Properties

Label 1224.2.l.d.1189.6
Level $1224$
Weight $2$
Character 1224.1189
Analytic conductor $9.774$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1224,2,Mod(1189,1224)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1224, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1224.1189");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1224 = 2^{3} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1224.l (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.77368920740\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - x^{16} - 2x^{14} + 2x^{12} - 4x^{11} + 4x^{10} + 8x^{8} - 16x^{7} + 16x^{6} - 64x^{4} - 128x^{2} + 512 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 408)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1189.6
Root \(-0.943929 - 1.05309i\) of defining polynomial
Character \(\chi\) \(=\) 1224.1189
Dual form 1224.2.l.d.1189.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.943929 + 1.05309i) q^{2} +(-0.217998 - 1.98808i) q^{4} -1.57273 q^{5} +1.68207i q^{7} +(2.29941 + 1.64704i) q^{8} +(1.48454 - 1.65622i) q^{10} -3.33403 q^{11} -0.177520i q^{13} +(-1.77138 - 1.58776i) q^{14} +(-3.90495 + 0.866796i) q^{16} +(3.53017 + 2.13024i) q^{17} -2.58556i q^{19} +(0.342852 + 3.12672i) q^{20} +(3.14709 - 3.51104i) q^{22} -3.40373i q^{23} -2.52653 q^{25} +(0.186944 + 0.167566i) q^{26} +(3.34410 - 0.366689i) q^{28} +2.46715 q^{29} +4.84803i q^{31} +(2.77318 - 4.93046i) q^{32} +(-5.57556 + 1.70679i) q^{34} -2.64545i q^{35} -5.33914 q^{37} +(2.72283 + 2.44058i) q^{38} +(-3.61634 - 2.59034i) q^{40} -4.79275i q^{41} -5.48185i q^{43} +(0.726812 + 6.62833i) q^{44} +(3.58443 + 3.21288i) q^{46} -5.72051 q^{47} +4.17063 q^{49} +(2.38486 - 2.66066i) q^{50} +(-0.352924 + 0.0386989i) q^{52} -4.52038i q^{53} +5.24353 q^{55} +(-2.77044 + 3.86777i) q^{56} +(-2.32881 + 2.59813i) q^{58} -6.32370i q^{59} -6.28670 q^{61} +(-5.10541 - 4.57619i) q^{62} +(2.57454 + 7.57442i) q^{64} +0.279190i q^{65} -15.8300i q^{67} +(3.46553 - 7.48266i) q^{68} +(2.78589 + 2.49711i) q^{70} -13.3194i q^{71} -4.38096i q^{73} +(5.03977 - 5.62260i) q^{74} +(-5.14031 + 0.563647i) q^{76} -5.60809i q^{77} +7.47987i q^{79} +(6.14143 - 1.36324i) q^{80} +(5.04720 + 4.52401i) q^{82} -6.58394i q^{83} +(-5.55199 - 3.35029i) q^{85} +(5.77289 + 5.17448i) q^{86} +(-7.66629 - 5.49128i) q^{88} +8.64940 q^{89} +0.298601 q^{91} +(-6.76689 + 0.742005i) q^{92} +(5.39975 - 6.02421i) q^{94} +4.06638i q^{95} -13.1686i q^{97} +(-3.93677 + 4.39205i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 2 q^{4} + 4 q^{5} - 8 q^{10} + 6 q^{14} + 10 q^{16} + 2 q^{17} + 2 q^{20} + 2 q^{22} + 22 q^{25} - 2 q^{26} - 10 q^{28} - 12 q^{29} + 6 q^{34} - 16 q^{37} + 34 q^{38} - 10 q^{40} - 12 q^{44} + 32 q^{46}+ \cdots + 60 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1224\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(613\) \(649\) \(919\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.943929 + 1.05309i −0.667458 + 0.744647i
\(3\) 0 0
\(4\) −0.217998 1.98808i −0.108999 0.994042i
\(5\) −1.57273 −0.703346 −0.351673 0.936123i \(-0.614387\pi\)
−0.351673 + 0.936123i \(0.614387\pi\)
\(6\) 0 0
\(7\) 1.68207i 0.635764i 0.948130 + 0.317882i \(0.102972\pi\)
−0.948130 + 0.317882i \(0.897028\pi\)
\(8\) 2.29941 + 1.64704i 0.812963 + 0.582316i
\(9\) 0 0
\(10\) 1.48454 1.65622i 0.469454 0.523744i
\(11\) −3.33403 −1.00525 −0.502624 0.864505i \(-0.667632\pi\)
−0.502624 + 0.864505i \(0.667632\pi\)
\(12\) 0 0
\(13\) 0.177520i 0.0492351i −0.999697 0.0246175i \(-0.992163\pi\)
0.999697 0.0246175i \(-0.00783680\pi\)
\(14\) −1.77138 1.58776i −0.473420 0.424346i
\(15\) 0 0
\(16\) −3.90495 + 0.866796i −0.976238 + 0.216699i
\(17\) 3.53017 + 2.13024i 0.856191 + 0.516659i
\(18\) 0 0
\(19\) 2.58556i 0.593168i −0.955007 0.296584i \(-0.904152\pi\)
0.955007 0.296584i \(-0.0958475\pi\)
\(20\) 0.342852 + 3.12672i 0.0766639 + 0.699155i
\(21\) 0 0
\(22\) 3.14709 3.51104i 0.670961 0.748556i
\(23\) 3.40373i 0.709726i −0.934918 0.354863i \(-0.884527\pi\)
0.934918 0.354863i \(-0.115473\pi\)
\(24\) 0 0
\(25\) −2.52653 −0.505305
\(26\) 0.186944 + 0.167566i 0.0366628 + 0.0328624i
\(27\) 0 0
\(28\) 3.34410 0.366689i 0.631976 0.0692976i
\(29\) 2.46715 0.458138 0.229069 0.973410i \(-0.426432\pi\)
0.229069 + 0.973410i \(0.426432\pi\)
\(30\) 0 0
\(31\) 4.84803i 0.870731i 0.900254 + 0.435366i \(0.143381\pi\)
−0.900254 + 0.435366i \(0.856619\pi\)
\(32\) 2.77318 4.93046i 0.490234 0.871591i
\(33\) 0 0
\(34\) −5.57556 + 1.70679i −0.956201 + 0.292712i
\(35\) 2.64545i 0.447162i
\(36\) 0 0
\(37\) −5.33914 −0.877750 −0.438875 0.898548i \(-0.644623\pi\)
−0.438875 + 0.898548i \(0.644623\pi\)
\(38\) 2.72283 + 2.44058i 0.441701 + 0.395915i
\(39\) 0 0
\(40\) −3.61634 2.59034i −0.571794 0.409569i
\(41\) 4.79275i 0.748502i −0.927327 0.374251i \(-0.877900\pi\)
0.927327 0.374251i \(-0.122100\pi\)
\(42\) 0 0
\(43\) 5.48185i 0.835975i −0.908453 0.417987i \(-0.862736\pi\)
0.908453 0.417987i \(-0.137264\pi\)
\(44\) 0.726812 + 6.62833i 0.109571 + 0.999259i
\(45\) 0 0
\(46\) 3.58443 + 3.21288i 0.528496 + 0.473713i
\(47\) −5.72051 −0.834422 −0.417211 0.908810i \(-0.636992\pi\)
−0.417211 + 0.908810i \(0.636992\pi\)
\(48\) 0 0
\(49\) 4.17063 0.595804
\(50\) 2.38486 2.66066i 0.337270 0.376274i
\(51\) 0 0
\(52\) −0.352924 + 0.0386989i −0.0489417 + 0.00536657i
\(53\) 4.52038i 0.620922i −0.950586 0.310461i \(-0.899517\pi\)
0.950586 0.310461i \(-0.100483\pi\)
\(54\) 0 0
\(55\) 5.24353 0.707037
\(56\) −2.77044 + 3.86777i −0.370216 + 0.516853i
\(57\) 0 0
\(58\) −2.32881 + 2.59813i −0.305788 + 0.341152i
\(59\) 6.32370i 0.823276i −0.911348 0.411638i \(-0.864957\pi\)
0.911348 0.411638i \(-0.135043\pi\)
\(60\) 0 0
\(61\) −6.28670 −0.804929 −0.402464 0.915436i \(-0.631846\pi\)
−0.402464 + 0.915436i \(0.631846\pi\)
\(62\) −5.10541 4.57619i −0.648387 0.581177i
\(63\) 0 0
\(64\) 2.57454 + 7.57442i 0.321817 + 0.946802i
\(65\) 0.279190i 0.0346293i
\(66\) 0 0
\(67\) 15.8300i 1.93395i −0.254875 0.966974i \(-0.582034\pi\)
0.254875 0.966974i \(-0.417966\pi\)
\(68\) 3.46553 7.48266i 0.420257 0.907405i
\(69\) 0 0
\(70\) 2.78589 + 2.49711i 0.332978 + 0.298462i
\(71\) 13.3194i 1.58073i −0.612638 0.790364i \(-0.709892\pi\)
0.612638 0.790364i \(-0.290108\pi\)
\(72\) 0 0
\(73\) 4.38096i 0.512752i −0.966577 0.256376i \(-0.917471\pi\)
0.966577 0.256376i \(-0.0825286\pi\)
\(74\) 5.03977 5.62260i 0.585861 0.653614i
\(75\) 0 0
\(76\) −5.14031 + 0.563647i −0.589634 + 0.0646547i
\(77\) 5.60809i 0.639101i
\(78\) 0 0
\(79\) 7.47987i 0.841551i 0.907165 + 0.420776i \(0.138242\pi\)
−0.907165 + 0.420776i \(0.861758\pi\)
\(80\) 6.14143 1.36324i 0.686633 0.152414i
\(81\) 0 0
\(82\) 5.04720 + 4.52401i 0.557370 + 0.499594i
\(83\) 6.58394i 0.722681i −0.932434 0.361341i \(-0.882319\pi\)
0.932434 0.361341i \(-0.117681\pi\)
\(84\) 0 0
\(85\) −5.55199 3.35029i −0.602198 0.363390i
\(86\) 5.77289 + 5.17448i 0.622506 + 0.557978i
\(87\) 0 0
\(88\) −7.66629 5.49128i −0.817230 0.585372i
\(89\) 8.64940 0.916835 0.458417 0.888737i \(-0.348416\pi\)
0.458417 + 0.888737i \(0.348416\pi\)
\(90\) 0 0
\(91\) 0.298601 0.0313019
\(92\) −6.76689 + 0.742005i −0.705498 + 0.0773594i
\(93\) 0 0
\(94\) 5.39975 6.02421i 0.556942 0.621350i
\(95\) 4.06638i 0.417202i
\(96\) 0 0
\(97\) 13.1686i 1.33707i −0.743680 0.668536i \(-0.766921\pi\)
0.743680 0.668536i \(-0.233079\pi\)
\(98\) −3.93677 + 4.39205i −0.397674 + 0.443664i
\(99\) 0 0
\(100\) 0.550777 + 5.02294i 0.0550777 + 0.502294i
\(101\) 1.10135i 0.109588i 0.998498 + 0.0547940i \(0.0174502\pi\)
−0.998498 + 0.0547940i \(0.982550\pi\)
\(102\) 0 0
\(103\) 9.03960 0.890698 0.445349 0.895357i \(-0.353080\pi\)
0.445349 + 0.895357i \(0.353080\pi\)
\(104\) 0.292381 0.408190i 0.0286704 0.0400263i
\(105\) 0 0
\(106\) 4.76037 + 4.26691i 0.462368 + 0.414439i
\(107\) −18.3379 −1.77280 −0.886398 0.462923i \(-0.846800\pi\)
−0.886398 + 0.462923i \(0.846800\pi\)
\(108\) 0 0
\(109\) −1.67742 −0.160668 −0.0803340 0.996768i \(-0.525599\pi\)
−0.0803340 + 0.996768i \(0.525599\pi\)
\(110\) −4.94951 + 5.52191i −0.471918 + 0.526493i
\(111\) 0 0
\(112\) −1.45802 6.56842i −0.137770 0.620658i
\(113\) 6.87985i 0.647202i −0.946194 0.323601i \(-0.895106\pi\)
0.946194 0.323601i \(-0.104894\pi\)
\(114\) 0 0
\(115\) 5.35314i 0.499183i
\(116\) −0.537834 4.90490i −0.0499366 0.455409i
\(117\) 0 0
\(118\) 6.65943 + 5.96912i 0.613050 + 0.549502i
\(119\) −3.58322 + 5.93800i −0.328473 + 0.544336i
\(120\) 0 0
\(121\) 0.115770 0.0105245
\(122\) 5.93419 6.62046i 0.537256 0.599388i
\(123\) 0 0
\(124\) 9.63828 1.05686i 0.865543 0.0949088i
\(125\) 11.8372 1.05875
\(126\) 0 0
\(127\) −4.19770 −0.372486 −0.186243 0.982504i \(-0.559631\pi\)
−0.186243 + 0.982504i \(0.559631\pi\)
\(128\) −10.4067 4.43849i −0.919833 0.392311i
\(129\) 0 0
\(130\) −0.294012 0.263536i −0.0257866 0.0231136i
\(131\) −3.59013 −0.313671 −0.156835 0.987625i \(-0.550129\pi\)
−0.156835 + 0.987625i \(0.550129\pi\)
\(132\) 0 0
\(133\) 4.34910 0.377115
\(134\) 16.6705 + 14.9424i 1.44011 + 1.29083i
\(135\) 0 0
\(136\) 4.60870 + 10.7126i 0.395193 + 0.918598i
\(137\) 11.9023 1.01688 0.508441 0.861097i \(-0.330222\pi\)
0.508441 + 0.861097i \(0.330222\pi\)
\(138\) 0 0
\(139\) −5.96225 −0.505711 −0.252856 0.967504i \(-0.581370\pi\)
−0.252856 + 0.967504i \(0.581370\pi\)
\(140\) −5.25937 + 0.576702i −0.444498 + 0.0487402i
\(141\) 0 0
\(142\) 14.0266 + 12.5726i 1.17708 + 1.05507i
\(143\) 0.591856i 0.0494935i
\(144\) 0 0
\(145\) −3.88016 −0.322230
\(146\) 4.61354 + 4.13531i 0.381820 + 0.342241i
\(147\) 0 0
\(148\) 1.16392 + 10.6147i 0.0956738 + 0.872520i
\(149\) 22.1583i 1.81528i 0.419751 + 0.907639i \(0.362117\pi\)
−0.419751 + 0.907639i \(0.637883\pi\)
\(150\) 0 0
\(151\) −4.16246 −0.338736 −0.169368 0.985553i \(-0.554173\pi\)
−0.169368 + 0.985553i \(0.554173\pi\)
\(152\) 4.25851 5.94525i 0.345411 0.482224i
\(153\) 0 0
\(154\) 5.90582 + 5.29364i 0.475905 + 0.426573i
\(155\) 7.62463i 0.612425i
\(156\) 0 0
\(157\) 1.66640i 0.132993i −0.997787 0.0664964i \(-0.978818\pi\)
0.997787 0.0664964i \(-0.0211821\pi\)
\(158\) −7.87698 7.06046i −0.626659 0.561700i
\(159\) 0 0
\(160\) −4.36146 + 7.75428i −0.344804 + 0.613030i
\(161\) 5.72532 0.451219
\(162\) 0 0
\(163\) 5.18018 0.405743 0.202871 0.979205i \(-0.434973\pi\)
0.202871 + 0.979205i \(0.434973\pi\)
\(164\) −9.52839 + 1.04481i −0.744042 + 0.0815859i
\(165\) 0 0
\(166\) 6.93348 + 6.21477i 0.538142 + 0.482359i
\(167\) 20.8328i 1.61209i 0.591854 + 0.806046i \(0.298396\pi\)
−0.591854 + 0.806046i \(0.701604\pi\)
\(168\) 0 0
\(169\) 12.9685 0.997576
\(170\) 8.76884 2.68432i 0.672539 0.205878i
\(171\) 0 0
\(172\) −10.8984 + 1.19503i −0.830994 + 0.0911204i
\(173\) 21.8618 1.66212 0.831062 0.556179i \(-0.187733\pi\)
0.831062 + 0.556179i \(0.187733\pi\)
\(174\) 0 0
\(175\) 4.24980i 0.321255i
\(176\) 13.0192 2.88993i 0.981362 0.217836i
\(177\) 0 0
\(178\) −8.16442 + 9.10860i −0.611949 + 0.682719i
\(179\) 4.38920i 0.328064i −0.986455 0.164032i \(-0.947550\pi\)
0.986455 0.164032i \(-0.0524500\pi\)
\(180\) 0 0
\(181\) 11.1107 0.825852 0.412926 0.910765i \(-0.364507\pi\)
0.412926 + 0.910765i \(0.364507\pi\)
\(182\) −0.281858 + 0.314454i −0.0208927 + 0.0233089i
\(183\) 0 0
\(184\) 5.60607 7.82655i 0.413285 0.576981i
\(185\) 8.39702 0.617361
\(186\) 0 0
\(187\) −11.7697 7.10229i −0.860685 0.519371i
\(188\) 1.24706 + 11.3729i 0.0909512 + 0.829451i
\(189\) 0 0
\(190\) −4.28227 3.83838i −0.310669 0.278465i
\(191\) −11.5334 −0.834530 −0.417265 0.908785i \(-0.637011\pi\)
−0.417265 + 0.908785i \(0.637011\pi\)
\(192\) 0 0
\(193\) 13.5081i 0.972334i −0.873866 0.486167i \(-0.838395\pi\)
0.873866 0.486167i \(-0.161605\pi\)
\(194\) 13.8678 + 12.4303i 0.995647 + 0.892440i
\(195\) 0 0
\(196\) −0.909188 8.29155i −0.0649420 0.592254i
\(197\) −20.9839 −1.49504 −0.747519 0.664240i \(-0.768755\pi\)
−0.747519 + 0.664240i \(0.768755\pi\)
\(198\) 0 0
\(199\) 27.9971i 1.98466i −0.123605 0.992332i \(-0.539445\pi\)
0.123605 0.992332i \(-0.460555\pi\)
\(200\) −5.80951 4.16128i −0.410794 0.294247i
\(201\) 0 0
\(202\) −1.15982 1.03959i −0.0816044 0.0731454i
\(203\) 4.14993i 0.291268i
\(204\) 0 0
\(205\) 7.53770i 0.526456i
\(206\) −8.53274 + 9.51951i −0.594504 + 0.663256i
\(207\) 0 0
\(208\) 0.153873 + 0.693206i 0.0106692 + 0.0480652i
\(209\) 8.62034i 0.596282i
\(210\) 0 0
\(211\) −14.4756 −0.996540 −0.498270 0.867022i \(-0.666031\pi\)
−0.498270 + 0.867022i \(0.666031\pi\)
\(212\) −8.98689 + 0.985433i −0.617222 + 0.0676798i
\(213\) 0 0
\(214\) 17.3097 19.3115i 1.18327 1.32011i
\(215\) 8.62147i 0.587979i
\(216\) 0 0
\(217\) −8.15474 −0.553580
\(218\) 1.58337 1.76648i 0.107239 0.119641i
\(219\) 0 0
\(220\) −1.14308 10.4246i −0.0770663 0.702824i
\(221\) 0.378159 0.626674i 0.0254377 0.0421546i
\(222\) 0 0
\(223\) −27.2591 −1.82540 −0.912702 0.408626i \(-0.866008\pi\)
−0.912702 + 0.408626i \(0.866008\pi\)
\(224\) 8.29340 + 4.66470i 0.554126 + 0.311673i
\(225\) 0 0
\(226\) 7.24510 + 6.49409i 0.481937 + 0.431980i
\(227\) −9.26818 −0.615151 −0.307575 0.951524i \(-0.599518\pi\)
−0.307575 + 0.951524i \(0.599518\pi\)
\(228\) 0 0
\(229\) 19.8306i 1.31044i −0.755437 0.655222i \(-0.772575\pi\)
0.755437 0.655222i \(-0.227425\pi\)
\(230\) −5.63734 5.05298i −0.371715 0.333184i
\(231\) 0 0
\(232\) 5.67298 + 4.06349i 0.372450 + 0.266781i
\(233\) 9.37047i 0.613880i 0.951729 + 0.306940i \(0.0993051\pi\)
−0.951729 + 0.306940i \(0.900695\pi\)
\(234\) 0 0
\(235\) 8.99681 0.586887
\(236\) −12.5720 + 1.37855i −0.818370 + 0.0897362i
\(237\) 0 0
\(238\) −2.87095 9.37851i −0.186096 0.607918i
\(239\) 7.48309 0.484041 0.242021 0.970271i \(-0.422190\pi\)
0.242021 + 0.970271i \(0.422190\pi\)
\(240\) 0 0
\(241\) 12.5710i 0.809768i 0.914368 + 0.404884i \(0.132688\pi\)
−0.914368 + 0.404884i \(0.867312\pi\)
\(242\) −0.109279 + 0.121916i −0.00702470 + 0.00783708i
\(243\) 0 0
\(244\) 1.37049 + 12.4985i 0.0877364 + 0.800133i
\(245\) −6.55926 −0.419056
\(246\) 0 0
\(247\) −0.458988 −0.0292047
\(248\) −7.98488 + 11.1476i −0.507040 + 0.707872i
\(249\) 0 0
\(250\) −11.1735 + 12.4656i −0.706671 + 0.788395i
\(251\) 1.95634i 0.123483i 0.998092 + 0.0617416i \(0.0196655\pi\)
−0.998092 + 0.0617416i \(0.980335\pi\)
\(252\) 0 0
\(253\) 11.3481i 0.713451i
\(254\) 3.96233 4.42056i 0.248619 0.277371i
\(255\) 0 0
\(256\) 14.4973 6.76960i 0.906083 0.423100i
\(257\) −13.3326 −0.831664 −0.415832 0.909441i \(-0.636510\pi\)
−0.415832 + 0.909441i \(0.636510\pi\)
\(258\) 0 0
\(259\) 8.98083i 0.558042i
\(260\) 0.555053 0.0608629i 0.0344229 0.00377455i
\(261\) 0 0
\(262\) 3.38882 3.78073i 0.209362 0.233574i
\(263\) −19.5100 −1.20304 −0.601518 0.798859i \(-0.705437\pi\)
−0.601518 + 0.798859i \(0.705437\pi\)
\(264\) 0 0
\(265\) 7.10933i 0.436723i
\(266\) −4.10524 + 4.58000i −0.251709 + 0.280818i
\(267\) 0 0
\(268\) −31.4715 + 3.45092i −1.92243 + 0.210798i
\(269\) 6.00877 0.366361 0.183180 0.983079i \(-0.441361\pi\)
0.183180 + 0.983079i \(0.441361\pi\)
\(270\) 0 0
\(271\) −13.9230 −0.845760 −0.422880 0.906186i \(-0.638981\pi\)
−0.422880 + 0.906186i \(0.638981\pi\)
\(272\) −15.6316 5.25855i −0.947806 0.318847i
\(273\) 0 0
\(274\) −11.2349 + 12.5342i −0.678726 + 0.757218i
\(275\) 8.42352 0.507957
\(276\) 0 0
\(277\) 27.7674 1.66838 0.834192 0.551474i \(-0.185934\pi\)
0.834192 + 0.551474i \(0.185934\pi\)
\(278\) 5.62793 6.27878i 0.337541 0.376576i
\(279\) 0 0
\(280\) 4.35715 6.08295i 0.260389 0.363526i
\(281\) −16.6843 −0.995302 −0.497651 0.867377i \(-0.665804\pi\)
−0.497651 + 0.867377i \(0.665804\pi\)
\(282\) 0 0
\(283\) −9.70263 −0.576761 −0.288381 0.957516i \(-0.593117\pi\)
−0.288381 + 0.957516i \(0.593117\pi\)
\(284\) −26.4802 + 2.90361i −1.57131 + 0.172298i
\(285\) 0 0
\(286\) −0.623278 0.558670i −0.0368552 0.0330348i
\(287\) 8.06176 0.475871
\(288\) 0 0
\(289\) 7.92416 + 15.0402i 0.466127 + 0.884718i
\(290\) 3.66259 4.08616i 0.215075 0.239947i
\(291\) 0 0
\(292\) −8.70971 + 0.955040i −0.509697 + 0.0558895i
\(293\) 31.3940i 1.83406i 0.398824 + 0.917028i \(0.369418\pi\)
−0.398824 + 0.917028i \(0.630582\pi\)
\(294\) 0 0
\(295\) 9.94546i 0.579047i
\(296\) −12.2769 8.79377i −0.713578 0.511127i
\(297\) 0 0
\(298\) −23.3347 20.9158i −1.35174 1.21162i
\(299\) −0.604228 −0.0349434
\(300\) 0 0
\(301\) 9.22089 0.531483
\(302\) 3.92906 4.38344i 0.226092 0.252239i
\(303\) 0 0
\(304\) 2.24115 + 10.0965i 0.128539 + 0.579074i
\(305\) 9.88727 0.566143
\(306\) 0 0
\(307\) 1.53330i 0.0875099i −0.999042 0.0437549i \(-0.986068\pi\)
0.999042 0.0437549i \(-0.0139321\pi\)
\(308\) −11.1494 + 1.22255i −0.635293 + 0.0696614i
\(309\) 0 0
\(310\) 8.02942 + 7.19710i 0.456040 + 0.408768i
\(311\) 1.74672i 0.0990472i −0.998773 0.0495236i \(-0.984230\pi\)
0.998773 0.0495236i \(-0.0157703\pi\)
\(312\) 0 0
\(313\) 31.9640i 1.80671i 0.428894 + 0.903355i \(0.358903\pi\)
−0.428894 + 0.903355i \(0.641097\pi\)
\(314\) 1.75487 + 1.57296i 0.0990328 + 0.0887672i
\(315\) 0 0
\(316\) 14.8706 1.63060i 0.836537 0.0917282i
\(317\) −3.80550 −0.213738 −0.106869 0.994273i \(-0.534083\pi\)
−0.106869 + 0.994273i \(0.534083\pi\)
\(318\) 0 0
\(319\) −8.22556 −0.460543
\(320\) −4.04905 11.9125i −0.226348 0.665929i
\(321\) 0 0
\(322\) −5.40429 + 6.02928i −0.301170 + 0.335999i
\(323\) 5.50786 9.12746i 0.306466 0.507865i
\(324\) 0 0
\(325\) 0.448508i 0.0248787i
\(326\) −4.88971 + 5.45519i −0.270816 + 0.302135i
\(327\) 0 0
\(328\) 7.89384 11.0205i 0.435864 0.608504i
\(329\) 9.62232i 0.530496i
\(330\) 0 0
\(331\) 10.4319i 0.573388i 0.958022 + 0.286694i \(0.0925563\pi\)
−0.958022 + 0.286694i \(0.907444\pi\)
\(332\) −13.0894 + 1.43528i −0.718375 + 0.0787715i
\(333\) 0 0
\(334\) −21.9388 19.6647i −1.20044 1.07600i
\(335\) 24.8964i 1.36023i
\(336\) 0 0
\(337\) 21.4237i 1.16702i −0.812105 0.583511i \(-0.801679\pi\)
0.812105 0.583511i \(-0.198321\pi\)
\(338\) −12.2413 + 13.6570i −0.665840 + 0.742842i
\(339\) 0 0
\(340\) −5.45033 + 11.7682i −0.295586 + 0.638219i
\(341\) 16.1635i 0.875301i
\(342\) 0 0
\(343\) 18.7898i 1.01456i
\(344\) 9.02882 12.6050i 0.486801 0.679617i
\(345\) 0 0
\(346\) −20.6360 + 23.0225i −1.10940 + 1.23770i
\(347\) 16.4230 0.881632 0.440816 0.897598i \(-0.354689\pi\)
0.440816 + 0.897598i \(0.354689\pi\)
\(348\) 0 0
\(349\) 7.84717i 0.420050i 0.977696 + 0.210025i \(0.0673545\pi\)
−0.977696 + 0.210025i \(0.932646\pi\)
\(350\) 4.47543 + 4.01151i 0.239222 + 0.214424i
\(351\) 0 0
\(352\) −9.24588 + 16.4383i −0.492807 + 0.876165i
\(353\) −15.0952 −0.803438 −0.401719 0.915763i \(-0.631587\pi\)
−0.401719 + 0.915763i \(0.631587\pi\)
\(354\) 0 0
\(355\) 20.9479i 1.11180i
\(356\) −1.88555 17.1957i −0.0999340 0.911372i
\(357\) 0 0
\(358\) 4.62222 + 4.14309i 0.244292 + 0.218969i
\(359\) −17.8645 −0.942850 −0.471425 0.881906i \(-0.656260\pi\)
−0.471425 + 0.881906i \(0.656260\pi\)
\(360\) 0 0
\(361\) 12.3149 0.648151
\(362\) −10.4877 + 11.7006i −0.551222 + 0.614969i
\(363\) 0 0
\(364\) −0.0650944 0.593644i −0.00341187 0.0311154i
\(365\) 6.89006i 0.360642i
\(366\) 0 0
\(367\) 17.8393i 0.931205i 0.884994 + 0.465602i \(0.154162\pi\)
−0.884994 + 0.465602i \(0.845838\pi\)
\(368\) 2.95034 + 13.2914i 0.153797 + 0.692862i
\(369\) 0 0
\(370\) −7.92619 + 8.84282i −0.412063 + 0.459716i
\(371\) 7.60361 0.394760
\(372\) 0 0
\(373\) 4.99138i 0.258444i 0.991616 + 0.129222i \(0.0412480\pi\)
−0.991616 + 0.129222i \(0.958752\pi\)
\(374\) 18.5891 5.69049i 0.961219 0.294248i
\(375\) 0 0
\(376\) −13.1538 9.42190i −0.678354 0.485897i
\(377\) 0.437968i 0.0225565i
\(378\) 0 0
\(379\) 1.52394 0.0782793 0.0391396 0.999234i \(-0.487538\pi\)
0.0391396 + 0.999234i \(0.487538\pi\)
\(380\) 8.08431 0.886463i 0.414717 0.0454746i
\(381\) 0 0
\(382\) 10.8867 12.1457i 0.557014 0.621430i
\(383\) −17.0544 −0.871438 −0.435719 0.900083i \(-0.643506\pi\)
−0.435719 + 0.900083i \(0.643506\pi\)
\(384\) 0 0
\(385\) 8.82000i 0.449509i
\(386\) 14.2252 + 12.7507i 0.724046 + 0.648992i
\(387\) 0 0
\(388\) −26.1803 + 2.87074i −1.32911 + 0.145739i
\(389\) 18.6459i 0.945383i 0.881228 + 0.472691i \(0.156717\pi\)
−0.881228 + 0.472691i \(0.843283\pi\)
\(390\) 0 0
\(391\) 7.25075 12.0157i 0.366686 0.607661i
\(392\) 9.58996 + 6.86918i 0.484366 + 0.346946i
\(393\) 0 0
\(394\) 19.8073 22.0979i 0.997876 1.11328i
\(395\) 11.7638i 0.591901i
\(396\) 0 0
\(397\) −22.9158 −1.15011 −0.575057 0.818114i \(-0.695020\pi\)
−0.575057 + 0.818114i \(0.695020\pi\)
\(398\) 29.4835 + 26.4273i 1.47787 + 1.32468i
\(399\) 0 0
\(400\) 9.86596 2.18998i 0.493298 0.109499i
\(401\) 31.7440i 1.58522i −0.609728 0.792610i \(-0.708721\pi\)
0.609728 0.792610i \(-0.291279\pi\)
\(402\) 0 0
\(403\) 0.860619 0.0428705
\(404\) 2.18957 0.240091i 0.108935 0.0119450i
\(405\) 0 0
\(406\) −4.37025 3.91724i −0.216892 0.194409i
\(407\) 17.8009 0.882357
\(408\) 0 0
\(409\) 27.8277 1.37599 0.687996 0.725715i \(-0.258491\pi\)
0.687996 + 0.725715i \(0.258491\pi\)
\(410\) −7.93787 7.11505i −0.392024 0.351387i
\(411\) 0 0
\(412\) −1.97061 17.9715i −0.0970852 0.885391i
\(413\) 10.6369 0.523409
\(414\) 0 0
\(415\) 10.3547i 0.508295i
\(416\) −0.875254 0.492294i −0.0429128 0.0241367i
\(417\) 0 0
\(418\) −9.07800 8.13699i −0.444019 0.397993i
\(419\) 24.9157 1.21721 0.608605 0.793473i \(-0.291729\pi\)
0.608605 + 0.793473i \(0.291729\pi\)
\(420\) 0 0
\(421\) 33.7977i 1.64720i 0.567171 + 0.823600i \(0.308038\pi\)
−0.567171 + 0.823600i \(0.691962\pi\)
\(422\) 13.6639 15.2441i 0.665149 0.742071i
\(423\) 0 0
\(424\) 7.44523 10.3942i 0.361573 0.504786i
\(425\) −8.91906 5.38210i −0.432638 0.261070i
\(426\) 0 0
\(427\) 10.5747i 0.511745i
\(428\) 3.99763 + 36.4574i 0.193233 + 1.76223i
\(429\) 0 0
\(430\) −9.07918 8.13805i −0.437837 0.392452i
\(431\) 6.65096i 0.320366i −0.987087 0.160183i \(-0.948792\pi\)
0.987087 0.160183i \(-0.0512084\pi\)
\(432\) 0 0
\(433\) −19.5349 −0.938786 −0.469393 0.882989i \(-0.655527\pi\)
−0.469393 + 0.882989i \(0.655527\pi\)
\(434\) 7.69749 8.58768i 0.369491 0.412222i
\(435\) 0 0
\(436\) 0.365675 + 3.33486i 0.0175126 + 0.159711i
\(437\) −8.80054 −0.420987
\(438\) 0 0
\(439\) 0.431972i 0.0206169i 0.999947 + 0.0103085i \(0.00328134\pi\)
−0.999947 + 0.0103085i \(0.996719\pi\)
\(440\) 12.0570 + 8.63629i 0.574795 + 0.411719i
\(441\) 0 0
\(442\) 0.302989 + 0.989771i 0.0144117 + 0.0470786i
\(443\) 0.940818i 0.0446996i −0.999750 0.0223498i \(-0.992885\pi\)
0.999750 0.0223498i \(-0.00711476\pi\)
\(444\) 0 0
\(445\) −13.6032 −0.644852
\(446\) 25.7306 28.7063i 1.21838 1.35928i
\(447\) 0 0
\(448\) −12.7407 + 4.33056i −0.601943 + 0.204600i
\(449\) 40.6689i 1.91928i −0.281227 0.959641i \(-0.590741\pi\)
0.281227 0.959641i \(-0.409259\pi\)
\(450\) 0 0
\(451\) 15.9792i 0.752431i
\(452\) −13.6777 + 1.49979i −0.643346 + 0.0705443i
\(453\) 0 0
\(454\) 8.74850 9.76023i 0.410587 0.458070i
\(455\) −0.469618 −0.0220161
\(456\) 0 0
\(457\) −10.6020 −0.495940 −0.247970 0.968768i \(-0.579763\pi\)
−0.247970 + 0.968768i \(0.579763\pi\)
\(458\) 20.8834 + 18.7187i 0.975818 + 0.874666i
\(459\) 0 0
\(460\) 10.6425 1.16697i 0.496209 0.0544104i
\(461\) 6.90435i 0.321568i −0.986990 0.160784i \(-0.948598\pi\)
0.986990 0.160784i \(-0.0514022\pi\)
\(462\) 0 0
\(463\) 5.01760 0.233188 0.116594 0.993180i \(-0.462802\pi\)
0.116594 + 0.993180i \(0.462802\pi\)
\(464\) −9.63411 + 2.13852i −0.447252 + 0.0992782i
\(465\) 0 0
\(466\) −9.86795 8.84505i −0.457124 0.409739i
\(467\) 35.3420i 1.63543i −0.575621 0.817717i \(-0.695240\pi\)
0.575621 0.817717i \(-0.304760\pi\)
\(468\) 0 0
\(469\) 26.6273 1.22953
\(470\) −8.49235 + 9.47445i −0.391723 + 0.437024i
\(471\) 0 0
\(472\) 10.4154 14.5408i 0.479406 0.669292i
\(473\) 18.2767i 0.840363i
\(474\) 0 0
\(475\) 6.53248i 0.299731i
\(476\) 12.5864 + 5.82927i 0.576896 + 0.267184i
\(477\) 0 0
\(478\) −7.06351 + 7.88037i −0.323077 + 0.360440i
\(479\) 40.1158i 1.83294i −0.400106 0.916469i \(-0.631027\pi\)
0.400106 0.916469i \(-0.368973\pi\)
\(480\) 0 0
\(481\) 0.947802i 0.0432161i
\(482\) −13.2384 11.8661i −0.602992 0.540487i
\(483\) 0 0
\(484\) −0.0252376 0.230161i −0.00114716 0.0104618i
\(485\) 20.7107i 0.940424i
\(486\) 0 0
\(487\) 22.2766i 1.00945i −0.863281 0.504724i \(-0.831594\pi\)
0.863281 0.504724i \(-0.168406\pi\)
\(488\) −14.4557 10.3544i −0.654377 0.468723i
\(489\) 0 0
\(490\) 6.19148 6.90750i 0.279702 0.312049i
\(491\) 23.2548i 1.04947i 0.851265 + 0.524736i \(0.175836\pi\)
−0.851265 + 0.524736i \(0.824164\pi\)
\(492\) 0 0
\(493\) 8.70946 + 5.25562i 0.392254 + 0.236701i
\(494\) 0.433252 0.483355i 0.0194929 0.0217472i
\(495\) 0 0
\(496\) −4.20225 18.9313i −0.188687 0.850041i
\(497\) 22.4043 1.00497
\(498\) 0 0
\(499\) −4.16978 −0.186665 −0.0933324 0.995635i \(-0.529752\pi\)
−0.0933324 + 0.995635i \(0.529752\pi\)
\(500\) −2.58048 23.5333i −0.115403 1.05244i
\(501\) 0 0
\(502\) −2.06021 1.84665i −0.0919515 0.0824199i
\(503\) 2.70786i 0.120737i −0.998176 0.0603687i \(-0.980772\pi\)
0.998176 0.0603687i \(-0.0192276\pi\)
\(504\) 0 0
\(505\) 1.73212i 0.0770782i
\(506\) −11.9506 10.7118i −0.531269 0.476199i
\(507\) 0 0
\(508\) 0.915091 + 8.34539i 0.0406006 + 0.370267i
\(509\) 15.0471i 0.666952i 0.942759 + 0.333476i \(0.108222\pi\)
−0.942759 + 0.333476i \(0.891778\pi\)
\(510\) 0 0
\(511\) 7.36910 0.325990
\(512\) −6.55544 + 21.6570i −0.289712 + 0.957114i
\(513\) 0 0
\(514\) 12.5850 14.0404i 0.555101 0.619296i
\(515\) −14.2168 −0.626469
\(516\) 0 0
\(517\) 19.0724 0.838802
\(518\) 9.45763 + 8.47727i 0.415544 + 0.372470i
\(519\) 0 0
\(520\) −0.459837 + 0.641971i −0.0201652 + 0.0281523i
\(521\) 29.0171i 1.27126i −0.771993 0.635631i \(-0.780740\pi\)
0.771993 0.635631i \(-0.219260\pi\)
\(522\) 0 0
\(523\) 29.2097i 1.27725i 0.769518 + 0.638625i \(0.220497\pi\)
−0.769518 + 0.638625i \(0.779503\pi\)
\(524\) 0.782640 + 7.13747i 0.0341898 + 0.311802i
\(525\) 0 0
\(526\) 18.4160 20.5457i 0.802976 0.895837i
\(527\) −10.3275 + 17.1143i −0.449871 + 0.745512i
\(528\) 0 0
\(529\) 11.4146 0.496289
\(530\) −7.48676 6.71070i −0.325204 0.291494i
\(531\) 0 0
\(532\) −0.948096 8.64638i −0.0411052 0.374868i
\(533\) −0.850807 −0.0368526
\(534\) 0 0
\(535\) 28.8406 1.24689
\(536\) 26.0727 36.3997i 1.12617 1.57223i
\(537\) 0 0
\(538\) −5.67185 + 6.32777i −0.244531 + 0.272810i
\(539\) −13.9050 −0.598931
\(540\) 0 0
\(541\) −30.5463 −1.31329 −0.656643 0.754202i \(-0.728024\pi\)
−0.656643 + 0.754202i \(0.728024\pi\)
\(542\) 13.1423 14.6621i 0.564509 0.629793i
\(543\) 0 0
\(544\) 20.2929 11.4978i 0.870049 0.492965i
\(545\) 2.63813 0.113005
\(546\) 0 0
\(547\) 36.8589 1.57597 0.787986 0.615693i \(-0.211124\pi\)
0.787986 + 0.615693i \(0.211124\pi\)
\(548\) −2.59467 23.6628i −0.110839 1.01082i
\(549\) 0 0
\(550\) −7.95120 + 8.87072i −0.339040 + 0.378249i
\(551\) 6.37897i 0.271753i
\(552\) 0 0
\(553\) −12.5817 −0.535028
\(554\) −26.2105 + 29.2416i −1.11358 + 1.24236i
\(555\) 0 0
\(556\) 1.29976 + 11.8534i 0.0551220 + 0.502698i
\(557\) 11.1786i 0.473652i −0.971552 0.236826i \(-0.923893\pi\)
0.971552 0.236826i \(-0.0761071\pi\)
\(558\) 0 0
\(559\) −0.973137 −0.0411593
\(560\) 2.29306 + 10.3303i 0.0968996 + 0.436537i
\(561\) 0 0
\(562\) 15.7488 17.5701i 0.664322 0.741149i
\(563\) 1.85190i 0.0780483i 0.999238 + 0.0390242i \(0.0124249\pi\)
−0.999238 + 0.0390242i \(0.987575\pi\)
\(564\) 0 0
\(565\) 10.8201i 0.455207i
\(566\) 9.15859 10.2177i 0.384964 0.429484i
\(567\) 0 0
\(568\) 21.9376 30.6268i 0.920482 1.28507i
\(569\) 3.17782 0.133221 0.0666106 0.997779i \(-0.478781\pi\)
0.0666106 + 0.997779i \(0.478781\pi\)
\(570\) 0 0
\(571\) 20.2381 0.846937 0.423468 0.905911i \(-0.360812\pi\)
0.423468 + 0.905911i \(0.360812\pi\)
\(572\) 1.17666 0.129023i 0.0491986 0.00539474i
\(573\) 0 0
\(574\) −7.60973 + 8.48976i −0.317624 + 0.354356i
\(575\) 8.59960i 0.358628i
\(576\) 0 0
\(577\) −5.53369 −0.230371 −0.115185 0.993344i \(-0.536746\pi\)
−0.115185 + 0.993344i \(0.536746\pi\)
\(578\) −23.3185 5.85202i −0.969923 0.243412i
\(579\) 0 0
\(580\) 0.845867 + 7.71408i 0.0351227 + 0.320310i
\(581\) 11.0747 0.459455
\(582\) 0 0
\(583\) 15.0711i 0.624181i
\(584\) 7.21560 10.0736i 0.298584 0.416849i
\(585\) 0 0
\(586\) −33.0607 29.6337i −1.36572 1.22416i
\(587\) 32.8487i 1.35581i 0.735149 + 0.677905i \(0.237112\pi\)
−0.735149 + 0.677905i \(0.762888\pi\)
\(588\) 0 0
\(589\) 12.5349 0.516490
\(590\) −10.4735 9.38781i −0.431186 0.386490i
\(591\) 0 0
\(592\) 20.8491 4.62795i 0.856893 0.190208i
\(593\) 4.38985 0.180269 0.0901347 0.995930i \(-0.471270\pi\)
0.0901347 + 0.995930i \(0.471270\pi\)
\(594\) 0 0
\(595\) 5.63543 9.33887i 0.231030 0.382856i
\(596\) 44.0525 4.83046i 1.80446 0.197863i
\(597\) 0 0
\(598\) 0.570348 0.636307i 0.0233233 0.0260205i
\(599\) 24.8193 1.01409 0.507044 0.861920i \(-0.330738\pi\)
0.507044 + 0.861920i \(0.330738\pi\)
\(600\) 0 0
\(601\) 43.9610i 1.79321i −0.442834 0.896603i \(-0.646027\pi\)
0.442834 0.896603i \(-0.353973\pi\)
\(602\) −8.70386 + 9.71042i −0.354743 + 0.395767i
\(603\) 0 0
\(604\) 0.907407 + 8.27532i 0.0369219 + 0.336718i
\(605\) −0.182075 −0.00740240
\(606\) 0 0
\(607\) 44.7140i 1.81488i −0.420177 0.907442i \(-0.638032\pi\)
0.420177 0.907442i \(-0.361968\pi\)
\(608\) −12.7480 7.17023i −0.517000 0.290791i
\(609\) 0 0
\(610\) −9.33287 + 10.4122i −0.377877 + 0.421577i
\(611\) 1.01550i 0.0410828i
\(612\) 0 0
\(613\) 39.2562i 1.58554i −0.609518 0.792772i \(-0.708637\pi\)
0.609518 0.792772i \(-0.291363\pi\)
\(614\) 1.61470 + 1.44732i 0.0651640 + 0.0584092i
\(615\) 0 0
\(616\) 9.23673 12.8953i 0.372159 0.519565i
\(617\) 33.5704i 1.35149i 0.737133 + 0.675747i \(0.236179\pi\)
−0.737133 + 0.675747i \(0.763821\pi\)
\(618\) 0 0
\(619\) −29.2701 −1.17647 −0.588233 0.808692i \(-0.700176\pi\)
−0.588233 + 0.808692i \(0.700176\pi\)
\(620\) −15.1584 + 1.66215i −0.608776 + 0.0667537i
\(621\) 0 0
\(622\) 1.83945 + 1.64878i 0.0737552 + 0.0661099i
\(623\) 14.5489i 0.582891i
\(624\) 0 0
\(625\) −5.98405 −0.239362
\(626\) −33.6609 30.1717i −1.34536 1.20590i
\(627\) 0 0
\(628\) −3.31293 + 0.363271i −0.132200 + 0.0144961i
\(629\) −18.8481 11.3737i −0.751522 0.453497i
\(630\) 0 0
\(631\) 11.2429 0.447574 0.223787 0.974638i \(-0.428158\pi\)
0.223787 + 0.974638i \(0.428158\pi\)
\(632\) −12.3196 + 17.1993i −0.490048 + 0.684150i
\(633\) 0 0
\(634\) 3.59212 4.00754i 0.142661 0.159160i
\(635\) 6.60185 0.261986
\(636\) 0 0
\(637\) 0.740368i 0.0293344i
\(638\) 7.76434 8.66226i 0.307393 0.342942i
\(639\) 0 0
\(640\) 16.3669 + 6.98054i 0.646960 + 0.275930i
\(641\) 33.9330i 1.34027i 0.742237 + 0.670137i \(0.233765\pi\)
−0.742237 + 0.670137i \(0.766235\pi\)
\(642\) 0 0
\(643\) 35.2361 1.38958 0.694788 0.719214i \(-0.255498\pi\)
0.694788 + 0.719214i \(0.255498\pi\)
\(644\) −1.24811 11.3824i −0.0491824 0.448530i
\(645\) 0 0
\(646\) 4.41301 + 14.4159i 0.173628 + 0.567188i
\(647\) 41.8365 1.64476 0.822381 0.568937i \(-0.192645\pi\)
0.822381 + 0.568937i \(0.192645\pi\)
\(648\) 0 0
\(649\) 21.0834i 0.827596i
\(650\) −0.472319 0.423359i −0.0185259 0.0166055i
\(651\) 0 0
\(652\) −1.12927 10.2986i −0.0442255 0.403325i
\(653\) 22.6804 0.887554 0.443777 0.896137i \(-0.353638\pi\)
0.443777 + 0.896137i \(0.353638\pi\)
\(654\) 0 0
\(655\) 5.64629 0.220619
\(656\) 4.15434 + 18.7155i 0.162200 + 0.730716i
\(657\) 0 0
\(658\) 10.1332 + 9.08279i 0.395032 + 0.354084i
\(659\) 34.4905i 1.34356i 0.740751 + 0.671779i \(0.234470\pi\)
−0.740751 + 0.671779i \(0.765530\pi\)
\(660\) 0 0
\(661\) 0.923741i 0.0359293i −0.999839 0.0179647i \(-0.994281\pi\)
0.999839 0.0179647i \(-0.00571864\pi\)
\(662\) −10.9857 9.84695i −0.426972 0.382713i
\(663\) 0 0
\(664\) 10.8440 15.1391i 0.420829 0.587513i
\(665\) −6.83996 −0.265242
\(666\) 0 0
\(667\) 8.39751i 0.325153i
\(668\) 41.4174 4.54151i 1.60249 0.175716i
\(669\) 0 0
\(670\) −26.2181 23.5004i −1.01289 0.907899i
\(671\) 20.9600 0.809154
\(672\) 0 0
\(673\) 3.91400i 0.150874i −0.997151 0.0754368i \(-0.975965\pi\)
0.997151 0.0754368i \(-0.0240351\pi\)
\(674\) 22.5611 + 20.2224i 0.869020 + 0.778938i
\(675\) 0 0
\(676\) −2.82710 25.7824i −0.108735 0.991632i
\(677\) −22.1006 −0.849394 −0.424697 0.905336i \(-0.639619\pi\)
−0.424697 + 0.905336i \(0.639619\pi\)
\(678\) 0 0
\(679\) 22.1506 0.850063
\(680\) −7.24824 16.8480i −0.277957 0.646092i
\(681\) 0 0
\(682\) 17.0216 + 15.2572i 0.651791 + 0.584227i
\(683\) −42.9736 −1.64434 −0.822169 0.569244i \(-0.807236\pi\)
−0.822169 + 0.569244i \(0.807236\pi\)
\(684\) 0 0
\(685\) −18.7191 −0.715219
\(686\) −19.7874 17.7362i −0.755486 0.677173i
\(687\) 0 0
\(688\) 4.75165 + 21.4064i 0.181155 + 0.816111i
\(689\) −0.802456 −0.0305711
\(690\) 0 0
\(691\) −17.7933 −0.676890 −0.338445 0.940986i \(-0.609901\pi\)
−0.338445 + 0.940986i \(0.609901\pi\)
\(692\) −4.76583 43.4632i −0.181170 1.65222i
\(693\) 0 0
\(694\) −15.5021 + 17.2949i −0.588453 + 0.656505i
\(695\) 9.37699 0.355690
\(696\) 0 0
\(697\) 10.2097 16.9192i 0.386720 0.640861i
\(698\) −8.26378 7.40717i −0.312789 0.280366i
\(699\) 0 0
\(700\) −8.44896 + 0.926448i −0.319341 + 0.0350164i
\(701\) 18.7151i 0.706859i −0.935461 0.353430i \(-0.885015\pi\)
0.935461 0.353430i \(-0.114985\pi\)
\(702\) 0 0
\(703\) 13.8047i 0.520653i
\(704\) −8.58358 25.2533i −0.323506 0.951771i
\(705\) 0 0
\(706\) 14.2488 15.8966i 0.536261 0.598278i
\(707\) −1.85255 −0.0696721
\(708\) 0 0
\(709\) 30.0583 1.12886 0.564431 0.825480i \(-0.309095\pi\)
0.564431 + 0.825480i \(0.309095\pi\)
\(710\) −22.0600 19.7733i −0.827897 0.742079i
\(711\) 0 0
\(712\) 19.8885 + 14.2459i 0.745353 + 0.533887i
\(713\) 16.5014 0.617981
\(714\) 0 0
\(715\) 0.930829i 0.0348110i
\(716\) −8.72609 + 0.956835i −0.326109 + 0.0357586i
\(717\) 0 0
\(718\) 16.8628 18.8129i 0.629313 0.702091i
\(719\) 5.50072i 0.205142i −0.994726 0.102571i \(-0.967293\pi\)
0.994726 0.102571i \(-0.0327070\pi\)
\(720\) 0 0
\(721\) 15.2053i 0.566274i
\(722\) −11.6244 + 12.9687i −0.432614 + 0.482644i
\(723\) 0 0
\(724\) −2.42211 22.0890i −0.0900170 0.820932i
\(725\) −6.23332 −0.231500
\(726\) 0 0
\(727\) −48.9745 −1.81636 −0.908182 0.418576i \(-0.862529\pi\)
−0.908182 + 0.418576i \(0.862529\pi\)
\(728\) 0.686605 + 0.491807i 0.0254473 + 0.0182276i
\(729\) 0 0
\(730\) −7.25585 6.50372i −0.268551 0.240714i
\(731\) 11.6777 19.3519i 0.431914 0.715754i
\(732\) 0 0
\(733\) 20.3595i 0.751996i 0.926621 + 0.375998i \(0.122700\pi\)
−0.926621 + 0.375998i \(0.877300\pi\)
\(734\) −18.7864 16.8390i −0.693419 0.621540i
\(735\) 0 0
\(736\) −16.7819 9.43916i −0.618591 0.347932i
\(737\) 52.7779i 1.94410i
\(738\) 0 0
\(739\) 13.0474i 0.479955i 0.970778 + 0.239977i \(0.0771400\pi\)
−0.970778 + 0.239977i \(0.922860\pi\)
\(740\) −1.83053 16.6940i −0.0672917 0.613683i
\(741\) 0 0
\(742\) −7.17727 + 8.00729i −0.263486 + 0.293957i
\(743\) 15.7329i 0.577186i −0.957452 0.288593i \(-0.906813\pi\)
0.957452 0.288593i \(-0.0931874\pi\)
\(744\) 0 0
\(745\) 34.8490i 1.27677i
\(746\) −5.25637 4.71151i −0.192450 0.172501i
\(747\) 0 0
\(748\) −11.5542 + 24.9474i −0.422462 + 0.912168i
\(749\) 30.8458i 1.12708i
\(750\) 0 0
\(751\) 45.6534i 1.66591i 0.553337 + 0.832957i \(0.313354\pi\)
−0.553337 + 0.832957i \(0.686646\pi\)
\(752\) 22.3383 4.95852i 0.814595 0.180819i
\(753\) 0 0
\(754\) 0.461219 + 0.413410i 0.0167966 + 0.0150555i
\(755\) 6.54642 0.238249
\(756\) 0 0
\(757\) 33.5775i 1.22039i −0.792250 0.610197i \(-0.791090\pi\)
0.792250 0.610197i \(-0.208910\pi\)
\(758\) −1.43849 + 1.60484i −0.0522482 + 0.0582905i
\(759\) 0 0
\(760\) −6.69749 + 9.35027i −0.242943 + 0.339170i
\(761\) 1.39682 0.0506348 0.0253174 0.999679i \(-0.491940\pi\)
0.0253174 + 0.999679i \(0.491940\pi\)
\(762\) 0 0
\(763\) 2.82155i 0.102147i
\(764\) 2.51426 + 22.9294i 0.0909629 + 0.829558i
\(765\) 0 0
\(766\) 16.0981 17.9598i 0.581648 0.648914i
\(767\) −1.12258 −0.0405340
\(768\) 0 0
\(769\) 20.8164 0.750658 0.375329 0.926892i \(-0.377530\pi\)
0.375329 + 0.926892i \(0.377530\pi\)
\(770\) −9.28826 8.32545i −0.334726 0.300028i
\(771\) 0 0
\(772\) −26.8552 + 2.94474i −0.966541 + 0.105983i
\(773\) 45.0123i 1.61898i −0.587133 0.809490i \(-0.699744\pi\)
0.587133 0.809490i \(-0.300256\pi\)
\(774\) 0 0
\(775\) 12.2487i 0.439985i
\(776\) 21.6892 30.2800i 0.778598 1.08699i
\(777\) 0 0
\(778\) −19.6358 17.6004i −0.703977 0.631003i
\(779\) −12.3919 −0.443988
\(780\) 0 0
\(781\) 44.4075i 1.58902i
\(782\) 5.80945 + 18.9777i 0.207745 + 0.678641i
\(783\) 0 0
\(784\) −16.2861 + 3.61508i −0.581647 + 0.129110i
\(785\) 2.62079i 0.0935400i
\(786\) 0 0
\(787\) −16.8464 −0.600509 −0.300255 0.953859i \(-0.597072\pi\)
−0.300255 + 0.953859i \(0.597072\pi\)
\(788\) 4.57444 + 41.7177i 0.162958 + 1.48613i
\(789\) 0 0
\(790\) 12.3883 + 11.1042i 0.440758 + 0.395069i
\(791\) 11.5724 0.411468
\(792\) 0 0
\(793\) 1.11601i 0.0396307i
\(794\) 21.6309 24.1324i 0.767653 0.856429i
\(795\) 0 0
\(796\) −55.6606 + 6.10331i −1.97284 + 0.216326i
\(797\) 6.68748i 0.236883i −0.992961 0.118441i \(-0.962210\pi\)
0.992961 0.118441i \(-0.0377897\pi\)
\(798\) 0 0
\(799\) −20.1944 12.1861i −0.714425 0.431112i
\(800\) −7.00652 + 12.4569i −0.247718 + 0.440419i
\(801\) 0 0
\(802\) 33.4293 + 29.9641i 1.18043 + 1.05807i
\(803\) 14.6063i 0.515444i
\(804\) 0 0
\(805\) −9.00438 −0.317363
\(806\) −0.812363 + 0.906310i −0.0286143 + 0.0319234i
\(807\) 0 0
\(808\) −1.81396 + 2.53244i −0.0638148 + 0.0890910i
\(809\) 16.7530i 0.589004i −0.955651 0.294502i \(-0.904846\pi\)
0.955651 0.294502i \(-0.0951537\pi\)
\(810\) 0 0
\(811\) 10.8001 0.379243 0.189622 0.981857i \(-0.439274\pi\)
0.189622 + 0.981857i \(0.439274\pi\)
\(812\) 8.25041 0.904676i 0.289533 0.0317479i
\(813\) 0 0
\(814\) −16.8028 + 18.7459i −0.588936 + 0.657044i
\(815\) −8.14701 −0.285377
\(816\) 0 0
\(817\) −14.1737 −0.495874
\(818\) −26.2674 + 29.3051i −0.918417 + 1.02463i
\(819\) 0 0
\(820\) 14.9856 1.64320i 0.523319 0.0573831i
\(821\) 38.5393 1.34503 0.672516 0.740083i \(-0.265214\pi\)
0.672516 + 0.740083i \(0.265214\pi\)
\(822\) 0 0
\(823\) 18.0592i 0.629505i −0.949174 0.314752i \(-0.898079\pi\)
0.949174 0.314752i \(-0.101921\pi\)
\(824\) 20.7857 + 14.8886i 0.724105 + 0.518668i
\(825\) 0 0
\(826\) −10.0405 + 11.2016i −0.349354 + 0.389755i
\(827\) 27.1647 0.944611 0.472305 0.881435i \(-0.343422\pi\)
0.472305 + 0.881435i \(0.343422\pi\)
\(828\) 0 0
\(829\) 24.5873i 0.853952i 0.904263 + 0.426976i \(0.140421\pi\)
−0.904263 + 0.426976i \(0.859579\pi\)
\(830\) −10.9045 9.77414i −0.378500 0.339265i
\(831\) 0 0
\(832\) 1.34461 0.457030i 0.0466159 0.0158447i
\(833\) 14.7230 + 8.88443i 0.510122 + 0.307827i
\(834\) 0 0
\(835\) 32.7644i 1.13386i
\(836\) 17.1380 1.87922i 0.592729 0.0649941i
\(837\) 0 0
\(838\) −23.5186 + 26.2384i −0.812437 + 0.906392i
\(839\) 5.06106i 0.174727i −0.996176 0.0873637i \(-0.972156\pi\)
0.996176 0.0873637i \(-0.0278442\pi\)
\(840\) 0 0
\(841\) −22.9132 −0.790109
\(842\) −35.5921 31.9026i −1.22658 1.09944i
\(843\) 0 0
\(844\) 3.15565 + 28.7787i 0.108622 + 0.990603i
\(845\) −20.3959 −0.701641
\(846\) 0 0
\(847\) 0.194734i 0.00669113i
\(848\) 3.91825 + 17.6519i 0.134553 + 0.606168i
\(849\) 0 0
\(850\) 14.0868 4.31225i 0.483173 0.147909i
\(851\) 18.1730i 0.622962i
\(852\) 0 0
\(853\) −19.5592 −0.669695 −0.334847 0.942272i \(-0.608685\pi\)
−0.334847 + 0.942272i \(0.608685\pi\)
\(854\) 11.1361 + 9.98175i 0.381070 + 0.341568i
\(855\) 0 0
\(856\) −42.1664 30.2033i −1.44122 1.03233i
\(857\) 15.7887i 0.539333i 0.962954 + 0.269666i \(0.0869134\pi\)
−0.962954 + 0.269666i \(0.913087\pi\)
\(858\) 0 0
\(859\) 32.5990i 1.11226i 0.831094 + 0.556132i \(0.187715\pi\)
−0.831094 + 0.556132i \(0.812285\pi\)
\(860\) 17.1402 1.87946i 0.584476 0.0640891i
\(861\) 0 0
\(862\) 7.00406 + 6.27803i 0.238559 + 0.213831i
\(863\) −43.1734 −1.46964 −0.734819 0.678263i \(-0.762733\pi\)
−0.734819 + 0.678263i \(0.762733\pi\)
\(864\) 0 0
\(865\) −34.3827 −1.16905
\(866\) 18.4395 20.5720i 0.626600 0.699064i
\(867\) 0 0
\(868\) 1.77772 + 16.2123i 0.0603396 + 0.550281i
\(869\) 24.9381i 0.845968i
\(870\) 0 0
\(871\) −2.81014 −0.0952181
\(872\) −3.85708 2.76278i −0.130617 0.0935595i
\(873\) 0 0
\(874\) 8.30708 9.26777i 0.280991 0.313487i
\(875\) 19.9110i 0.673115i
\(876\) 0 0
\(877\) −49.3608 −1.66680 −0.833399 0.552672i \(-0.813608\pi\)
−0.833399 + 0.552672i \(0.813608\pi\)
\(878\) −0.454906 0.407751i −0.0153523 0.0137609i
\(879\) 0 0
\(880\) −20.4757 + 4.54507i −0.690237 + 0.153214i
\(881\) 44.3363i 1.49373i 0.664977 + 0.746864i \(0.268441\pi\)
−0.664977 + 0.746864i \(0.731559\pi\)
\(882\) 0 0
\(883\) 12.1954i 0.410407i 0.978719 + 0.205203i \(0.0657856\pi\)
−0.978719 + 0.205203i \(0.934214\pi\)
\(884\) −1.32832 0.615199i −0.0446762 0.0206914i
\(885\) 0 0
\(886\) 0.990767 + 0.888065i 0.0332855 + 0.0298351i
\(887\) 39.8250i 1.33719i −0.743626 0.668596i \(-0.766896\pi\)
0.743626 0.668596i \(-0.233104\pi\)
\(888\) 0 0
\(889\) 7.06085i 0.236813i
\(890\) 12.8404 14.3254i 0.430412 0.480187i
\(891\) 0 0
\(892\) 5.94243 + 54.1934i 0.198967 + 1.81453i
\(893\) 14.7907i 0.494953i
\(894\) 0 0
\(895\) 6.90301i 0.230742i
\(896\) 7.46587 17.5049i 0.249417 0.584797i
\(897\) 0 0
\(898\) 42.8280 + 38.3885i 1.42919 + 1.28104i
\(899\) 11.9608i 0.398915i
\(900\) 0 0
\(901\) 9.62949 15.9577i 0.320805 0.531628i
\(902\) −16.8275 15.0832i −0.560295 0.502216i
\(903\) 0 0
\(904\) 11.3314 15.8196i 0.376876 0.526151i
\(905\) −17.4741 −0.580860
\(906\) 0 0
\(907\) 31.3002 1.03931 0.519653 0.854377i \(-0.326061\pi\)
0.519653 + 0.854377i \(0.326061\pi\)
\(908\) 2.02044 + 18.4259i 0.0670508 + 0.611486i
\(909\) 0 0
\(910\) 0.443286 0.494551i 0.0146948 0.0163942i
\(911\) 19.0074i 0.629745i −0.949134 0.314872i \(-0.898038\pi\)
0.949134 0.314872i \(-0.101962\pi\)
\(912\) 0 0
\(913\) 21.9511i 0.726474i
\(914\) 10.0075 11.1648i 0.331019 0.369300i
\(915\) 0 0
\(916\) −39.4249 + 4.32303i −1.30264 + 0.142837i
\(917\) 6.03886i 0.199421i
\(918\) 0 0
\(919\) 60.5097 1.99603 0.998016 0.0629608i \(-0.0200543\pi\)
0.998016 + 0.0629608i \(0.0200543\pi\)
\(920\) −8.81682 + 12.3090i −0.290682 + 0.405817i
\(921\) 0 0
\(922\) 7.27090 + 6.51721i 0.239454 + 0.214633i
\(923\) −2.36446 −0.0778272
\(924\) 0 0
\(925\) 13.4895 0.443531
\(926\) −4.73626 + 5.28399i −0.155643 + 0.173643i
\(927\) 0 0
\(928\) 6.84186 12.1642i 0.224595 0.399309i
\(929\) 35.6403i 1.16932i −0.811279 0.584660i \(-0.801228\pi\)
0.811279 0.584660i \(-0.198772\pi\)
\(930\) 0 0
\(931\) 10.7834i 0.353412i
\(932\) 18.6293 2.04274i 0.610222 0.0669123i
\(933\) 0 0
\(934\) 37.2183 + 33.3603i 1.21782 + 1.09158i
\(935\) 18.5105 + 11.1700i 0.605359 + 0.365297i
\(936\) 0 0
\(937\) −44.8079 −1.46381 −0.731906 0.681406i \(-0.761369\pi\)
−0.731906 + 0.681406i \(0.761369\pi\)
\(938\) −25.1343 + 28.0410i −0.820663 + 0.915570i
\(939\) 0 0
\(940\) −1.96129 17.8864i −0.0639701 0.583390i
\(941\) 51.2637 1.67115 0.835575 0.549377i \(-0.185135\pi\)
0.835575 + 0.549377i \(0.185135\pi\)
\(942\) 0 0
\(943\) −16.3132 −0.531231
\(944\) 5.48136 + 24.6938i 0.178403 + 0.803713i
\(945\) 0 0
\(946\) −19.2470 17.2519i −0.625774 0.560907i
\(947\) 32.5760 1.05858 0.529289 0.848442i \(-0.322459\pi\)
0.529289 + 0.848442i \(0.322459\pi\)
\(948\) 0 0
\(949\) −0.777706 −0.0252454
\(950\) −6.87929 6.16620i −0.223194 0.200058i
\(951\) 0 0
\(952\) −18.0194 + 7.75218i −0.584012 + 0.251250i
\(953\) −36.4757 −1.18156 −0.590782 0.806831i \(-0.701181\pi\)
−0.590782 + 0.806831i \(0.701181\pi\)
\(954\) 0 0
\(955\) 18.1390 0.586963
\(956\) −1.63130 14.8770i −0.0527600 0.481157i
\(957\) 0 0
\(958\) 42.2456 + 37.8664i 1.36489 + 1.22341i
\(959\) 20.0205i 0.646497i
\(960\) 0 0
\(961\) 7.49665 0.241827
\(962\) −0.998121 0.894658i −0.0321807 0.0288449i
\(963\) 0 0
\(964\) 24.9922 2.74045i 0.804944 0.0882639i
\(965\) 21.2446i 0.683887i
\(966\) 0 0
\(967\) 22.8837 0.735891 0.367946 0.929847i \(-0.380061\pi\)
0.367946 + 0.929847i \(0.380061\pi\)
\(968\) 0.266202 + 0.190678i 0.00855607 + 0.00612861i
\(969\) 0 0
\(970\) −21.8102 19.5494i −0.700284 0.627694i
\(971\) 34.4721i 1.10626i −0.833094 0.553131i \(-0.813433\pi\)
0.833094 0.553131i \(-0.186567\pi\)
\(972\) 0 0
\(973\) 10.0289i 0.321513i
\(974\) 23.4592 + 21.0275i 0.751682 + 0.673764i
\(975\) 0 0
\(976\) 24.5493 5.44928i 0.785803 0.174427i
\(977\) −16.3524 −0.523160 −0.261580 0.965182i \(-0.584244\pi\)
−0.261580 + 0.965182i \(0.584244\pi\)
\(978\) 0 0
\(979\) −28.8374 −0.921647
\(980\) 1.42991 + 13.0404i 0.0456767 + 0.416559i
\(981\) 0 0
\(982\) −24.4894 21.9508i −0.781487 0.700479i
\(983\) 39.1096i 1.24740i −0.781662 0.623702i \(-0.785628\pi\)
0.781662 0.623702i \(-0.214372\pi\)
\(984\) 0 0
\(985\) 33.0019 1.05153
\(986\) −13.7557 + 4.21091i −0.438072 + 0.134103i
\(987\) 0 0
\(988\) 0.100058 + 0.912506i 0.00318328 + 0.0290307i
\(989\) −18.6587 −0.593313
\(990\) 0 0
\(991\) 28.4092i 0.902449i 0.892411 + 0.451224i \(0.149013\pi\)
−0.892411 + 0.451224i \(0.850987\pi\)
\(992\) 23.9030 + 13.4445i 0.758921 + 0.426862i
\(993\) 0 0
\(994\) −21.1481 + 23.5937i −0.670776 + 0.748348i
\(995\) 44.0319i 1.39590i
\(996\) 0 0
\(997\) −9.78760 −0.309976 −0.154988 0.987916i \(-0.549534\pi\)
−0.154988 + 0.987916i \(0.549534\pi\)
\(998\) 3.93597 4.39115i 0.124591 0.138999i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1224.2.l.d.1189.6 18
3.2 odd 2 408.2.l.b.373.13 yes 18
4.3 odd 2 4896.2.l.d.3025.3 18
8.3 odd 2 4896.2.l.c.3025.15 18
8.5 even 2 1224.2.l.c.1189.5 18
12.11 even 2 1632.2.l.a.1393.15 18
17.16 even 2 1224.2.l.c.1189.6 18
24.5 odd 2 408.2.l.a.373.14 yes 18
24.11 even 2 1632.2.l.b.1393.3 18
51.50 odd 2 408.2.l.a.373.13 18
68.67 odd 2 4896.2.l.c.3025.16 18
136.67 odd 2 4896.2.l.d.3025.4 18
136.101 even 2 inner 1224.2.l.d.1189.5 18
204.203 even 2 1632.2.l.b.1393.4 18
408.101 odd 2 408.2.l.b.373.14 yes 18
408.203 even 2 1632.2.l.a.1393.16 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
408.2.l.a.373.13 18 51.50 odd 2
408.2.l.a.373.14 yes 18 24.5 odd 2
408.2.l.b.373.13 yes 18 3.2 odd 2
408.2.l.b.373.14 yes 18 408.101 odd 2
1224.2.l.c.1189.5 18 8.5 even 2
1224.2.l.c.1189.6 18 17.16 even 2
1224.2.l.d.1189.5 18 136.101 even 2 inner
1224.2.l.d.1189.6 18 1.1 even 1 trivial
1632.2.l.a.1393.15 18 12.11 even 2
1632.2.l.a.1393.16 18 408.203 even 2
1632.2.l.b.1393.3 18 24.11 even 2
1632.2.l.b.1393.4 18 204.203 even 2
4896.2.l.c.3025.15 18 8.3 odd 2
4896.2.l.c.3025.16 18 68.67 odd 2
4896.2.l.d.3025.3 18 4.3 odd 2
4896.2.l.d.3025.4 18 136.67 odd 2