Properties

Label 165.2.k.c.122.7
Level $165$
Weight $2$
Character 165.122
Analytic conductor $1.318$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [165,2,Mod(23,165)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(165, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("165.23");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 165 = 3 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 165.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.31753163335\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 8 x^{14} + 19 x^{12} - 80 x^{11} + 168 x^{10} + 28 x^{9} + 119 x^{8} - 432 x^{7} + \cdots + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 122.7
Root \(-1.14633 - 1.14633i\) of defining polynomial
Character \(\chi\) \(=\) 165.122
Dual form 165.2.k.c.23.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.14633 - 1.14633i) q^{2} +(-0.582649 - 1.63111i) q^{3} -0.628149i q^{4} +(-0.515221 - 2.17590i) q^{5} +(-2.53770 - 1.20188i) q^{6} +(-0.201884 - 0.201884i) q^{7} +(1.57260 + 1.57260i) q^{8} +(-2.32104 + 1.90073i) q^{9} +(-3.08492 - 1.90369i) q^{10} +1.00000i q^{11} +(-1.02458 + 0.365990i) q^{12} +(1.02066 - 1.02066i) q^{13} -0.462851 q^{14} +(-3.24894 + 2.10817i) q^{15} +4.86173 q^{16} +(2.87911 - 2.87911i) q^{17} +(-0.481818 + 4.83954i) q^{18} -0.281435i q^{19} +(-1.36679 + 0.323635i) q^{20} +(-0.211667 + 0.446922i) q^{21} +(1.14633 + 1.14633i) q^{22} +(5.22177 + 5.22177i) q^{23} +(1.64881 - 3.48135i) q^{24} +(-4.46910 + 2.24214i) q^{25} -2.34002i q^{26} +(4.45265 + 2.67842i) q^{27} +(-0.126813 + 0.126813i) q^{28} -9.71095 q^{29} +(-1.30771 + 6.14102i) q^{30} +4.46829 q^{31} +(2.42796 - 2.42796i) q^{32} +(1.63111 - 0.582649i) q^{33} -6.60083i q^{34} +(-0.335265 + 0.543294i) q^{35} +(1.19394 + 1.45796i) q^{36} +(2.37906 + 2.37906i) q^{37} +(-0.322618 - 0.322618i) q^{38} +(-2.25949 - 1.07012i) q^{39} +(2.61158 - 4.23205i) q^{40} +9.00173i q^{41} +(0.269680 + 0.754962i) q^{42} +(1.84728 - 1.84728i) q^{43} +0.628149 q^{44} +(5.33165 + 4.07106i) q^{45} +11.9718 q^{46} +(-3.98588 + 3.98588i) q^{47} +(-2.83268 - 7.93001i) q^{48} -6.91849i q^{49} +(-2.55283 + 7.69329i) q^{50} +(-6.37366 - 3.01864i) q^{51} +(-0.641125 - 0.641125i) q^{52} +(-4.75830 - 4.75830i) q^{53} +(8.17456 - 2.03386i) q^{54} +(2.17590 - 0.515221i) q^{55} -0.634963i q^{56} +(-0.459052 + 0.163978i) q^{57} +(-11.1320 + 11.1320i) q^{58} -2.68228 q^{59} +(1.32424 + 2.04082i) q^{60} -9.46983 q^{61} +(5.12214 - 5.12214i) q^{62} +(0.852307 + 0.0848544i) q^{63} +4.15697i q^{64} +(-2.74671 - 1.69499i) q^{65} +(1.20188 - 2.53770i) q^{66} +(-6.27596 - 6.27596i) q^{67} +(-1.80851 - 1.80851i) q^{68} +(5.47482 - 11.5597i) q^{69} +(0.238471 + 1.00712i) q^{70} +0.679177i q^{71} +(-6.63914 - 0.660982i) q^{72} +(-5.74145 + 5.74145i) q^{73} +5.45437 q^{74} +(6.26109 + 5.98321i) q^{75} -0.176783 q^{76} +(0.201884 - 0.201884i) q^{77} +(-3.81683 + 1.36341i) q^{78} +12.5134i q^{79} +(-2.50486 - 10.5786i) q^{80} +(1.77446 - 8.82334i) q^{81} +(10.3190 + 10.3190i) q^{82} +(4.93065 + 4.93065i) q^{83} +(0.280734 + 0.132959i) q^{84} +(-7.74804 - 4.78128i) q^{85} -4.23518i q^{86} +(5.65807 + 15.8396i) q^{87} +(-1.57260 + 1.57260i) q^{88} +2.97979 q^{89} +(10.7786 - 1.44504i) q^{90} -0.412109 q^{91} +(3.28005 - 3.28005i) q^{92} +(-2.60345 - 7.28828i) q^{93} +9.13826i q^{94} +(-0.612375 + 0.145001i) q^{95} +(-5.37491 - 2.54562i) q^{96} +(-11.4137 - 11.4137i) q^{97} +(-7.93087 - 7.93087i) q^{98} +(-1.90073 - 2.32104i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{2} - 2 q^{3} - 8 q^{5} - 4 q^{6} + 8 q^{7} + 16 q^{8} + 6 q^{9} - 4 q^{10} - 4 q^{12} - 24 q^{14} + 8 q^{15} - 4 q^{16} + 8 q^{17} - 32 q^{18} - 20 q^{20} - 8 q^{21} - 4 q^{22} + 14 q^{23} + 12 q^{24}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/165\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\) \(67\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.14633 1.14633i 0.810578 0.810578i −0.174142 0.984721i \(-0.555715\pi\)
0.984721 + 0.174142i \(0.0557153\pi\)
\(3\) −0.582649 1.63111i −0.336392 0.941722i
\(4\) 0.628149i 0.314074i
\(5\) −0.515221 2.17590i −0.230414 0.973093i
\(6\) −2.53770 1.20188i −1.03601 0.490667i
\(7\) −0.201884 0.201884i −0.0763049 0.0763049i 0.667924 0.744229i \(-0.267183\pi\)
−0.744229 + 0.667924i \(0.767183\pi\)
\(8\) 1.57260 + 1.57260i 0.555996 + 0.555996i
\(9\) −2.32104 + 1.90073i −0.773680 + 0.633576i
\(10\) −3.08492 1.90369i −0.975536 0.602000i
\(11\) 1.00000i 0.301511i
\(12\) −1.02458 + 0.365990i −0.295771 + 0.105652i
\(13\) 1.02066 1.02066i 0.283079 0.283079i −0.551256 0.834336i \(-0.685851\pi\)
0.834336 + 0.551256i \(0.185851\pi\)
\(14\) −0.462851 −0.123702
\(15\) −3.24894 + 2.10817i −0.838873 + 0.544327i
\(16\) 4.86173 1.21543
\(17\) 2.87911 2.87911i 0.698287 0.698287i −0.265754 0.964041i \(-0.585621\pi\)
0.964041 + 0.265754i \(0.0856209\pi\)
\(18\) −0.481818 + 4.83954i −0.113566 + 1.14069i
\(19\) 0.281435i 0.0645657i −0.999479 0.0322828i \(-0.989722\pi\)
0.999479 0.0322828i \(-0.0102777\pi\)
\(20\) −1.36679 + 0.323635i −0.305623 + 0.0723670i
\(21\) −0.211667 + 0.446922i −0.0461896 + 0.0975264i
\(22\) 1.14633 + 1.14633i 0.244399 + 0.244399i
\(23\) 5.22177 + 5.22177i 1.08881 + 1.08881i 0.995651 + 0.0931634i \(0.0296979\pi\)
0.0931634 + 0.995651i \(0.470302\pi\)
\(24\) 1.64881 3.48135i 0.336561 0.710627i
\(25\) −4.46910 + 2.24214i −0.893819 + 0.448428i
\(26\) 2.34002i 0.458916i
\(27\) 4.45265 + 2.67842i 0.856913 + 0.515462i
\(28\) −0.126813 + 0.126813i −0.0239654 + 0.0239654i
\(29\) −9.71095 −1.80328 −0.901639 0.432490i \(-0.857635\pi\)
−0.901639 + 0.432490i \(0.857635\pi\)
\(30\) −1.30771 + 6.14102i −0.238753 + 1.12119i
\(31\) 4.46829 0.802529 0.401265 0.915962i \(-0.368571\pi\)
0.401265 + 0.915962i \(0.368571\pi\)
\(32\) 2.42796 2.42796i 0.429206 0.429206i
\(33\) 1.63111 0.582649i 0.283940 0.101426i
\(34\) 6.60083i 1.13203i
\(35\) −0.335265 + 0.543294i −0.0566701 + 0.0918335i
\(36\) 1.19394 + 1.45796i 0.198990 + 0.242993i
\(37\) 2.37906 + 2.37906i 0.391114 + 0.391114i 0.875085 0.483970i \(-0.160806\pi\)
−0.483970 + 0.875085i \(0.660806\pi\)
\(38\) −0.322618 0.322618i −0.0523355 0.0523355i
\(39\) −2.25949 1.07012i −0.361808 0.171356i
\(40\) 2.61158 4.23205i 0.412927 0.669145i
\(41\) 9.00173i 1.40583i 0.711272 + 0.702917i \(0.248119\pi\)
−0.711272 + 0.702917i \(0.751881\pi\)
\(42\) 0.269680 + 0.754962i 0.0416125 + 0.116493i
\(43\) 1.84728 1.84728i 0.281707 0.281707i −0.552083 0.833789i \(-0.686167\pi\)
0.833789 + 0.552083i \(0.186167\pi\)
\(44\) 0.628149 0.0946970
\(45\) 5.33165 + 4.07106i 0.794795 + 0.606878i
\(46\) 11.9718 1.76514
\(47\) −3.98588 + 3.98588i −0.581400 + 0.581400i −0.935288 0.353888i \(-0.884859\pi\)
0.353888 + 0.935288i \(0.384859\pi\)
\(48\) −2.83268 7.93001i −0.408862 1.14460i
\(49\) 6.91849i 0.988355i
\(50\) −2.55283 + 7.69329i −0.361025 + 1.08800i
\(51\) −6.37366 3.01864i −0.892490 0.422694i
\(52\) −0.641125 0.641125i −0.0889080 0.0889080i
\(53\) −4.75830 4.75830i −0.653603 0.653603i 0.300256 0.953859i \(-0.402928\pi\)
−0.953859 + 0.300256i \(0.902928\pi\)
\(54\) 8.17456 2.03386i 1.11242 0.276773i
\(55\) 2.17590 0.515221i 0.293399 0.0694723i
\(56\) 0.634963i 0.0848505i
\(57\) −0.459052 + 0.163978i −0.0608029 + 0.0217194i
\(58\) −11.1320 + 11.1320i −1.46170 + 1.46170i
\(59\) −2.68228 −0.349203 −0.174602 0.984639i \(-0.555864\pi\)
−0.174602 + 0.984639i \(0.555864\pi\)
\(60\) 1.32424 + 2.04082i 0.170959 + 0.263469i
\(61\) −9.46983 −1.21249 −0.606244 0.795279i \(-0.707324\pi\)
−0.606244 + 0.795279i \(0.707324\pi\)
\(62\) 5.12214 5.12214i 0.650513 0.650513i
\(63\) 0.852307 + 0.0848544i 0.107381 + 0.0106907i
\(64\) 4.15697i 0.519622i
\(65\) −2.74671 1.69499i −0.340688 0.210237i
\(66\) 1.20188 2.53770i 0.147942 0.312369i
\(67\) −6.27596 6.27596i −0.766731 0.766731i 0.210799 0.977529i \(-0.432393\pi\)
−0.977529 + 0.210799i \(0.932393\pi\)
\(68\) −1.80851 1.80851i −0.219314 0.219314i
\(69\) 5.47482 11.5597i 0.659091 1.39163i
\(70\) 0.238471 + 1.00712i 0.0285027 + 0.120374i
\(71\) 0.679177i 0.0806035i 0.999188 + 0.0403017i \(0.0128319\pi\)
−0.999188 + 0.0403017i \(0.987168\pi\)
\(72\) −6.63914 0.660982i −0.782430 0.0778975i
\(73\) −5.74145 + 5.74145i −0.671986 + 0.671986i −0.958174 0.286188i \(-0.907612\pi\)
0.286188 + 0.958174i \(0.407612\pi\)
\(74\) 5.45437 0.634058
\(75\) 6.26109 + 5.98321i 0.722968 + 0.690881i
\(76\) −0.176783 −0.0202784
\(77\) 0.201884 0.201884i 0.0230068 0.0230068i
\(78\) −3.81683 + 1.36341i −0.432171 + 0.154376i
\(79\) 12.5134i 1.40786i 0.710267 + 0.703932i \(0.248574\pi\)
−0.710267 + 0.703932i \(0.751426\pi\)
\(80\) −2.50486 10.5786i −0.280052 1.18273i
\(81\) 1.77446 8.82334i 0.197163 0.980371i
\(82\) 10.3190 + 10.3190i 1.13954 + 1.13954i
\(83\) 4.93065 + 4.93065i 0.541209 + 0.541209i 0.923883 0.382674i \(-0.124997\pi\)
−0.382674 + 0.923883i \(0.624997\pi\)
\(84\) 0.280734 + 0.132959i 0.0306305 + 0.0145070i
\(85\) −7.74804 4.78128i −0.840393 0.518603i
\(86\) 4.23518i 0.456691i
\(87\) 5.65807 + 15.8396i 0.606609 + 1.69819i
\(88\) −1.57260 + 1.57260i −0.167639 + 0.167639i
\(89\) 2.97979 0.315857 0.157928 0.987451i \(-0.449519\pi\)
0.157928 + 0.987451i \(0.449519\pi\)
\(90\) 10.7786 1.44504i 1.13617 0.152321i
\(91\) −0.412109 −0.0432007
\(92\) 3.28005 3.28005i 0.341969 0.341969i
\(93\) −2.60345 7.28828i −0.269965 0.755759i
\(94\) 9.13826i 0.942540i
\(95\) −0.612375 + 0.145001i −0.0628284 + 0.0148768i
\(96\) −5.37491 2.54562i −0.548574 0.259811i
\(97\) −11.4137 11.4137i −1.15889 1.15889i −0.984715 0.174172i \(-0.944275\pi\)
−0.174172 0.984715i \(-0.555725\pi\)
\(98\) −7.93087 7.93087i −0.801139 0.801139i
\(99\) −1.90073 2.32104i −0.191030 0.233273i
\(100\) 1.40840 + 2.80726i 0.140840 + 0.280726i
\(101\) 16.8528i 1.67692i −0.544965 0.838458i \(-0.683457\pi\)
0.544965 0.838458i \(-0.316543\pi\)
\(102\) −10.7667 + 3.84596i −1.06606 + 0.380807i
\(103\) 4.78866 4.78866i 0.471841 0.471841i −0.430669 0.902510i \(-0.641722\pi\)
0.902510 + 0.430669i \(0.141722\pi\)
\(104\) 3.21016 0.314782
\(105\) 1.08151 + 0.230304i 0.105545 + 0.0224754i
\(106\) −10.9092 −1.05959
\(107\) 0.547413 0.547413i 0.0529204 0.0529204i −0.680151 0.733072i \(-0.738086\pi\)
0.733072 + 0.680151i \(0.238086\pi\)
\(108\) 1.68244 2.79692i 0.161893 0.269134i
\(109\) 0.251236i 0.0240641i 0.999928 + 0.0120320i \(0.00383001\pi\)
−0.999928 + 0.0120320i \(0.996170\pi\)
\(110\) 1.90369 3.08492i 0.181510 0.294135i
\(111\) 2.49435 5.26666i 0.236753 0.499889i
\(112\) −0.981504 0.981504i −0.0927434 0.0927434i
\(113\) 2.40152 + 2.40152i 0.225916 + 0.225916i 0.810984 0.585068i \(-0.198932\pi\)
−0.585068 + 0.810984i \(0.698932\pi\)
\(114\) −0.338252 + 0.714198i −0.0316802 + 0.0668908i
\(115\) 8.67169 14.0524i 0.808640 1.31039i
\(116\) 6.09992i 0.566363i
\(117\) −0.428996 + 4.30898i −0.0396607 + 0.398365i
\(118\) −3.07478 + 3.07478i −0.283057 + 0.283057i
\(119\) −1.16249 −0.106565
\(120\) −8.42457 1.79398i −0.769054 0.163767i
\(121\) −1.00000 −0.0909091
\(122\) −10.8556 + 10.8556i −0.982816 + 0.982816i
\(123\) 14.6828 5.24485i 1.32390 0.472912i
\(124\) 2.80675i 0.252054i
\(125\) 7.18124 + 8.56912i 0.642310 + 0.766445i
\(126\) 1.07430 0.879755i 0.0957060 0.0783748i
\(127\) 2.88720 + 2.88720i 0.256198 + 0.256198i 0.823506 0.567308i \(-0.192015\pi\)
−0.567308 + 0.823506i \(0.692015\pi\)
\(128\) 9.62118 + 9.62118i 0.850400 + 0.850400i
\(129\) −4.08942 1.93680i −0.360054 0.170525i
\(130\) −5.09166 + 1.20563i −0.446568 + 0.105741i
\(131\) 17.2568i 1.50774i 0.657026 + 0.753868i \(0.271814\pi\)
−0.657026 + 0.753868i \(0.728186\pi\)
\(132\) −0.365990 1.02458i −0.0318553 0.0891782i
\(133\) −0.0568172 + 0.0568172i −0.00492668 + 0.00492668i
\(134\) −14.3887 −1.24299
\(135\) 3.53388 11.0685i 0.304148 0.952625i
\(136\) 9.05535 0.776490
\(137\) 14.3666 14.3666i 1.22742 1.22742i 0.262485 0.964936i \(-0.415458\pi\)
0.964936 0.262485i \(-0.0845421\pi\)
\(138\) −6.97532 19.5272i −0.593779 1.66227i
\(139\) 3.60234i 0.305547i −0.988261 0.152773i \(-0.951180\pi\)
0.988261 0.152773i \(-0.0488205\pi\)
\(140\) 0.341269 + 0.210596i 0.0288425 + 0.0177986i
\(141\) 8.82377 + 4.17904i 0.743095 + 0.351938i
\(142\) 0.778561 + 0.778561i 0.0653354 + 0.0653354i
\(143\) 1.02066 + 1.02066i 0.0853517 + 0.0853517i
\(144\) −11.2843 + 9.24082i −0.940356 + 0.770068i
\(145\) 5.00328 + 21.1301i 0.415500 + 1.75476i
\(146\) 13.1632i 1.08939i
\(147\) −11.2848 + 4.03105i −0.930756 + 0.332475i
\(148\) 1.49440 1.49440i 0.122839 0.122839i
\(149\) 11.6538 0.954716 0.477358 0.878709i \(-0.341594\pi\)
0.477358 + 0.878709i \(0.341594\pi\)
\(150\) 14.0360 0.318541i 1.14604 0.0260087i
\(151\) −16.7356 −1.36192 −0.680961 0.732319i \(-0.738438\pi\)
−0.680961 + 0.732319i \(0.738438\pi\)
\(152\) 0.442584 0.442584i 0.0358983 0.0358983i
\(153\) −1.21013 + 12.1549i −0.0978330 + 0.982669i
\(154\) 0.462851i 0.0372976i
\(155\) −2.30216 9.72257i −0.184914 0.780935i
\(156\) −0.672195 + 1.41930i −0.0538186 + 0.113635i
\(157\) 8.98141 + 8.98141i 0.716794 + 0.716794i 0.967947 0.251153i \(-0.0808097\pi\)
−0.251153 + 0.967947i \(0.580810\pi\)
\(158\) 14.3445 + 14.3445i 1.14118 + 1.14118i
\(159\) −4.98890 + 10.5337i −0.395645 + 0.835379i
\(160\) −6.53393 4.03206i −0.516552 0.318762i
\(161\) 2.10838i 0.166164i
\(162\) −8.08034 12.1486i −0.634851 0.954483i
\(163\) 12.8794 12.8794i 1.00879 1.00879i 0.00882847 0.999961i \(-0.497190\pi\)
0.999961 0.00882847i \(-0.00281023\pi\)
\(164\) 5.65442 0.441536
\(165\) −2.10817 3.24894i −0.164121 0.252930i
\(166\) 11.3043 0.877385
\(167\) −1.49091 + 1.49091i −0.115370 + 0.115370i −0.762435 0.647065i \(-0.775996\pi\)
0.647065 + 0.762435i \(0.275996\pi\)
\(168\) −1.03570 + 0.369961i −0.0799056 + 0.0285431i
\(169\) 10.9165i 0.839732i
\(170\) −14.3627 + 3.40088i −1.10157 + 0.260836i
\(171\) 0.534932 + 0.653223i 0.0409073 + 0.0499532i
\(172\) −1.16036 1.16036i −0.0884769 0.0884769i
\(173\) −12.3165 12.3165i −0.936404 0.936404i 0.0616917 0.998095i \(-0.480350\pi\)
−0.998095 + 0.0616917i \(0.980350\pi\)
\(174\) 24.6435 + 11.6714i 1.86822 + 0.884809i
\(175\) 1.35489 + 0.449587i 0.102420 + 0.0339856i
\(176\) 4.86173i 0.366466i
\(177\) 1.56283 + 4.37510i 0.117469 + 0.328852i
\(178\) 3.41582 3.41582i 0.256027 0.256027i
\(179\) 20.3135 1.51830 0.759151 0.650915i \(-0.225615\pi\)
0.759151 + 0.650915i \(0.225615\pi\)
\(180\) 2.55723 3.34907i 0.190605 0.249625i
\(181\) −14.0192 −1.04204 −0.521020 0.853544i \(-0.674448\pi\)
−0.521020 + 0.853544i \(0.674448\pi\)
\(182\) −0.472413 + 0.472413i −0.0350176 + 0.0350176i
\(183\) 5.51758 + 15.4463i 0.407871 + 1.14183i
\(184\) 16.4235i 1.21075i
\(185\) 3.95085 6.40233i 0.290473 0.470709i
\(186\) −11.3392 5.37037i −0.831430 0.393775i
\(187\) 2.87911 + 2.87911i 0.210541 + 0.210541i
\(188\) 2.50372 + 2.50372i 0.182603 + 0.182603i
\(189\) −0.358189 1.43965i −0.0260544 0.104719i
\(190\) −0.535765 + 0.868204i −0.0388685 + 0.0629861i
\(191\) 18.9839i 1.37363i 0.726832 + 0.686815i \(0.240992\pi\)
−0.726832 + 0.686815i \(0.759008\pi\)
\(192\) 6.78048 2.42205i 0.489339 0.174797i
\(193\) −0.749286 + 0.749286i −0.0539348 + 0.0539348i −0.733560 0.679625i \(-0.762143\pi\)
0.679625 + 0.733560i \(0.262143\pi\)
\(194\) −26.1678 −1.87874
\(195\) −1.16434 + 5.46777i −0.0833802 + 0.391555i
\(196\) −4.34584 −0.310417
\(197\) 0.218136 0.218136i 0.0155416 0.0155416i −0.699293 0.714835i \(-0.746502\pi\)
0.714835 + 0.699293i \(0.246502\pi\)
\(198\) −4.83954 0.481818i −0.343931 0.0342413i
\(199\) 2.62375i 0.185993i 0.995666 + 0.0929964i \(0.0296445\pi\)
−0.995666 + 0.0929964i \(0.970355\pi\)
\(200\) −10.5541 3.50210i −0.746284 0.247636i
\(201\) −6.58010 + 13.8935i −0.464125 + 0.979969i
\(202\) −19.3189 19.3189i −1.35927 1.35927i
\(203\) 1.96048 + 1.96048i 0.137599 + 0.137599i
\(204\) −1.89615 + 4.00360i −0.132757 + 0.280308i
\(205\) 19.5869 4.63788i 1.36801 0.323923i
\(206\) 10.9788i 0.764928i
\(207\) −22.0451 2.19478i −1.53224 0.152548i
\(208\) 4.96216 4.96216i 0.344064 0.344064i
\(209\) 0.281435 0.0194673
\(210\) 1.50378 0.975768i 0.103771 0.0673344i
\(211\) −10.1379 −0.697919 −0.348959 0.937138i \(-0.613465\pi\)
−0.348959 + 0.937138i \(0.613465\pi\)
\(212\) −2.98892 + 2.98892i −0.205280 + 0.205280i
\(213\) 1.10781 0.395721i 0.0759060 0.0271144i
\(214\) 1.25503i 0.0857923i
\(215\) −4.97124 3.06774i −0.339036 0.209218i
\(216\) 2.79015 + 11.2143i 0.189846 + 0.763035i
\(217\) −0.902076 0.902076i −0.0612369 0.0612369i
\(218\) 0.288000 + 0.288000i 0.0195058 + 0.0195058i
\(219\) 12.7102 + 6.01969i 0.858875 + 0.406773i
\(220\) −0.323635 1.36679i −0.0218195 0.0921489i
\(221\) 5.87717i 0.395341i
\(222\) −3.17798 8.89668i −0.213292 0.597106i
\(223\) 15.2100 15.2100i 1.01854 1.01854i 0.0187139 0.999825i \(-0.494043\pi\)
0.999825 0.0187139i \(-0.00595715\pi\)
\(224\) −0.980330 −0.0655011
\(225\) 6.11126 13.6986i 0.407417 0.913242i
\(226\) 5.50587 0.366245
\(227\) 9.77054 9.77054i 0.648494 0.648494i −0.304135 0.952629i \(-0.598367\pi\)
0.952629 + 0.304135i \(0.0983675\pi\)
\(228\) 0.103002 + 0.288353i 0.00682150 + 0.0190966i
\(229\) 19.5023i 1.28875i −0.764711 0.644373i \(-0.777118\pi\)
0.764711 0.644373i \(-0.222882\pi\)
\(230\) −6.16809 26.0494i −0.406712 1.71764i
\(231\) −0.446922 0.211667i −0.0294053 0.0139267i
\(232\) −15.2714 15.2714i −1.00262 1.00262i
\(233\) −10.3725 10.3725i −0.679522 0.679522i 0.280370 0.959892i \(-0.409543\pi\)
−0.959892 + 0.280370i \(0.909543\pi\)
\(234\) 4.44775 + 5.43129i 0.290758 + 0.355054i
\(235\) 10.7265 + 6.61927i 0.699718 + 0.431793i
\(236\) 1.68487i 0.109676i
\(237\) 20.4107 7.29090i 1.32582 0.473595i
\(238\) −1.33260 + 1.33260i −0.0863796 + 0.0863796i
\(239\) −26.0494 −1.68499 −0.842497 0.538701i \(-0.818915\pi\)
−0.842497 + 0.538701i \(0.818915\pi\)
\(240\) −15.7955 + 10.2493i −1.01959 + 0.661592i
\(241\) 2.19788 0.141578 0.0707890 0.997491i \(-0.477448\pi\)
0.0707890 + 0.997491i \(0.477448\pi\)
\(242\) −1.14633 + 1.14633i −0.0736889 + 0.0736889i
\(243\) −15.4257 + 2.24656i −0.989561 + 0.144117i
\(244\) 5.94846i 0.380811i
\(245\) −15.0539 + 3.56455i −0.961761 + 0.227730i
\(246\) 10.8190 22.8437i 0.689796 1.45646i
\(247\) −0.287249 0.287249i −0.0182772 0.0182772i
\(248\) 7.02682 + 7.02682i 0.446203 + 0.446203i
\(249\) 5.16960 10.9153i 0.327610 0.691727i
\(250\) 18.0551 + 1.59096i 1.14191 + 0.100621i
\(251\) 3.44023i 0.217145i 0.994089 + 0.108573i \(0.0346280\pi\)
−0.994089 + 0.108573i \(0.965372\pi\)
\(252\) 0.0533012 0.535376i 0.00335766 0.0337255i
\(253\) −5.22177 + 5.22177i −0.328290 + 0.328290i
\(254\) 6.61938 0.415337
\(255\) −3.28442 + 15.4237i −0.205678 + 0.965870i
\(256\) 13.7442 0.859010
\(257\) 11.6741 11.6741i 0.728213 0.728213i −0.242051 0.970264i \(-0.577820\pi\)
0.970264 + 0.242051i \(0.0778200\pi\)
\(258\) −6.90804 + 2.46762i −0.430076 + 0.153627i
\(259\) 0.960586i 0.0596879i
\(260\) −1.06470 + 1.72534i −0.0660301 + 0.107001i
\(261\) 22.5395 18.4579i 1.39516 1.14251i
\(262\) 19.7820 + 19.7820i 1.22214 + 1.22214i
\(263\) −15.9766 15.9766i −0.985158 0.985158i 0.0147331 0.999891i \(-0.495310\pi\)
−0.999891 + 0.0147331i \(0.995310\pi\)
\(264\) 3.48135 + 1.64881i 0.214262 + 0.101477i
\(265\) −7.90202 + 12.8052i −0.485417 + 0.786615i
\(266\) 0.130263i 0.00798692i
\(267\) −1.73617 4.86036i −0.106252 0.297449i
\(268\) −3.94224 + 3.94224i −0.240810 + 0.240810i
\(269\) 1.98520 0.121040 0.0605200 0.998167i \(-0.480724\pi\)
0.0605200 + 0.998167i \(0.480724\pi\)
\(270\) −8.63717 16.7392i −0.525642 1.01871i
\(271\) −16.7391 −1.01683 −0.508413 0.861113i \(-0.669768\pi\)
−0.508413 + 0.861113i \(0.669768\pi\)
\(272\) 13.9974 13.9974i 0.848720 0.848720i
\(273\) 0.240114 + 0.672195i 0.0145324 + 0.0406831i
\(274\) 32.9377i 1.98984i
\(275\) −2.24214 4.46910i −0.135206 0.269497i
\(276\) −7.26123 3.43900i −0.437075 0.207004i
\(277\) −15.6387 15.6387i −0.939637 0.939637i 0.0586420 0.998279i \(-0.481323\pi\)
−0.998279 + 0.0586420i \(0.981323\pi\)
\(278\) −4.12948 4.12948i −0.247670 0.247670i
\(279\) −10.3711 + 8.49301i −0.620901 + 0.508463i
\(280\) −1.38162 + 0.327146i −0.0825675 + 0.0195507i
\(281\) 11.1500i 0.665153i 0.943076 + 0.332577i \(0.107918\pi\)
−0.943076 + 0.332577i \(0.892082\pi\)
\(282\) 14.9055 5.32440i 0.887610 0.317063i
\(283\) 9.74142 9.74142i 0.579068 0.579068i −0.355579 0.934646i \(-0.615716\pi\)
0.934646 + 0.355579i \(0.115716\pi\)
\(284\) 0.426624 0.0253155
\(285\) 0.593312 + 0.914367i 0.0351448 + 0.0541624i
\(286\) 2.34002 0.138368
\(287\) 1.81730 1.81730i 0.107272 0.107272i
\(288\) −1.02050 + 10.2503i −0.0601336 + 0.604003i
\(289\) 0.421449i 0.0247911i
\(290\) 29.9575 + 18.4866i 1.75916 + 1.08557i
\(291\) −11.9668 + 25.2672i −0.701509 + 1.48119i
\(292\) 3.60648 + 3.60648i 0.211053 + 0.211053i
\(293\) 3.70667 + 3.70667i 0.216546 + 0.216546i 0.807041 0.590495i \(-0.201068\pi\)
−0.590495 + 0.807041i \(0.701068\pi\)
\(294\) −8.31522 + 17.5570i −0.484953 + 1.02395i
\(295\) 1.38197 + 5.83638i 0.0804612 + 0.339807i
\(296\) 7.48259i 0.434916i
\(297\) −2.67842 + 4.45265i −0.155418 + 0.258369i
\(298\) 13.3591 13.3591i 0.773872 0.773872i
\(299\) 10.6593 0.616442
\(300\) 3.75834 3.93289i 0.216988 0.227066i
\(301\) −0.745870 −0.0429912
\(302\) −19.1845 + 19.1845i −1.10395 + 1.10395i
\(303\) −27.4888 + 9.81926i −1.57919 + 0.564102i
\(304\) 1.36826i 0.0784751i
\(305\) 4.87905 + 20.6054i 0.279374 + 1.17986i
\(306\) 12.5464 + 15.3208i 0.717229 + 0.875831i
\(307\) 5.20688 + 5.20688i 0.297172 + 0.297172i 0.839905 0.542733i \(-0.182610\pi\)
−0.542733 + 0.839905i \(0.682610\pi\)
\(308\) −0.126813 0.126813i −0.00722585 0.00722585i
\(309\) −10.6009 5.02073i −0.603067 0.285619i
\(310\) −13.7843 8.50625i −0.782896 0.483122i
\(311\) 22.2889i 1.26389i −0.775013 0.631945i \(-0.782257\pi\)
0.775013 0.631945i \(-0.217743\pi\)
\(312\) −1.87040 5.23613i −0.105890 0.296437i
\(313\) −8.76264 + 8.76264i −0.495293 + 0.495293i −0.909969 0.414676i \(-0.863895\pi\)
0.414676 + 0.909969i \(0.363895\pi\)
\(314\) 20.5913 1.16204
\(315\) −0.254491 1.89826i −0.0143390 0.106955i
\(316\) 7.86026 0.442174
\(317\) −18.4371 + 18.4371i −1.03553 + 1.03553i −0.0361858 + 0.999345i \(0.511521\pi\)
−0.999345 + 0.0361858i \(0.988479\pi\)
\(318\) 6.35622 + 17.7941i 0.356439 + 0.997842i
\(319\) 9.71095i 0.543709i
\(320\) 9.04516 2.14176i 0.505640 0.119728i
\(321\) −1.21184 0.573942i −0.0676384 0.0320343i
\(322\) −2.41690 2.41690i −0.134689 0.134689i
\(323\) −0.810283 0.810283i −0.0450853 0.0450853i
\(324\) −5.54237 1.11463i −0.307909 0.0619238i
\(325\) −2.27296 + 6.84987i −0.126081 + 0.379962i
\(326\) 29.5280i 1.63541i
\(327\) 0.409794 0.146382i 0.0226617 0.00809496i
\(328\) −14.1561 + 14.1561i −0.781639 + 0.781639i
\(329\) 1.60937 0.0887273
\(330\) −6.14102 1.30771i −0.338052 0.0719868i
\(331\) −0.848055 −0.0466133 −0.0233067 0.999728i \(-0.507419\pi\)
−0.0233067 + 0.999728i \(0.507419\pi\)
\(332\) 3.09718 3.09718i 0.169980 0.169980i
\(333\) −10.0438 0.999948i −0.550398 0.0547968i
\(334\) 3.41815i 0.187033i
\(335\) −10.4224 + 16.8894i −0.569435 + 0.922765i
\(336\) −1.02907 + 2.17281i −0.0561403 + 0.118537i
\(337\) 24.8680 + 24.8680i 1.35465 + 1.35465i 0.880383 + 0.474264i \(0.157286\pi\)
0.474264 + 0.880383i \(0.342714\pi\)
\(338\) 12.5139 + 12.5139i 0.680669 + 0.680669i
\(339\) 2.51790 5.31639i 0.136754 0.288747i
\(340\) −3.00336 + 4.86692i −0.162880 + 0.263946i
\(341\) 4.46829i 0.241972i
\(342\) 1.36202 + 0.135600i 0.0736495 + 0.00733243i
\(343\) −2.80992 + 2.80992i −0.151721 + 0.151721i
\(344\) 5.81003 0.313256
\(345\) −27.9736 5.95687i −1.50605 0.320707i
\(346\) −28.2375 −1.51806
\(347\) −7.84495 + 7.84495i −0.421139 + 0.421139i −0.885596 0.464457i \(-0.846250\pi\)
0.464457 + 0.885596i \(0.346250\pi\)
\(348\) 9.94964 3.55411i 0.533357 0.190520i
\(349\) 3.21032i 0.171845i −0.996302 0.0859223i \(-0.972616\pi\)
0.996302 0.0859223i \(-0.0273837\pi\)
\(350\) 2.06853 1.03778i 0.110567 0.0554715i
\(351\) 7.27838 1.81088i 0.388491 0.0966577i
\(352\) 2.42796 + 2.42796i 0.129410 + 0.129410i
\(353\) 2.32761 + 2.32761i 0.123886 + 0.123886i 0.766331 0.642445i \(-0.222080\pi\)
−0.642445 + 0.766331i \(0.722080\pi\)
\(354\) 6.80683 + 3.22379i 0.361779 + 0.171343i
\(355\) 1.47782 0.349926i 0.0784346 0.0185721i
\(356\) 1.87175i 0.0992024i
\(357\) 0.677324 + 1.89615i 0.0358478 + 0.100355i
\(358\) 23.2860 23.2860i 1.23070 1.23070i
\(359\) −11.6869 −0.616811 −0.308406 0.951255i \(-0.599795\pi\)
−0.308406 + 0.951255i \(0.599795\pi\)
\(360\) 1.98239 + 14.7867i 0.104481 + 0.779325i
\(361\) 18.9208 0.995831
\(362\) −16.0707 + 16.0707i −0.844655 + 0.844655i
\(363\) 0.582649 + 1.63111i 0.0305811 + 0.0856111i
\(364\) 0.258865i 0.0135682i
\(365\) 15.4509 + 9.53472i 0.808739 + 0.499070i
\(366\) 24.0316 + 11.3816i 1.25615 + 0.594927i
\(367\) −6.60685 6.60685i −0.344875 0.344875i 0.513321 0.858196i \(-0.328415\pi\)
−0.858196 + 0.513321i \(0.828415\pi\)
\(368\) 25.3868 + 25.3868i 1.32338 + 1.32338i
\(369\) −17.1098 20.8934i −0.890703 1.08767i
\(370\) −2.81020 11.8682i −0.146096 0.616997i
\(371\) 1.92125i 0.0997463i
\(372\) −4.57812 + 1.63535i −0.237365 + 0.0847890i
\(373\) −12.6827 + 12.6827i −0.656683 + 0.656683i −0.954594 0.297911i \(-0.903710\pi\)
0.297911 + 0.954594i \(0.403710\pi\)
\(374\) 6.60083 0.341321
\(375\) 9.79303 16.7062i 0.505710 0.862704i
\(376\) −12.5363 −0.646512
\(377\) −9.91155 + 9.91155i −0.510471 + 0.510471i
\(378\) −2.06091 1.23971i −0.106002 0.0637638i
\(379\) 6.12762i 0.314755i 0.987539 + 0.157377i \(0.0503039\pi\)
−0.987539 + 0.157377i \(0.949696\pi\)
\(380\) 0.0910823 + 0.384663i 0.00467242 + 0.0197328i
\(381\) 3.02712 6.39157i 0.155084 0.327450i
\(382\) 21.7619 + 21.7619i 1.11343 + 1.11343i
\(383\) −20.8849 20.8849i −1.06717 1.06717i −0.997576 0.0695907i \(-0.977831\pi\)
−0.0695907 0.997576i \(-0.522169\pi\)
\(384\) 10.0874 21.2990i 0.514772 1.08691i
\(385\) −0.543294 0.335265i −0.0276888 0.0170867i
\(386\) 1.71786i 0.0874367i
\(387\) −0.776434 + 7.79877i −0.0394684 + 0.396434i
\(388\) −7.16951 + 7.16951i −0.363977 + 0.363977i
\(389\) −17.8685 −0.905968 −0.452984 0.891519i \(-0.649640\pi\)
−0.452984 + 0.891519i \(0.649640\pi\)
\(390\) 4.93316 + 7.60260i 0.249800 + 0.384973i
\(391\) 30.0681 1.52061
\(392\) 10.8800 10.8800i 0.549522 0.549522i
\(393\) 28.1478 10.0547i 1.41987 0.507191i
\(394\) 0.500113i 0.0251953i
\(395\) 27.2279 6.44715i 1.36998 0.324391i
\(396\) −1.45796 + 1.19394i −0.0732652 + 0.0599977i
\(397\) 10.2866 + 10.2866i 0.516271 + 0.516271i 0.916441 0.400170i \(-0.131049\pi\)
−0.400170 + 0.916441i \(0.631049\pi\)
\(398\) 3.00769 + 3.00769i 0.150762 + 0.150762i
\(399\) 0.125780 + 0.0595707i 0.00629686 + 0.00298226i
\(400\) −21.7275 + 10.9007i −1.08638 + 0.545033i
\(401\) 23.5884i 1.17795i −0.808151 0.588975i \(-0.799532\pi\)
0.808151 0.588975i \(-0.200468\pi\)
\(402\) 8.38353 + 23.4695i 0.418132 + 1.17055i
\(403\) 4.56060 4.56060i 0.227180 0.227180i
\(404\) −10.5861 −0.526677
\(405\) −20.1130 + 0.684904i −0.999421 + 0.0340331i
\(406\) 4.49473 0.223069
\(407\) −2.37906 + 2.37906i −0.117925 + 0.117925i
\(408\) −5.27609 14.7703i −0.261205 0.731238i
\(409\) 12.6076i 0.623405i −0.950180 0.311703i \(-0.899101\pi\)
0.950180 0.311703i \(-0.100899\pi\)
\(410\) 17.1365 27.7696i 0.846311 1.37144i
\(411\) −31.8042 15.0628i −1.56878 0.742994i
\(412\) −3.00799 3.00799i −0.148193 0.148193i
\(413\) 0.541509 + 0.541509i 0.0266459 + 0.0266459i
\(414\) −27.7869 + 22.7550i −1.36565 + 1.11835i
\(415\) 8.18824 13.2690i 0.401945 0.651349i
\(416\) 4.95622i 0.242999i
\(417\) −5.87582 + 2.09890i −0.287740 + 0.102784i
\(418\) 0.322618 0.322618i 0.0157798 0.0157798i
\(419\) 33.5948 1.64121 0.820606 0.571495i \(-0.193636\pi\)
0.820606 + 0.571495i \(0.193636\pi\)
\(420\) 0.144665 0.679352i 0.00705894 0.0331490i
\(421\) −11.1669 −0.544240 −0.272120 0.962263i \(-0.587725\pi\)
−0.272120 + 0.962263i \(0.587725\pi\)
\(422\) −11.6213 + 11.6213i −0.565718 + 0.565718i
\(423\) 1.67532 16.8274i 0.0814566 0.818178i
\(424\) 14.9658i 0.726802i
\(425\) −6.41165 + 19.3224i −0.311011 + 0.937273i
\(426\) 0.816292 1.72355i 0.0395495 0.0835061i
\(427\) 1.91181 + 1.91181i 0.0925187 + 0.0925187i
\(428\) −0.343857 0.343857i −0.0166209 0.0166209i
\(429\) 1.07012 2.25949i 0.0516659 0.109089i
\(430\) −9.21533 + 2.18205i −0.444403 + 0.105228i
\(431\) 3.65334i 0.175975i −0.996122 0.0879875i \(-0.971956\pi\)
0.996122 0.0879875i \(-0.0280436\pi\)
\(432\) 21.6476 + 13.0217i 1.04152 + 0.626508i
\(433\) 3.56615 3.56615i 0.171378 0.171378i −0.616207 0.787585i \(-0.711331\pi\)
0.787585 + 0.616207i \(0.211331\pi\)
\(434\) −2.06816 −0.0992747
\(435\) 31.5503 20.4723i 1.51272 0.981572i
\(436\) 0.157814 0.00755790
\(437\) 1.46959 1.46959i 0.0703000 0.0703000i
\(438\) 21.4706 7.66952i 1.02591 0.366464i
\(439\) 34.7868i 1.66028i 0.557552 + 0.830142i \(0.311741\pi\)
−0.557552 + 0.830142i \(0.688259\pi\)
\(440\) 4.23205 + 2.61158i 0.201755 + 0.124502i
\(441\) 13.1502 + 16.0581i 0.626198 + 0.764671i
\(442\) −6.73718 6.73718i −0.320455 0.320455i
\(443\) −10.4616 10.4616i −0.497045 0.497045i 0.413472 0.910517i \(-0.364316\pi\)
−0.910517 + 0.413472i \(0.864316\pi\)
\(444\) −3.30824 1.56682i −0.157002 0.0743581i
\(445\) −1.53525 6.48372i −0.0727777 0.307358i
\(446\) 34.8714i 1.65121i
\(447\) −6.79007 19.0086i −0.321159 0.899077i
\(448\) 0.839226 0.839226i 0.0396497 0.0396497i
\(449\) 18.1102 0.854671 0.427335 0.904093i \(-0.359452\pi\)
0.427335 + 0.904093i \(0.359452\pi\)
\(450\) −8.69764 22.7087i −0.410011 1.07050i
\(451\) −9.00173 −0.423875
\(452\) 1.50851 1.50851i 0.0709544 0.0709544i
\(453\) 9.75097 + 27.2976i 0.458140 + 1.28255i
\(454\) 22.4005i 1.05131i
\(455\) 0.212327 + 0.896708i 0.00995403 + 0.0420383i
\(456\) −0.979774 0.464032i −0.0458821 0.0217303i
\(457\) −4.07759 4.07759i −0.190742 0.190742i 0.605275 0.796016i \(-0.293063\pi\)
−0.796016 + 0.605275i \(0.793063\pi\)
\(458\) −22.3561 22.3561i −1.04463 1.04463i
\(459\) 20.5311 5.10821i 0.958311 0.238431i
\(460\) −8.82701 5.44711i −0.411561 0.253973i
\(461\) 22.5889i 1.05207i 0.850462 + 0.526036i \(0.176322\pi\)
−0.850462 + 0.526036i \(0.823678\pi\)
\(462\) −0.754962 + 0.269680i −0.0351240 + 0.0125466i
\(463\) −4.81057 + 4.81057i −0.223566 + 0.223566i −0.809998 0.586432i \(-0.800532\pi\)
0.586432 + 0.809998i \(0.300532\pi\)
\(464\) −47.2120 −2.19176
\(465\) −14.5172 + 9.41991i −0.673220 + 0.436838i
\(466\) −23.7805 −1.10161
\(467\) 4.10549 4.10549i 0.189979 0.189979i −0.605708 0.795687i \(-0.707110\pi\)
0.795687 + 0.605708i \(0.207110\pi\)
\(468\) 2.70668 + 0.269473i 0.125116 + 0.0124564i
\(469\) 2.53403i 0.117011i
\(470\) 19.8840 4.70822i 0.917179 0.217174i
\(471\) 9.41666 19.8827i 0.433897 0.916145i
\(472\) −4.21814 4.21814i −0.194156 0.194156i
\(473\) 1.84728 + 1.84728i 0.0849378 + 0.0849378i
\(474\) 15.0396 31.7552i 0.690793 1.45856i
\(475\) 0.631017 + 1.25776i 0.0289530 + 0.0577100i
\(476\) 0.730218i 0.0334695i
\(477\) 20.0885 + 1.99998i 0.919787 + 0.0915726i
\(478\) −29.8612 + 29.8612i −1.36582 + 1.36582i
\(479\) −5.74056 −0.262293 −0.131146 0.991363i \(-0.541866\pi\)
−0.131146 + 0.991363i \(0.541866\pi\)
\(480\) −2.76975 + 13.0068i −0.126421 + 0.593678i
\(481\) 4.85640 0.221433
\(482\) 2.51950 2.51950i 0.114760 0.114760i
\(483\) −3.43900 + 1.22845i −0.156480 + 0.0558962i
\(484\) 0.628149i 0.0285522i
\(485\) −18.9545 + 30.7157i −0.860682 + 1.39473i
\(486\) −15.1077 + 20.2583i −0.685299 + 0.918934i
\(487\) 15.2791 + 15.2791i 0.692361 + 0.692361i 0.962751 0.270390i \(-0.0871527\pi\)
−0.270390 + 0.962751i \(0.587153\pi\)
\(488\) −14.8922 14.8922i −0.674139 0.674139i
\(489\) −28.5118 13.5035i −1.28935 0.610650i
\(490\) −13.1707 + 21.3429i −0.594989 + 0.964176i
\(491\) 9.79503i 0.442043i −0.975269 0.221022i \(-0.929061\pi\)
0.975269 0.221022i \(-0.0709392\pi\)
\(492\) −3.29454 9.22299i −0.148529 0.415804i
\(493\) −27.9589 + 27.9589i −1.25920 + 1.25920i
\(494\) −0.658565 −0.0296302
\(495\) −4.07106 + 5.33165i −0.182981 + 0.239640i
\(496\) 21.7236 0.975419
\(497\) 0.137115 0.137115i 0.00615044 0.00615044i
\(498\) −6.58644 18.4386i −0.295146 0.826253i
\(499\) 0.929617i 0.0416154i 0.999783 + 0.0208077i \(0.00662377\pi\)
−0.999783 + 0.0208077i \(0.993376\pi\)
\(500\) 5.38268 4.51089i 0.240721 0.201733i
\(501\) 3.30051 + 1.56316i 0.147456 + 0.0698368i
\(502\) 3.94364 + 3.94364i 0.176013 + 0.176013i
\(503\) 6.49027 + 6.49027i 0.289387 + 0.289387i 0.836838 0.547451i \(-0.184402\pi\)
−0.547451 + 0.836838i \(0.684402\pi\)
\(504\) 1.20689 + 1.47378i 0.0537593 + 0.0656472i
\(505\) −36.6700 + 8.68291i −1.63180 + 0.386385i
\(506\) 11.9718i 0.532209i
\(507\) 17.8060 6.36049i 0.790794 0.282479i
\(508\) 1.81359 1.81359i 0.0804651 0.0804651i
\(509\) 13.0970 0.580515 0.290257 0.956949i \(-0.406259\pi\)
0.290257 + 0.956949i \(0.406259\pi\)
\(510\) 13.9156 + 21.4457i 0.616195 + 0.949632i
\(511\) 2.31821 0.102552
\(512\) −3.48700 + 3.48700i −0.154105 + 0.154105i
\(513\) 0.753801 1.25313i 0.0332811 0.0553271i
\(514\) 26.7649i 1.18055i
\(515\) −12.8869 7.95244i −0.567863 0.350426i
\(516\) −1.21660 + 2.56876i −0.0535577 + 0.113084i
\(517\) −3.98588 3.98588i −0.175299 0.175299i
\(518\) −1.10115 1.10115i −0.0483817 0.0483817i
\(519\) −12.9133 + 27.2657i −0.566833 + 1.19683i
\(520\) −1.65394 6.98500i −0.0725301 0.306312i
\(521\) 3.26098i 0.142866i 0.997445 + 0.0714330i \(0.0227572\pi\)
−0.997445 + 0.0714330i \(0.977243\pi\)
\(522\) 4.67891 46.9966i 0.204790 2.05698i
\(523\) −17.8320 + 17.8320i −0.779737 + 0.779737i −0.979786 0.200049i \(-0.935890\pi\)
0.200049 + 0.979786i \(0.435890\pi\)
\(524\) 10.8399 0.473541
\(525\) −0.0560992 2.47193i −0.00244837 0.107884i
\(526\) −36.6289 −1.59710
\(527\) 12.8647 12.8647i 0.560396 0.560396i
\(528\) 7.93001 2.83268i 0.345109 0.123276i
\(529\) 31.5338i 1.37103i
\(530\) 5.62063 + 23.7373i 0.244145 + 1.03108i
\(531\) 6.22569 5.09829i 0.270172 0.221247i
\(532\) 0.0356897 + 0.0356897i 0.00154734 + 0.00154734i
\(533\) 9.18768 + 9.18768i 0.397963 + 0.397963i
\(534\) −7.56180 3.58136i −0.327231 0.154980i
\(535\) −1.47316 0.909079i −0.0636901 0.0393029i
\(536\) 19.7391i 0.852599i
\(537\) −11.8356 33.1335i −0.510745 1.42982i
\(538\) 2.27570 2.27570i 0.0981124 0.0981124i
\(539\) 6.91849 0.298000
\(540\) −6.95266 2.21980i −0.299195 0.0955250i
\(541\) 29.4057 1.26425 0.632125 0.774866i \(-0.282183\pi\)
0.632125 + 0.774866i \(0.282183\pi\)
\(542\) −19.1885 + 19.1885i −0.824218 + 0.824218i
\(543\) 8.16828 + 22.8669i 0.350534 + 0.981312i
\(544\) 13.9807i 0.599418i
\(545\) 0.546665 0.129442i 0.0234166 0.00554469i
\(546\) 1.04581 + 0.495307i 0.0447564 + 0.0211972i
\(547\) −6.91991 6.91991i −0.295874 0.295874i 0.543521 0.839395i \(-0.317091\pi\)
−0.839395 + 0.543521i \(0.817091\pi\)
\(548\) −9.02436 9.02436i −0.385501 0.385501i
\(549\) 21.9799 17.9996i 0.938078 0.768203i
\(550\) −7.69329 2.55283i −0.328043 0.108853i
\(551\) 2.73300i 0.116430i
\(552\) 26.7885 9.56911i 1.14019 0.407288i
\(553\) 2.52625 2.52625i 0.107427 0.107427i
\(554\) −35.8542 −1.52330
\(555\) −12.7449 2.71397i −0.540989 0.115202i
\(556\) −2.26281 −0.0959644
\(557\) −3.53461 + 3.53461i −0.149766 + 0.149766i −0.778014 0.628247i \(-0.783773\pi\)
0.628247 + 0.778014i \(0.283773\pi\)
\(558\) −2.15290 + 21.6245i −0.0911397 + 0.915438i
\(559\) 3.77087i 0.159491i
\(560\) −1.62997 + 2.64135i −0.0688786 + 0.111617i
\(561\) 3.01864 6.37366i 0.127447 0.269096i
\(562\) 12.7816 + 12.7816i 0.539159 + 0.539159i
\(563\) 11.1629 + 11.1629i 0.470458 + 0.470458i 0.902063 0.431605i \(-0.142052\pi\)
−0.431605 + 0.902063i \(0.642052\pi\)
\(564\) 2.62506 5.54264i 0.110535 0.233387i
\(565\) 3.98816 6.46279i 0.167783 0.271891i
\(566\) 22.3338i 0.938759i
\(567\) −2.13953 + 1.42305i −0.0898516 + 0.0597626i
\(568\) −1.06807 + 1.06807i −0.0448152 + 0.0448152i
\(569\) 11.5279 0.483275 0.241637 0.970367i \(-0.422316\pi\)
0.241637 + 0.970367i \(0.422316\pi\)
\(570\) 1.72830 + 0.368034i 0.0723905 + 0.0154153i
\(571\) 37.5721 1.57234 0.786172 0.618008i \(-0.212060\pi\)
0.786172 + 0.618008i \(0.212060\pi\)
\(572\) 0.641125 0.641125i 0.0268068 0.0268068i
\(573\) 30.9649 11.0610i 1.29358 0.462079i
\(574\) 4.16646i 0.173905i
\(575\) −35.0445 11.6287i −1.46146 0.484948i
\(576\) −7.90127 9.64850i −0.329220 0.402021i
\(577\) −9.80937 9.80937i −0.408369 0.408369i 0.472800 0.881170i \(-0.343243\pi\)
−0.881170 + 0.472800i \(0.843243\pi\)
\(578\) 0.483120 + 0.483120i 0.0200951 + 0.0200951i
\(579\) 1.65874 + 0.785598i 0.0689348 + 0.0326483i
\(580\) 13.2728 3.14280i 0.551124 0.130498i
\(581\) 1.99084i 0.0825939i
\(582\) 15.2466 + 42.6826i 0.631993 + 1.76925i
\(583\) 4.75830 4.75830i 0.197069 0.197069i
\(584\) −18.0580 −0.747243
\(585\) 9.59695 1.28662i 0.396785 0.0531953i
\(586\) 8.49813 0.351055
\(587\) 28.3158 28.3158i 1.16872 1.16872i 0.186209 0.982510i \(-0.440380\pi\)
0.982510 0.186209i \(-0.0596202\pi\)
\(588\) 2.53210 + 7.08854i 0.104422 + 0.292326i
\(589\) 1.25754i 0.0518158i
\(590\) 8.27461 + 5.10623i 0.340660 + 0.210220i
\(591\) −0.482901 0.228708i −0.0198639 0.00940778i
\(592\) 11.5663 + 11.5663i 0.475373 + 0.475373i
\(593\) −22.0674 22.0674i −0.906199 0.906199i 0.0897641 0.995963i \(-0.471389\pi\)
−0.995963 + 0.0897641i \(0.971389\pi\)
\(594\) 2.03386 + 8.17456i 0.0834501 + 0.335406i
\(595\) 0.598940 + 2.52947i 0.0245541 + 0.103698i
\(596\) 7.32031i 0.299852i
\(597\) 4.27963 1.52873i 0.175154 0.0625666i
\(598\) 12.2191 12.2191i 0.499674 0.499674i
\(599\) 13.7723 0.562721 0.281361 0.959602i \(-0.409214\pi\)
0.281361 + 0.959602i \(0.409214\pi\)
\(600\) 0.436991 + 19.2553i 0.0178401 + 0.786095i
\(601\) 47.6415 1.94334 0.971669 0.236346i \(-0.0759500\pi\)
0.971669 + 0.236346i \(0.0759500\pi\)
\(602\) −0.855014 + 0.855014i −0.0348478 + 0.0348478i
\(603\) 26.4957 + 2.63787i 1.07899 + 0.107422i
\(604\) 10.5124i 0.427745i
\(605\) 0.515221 + 2.17590i 0.0209467 + 0.0884630i
\(606\) −20.2551 + 42.7674i −0.822808 + 1.73731i
\(607\) −24.2606 24.2606i −0.984709 0.984709i 0.0151761 0.999885i \(-0.495169\pi\)
−0.999885 + 0.0151761i \(0.995169\pi\)
\(608\) −0.683312 0.683312i −0.0277120 0.0277120i
\(609\) 2.05549 4.34004i 0.0832927 0.175867i
\(610\) 29.2136 + 18.0276i 1.18283 + 0.729917i
\(611\) 8.13643i 0.329165i
\(612\) 7.63511 + 0.760140i 0.308631 + 0.0307268i
\(613\) 2.32722 2.32722i 0.0939954 0.0939954i −0.658546 0.752541i \(-0.728828\pi\)
0.752541 + 0.658546i \(0.228828\pi\)
\(614\) 11.9376 0.481763
\(615\) −18.9772 29.2461i −0.765233 1.17932i
\(616\) 0.634963 0.0255834
\(617\) −14.3887 + 14.3887i −0.579267 + 0.579267i −0.934701 0.355434i \(-0.884333\pi\)
0.355434 + 0.934701i \(0.384333\pi\)
\(618\) −17.9076 + 6.39677i −0.720349 + 0.257316i
\(619\) 0.383560i 0.0154166i 0.999970 + 0.00770829i \(0.00245365\pi\)
−0.999970 + 0.00770829i \(0.997546\pi\)
\(620\) −6.10722 + 1.44610i −0.245272 + 0.0580766i
\(621\) 9.26463 + 37.2368i 0.371777 + 1.49426i
\(622\) −25.5505 25.5505i −1.02448 1.02448i
\(623\) −0.601571 0.601571i −0.0241014 0.0241014i
\(624\) −10.9850 5.20263i −0.439753 0.208272i
\(625\) 14.9456 20.0407i 0.597825 0.801626i
\(626\) 20.0898i 0.802948i
\(627\) −0.163978 0.459052i −0.00654864 0.0183328i
\(628\) 5.64166 5.64166i 0.225127 0.225127i
\(629\) 13.6991 0.546220
\(630\) −2.46776 1.88430i −0.0983179 0.0750722i
\(631\) 15.5344 0.618416 0.309208 0.950994i \(-0.399936\pi\)
0.309208 + 0.950994i \(0.399936\pi\)
\(632\) −19.6785 + 19.6785i −0.782768 + 0.782768i
\(633\) 5.90681 + 16.5360i 0.234774 + 0.657245i
\(634\) 42.2700i 1.67876i
\(635\) 4.79472 7.76981i 0.190273 0.308336i
\(636\) 6.61675 + 3.13377i 0.262371 + 0.124262i
\(637\) −7.06140 7.06140i −0.279783 0.279783i
\(638\) −11.1320 11.1320i −0.440718 0.440718i
\(639\) −1.29093 1.57640i −0.0510684 0.0623613i
\(640\) 15.9777 25.8918i 0.631574 1.02346i
\(641\) 30.7396i 1.21414i 0.794648 + 0.607071i \(0.207656\pi\)
−0.794648 + 0.607071i \(0.792344\pi\)
\(642\) −2.04710 + 0.731243i −0.0807925 + 0.0288599i
\(643\) 5.50784 5.50784i 0.217208 0.217208i −0.590113 0.807321i \(-0.700917\pi\)
0.807321 + 0.590113i \(0.200917\pi\)
\(644\) −1.32438 −0.0521878
\(645\) −2.10733 + 9.89606i −0.0829759 + 0.389657i
\(646\) −1.85770 −0.0730904
\(647\) −1.83127 + 1.83127i −0.0719945 + 0.0719945i −0.742187 0.670193i \(-0.766211\pi\)
0.670193 + 0.742187i \(0.266211\pi\)
\(648\) 16.6661 11.0850i 0.654704 0.435461i
\(649\) 2.68228i 0.105289i
\(650\) 5.24665 + 10.4578i 0.205791 + 0.410188i
\(651\) −0.945793 + 1.99698i −0.0370685 + 0.0782678i
\(652\) −8.09015 8.09015i −0.316835 0.316835i
\(653\) 2.26241 + 2.26241i 0.0885350 + 0.0885350i 0.749987 0.661452i \(-0.230060\pi\)
−0.661452 + 0.749987i \(0.730060\pi\)
\(654\) 0.301957 0.637562i 0.0118074 0.0249306i
\(655\) 37.5492 8.89108i 1.46717 0.347403i
\(656\) 43.7639i 1.70870i
\(657\) 2.41321 24.2391i 0.0941481 0.945656i
\(658\) 1.84487 1.84487i 0.0719204 0.0719204i
\(659\) −21.4513 −0.835624 −0.417812 0.908534i \(-0.637203\pi\)
−0.417812 + 0.908534i \(0.637203\pi\)
\(660\) −2.04082 + 1.32424i −0.0794388 + 0.0515461i
\(661\) −23.6158 −0.918548 −0.459274 0.888295i \(-0.651890\pi\)
−0.459274 + 0.888295i \(0.651890\pi\)
\(662\) −0.972152 + 0.972152i −0.0377837 + 0.0377837i
\(663\) −9.58631 + 3.42433i −0.372302 + 0.132990i
\(664\) 15.5078i 0.601821i
\(665\) 0.152902 + 0.0943553i 0.00592929 + 0.00365894i
\(666\) −12.6598 + 10.3673i −0.490558 + 0.401724i
\(667\) −50.7083 50.7083i −1.96343 1.96343i
\(668\) 0.936511 + 0.936511i 0.0362347 + 0.0362347i
\(669\) −33.6713 15.9471i −1.30181 0.616552i
\(670\) 7.41333 + 31.3083i 0.286402 + 1.20954i
\(671\) 9.46983i 0.365579i
\(672\) 0.571188 + 1.59903i 0.0220341 + 0.0616838i
\(673\) 5.74356 5.74356i 0.221398 0.221398i −0.587689 0.809087i \(-0.699962\pi\)
0.809087 + 0.587689i \(0.199962\pi\)
\(674\) 57.0139 2.19609
\(675\) −25.9047 1.98665i −0.997072 0.0764662i
\(676\) 6.85719 0.263738
\(677\) −1.13494 + 1.13494i −0.0436194 + 0.0436194i −0.728580 0.684961i \(-0.759819\pi\)
0.684961 + 0.728580i \(0.259819\pi\)
\(678\) −3.20799 8.98069i −0.123202 0.344901i
\(679\) 4.60849i 0.176858i
\(680\) −4.66550 19.7036i −0.178914 0.755597i
\(681\) −21.6296 10.2440i −0.828849 0.392552i
\(682\) 5.12214 + 5.12214i 0.196137 + 0.196137i
\(683\) 1.61763 + 1.61763i 0.0618968 + 0.0618968i 0.737378 0.675481i \(-0.236064\pi\)
−0.675481 + 0.737378i \(0.736064\pi\)
\(684\) 0.410321 0.336017i 0.0156890 0.0128479i
\(685\) −38.6623 23.8583i −1.47721 0.911580i
\(686\) 6.44219i 0.245964i
\(687\) −31.8104 + 11.3630i −1.21364 + 0.433524i
\(688\) 8.98095 8.98095i 0.342395 0.342395i
\(689\) −9.71319 −0.370043
\(690\) −38.8955 + 25.2385i −1.48073 + 0.960812i
\(691\) −26.3783 −1.00348 −0.501739 0.865019i \(-0.667306\pi\)
−0.501739 + 0.865019i \(0.667306\pi\)
\(692\) −7.73657 + 7.73657i −0.294100 + 0.294100i
\(693\) −0.0848544 + 0.852307i −0.00322335 + 0.0323765i
\(694\) 17.9858i 0.682732i
\(695\) −7.83835 + 1.85600i −0.297325 + 0.0704022i
\(696\) −16.0115 + 33.8072i −0.606913 + 1.28146i
\(697\) 25.9170 + 25.9170i 0.981675 + 0.981675i
\(698\) −3.68009 3.68009i −0.139293 0.139293i
\(699\) −10.8751 + 22.9621i −0.411335 + 0.868507i
\(700\) 0.282407 0.851072i 0.0106740 0.0321675i
\(701\) 11.2314i 0.424205i 0.977247 + 0.212102i \(0.0680310\pi\)
−0.977247 + 0.212102i \(0.931969\pi\)
\(702\) 6.26756 10.4193i 0.236554 0.393251i
\(703\) 0.669550 0.669550i 0.0252526 0.0252526i
\(704\) −4.15697 −0.156672
\(705\) 4.54699 21.3528i 0.171249 0.804192i
\(706\) 5.33641 0.200839
\(707\) −3.40231 + 3.40231i −0.127957 + 0.127957i
\(708\) 2.74821 0.981688i 0.103284 0.0368941i
\(709\) 13.2746i 0.498538i 0.968434 + 0.249269i \(0.0801903\pi\)
−0.968434 + 0.249269i \(0.919810\pi\)
\(710\) 1.29294 2.09520i 0.0485232 0.0786316i
\(711\) −23.7845 29.0441i −0.891989 1.08924i
\(712\) 4.68600 + 4.68600i 0.175615 + 0.175615i
\(713\) 23.3324 + 23.3324i 0.873805 + 0.873805i
\(714\) 2.95006 + 1.39718i 0.110403 + 0.0522882i
\(715\) 1.69499 2.74671i 0.0633889 0.102721i
\(716\) 12.7599i 0.476859i
\(717\) 15.1776 + 42.4894i 0.566819 + 1.58680i
\(718\) −13.3971 + 13.3971i −0.499974 + 0.499974i
\(719\) 45.9916 1.71520 0.857600 0.514318i \(-0.171955\pi\)
0.857600 + 0.514318i \(0.171955\pi\)
\(720\) 25.9210 + 19.7924i 0.966019 + 0.737619i
\(721\) −1.93351 −0.0720076
\(722\) 21.6895 21.6895i 0.807199 0.807199i
\(723\) −1.28059 3.58499i −0.0476257 0.133327i
\(724\) 8.80615i 0.327278i
\(725\) 43.3991 21.7733i 1.61180 0.808640i
\(726\) 2.53770 + 1.20188i 0.0941829 + 0.0446061i
\(727\) −5.64032 5.64032i −0.209188 0.209188i 0.594734 0.803922i \(-0.297257\pi\)
−0.803922 + 0.594734i \(0.797257\pi\)
\(728\) −0.648080 0.648080i −0.0240194 0.0240194i
\(729\) 12.6522 + 23.8521i 0.468598 + 0.883411i
\(730\) 28.6418 6.78195i 1.06008 0.251011i
\(731\) 10.6370i 0.393424i
\(732\) 9.70259 3.46586i 0.358618 0.128102i
\(733\) 33.8431 33.8431i 1.25002 1.25002i 0.294313 0.955709i \(-0.404909\pi\)
0.955709 0.294313i \(-0.0950907\pi\)
\(734\) −15.1473 −0.559096
\(735\) 14.5853 + 22.4778i 0.537988 + 0.829105i
\(736\) 25.3565 0.934651
\(737\) 6.27596 6.27596i 0.231178 0.231178i
\(738\) −43.5643 4.33719i −1.60362 0.159654i
\(739\) 5.33288i 0.196173i 0.995178 + 0.0980866i \(0.0312722\pi\)
−0.995178 + 0.0980866i \(0.968728\pi\)
\(740\) −4.02161 2.48172i −0.147838 0.0912299i
\(741\) −0.301169 + 0.635900i −0.0110637 + 0.0233604i
\(742\) 2.20239 + 2.20239i 0.0808522 + 0.0808522i
\(743\) 28.7768 + 28.7768i 1.05572 + 1.05572i 0.998353 + 0.0573664i \(0.0182703\pi\)
0.0573664 + 0.998353i \(0.481730\pi\)
\(744\) 7.36735 15.5557i 0.270100 0.570299i
\(745\) −6.00427 25.3575i −0.219980 0.929027i
\(746\) 29.0770i 1.06459i
\(747\) −20.8161 2.07242i −0.761620 0.0758258i
\(748\) 1.80851 1.80851i 0.0661256 0.0661256i
\(749\) −0.221028 −0.00807618
\(750\) −7.92476 30.3769i −0.289371 1.10921i
\(751\) 14.4158 0.526040 0.263020 0.964790i \(-0.415281\pi\)
0.263020 + 0.964790i \(0.415281\pi\)
\(752\) −19.3782 + 19.3782i −0.706652 + 0.706652i
\(753\) 5.61140 2.00445i 0.204491 0.0730461i
\(754\) 22.7238i 0.827553i
\(755\) 8.62252 + 36.4150i 0.313806 + 1.32528i
\(756\) −0.904312 + 0.224996i −0.0328895 + 0.00818301i
\(757\) 28.9382 + 28.9382i 1.05178 + 1.05178i 0.998584 + 0.0531933i \(0.0169400\pi\)
0.0531933 + 0.998584i \(0.483060\pi\)
\(758\) 7.02428 + 7.02428i 0.255133 + 0.255133i
\(759\) 11.5597 + 5.47482i 0.419592 + 0.198724i
\(760\) −1.19105 0.734990i −0.0432038 0.0266609i
\(761\) 18.7778i 0.680696i −0.940299 0.340348i \(-0.889455\pi\)
0.940299 0.340348i \(-0.110545\pi\)
\(762\) −3.85677 10.7969i −0.139716 0.391132i
\(763\) 0.0507205 0.0507205i 0.00183621 0.00183621i
\(764\) 11.9247 0.431422
\(765\) 27.0714 3.62936i 0.978770 0.131220i
\(766\) −47.8819 −1.73004
\(767\) −2.73769 + 2.73769i −0.0988523 + 0.0988523i
\(768\) −8.00801 22.4182i −0.288964 0.808948i
\(769\) 0.107567i 0.00387895i 0.999998 + 0.00193948i \(0.000617355\pi\)
−0.999998 + 0.00193948i \(0.999383\pi\)
\(770\) −1.00712 + 0.238471i −0.0362941 + 0.00859388i
\(771\) −25.8437 12.2399i −0.930740 0.440809i
\(772\) 0.470663 + 0.470663i 0.0169395 + 0.0169395i
\(773\) −4.72647 4.72647i −0.169999 0.169999i 0.616980 0.786979i \(-0.288356\pi\)
−0.786979 + 0.616980i \(0.788356\pi\)
\(774\) 8.04992 + 9.83002i 0.289348 + 0.353333i
\(775\) −19.9692 + 10.0185i −0.717316 + 0.359876i
\(776\) 35.8983i 1.28867i
\(777\) −1.56682 + 0.559684i −0.0562094 + 0.0200786i
\(778\) −20.4832 + 20.4832i −0.734358 + 0.734358i
\(779\) 2.53340 0.0907686
\(780\) 3.43458 + 0.731379i 0.122978 + 0.0261876i
\(781\) −0.679177 −0.0243029
\(782\) 34.4680 34.4680i 1.23257 1.23257i
\(783\) −43.2394 26.0100i −1.54525 0.929521i
\(784\) 33.6358i 1.20128i
\(785\) 14.9153 24.1701i 0.532348 0.862667i
\(786\) 20.7407 43.7927i 0.739797 1.56203i
\(787\) −20.3978 20.3978i −0.727103 0.727103i 0.242939 0.970042i \(-0.421889\pi\)
−0.970042 + 0.242939i \(0.921889\pi\)
\(788\) −0.137022 0.137022i −0.00488121 0.00488121i
\(789\) −16.7508 + 35.3683i −0.596346 + 1.25914i
\(790\) 23.8216 38.6027i 0.847534 1.37342i
\(791\) 0.969657i 0.0344770i
\(792\) 0.660982 6.63914i 0.0234870 0.235911i
\(793\) −9.66545 + 9.66545i −0.343230 + 0.343230i
\(794\) 23.5838 0.836957
\(795\) 25.4907 + 5.42815i 0.904064 + 0.192517i
\(796\) 1.64811 0.0584156
\(797\) −15.7865 + 15.7865i −0.559186 + 0.559186i −0.929076 0.369889i \(-0.879396\pi\)
0.369889 + 0.929076i \(0.379396\pi\)
\(798\) 0.212473 0.0758974i 0.00752145 0.00268674i
\(799\) 22.9515i 0.811967i
\(800\) −5.40695 + 16.2946i −0.191165 + 0.576100i
\(801\) −6.91620 + 5.66376i −0.244372 + 0.200119i
\(802\) −27.0401 27.0401i −0.954821 0.954821i
\(803\) −5.74145 5.74145i −0.202611 0.202611i
\(804\) 8.72716 + 4.13328i 0.307783 + 0.145770i
\(805\) −4.58763 + 1.08628i −0.161693 + 0.0382864i
\(806\) 10.4559i 0.368294i
\(807\) −1.15668 3.23808i −0.0407169 0.113986i
\(808\) 26.5026 26.5026i 0.932360 0.932360i
\(809\) −47.1778 −1.65868 −0.829341 0.558742i \(-0.811284\pi\)
−0.829341 + 0.558742i \(0.811284\pi\)
\(810\) −22.2710 + 23.8412i −0.782522 + 0.837695i
\(811\) −42.0723 −1.47736 −0.738680 0.674057i \(-0.764550\pi\)
−0.738680 + 0.674057i \(0.764550\pi\)
\(812\) 1.23148 1.23148i 0.0432163 0.0432163i
\(813\) 9.75300 + 27.3033i 0.342053 + 0.957568i
\(814\) 5.45437i 0.191176i
\(815\) −34.6599 21.3885i −1.21408 0.749207i
\(816\) −30.9870 14.6758i −1.08476 0.513755i
\(817\) −0.519888 0.519888i −0.0181886 0.0181886i
\(818\) −14.4525 14.4525i −0.505319 0.505319i
\(819\) 0.956521 0.783306i 0.0334235 0.0273709i
\(820\) −2.91328 12.3035i −0.101736 0.429656i
\(821\) 44.0134i 1.53608i −0.640403 0.768039i \(-0.721233\pi\)
0.640403 0.768039i \(-0.278767\pi\)
\(822\) −53.7251 + 19.1911i −1.87388 + 0.669368i
\(823\) −12.1320 + 12.1320i −0.422896 + 0.422896i −0.886200 0.463303i \(-0.846664\pi\)
0.463303 + 0.886200i \(0.346664\pi\)
\(824\) 15.0613 0.524684
\(825\) −5.98321 + 6.26109i −0.208309 + 0.217983i
\(826\) 1.24150 0.0431972
\(827\) 14.5719 14.5719i 0.506716 0.506716i −0.406801 0.913517i \(-0.633356\pi\)
0.913517 + 0.406801i \(0.133356\pi\)
\(828\) −1.37865 + 13.8476i −0.0479113 + 0.481237i
\(829\) 34.3317i 1.19239i −0.802840 0.596195i \(-0.796679\pi\)
0.802840 0.596195i \(-0.203321\pi\)
\(830\) −5.82422 24.5971i −0.202161 0.853777i
\(831\) −16.3966 + 34.6203i −0.568790 + 1.20096i
\(832\) 4.24284 + 4.24284i 0.147094 + 0.147094i
\(833\) −19.9191 19.9191i −0.690155 0.690155i
\(834\) −4.32960 + 9.14167i −0.149922 + 0.316550i
\(835\) 4.01221 + 2.47592i 0.138848 + 0.0856828i
\(836\) 0.176783i 0.00611417i
\(837\) 19.8957 + 11.9680i 0.687697 + 0.413673i
\(838\) 38.5107 38.5107i 1.33033 1.33033i
\(839\) 7.37612 0.254652 0.127326 0.991861i \(-0.459361\pi\)
0.127326 + 0.991861i \(0.459361\pi\)
\(840\) 1.33861 + 2.06296i 0.0461864 + 0.0711789i
\(841\) 65.3025 2.25181
\(842\) −12.8009 + 12.8009i −0.441149 + 0.441149i
\(843\) 18.1869 6.49653i 0.626389 0.223752i
\(844\) 6.36808i 0.219198i
\(845\) 23.7533 5.62441i 0.817137 0.193486i
\(846\) −17.3694 21.2103i −0.597171 0.729225i
\(847\) 0.201884 + 0.201884i 0.00693681 + 0.00693681i
\(848\) −23.1336 23.1336i −0.794410 0.794410i
\(849\) −21.5652 10.2135i −0.740115 0.350527i
\(850\) 14.8000 + 29.4997i 0.507635 + 1.01183i
\(851\) 24.8458i 0.851702i
\(852\) −0.248572 0.695871i −0.00851593 0.0238401i
\(853\) −22.1377 + 22.1377i −0.757980 + 0.757980i −0.975955 0.217974i \(-0.930055\pi\)
0.217974 + 0.975955i \(0.430055\pi\)
\(854\) 4.38312 0.149987
\(855\) 1.14574 1.50051i 0.0391835 0.0513164i
\(856\) 1.72172 0.0588471
\(857\) −8.67169 + 8.67169i −0.296219 + 0.296219i −0.839531 0.543312i \(-0.817170\pi\)
0.543312 + 0.839531i \(0.317170\pi\)
\(858\) −1.36341 3.81683i −0.0465461 0.130305i
\(859\) 15.3607i 0.524101i −0.965054 0.262050i \(-0.915601\pi\)
0.965054 0.262050i \(-0.0843987\pi\)
\(860\) −1.92699 + 3.12268i −0.0657099 + 0.106482i
\(861\) −4.02307 1.90537i −0.137106 0.0649350i
\(862\) −4.18793 4.18793i −0.142642 0.142642i
\(863\) −25.8970 25.8970i −0.881543 0.881543i 0.112149 0.993691i \(-0.464227\pi\)
−0.993691 + 0.112149i \(0.964227\pi\)
\(864\) 17.3139 4.30775i 0.589031 0.146553i
\(865\) −20.4537 + 33.1451i −0.695447 + 1.12697i
\(866\) 8.17597i 0.277831i
\(867\) 0.687429 0.245556i 0.0233463 0.00833953i
\(868\) −0.566638 + 0.566638i −0.0192329 + 0.0192329i
\(869\) −12.5134 −0.424487
\(870\) 12.6991 59.6351i 0.430539 2.02182i
\(871\) −12.8112 −0.434091
\(872\) −0.395093 + 0.395093i −0.0133795 + 0.0133795i
\(873\) 48.1861 + 4.79733i 1.63085 + 0.162365i
\(874\) 3.36927i 0.113967i
\(875\) 0.280189 3.17974i 0.00947213 0.107495i
\(876\) 3.78126 7.98388i 0.127757 0.269750i
\(877\) 11.3433 + 11.3433i 0.383037 + 0.383037i 0.872195 0.489158i \(-0.162696\pi\)
−0.489158 + 0.872195i \(0.662696\pi\)
\(878\) 39.8772 + 39.8772i 1.34579 + 1.34579i
\(879\) 3.88630 8.20566i 0.131082 0.276770i
\(880\) 10.5786 2.50486i 0.356606 0.0844389i
\(881\) 45.7437i 1.54115i −0.637352 0.770573i \(-0.719970\pi\)
0.637352 0.770573i \(-0.280030\pi\)
\(882\) 33.4823 + 3.33345i 1.12741 + 0.112243i
\(883\) 33.5492 33.5492i 1.12902 1.12902i 0.138685 0.990337i \(-0.455713\pi\)
0.990337 0.138685i \(-0.0442875\pi\)
\(884\) −3.69174 −0.124167
\(885\) 8.71458 5.65470i 0.292937 0.190081i
\(886\) −23.9849 −0.805788
\(887\) −41.1834 + 41.1834i −1.38280 + 1.38280i −0.543204 + 0.839601i \(0.682789\pi\)
−0.839601 + 0.543204i \(0.817211\pi\)
\(888\) 12.2049 4.35972i 0.409570 0.146303i
\(889\) 1.16576i 0.0390983i
\(890\) −9.19239 5.67259i −0.308130 0.190146i
\(891\) 8.82334 + 1.77446i 0.295593 + 0.0594468i
\(892\) −9.55416 9.55416i −0.319897 0.319897i
\(893\) 1.12177 + 1.12177i 0.0375384 + 0.0375384i
\(894\) −29.5738 14.0065i −0.989097 0.468448i
\(895\) −10.4659 44.2001i −0.349837 1.47745i
\(896\) 3.88472i 0.129779i
\(897\) −6.21061 17.3865i −0.207366 0.580517i
\(898\) 20.7602 20.7602i 0.692778 0.692778i
\(899\) −43.3914 −1.44718
\(900\) −8.60478 3.83878i −0.286826 0.127959i
\(901\) −27.3994 −0.912805
\(902\) −10.3190 + 10.3190i −0.343584 + 0.343584i
\(903\) 0.434580 + 1.21660i 0.0144619 + 0.0404858i
\(904\) 7.55324i 0.251217i
\(905\) 7.22299 + 30.5044i 0.240100 + 1.01400i
\(906\) 42.4699 + 20.1142i 1.41097 + 0.668251i
\(907\) 40.3742 + 40.3742i 1.34060 + 1.34060i 0.895459 + 0.445143i \(0.146847\pi\)
0.445143 + 0.895459i \(0.353153\pi\)
\(908\) −6.13735 6.13735i −0.203675 0.203675i
\(909\) 32.0326 + 39.1161i 1.06245 + 1.29740i
\(910\) 1.27132 + 0.784527i 0.0421439 + 0.0260068i
\(911\) 3.96308i 0.131303i −0.997843 0.0656514i \(-0.979087\pi\)
0.997843 0.0656514i \(-0.0209125\pi\)
\(912\) −2.23178 + 0.797215i −0.0739018 + 0.0263984i
\(913\) −4.93065 + 4.93065i −0.163181 + 0.163181i
\(914\) −9.34853 −0.309222
\(915\) 30.7669 19.9640i 1.01712 0.659989i
\(916\) −12.2503 −0.404762
\(917\) 3.48388 3.48388i 0.115048 0.115048i
\(918\) 17.6798 29.3912i 0.583519 0.970053i
\(919\) 7.06389i 0.233016i −0.993190 0.116508i \(-0.962830\pi\)
0.993190 0.116508i \(-0.0371701\pi\)
\(920\) 35.7358 8.46171i 1.17818 0.278974i
\(921\) 5.45921 11.5268i 0.179887 0.379820i
\(922\) 25.8944 + 25.8944i 0.852787 + 0.852787i
\(923\) 0.693207 + 0.693207i 0.0228172 + 0.0228172i
\(924\) −0.132959 + 0.280734i −0.00437402 + 0.00923546i
\(925\) −15.9664 5.29806i −0.524972 0.174199i
\(926\) 11.0290i 0.362436i
\(927\) −2.01274 + 20.2166i −0.0661070 + 0.664001i
\(928\) −23.5778 + 23.5778i −0.773978 + 0.773978i
\(929\) 5.42663 0.178042 0.0890210 0.996030i \(-0.471626\pi\)
0.0890210 + 0.996030i \(0.471626\pi\)
\(930\) −5.84321 + 27.4399i −0.191607 + 0.899789i
\(931\) −1.94711 −0.0638138
\(932\) −6.51545 + 6.51545i −0.213421 + 0.213421i
\(933\) −36.3557 + 12.9866i −1.19023 + 0.425163i
\(934\) 9.41249i 0.307986i
\(935\) 4.78128 7.74804i 0.156365 0.253388i
\(936\) −7.45092 + 6.10165i −0.243541 + 0.199439i
\(937\) 29.0081 + 29.0081i 0.947653 + 0.947653i 0.998696 0.0510439i \(-0.0162548\pi\)
−0.0510439 + 0.998696i \(0.516255\pi\)
\(938\) 2.90484 + 2.90484i 0.0948463 + 0.0948463i
\(939\) 19.3984 + 9.18729i 0.633042 + 0.299816i
\(940\) 4.15788 6.73782i 0.135615 0.219763i
\(941\) 17.7369i 0.578208i −0.957298 0.289104i \(-0.906643\pi\)
0.957298 0.289104i \(-0.0933573\pi\)
\(942\) −11.9975 33.5867i −0.390900 1.09431i
\(943\) −47.0050 + 47.0050i −1.53069 + 1.53069i
\(944\) −13.0405 −0.424433
\(945\) −2.94798 + 1.52112i −0.0958979 + 0.0494820i
\(946\) 4.23518 0.137697
\(947\) −14.6533 + 14.6533i −0.476169 + 0.476169i −0.903904 0.427735i \(-0.859312\pi\)
0.427735 + 0.903904i \(0.359312\pi\)
\(948\) −4.57977 12.8209i −0.148744 0.416405i
\(949\) 11.7201i 0.380451i
\(950\) 2.16516 + 0.718456i 0.0702472 + 0.0233098i
\(951\) 40.8153 + 19.3306i 1.32353 + 0.626838i
\(952\) −1.82813 1.82813i −0.0592500 0.0592500i
\(953\) 11.7199 + 11.7199i 0.379646 + 0.379646i 0.870975 0.491328i \(-0.163488\pi\)
−0.491328 + 0.870975i \(0.663488\pi\)
\(954\) 25.3206 20.7354i 0.819786 0.671333i
\(955\) 41.3072 9.78092i 1.33667 0.316503i
\(956\) 16.3629i 0.529213i
\(957\) −15.8396 + 5.65807i −0.512022 + 0.182899i
\(958\) −6.58058 + 6.58058i −0.212609 + 0.212609i
\(959\) −5.80077 −0.187317
\(960\) −8.76359 13.5058i −0.282844 0.435897i
\(961\) −11.0344 −0.355947
\(962\) 5.56704 5.56704i 0.179489 0.179489i
\(963\) −0.230085 + 2.31105i −0.00741438 + 0.0744726i
\(964\) 1.38060i 0.0444660i
\(965\) 2.01642 + 1.24433i 0.0649109 + 0.0400562i
\(966\) −2.53403 + 5.35044i −0.0815311 + 0.172148i
\(967\) −21.1658 21.1658i −0.680647 0.680647i 0.279499 0.960146i \(-0.409832\pi\)
−0.960146 + 0.279499i \(0.909832\pi\)
\(968\) −1.57260 1.57260i −0.0505451 0.0505451i
\(969\) −0.849551 + 1.79377i −0.0272915 + 0.0576242i
\(970\) 13.4822 + 56.9385i 0.432887 + 1.82819i
\(971\) 15.3244i 0.491783i 0.969297 + 0.245891i \(0.0790807\pi\)
−0.969297 + 0.245891i \(0.920919\pi\)
\(972\) 1.41117 + 9.68965i 0.0452634 + 0.310796i
\(973\) −0.727255 + 0.727255i −0.0233147 + 0.0233147i
\(974\) 35.0297 1.12243
\(975\) 12.4972 0.283619i 0.400232 0.00908307i
\(976\) −46.0397 −1.47370
\(977\) −9.31965 + 9.31965i −0.298162 + 0.298162i −0.840294 0.542132i \(-0.817617\pi\)
0.542132 + 0.840294i \(0.317617\pi\)
\(978\) −48.1635 + 17.2045i −1.54010 + 0.550138i
\(979\) 2.97979i 0.0952344i
\(980\) 2.23906 + 9.45611i 0.0715243 + 0.302064i
\(981\) −0.477532 0.583129i −0.0152464 0.0186179i
\(982\) −11.2283 11.2283i −0.358311 0.358311i
\(983\) −22.0174 22.0174i −0.702247 0.702247i 0.262645 0.964892i \(-0.415405\pi\)
−0.964892 + 0.262645i \(0.915405\pi\)
\(984\) 31.3381 + 14.8421i 0.999024 + 0.473149i
\(985\) −0.587032 0.362255i −0.0187044 0.0115424i
\(986\) 64.1003i 2.04137i
\(987\) −0.937696 2.62506i −0.0298472 0.0835565i
\(988\) −0.180435 + 0.180435i −0.00574040 + 0.00574040i
\(989\) 19.2921 0.613453
\(990\) 1.44504 + 10.7786i 0.0459265 + 0.342567i
\(991\) −1.02170 −0.0324553 −0.0162276 0.999868i \(-0.505166\pi\)
−0.0162276 + 0.999868i \(0.505166\pi\)
\(992\) 10.8488 10.8488i 0.344450 0.344450i
\(993\) 0.494118 + 1.38327i 0.0156804 + 0.0438968i
\(994\) 0.314358i 0.00997083i
\(995\) 5.70903 1.35181i 0.180988 0.0428553i
\(996\) −6.85641 3.24728i −0.217254 0.102894i
\(997\) −23.8372 23.8372i −0.754932 0.754932i 0.220464 0.975395i \(-0.429243\pi\)
−0.975395 + 0.220464i \(0.929243\pi\)
\(998\) 1.06565 + 1.06565i 0.0337325 + 0.0337325i
\(999\) 4.22100 + 16.9652i 0.133546 + 0.536755i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 165.2.k.c.122.7 yes 16
3.2 odd 2 165.2.k.d.122.2 yes 16
5.2 odd 4 825.2.k.i.518.7 16
5.3 odd 4 165.2.k.d.23.2 yes 16
5.4 even 2 825.2.k.j.782.2 16
15.2 even 4 825.2.k.j.518.2 16
15.8 even 4 inner 165.2.k.c.23.7 16
15.14 odd 2 825.2.k.i.782.7 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
165.2.k.c.23.7 16 15.8 even 4 inner
165.2.k.c.122.7 yes 16 1.1 even 1 trivial
165.2.k.d.23.2 yes 16 5.3 odd 4
165.2.k.d.122.2 yes 16 3.2 odd 2
825.2.k.i.518.7 16 5.2 odd 4
825.2.k.i.782.7 16 15.14 odd 2
825.2.k.j.518.2 16 15.2 even 4
825.2.k.j.782.2 16 5.4 even 2