470i
\(646\) 0 0
\(647\) 41.8365 1.64476 0.822381 0.568937i \(-0.192645\pi\)
0.822381 + 0.568937i \(0.192645\pi\)
\(648\) 0 0
\(649\) 21.0834i 0.827596i
\(650\) 0 0
\(651\) −8.15474 −0.319609
\(652\) 0 0
\(653\) 22.6804 0.887554 0.443777 0.896137i \(-0.353638\pi\)
0.443777 + 0.896137i \(0.353638\pi\)
\(654\) 0 0
\(655\) −5.64629 −0.220619
\(656\) 0 0
\(657\) 4.38096i 0.170917i
\(658\) 0 0
\(659\) 34.4905i 1.34356i 0.740751 + 0.671779i \(0.234470\pi\)
−0.740751 + 0.671779i \(0.765530\pi\)
\(660\) 0 0
\(661\) 0.923741i 0.0359293i −0.999839 0.0179647i \(-0.994281\pi\)
0.999839 0.0179647i \(-0.00571864\pi\)
\(662\) 0 0
\(663\) 0.378159 + 0.626674i 0.0146865 + 0.0243380i
\(664\) 0 0
\(665\) 6.83996 0.265242
\(666\) 0 0
\(667\) 8.39751i 0.325153i
\(668\) 0 0
\(669\) 27.2591 1.05390
\(670\) 0 0
\(671\) 20.9600 0.809154
\(672\) 0 0
\(673\) 3.91400i 0.150874i 0.997151 + 0.0754368i \(0.0240351\pi\)
−0.997151 + 0.0754368i \(0.975965\pi\)
\(674\) 0 0
\(675\) −2.52653 −0.0972460
\(676\) 0 0
\(677\) −22.1006 −0.849394 −0.424697 0.905336i \(-0.639619\pi\)
−0.424697 + 0.905336i \(0.639619\pi\)
\(678\) 0 0
\(679\) −22.1506 −0.850063
\(680\) 0 0
\(681\) 9.26818 0.355157
\(682\) 0 0
\(683\) 42.9736 1.64434 0.822169 0.569244i \(-0.192764\pi\)
0.822169 + 0.569244i \(0.192764\pi\)
\(684\) 0 0
\(685\) 18.7191 0.715219
\(686\) 0 0
\(687\) 19.8306i 0.756585i
\(688\) 0 0
\(689\) 0.802456 0.0305711
\(690\) 0 0
\(691\) −17.7933 −0.676890 −0.338445 0.940986i \(-0.609901\pi\)
−0.338445 + 0.940986i \(0.609901\pi\)
\(692\) 0 0
\(693\) 5.60809i 0.213034i
\(694\) 0 0
\(695\) 9.37699 0.355690
\(696\) 0 0
\(697\) 10.2097 + 16.9192i 0.386720 + 0.640861i
\(698\) 0 0
\(699\) 9.37047i 0.354424i
\(700\) 0 0
\(701\) 18.7151i 0.706859i 0.935461 + 0.353430i \(0.114985\pi\)
−0.935461 + 0.353430i \(0.885015\pi\)
\(702\) 0 0
\(703\) 13.8047i 0.520653i
\(704\) 0 0
\(705\) 8.99681 0.338839
\(706\) 0 0
\(707\) 1.85255 0.0696721
\(708\) 0 0
\(709\) −30.0583 −1.12886 −0.564431 0.825480i \(-0.690905\pi\)
−0.564431 + 0.825480i \(0.690905\pi\)
\(710\) 0 0
\(711\) 7.47987i 0.280517i
\(712\) 0 0
\(713\) −16.5014 −0.617981
\(714\) 0 0
\(715\) 0.930829i 0.0348110i
\(716\) 0 0
\(717\) 7.48309 0.279461
\(718\) 0 0
\(719\) 5.50072i 0.205142i 0.994726 + 0.102571i \(0.0327070\pi\)
−0.994726 + 0.102571i \(0.967293\pi\)
\(720\) 0 0
\(721\) 15.2053i 0.566274i
\(722\) 0 0
\(723\) 12.5710i 0.467520i
\(724\) 0 0
\(725\) −6.23332 −0.231500
\(726\) 0 0
\(727\) 48.9745 1.81636 0.908182 0.418576i \(-0.137471\pi\)
0.908182 + 0.418576i \(0.137471\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −11.6777 19.3519i −0.431914 0.715754i
\(732\) 0 0
\(733\) 20.3595i 0.751996i 0.926621 + 0.375998i \(0.122700\pi\)
−0.926621 + 0.375998i \(0.877300\pi\)
\(734\) 0 0
\(735\) −6.55926 −0.241942
\(736\) 0 0
\(737\) 52.7779i 1.94410i
\(738\) 0 0
\(739\) 13.0474i 0.479955i −0.970778 0.239977i \(-0.922860\pi\)
0.970778 0.239977i \(-0.0771400\pi\)
\(740\) 0 0
\(741\) 0.458988 0.0168613
\(742\) 0 0
\(743\) 15.7329i 0.577186i 0.957452 + 0.288593i \(0.0931874\pi\)
−0.957452 + 0.288593i \(0.906813\pi\)
\(744\) 0 0
\(745\) 34.8490i 1.27677i
\(746\) 0 0
\(747\) 6.58394i 0.240894i
\(748\) 0 0
\(749\) 30.8458i 1.12708i
\(750\) 0 0
\(751\) 45.6534i 1.66591i 0.553337 + 0.832957i \(0.313354\pi\)
−0.553337 + 0.832957i \(0.686646\pi\)
\(752\) 0 0
\(753\) 1.95634i 0.0712931i
\(754\) 0 0
\(755\) −6.54642 −0.238249
\(756\) 0 0
\(757\) 33.5775i 1.22039i −0.792250 0.610197i \(-0.791090\pi\)
0.792250 0.610197i \(-0.208910\pi\)
\(758\) 0 0
\(759\) 11.3481i 0.411911i
\(760\) 0 0
\(761\) −1.39682 −0.0506348 −0.0253174 0.999679i \(-0.508060\pi\)
−0.0253174 + 0.999679i \(0.508060\pi\)
\(762\) 0 0
\(763\) 2.82155i 0.102147i
\(764\) 0 0
\(765\) 5.55199 3.35029i 0.200733 0.121130i
\(766\) 0 0
\(767\) −1.12258 −0.0405340
\(768\) 0 0
\(769\) 20.8164 0.750658 0.375329 0.926892i \(-0.377530\pi\)
0.375329 + 0.926892i \(0.377530\pi\)
\(770\) 0 0
\(771\) 13.3326 0.480161
\(772\) 0 0
\(773\) 45.0123i 1.61898i 0.587133 + 0.809490i \(0.300256\pi\)
−0.587133 + 0.809490i \(0.699744\pi\)
\(774\) 0 0
\(775\) 12.2487i 0.439985i
\(776\) 0 0
\(777\) 8.98083i 0.322186i
\(778\) 0 0
\(779\) 12.3919 0.443988
\(780\) 0 0
\(781\) 44.4075i 1.58902i
\(782\) 0 0
\(783\) 2.46715 0.0881688
\(784\) 0 0
\(785\) 2.62079i 0.0935400i
\(786\) 0 0
\(787\) −16.8464 −0.600509 −0.300255 0.953859i \(-0.597072\pi\)
−0.300255 + 0.953859i \(0.597072\pi\)
\(788\) 0 0
\(789\) −19.5100 −0.694573
\(790\) 0 0
\(791\) 11.5724 0.411468
\(792\) 0 0
\(793\) 1.11601i 0.0396307i
\(794\) 0 0
\(795\) 7.10933i 0.252142i
\(796\) 0 0
\(797\) 6.68748i 0.236883i 0.992961 + 0.118441i \(0.0377897\pi\)
−0.992961 + 0.118441i \(0.962210\pi\)
\(798\) 0 0
\(799\) 20.1944 12.1861i 0.714425 0.431112i
\(800\) 0 0
\(801\) −8.64940 −0.305612
\(802\) 0 0
\(803\) 14.6063i 0.515444i
\(804\) 0 0
\(805\) 9.00438 0.317363
\(806\) 0 0
\(807\) 6.00877 0.211519
\(808\) 0 0
\(809\) 16.7530i 0.589004i −0.955651 0.294502i \(-0.904846\pi\)
0.955651 0.294502i \(-0.0951537\pi\)
\(810\) 0 0
\(811\) 10.8001 0.379243 0.189622 0.981857i \(-0.439274\pi\)
0.189622 + 0.981857i \(0.439274\pi\)
\(812\) 0 0
\(813\) 13.9230 0.488300
\(814\) 0 0
\(815\) −8.14701 −0.285377
\(816\) 0 0
\(817\) −14.1737 −0.495874
\(818\) 0 0
\(819\) 0.298601 0.0104340
\(820\) 0 0
\(821\) 38.5393 1.34503 0.672516 0.740083i \(-0.265214\pi\)
0.672516 + 0.740083i \(0.265214\pi\)
\(822\) 0 0
\(823\) 18.0592i 0.629505i −0.949174 0.314752i \(-0.898079\pi\)
0.949174 0.314752i \(-0.101921\pi\)
\(824\) 0 0
\(825\) −8.42352 −0.293269
\(826\) 0 0
\(827\) −27.1647 −0.944611 −0.472305 0.881435i \(-0.656578\pi\)
−0.472305 + 0.881435i \(0.656578\pi\)
\(828\) 0 0
\(829\) 24.5873i 0.853952i 0.904263 + 0.426976i \(0.140421\pi\)
−0.904263 + 0.426976i \(0.859579\pi\)
\(830\) 0 0
\(831\) −27.7674 −0.963242
\(832\) 0 0
\(833\) −14.7230 + 8.88443i −0.510122 + 0.307827i
\(834\) 0 0
\(835\) 32.7644i 1.13386i
\(836\) 0 0
\(837\) 4.84803i 0.167572i
\(838\) 0 0
\(839\) 5.06106i 0.174727i 0.996176 + 0.0873637i \(0.0278442\pi\)
−0.996176 + 0.0873637i \(0.972156\pi\)
\(840\) 0 0
\(841\) −22.9132 −0.790109
\(842\) 0 0
\(843\) 16.6843 0.574638
\(844\) 0 0
\(845\) −20.3959 −0.701641
\(846\) 0 0
\(847\) 0.194734i 0.00669113i
\(848\) 0 0
\(849\) −9.70263 −0.332993
\(850\) 0 0
\(851\) 18.1730i 0.622962i
\(852\) 0 0
\(853\) 19.5592 0.669695 0.334847 0.942272i \(-0.391315\pi\)
0.334847 + 0.942272i \(0.391315\pi\)
\(854\) 0 0
\(855\) 4.06638i 0.139067i
\(856\) 0 0
\(857\) 15.7887i 0.539333i 0.962954 + 0.269666i \(0.0869134\pi\)
−0.962954 + 0.269666i \(0.913087\pi\)
\(858\) 0 0
\(859\) 32.5990i 1.11226i −0.831094 0.556132i \(-0.812285\pi\)
0.831094 0.556132i \(-0.187715\pi\)
\(860\) 0 0
\(861\) 8.06176 0.274744
\(862\) 0 0
\(863\) −43.1734 −1.46964 −0.734819 0.678263i \(-0.762733\pi\)
−0.734819 + 0.678263i \(0.762733\pi\)
\(864\) 0 0
\(865\) −34.3827 −1.16905
\(866\) 0 0
\(867\) 7.92416 15.0402i 0.269119 0.510792i
\(868\) 0 0
\(869\) 24.9381i 0.845968i
\(870\) 0 0
\(871\) 2.81014 0.0952181
\(872\) 0 0
\(873\) 13.1686i 0.445691i
\(874\) 0 0
\(875\) 19.9110i 0.673115i
\(876\) 0 0
\(877\) 49.3608 1.66680 0.833399 0.552672i \(-0.186392\pi\)
0.833399 + 0.552672i \(0.186392\pi\)
\(878\) 0 0
\(879\) 31.3940i 1.05889i
\(880\) 0 0
\(881\) 44.3363i 1.49373i 0.664977 + 0.746864i \(0.268441\pi\)
−0.664977 + 0.746864i \(0.731559\pi\)
\(882\) 0 0
\(883\) 12.1954i 0.410407i −0.978719 0.205203i \(-0.934214\pi\)
0.978719 0.205203i \(-0.0657856\pi\)
\(884\) 0 0
\(885\) 9.94546i 0.334313i
\(886\) 0 0
\(887\) 39.8250i 1.33719i 0.743626 + 0.668596i \(0.233104\pi\)
−0.743626 + 0.668596i \(0.766896\pi\)
\(888\) 0 0
\(889\) 7.06085i 0.236813i
\(890\) 0 0
\(891\) 3.33403 0.111694
\(892\) 0 0
\(893\) 14.7907i 0.494953i
\(894\) 0 0
\(895\) 6.90301i 0.230742i
\(896\) 0 0
\(897\) 0.604228 0.0201746
\(898\) 0 0
\(899\) 11.9608i 0.398915i
\(900\) 0 0
\(901\) −9.62949 15.9577i −0.320805 0.531628i
\(902\) 0 0
\(903\) −9.22089 −0.306852
\(904\) 0 0
\(905\) 17.4741 0.580860
\(906\) 0 0
\(907\) 31.3002 1.03931 0.519653 0.854377i \(-0.326061\pi\)
0.519653 + 0.854377i \(0.326061\pi\)
\(908\) 0 0
\(909\) 1.10135i 0.0365293i
\(910\) 0 0
\(911\) 19.0074i 0.629745i 0.949134 + 0.314872i \(0.101962\pi\)
−0.949134 + 0.314872i \(0.898038\pi\)
\(912\) 0 0
\(913\) 21.9511i 0.726474i
\(914\) 0 0
\(915\) −9.88727 −0.326863
\(916\) 0 0
\(917\) 6.03886i 0.199421i
\(918\) 0 0
\(919\) −60.5097 −1.99603 −0.998016 0.0629608i \(-0.979946\pi\)
−0.998016 + 0.0629608i \(0.979946\pi\)
\(920\) 0 0
\(921\) 1.53330i 0.0505238i
\(922\) 0 0
\(923\) 2.36446 0.0778272
\(924\) 0 0
\(925\) −13.4895 −0.443531
\(926\) 0 0
\(927\) −9.03960 −0.296899
\(928\) 0 0
\(929\) 35.6403i 1.16932i −0.811279 0.584660i \(-0.801228\pi\)
0.811279 0.584660i \(-0.198772\pi\)
\(930\) 0 0
\(931\) 10.7834i 0.353412i
\(932\) 0 0
\(933\) 1.74672i 0.0571849i
\(934\) 0 0
\(935\) 18.5105 11.1700i 0.605359 0.365297i
\(936\) 0 0
\(937\) −44.8079 −1.46381 −0.731906 0.681406i \(-0.761369\pi\)
−0.731906 + 0.681406i \(0.761369\pi\)
\(938\) 0 0
\(939\) 31.9640i 1.04310i
\(940\) 0 0
\(941\) 51.2637 1.67115 0.835575 0.549377i \(-0.185135\pi\)
0.835575 + 0.549377i \(0.185135\pi\)
\(942\) 0 0
\(943\) 16.3132 0.531231
\(944\) 0 0
\(945\) 2.64545i 0.0860564i
\(946\) 0 0
\(947\) −32.5760 −1.05858 −0.529289 0.848442i \(-0.677541\pi\)
−0.529289 + 0.848442i \(0.677541\pi\)
\(948\) 0 0
\(949\) 0.777706 0.0252454
\(950\) 0 0
\(951\) −3.80550 −0.123402
\(952\) 0 0
\(953\) 36.4757 1.18156 0.590782 0.806831i \(-0.298819\pi\)
0.590782 + 0.806831i \(0.298819\pi\)
\(954\) 0 0
\(955\) 18.1390 0.586963
\(956\) 0 0
\(957\) 8.22556 0.265895
\(958\) 0 0
\(959\) 20.0205i 0.646497i
\(960\) 0 0
\(961\) 7.49665 0.241827
\(962\) 0 0
\(963\) 18.3379 0.590932
\(964\) 0 0
\(965\) 21.2446i 0.683887i
\(966\) 0 0
\(967\) −22.8837 −0.735891 −0.367946 0.929847i \(-0.619939\pi\)
−0.367946 + 0.929847i \(0.619939\pi\)
\(968\) 0 0
\(969\) −5.50786 9.12746i −0.176938 0.293216i
\(970\) 0 0
\(971\) 34.4721i 1.10626i −0.833094 0.553131i \(-0.813433\pi\)
0.833094 0.553131i \(-0.186567\pi\)
\(972\) 0 0
\(973\) 10.0289i 0.321513i
\(974\) 0 0
\(975\) 0.448508i 0.0143637i
\(976\) 0 0
\(977\) 16.3524 0.523160 0.261580 0.965182i \(-0.415756\pi\)
0.261580 + 0.965182i \(0.415756\pi\)
\(978\) 0 0
\(979\) −28.8374 −0.921647
\(980\) 0 0
\(981\) 1.67742 0.0535560
\(982\) 0 0
\(983\) 39.1096i 1.24740i 0.781662 + 0.623702i \(0.214372\pi\)
−0.781662 + 0.623702i \(0.785628\pi\)
\(984\) 0 0
\(985\) 33.0019 1.05153
\(986\) 0 0
\(987\) 9.62232i 0.306282i
\(988\) 0 0
\(989\) −18.6587 −0.593313
\(990\) 0 0
\(991\) 28.4092i 0.902449i 0.892411 + 0.451224i \(0.149013\pi\)
−0.892411 + 0.451224i \(0.850987\pi\)
\(992\) 0 0
\(993\) 10.4319i 0.331046i
\(994\) 0 0
\(995\) 44.0319i 1.39590i
\(996\) 0 0
\(997\) 9.78760 0.309976 0.154988 0.987916i \(-0.450466\pi\)
0.154988 + 0.987916i \(0.450466\pi\)
\(998\) 0 0
\(999\) 5.33914 0.168923
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1632.2.l.b.1393.4 18
3.2 odd 2 4896.2.l.c.3025.16 18
4.3 odd 2 408.2.l.a.373.13 18
8.3 odd 2 408.2.l.b.373.14 yes 18
8.5 even 2 1632.2.l.a.1393.16 18
12.11 even 2 1224.2.l.c.1189.6 18
17.16 even 2 1632.2.l.a.1393.15 18
24.5 odd 2 4896.2.l.d.3025.4 18
24.11 even 2 1224.2.l.d.1189.5 18
51.50 odd 2 4896.2.l.d.3025.3 18
68.67 odd 2 408.2.l.b.373.13 yes 18
136.67 odd 2 408.2.l.a.373.14 yes 18
136.101 even 2 inner 1632.2.l.b.1393.3 18
204.203 even 2 1224.2.l.d.1189.6 18
408.101 odd 2 4896.2.l.c.3025.15 18
408.203 even 2 1224.2.l.c.1189.5 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
408.2.l.a.373.13 18 4.3 odd 2
408.2.l.a.373.14 yes 18 136.67 odd 2
408.2.l.b.373.13 yes 18 68.67 odd 2
408.2.l.b.373.14 yes 18 8.3 odd 2
1224.2.l.c.1189.5 18 408.203 even 2
1224.2.l.c.1189.6 18 12.11 even 2
1224.2.l.d.1189.5 18 24.11 even 2
1224.2.l.d.1189.6 18 204.203 even 2
1632.2.l.a.1393.15 18 17.16 even 2
1632.2.l.a.1393.16 18 8.5 even 2
1632.2.l.b.1393.3 18 136.101 even 2 inner
1632.2.l.b.1393.4 18 1.1 even 1 trivial
4896.2.l.c.3025.15 18 408.101 odd 2
4896.2.l.c.3025.16 18 3.2 odd 2
4896.2.l.d.3025.3 18 51.50 odd 2
4896.2.l.d.3025.4 18 24.5 odd 2