Properties

Label 825.2.k.j.518.2
Level $825$
Weight $2$
Character 825.518
Analytic conductor $6.588$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [825,2,Mod(518,825)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(825, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("825.518");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 825 = 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 825.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.58765816676\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 8 x^{14} + 19 x^{12} - 80 x^{11} + 168 x^{10} + 28 x^{9} + 119 x^{8} - 432 x^{7} + \cdots + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 165)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 518.2
Root \(-1.14633 - 1.14633i\) of defining polynomial
Character \(\chi\) \(=\) 825.518
Dual form 825.2.k.j.782.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.14633 - 1.14633i) q^{2} +(0.582649 - 1.63111i) q^{3} +0.628149i q^{4} +(-2.53770 + 1.20188i) q^{6} +(0.201884 - 0.201884i) q^{7} +(-1.57260 + 1.57260i) q^{8} +(-2.32104 - 1.90073i) q^{9} -1.00000i q^{11} +(1.02458 + 0.365990i) q^{12} +(-1.02066 - 1.02066i) q^{13} -0.462851 q^{14} +4.86173 q^{16} +(-2.87911 - 2.87911i) q^{17} +(0.481818 + 4.83954i) q^{18} +0.281435i q^{19} +(-0.211667 - 0.446922i) q^{21} +(-1.14633 + 1.14633i) q^{22} +(-5.22177 + 5.22177i) q^{23} +(1.64881 + 3.48135i) q^{24} +2.34002i q^{26} +(-4.45265 + 2.67842i) q^{27} +(0.126813 + 0.126813i) q^{28} -9.71095 q^{29} +4.46829 q^{31} +(-2.42796 - 2.42796i) q^{32} +(-1.63111 - 0.582649i) q^{33} +6.60083i q^{34} +(1.19394 - 1.45796i) q^{36} +(-2.37906 + 2.37906i) q^{37} +(0.322618 - 0.322618i) q^{38} +(-2.25949 + 1.07012i) q^{39} -9.00173i q^{41} +(-0.269680 + 0.754962i) q^{42} +(-1.84728 - 1.84728i) q^{43} +0.628149 q^{44} +11.9718 q^{46} +(3.98588 + 3.98588i) q^{47} +(2.83268 - 7.93001i) q^{48} +6.91849i q^{49} +(-6.37366 + 3.01864i) q^{51} +(0.641125 - 0.641125i) q^{52} +(4.75830 - 4.75830i) q^{53} +(8.17456 + 2.03386i) q^{54} +0.634963i q^{56} +(0.459052 + 0.163978i) q^{57} +(11.1320 + 11.1320i) q^{58} -2.68228 q^{59} -9.46983 q^{61} +(-5.12214 - 5.12214i) q^{62} +(-0.852307 + 0.0848544i) q^{63} -4.15697i q^{64} +(1.20188 + 2.53770i) q^{66} +(6.27596 - 6.27596i) q^{67} +(1.80851 - 1.80851i) q^{68} +(5.47482 + 11.5597i) q^{69} -0.679177i q^{71} +(6.63914 - 0.660982i) q^{72} +(5.74145 + 5.74145i) q^{73} +5.45437 q^{74} -0.176783 q^{76} +(-0.201884 - 0.201884i) q^{77} +(3.81683 + 1.36341i) q^{78} -12.5134i q^{79} +(1.77446 + 8.82334i) q^{81} +(-10.3190 + 10.3190i) q^{82} +(-4.93065 + 4.93065i) q^{83} +(0.280734 - 0.132959i) q^{84} +4.23518i q^{86} +(-5.65807 + 15.8396i) q^{87} +(1.57260 + 1.57260i) q^{88} +2.97979 q^{89} -0.412109 q^{91} +(-3.28005 - 3.28005i) q^{92} +(2.60345 - 7.28828i) q^{93} -9.13826i q^{94} +(-5.37491 + 2.54562i) q^{96} +(11.4137 - 11.4137i) q^{97} +(7.93087 - 7.93087i) q^{98} +(-1.90073 + 2.32104i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{2} + 2 q^{3} - 4 q^{6} - 8 q^{7} - 16 q^{8} + 6 q^{9} + 4 q^{12} - 24 q^{14} - 4 q^{16} - 8 q^{17} + 32 q^{18} - 8 q^{21} + 4 q^{22} - 14 q^{23} + 12 q^{24} + 20 q^{27} - 8 q^{28} - 16 q^{29}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/825\mathbb{Z}\right)^\times\).

\(n\) \(376\) \(551\) \(727\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.14633 1.14633i −0.810578 0.810578i 0.174142 0.984721i \(-0.444285\pi\)
−0.984721 + 0.174142i \(0.944285\pi\)
\(3\) 0.582649 1.63111i 0.336392 0.941722i
\(4\) 0.628149i 0.314074i
\(5\) 0 0
\(6\) −2.53770 + 1.20188i −1.03601 + 0.490667i
\(7\) 0.201884 0.201884i 0.0763049 0.0763049i −0.667924 0.744229i \(-0.732817\pi\)
0.744229 + 0.667924i \(0.232817\pi\)
\(8\) −1.57260 + 1.57260i −0.555996 + 0.555996i
\(9\) −2.32104 1.90073i −0.773680 0.633576i
\(10\) 0 0
\(11\) 1.00000i 0.301511i
\(12\) 1.02458 + 0.365990i 0.295771 + 0.105652i
\(13\) −1.02066 1.02066i −0.283079 0.283079i 0.551256 0.834336i \(-0.314149\pi\)
−0.834336 + 0.551256i \(0.814149\pi\)
\(14\) −0.462851 −0.123702
\(15\) 0 0
\(16\) 4.86173 1.21543
\(17\) −2.87911 2.87911i −0.698287 0.698287i 0.265754 0.964041i \(-0.414379\pi\)
−0.964041 + 0.265754i \(0.914379\pi\)
\(18\) 0.481818 + 4.83954i 0.113566 + 1.14069i
\(19\) 0.281435i 0.0645657i 0.999479 + 0.0322828i \(0.0102777\pi\)
−0.999479 + 0.0322828i \(0.989722\pi\)
\(20\) 0 0
\(21\) −0.211667 0.446922i −0.0461896 0.0975264i
\(22\) −1.14633 + 1.14633i −0.244399 + 0.244399i
\(23\) −5.22177 + 5.22177i −1.08881 + 1.08881i −0.0931634 + 0.995651i \(0.529698\pi\)
−0.995651 + 0.0931634i \(0.970302\pi\)
\(24\) 1.64881 + 3.48135i 0.336561 + 0.710627i
\(25\) 0 0
\(26\) 2.34002i 0.458916i
\(27\) −4.45265 + 2.67842i −0.856913 + 0.515462i
\(28\) 0.126813 + 0.126813i 0.0239654 + 0.0239654i
\(29\) −9.71095 −1.80328 −0.901639 0.432490i \(-0.857635\pi\)
−0.901639 + 0.432490i \(0.857635\pi\)
\(30\) 0 0
\(31\) 4.46829 0.802529 0.401265 0.915962i \(-0.368571\pi\)
0.401265 + 0.915962i \(0.368571\pi\)
\(32\) −2.42796 2.42796i −0.429206 0.429206i
\(33\) −1.63111 0.582649i −0.283940 0.101426i
\(34\) 6.60083i 1.13203i
\(35\) 0 0
\(36\) 1.19394 1.45796i 0.198990 0.242993i
\(37\) −2.37906 + 2.37906i −0.391114 + 0.391114i −0.875085 0.483970i \(-0.839194\pi\)
0.483970 + 0.875085i \(0.339194\pi\)
\(38\) 0.322618 0.322618i 0.0523355 0.0523355i
\(39\) −2.25949 + 1.07012i −0.361808 + 0.171356i
\(40\) 0 0
\(41\) 9.00173i 1.40583i −0.711272 0.702917i \(-0.751881\pi\)
0.711272 0.702917i \(-0.248119\pi\)
\(42\) −0.269680 + 0.754962i −0.0416125 + 0.116493i
\(43\) −1.84728 1.84728i −0.281707 0.281707i 0.552083 0.833789i \(-0.313833\pi\)
−0.833789 + 0.552083i \(0.813833\pi\)
\(44\) 0.628149 0.0946970
\(45\) 0 0
\(46\) 11.9718 1.76514
\(47\) 3.98588 + 3.98588i 0.581400 + 0.581400i 0.935288 0.353888i \(-0.115141\pi\)
−0.353888 + 0.935288i \(0.615141\pi\)
\(48\) 2.83268 7.93001i 0.408862 1.14460i
\(49\) 6.91849i 0.988355i
\(50\) 0 0
\(51\) −6.37366 + 3.01864i −0.892490 + 0.422694i
\(52\) 0.641125 0.641125i 0.0889080 0.0889080i
\(53\) 4.75830 4.75830i 0.653603 0.653603i −0.300256 0.953859i \(-0.597072\pi\)
0.953859 + 0.300256i \(0.0970720\pi\)
\(54\) 8.17456 + 2.03386i 1.11242 + 0.276773i
\(55\) 0 0
\(56\) 0.634963i 0.0848505i
\(57\) 0.459052 + 0.163978i 0.0608029 + 0.0217194i
\(58\) 11.1320 + 11.1320i 1.46170 + 1.46170i
\(59\) −2.68228 −0.349203 −0.174602 0.984639i \(-0.555864\pi\)
−0.174602 + 0.984639i \(0.555864\pi\)
\(60\) 0 0
\(61\) −9.46983 −1.21249 −0.606244 0.795279i \(-0.707324\pi\)
−0.606244 + 0.795279i \(0.707324\pi\)
\(62\) −5.12214 5.12214i −0.650513 0.650513i
\(63\) −0.852307 + 0.0848544i −0.107381 + 0.0106907i
\(64\) 4.15697i 0.519622i
\(65\) 0 0
\(66\) 1.20188 + 2.53770i 0.147942 + 0.312369i
\(67\) 6.27596 6.27596i 0.766731 0.766731i −0.210799 0.977529i \(-0.567607\pi\)
0.977529 + 0.210799i \(0.0676065\pi\)
\(68\) 1.80851 1.80851i 0.219314 0.219314i
\(69\) 5.47482 + 11.5597i 0.659091 + 1.39163i
\(70\) 0 0
\(71\) 0.679177i 0.0806035i −0.999188 0.0403017i \(-0.987168\pi\)
0.999188 0.0403017i \(-0.0128319\pi\)
\(72\) 6.63914 0.660982i 0.782430 0.0778975i
\(73\) 5.74145 + 5.74145i 0.671986 + 0.671986i 0.958174 0.286188i \(-0.0923881\pi\)
−0.286188 + 0.958174i \(0.592388\pi\)
\(74\) 5.45437 0.634058
\(75\) 0 0
\(76\) −0.176783 −0.0202784
\(77\) −0.201884 0.201884i −0.0230068 0.0230068i
\(78\) 3.81683 + 1.36341i 0.432171 + 0.154376i
\(79\) 12.5134i 1.40786i −0.710267 0.703932i \(-0.751426\pi\)
0.710267 0.703932i \(-0.248574\pi\)
\(80\) 0 0
\(81\) 1.77446 + 8.82334i 0.197163 + 0.980371i
\(82\) −10.3190 + 10.3190i −1.13954 + 1.13954i
\(83\) −4.93065 + 4.93065i −0.541209 + 0.541209i −0.923883 0.382674i \(-0.875003\pi\)
0.382674 + 0.923883i \(0.375003\pi\)
\(84\) 0.280734 0.132959i 0.0306305 0.0145070i
\(85\) 0 0
\(86\) 4.23518i 0.456691i
\(87\) −5.65807 + 15.8396i −0.606609 + 1.69819i
\(88\) 1.57260 + 1.57260i 0.167639 + 0.167639i
\(89\) 2.97979 0.315857 0.157928 0.987451i \(-0.449519\pi\)
0.157928 + 0.987451i \(0.449519\pi\)
\(90\) 0 0
\(91\) −0.412109 −0.0432007
\(92\) −3.28005 3.28005i −0.341969 0.341969i
\(93\) 2.60345 7.28828i 0.269965 0.755759i
\(94\) 9.13826i 0.942540i
\(95\) 0 0
\(96\) −5.37491 + 2.54562i −0.548574 + 0.259811i
\(97\) 11.4137 11.4137i 1.15889 1.15889i 0.174172 0.984715i \(-0.444275\pi\)
0.984715 0.174172i \(-0.0557250\pi\)
\(98\) 7.93087 7.93087i 0.801139 0.801139i
\(99\) −1.90073 + 2.32104i −0.191030 + 0.233273i
\(100\) 0 0
\(101\) 16.8528i 1.67692i 0.544965 + 0.838458i \(0.316543\pi\)
−0.544965 + 0.838458i \(0.683457\pi\)
\(102\) 10.7667 + 3.84596i 1.06606 + 0.380807i
\(103\) −4.78866 4.78866i −0.471841 0.471841i 0.430669 0.902510i \(-0.358278\pi\)
−0.902510 + 0.430669i \(0.858278\pi\)
\(104\) 3.21016 0.314782
\(105\) 0 0
\(106\) −10.9092 −1.05959
\(107\) −0.547413 0.547413i −0.0529204 0.0529204i 0.680151 0.733072i \(-0.261914\pi\)
−0.733072 + 0.680151i \(0.761914\pi\)
\(108\) −1.68244 2.79692i −0.161893 0.269134i
\(109\) 0.251236i 0.0240641i −0.999928 0.0120320i \(-0.996170\pi\)
0.999928 0.0120320i \(-0.00383001\pi\)
\(110\) 0 0
\(111\) 2.49435 + 5.26666i 0.236753 + 0.499889i
\(112\) 0.981504 0.981504i 0.0927434 0.0927434i
\(113\) −2.40152 + 2.40152i −0.225916 + 0.225916i −0.810984 0.585068i \(-0.801068\pi\)
0.585068 + 0.810984i \(0.301068\pi\)
\(114\) −0.338252 0.714198i −0.0316802 0.0668908i
\(115\) 0 0
\(116\) 6.09992i 0.566363i
\(117\) 0.428996 + 4.30898i 0.0396607 + 0.398365i
\(118\) 3.07478 + 3.07478i 0.283057 + 0.283057i
\(119\) −1.16249 −0.106565
\(120\) 0 0
\(121\) −1.00000 −0.0909091
\(122\) 10.8556 + 10.8556i 0.982816 + 0.982816i
\(123\) −14.6828 5.24485i −1.32390 0.472912i
\(124\) 2.80675i 0.252054i
\(125\) 0 0
\(126\) 1.07430 + 0.879755i 0.0957060 + 0.0783748i
\(127\) −2.88720 + 2.88720i −0.256198 + 0.256198i −0.823506 0.567308i \(-0.807985\pi\)
0.567308 + 0.823506i \(0.307985\pi\)
\(128\) −9.62118 + 9.62118i −0.850400 + 0.850400i
\(129\) −4.08942 + 1.93680i −0.360054 + 0.170525i
\(130\) 0 0
\(131\) 17.2568i 1.50774i −0.657026 0.753868i \(-0.728186\pi\)
0.657026 0.753868i \(-0.271814\pi\)
\(132\) 0.365990 1.02458i 0.0318553 0.0891782i
\(133\) 0.0568172 + 0.0568172i 0.00492668 + 0.00492668i
\(134\) −14.3887 −1.24299
\(135\) 0 0
\(136\) 9.05535 0.776490
\(137\) −14.3666 14.3666i −1.22742 1.22742i −0.964936 0.262485i \(-0.915458\pi\)
−0.262485 0.964936i \(-0.584542\pi\)
\(138\) 6.97532 19.5272i 0.593779 1.66227i
\(139\) 3.60234i 0.305547i 0.988261 + 0.152773i \(0.0488205\pi\)
−0.988261 + 0.152773i \(0.951180\pi\)
\(140\) 0 0
\(141\) 8.82377 4.17904i 0.743095 0.351938i
\(142\) −0.778561 + 0.778561i −0.0653354 + 0.0653354i
\(143\) −1.02066 + 1.02066i −0.0853517 + 0.0853517i
\(144\) −11.2843 9.24082i −0.940356 0.770068i
\(145\) 0 0
\(146\) 13.1632i 1.08939i
\(147\) 11.2848 + 4.03105i 0.930756 + 0.332475i
\(148\) −1.49440 1.49440i −0.122839 0.122839i
\(149\) 11.6538 0.954716 0.477358 0.878709i \(-0.341594\pi\)
0.477358 + 0.878709i \(0.341594\pi\)
\(150\) 0 0
\(151\) −16.7356 −1.36192 −0.680961 0.732319i \(-0.738438\pi\)
−0.680961 + 0.732319i \(0.738438\pi\)
\(152\) −0.442584 0.442584i −0.0358983 0.0358983i
\(153\) 1.21013 + 12.1549i 0.0978330 + 0.982669i
\(154\) 0.462851i 0.0372976i
\(155\) 0 0
\(156\) −0.672195 1.41930i −0.0538186 0.113635i
\(157\) −8.98141 + 8.98141i −0.716794 + 0.716794i −0.967947 0.251153i \(-0.919190\pi\)
0.251153 + 0.967947i \(0.419190\pi\)
\(158\) −14.3445 + 14.3445i −1.14118 + 1.14118i
\(159\) −4.98890 10.5337i −0.395645 0.835379i
\(160\) 0 0
\(161\) 2.10838i 0.166164i
\(162\) 8.08034 12.1486i 0.634851 0.954483i
\(163\) −12.8794 12.8794i −1.00879 1.00879i −0.999961 0.00882847i \(-0.997190\pi\)
−0.00882847 0.999961i \(-0.502810\pi\)
\(164\) 5.65442 0.441536
\(165\) 0 0
\(166\) 11.3043 0.877385
\(167\) 1.49091 + 1.49091i 0.115370 + 0.115370i 0.762435 0.647065i \(-0.224004\pi\)
−0.647065 + 0.762435i \(0.724004\pi\)
\(168\) 1.03570 + 0.369961i 0.0799056 + 0.0285431i
\(169\) 10.9165i 0.839732i
\(170\) 0 0
\(171\) 0.534932 0.653223i 0.0409073 0.0499532i
\(172\) 1.16036 1.16036i 0.0884769 0.0884769i
\(173\) 12.3165 12.3165i 0.936404 0.936404i −0.0616917 0.998095i \(-0.519650\pi\)
0.998095 + 0.0616917i \(0.0196495\pi\)
\(174\) 24.6435 11.6714i 1.86822 0.884809i
\(175\) 0 0
\(176\) 4.86173i 0.366466i
\(177\) −1.56283 + 4.37510i −0.117469 + 0.328852i
\(178\) −3.41582 3.41582i −0.256027 0.256027i
\(179\) 20.3135 1.51830 0.759151 0.650915i \(-0.225615\pi\)
0.759151 + 0.650915i \(0.225615\pi\)
\(180\) 0 0
\(181\) −14.0192 −1.04204 −0.521020 0.853544i \(-0.674448\pi\)
−0.521020 + 0.853544i \(0.674448\pi\)
\(182\) 0.472413 + 0.472413i 0.0350176 + 0.0350176i
\(183\) −5.51758 + 15.4463i −0.407871 + 1.14183i
\(184\) 16.4235i 1.21075i
\(185\) 0 0
\(186\) −11.3392 + 5.37037i −0.831430 + 0.393775i
\(187\) −2.87911 + 2.87911i −0.210541 + 0.210541i
\(188\) −2.50372 + 2.50372i −0.182603 + 0.182603i
\(189\) −0.358189 + 1.43965i −0.0260544 + 0.104719i
\(190\) 0 0
\(191\) 18.9839i 1.37363i −0.726832 0.686815i \(-0.759008\pi\)
0.726832 0.686815i \(-0.240992\pi\)
\(192\) −6.78048 2.42205i −0.489339 0.174797i
\(193\) 0.749286 + 0.749286i 0.0539348 + 0.0539348i 0.733560 0.679625i \(-0.237857\pi\)
−0.679625 + 0.733560i \(0.737857\pi\)
\(194\) −26.1678 −1.87874
\(195\) 0 0
\(196\) −4.34584 −0.310417
\(197\) −0.218136 0.218136i −0.0155416 0.0155416i 0.699293 0.714835i \(-0.253498\pi\)
−0.714835 + 0.699293i \(0.753498\pi\)
\(198\) 4.83954 0.481818i 0.343931 0.0342413i
\(199\) 2.62375i 0.185993i −0.995666 0.0929964i \(-0.970355\pi\)
0.995666 0.0929964i \(-0.0296445\pi\)
\(200\) 0 0
\(201\) −6.58010 13.8935i −0.464125 0.979969i
\(202\) 19.3189 19.3189i 1.35927 1.35927i
\(203\) −1.96048 + 1.96048i −0.137599 + 0.137599i
\(204\) −1.89615 4.00360i −0.132757 0.280308i
\(205\) 0 0
\(206\) 10.9788i 0.764928i
\(207\) 22.0451 2.19478i 1.53224 0.152548i
\(208\) −4.96216 4.96216i −0.344064 0.344064i
\(209\) 0.281435 0.0194673
\(210\) 0 0
\(211\) −10.1379 −0.697919 −0.348959 0.937138i \(-0.613465\pi\)
−0.348959 + 0.937138i \(0.613465\pi\)
\(212\) 2.98892 + 2.98892i 0.205280 + 0.205280i
\(213\) −1.10781 0.395721i −0.0759060 0.0271144i
\(214\) 1.25503i 0.0857923i
\(215\) 0 0
\(216\) 2.79015 11.2143i 0.189846 0.763035i
\(217\) 0.902076 0.902076i 0.0612369 0.0612369i
\(218\) −0.288000 + 0.288000i −0.0195058 + 0.0195058i
\(219\) 12.7102 6.01969i 0.858875 0.406773i
\(220\) 0 0
\(221\) 5.87717i 0.395341i
\(222\) 3.17798 8.89668i 0.213292 0.597106i
\(223\) −15.2100 15.2100i −1.01854 1.01854i −0.999825 0.0187139i \(-0.994043\pi\)
−0.0187139 0.999825i \(-0.505957\pi\)
\(224\) −0.980330 −0.0655011
\(225\) 0 0
\(226\) 5.50587 0.366245
\(227\) −9.77054 9.77054i −0.648494 0.648494i 0.304135 0.952629i \(-0.401633\pi\)
−0.952629 + 0.304135i \(0.901633\pi\)
\(228\) −0.103002 + 0.288353i −0.00682150 + 0.0190966i
\(229\) 19.5023i 1.28875i 0.764711 + 0.644373i \(0.222882\pi\)
−0.764711 + 0.644373i \(0.777118\pi\)
\(230\) 0 0
\(231\) −0.446922 + 0.211667i −0.0294053 + 0.0139267i
\(232\) 15.2714 15.2714i 1.00262 1.00262i
\(233\) 10.3725 10.3725i 0.679522 0.679522i −0.280370 0.959892i \(-0.590457\pi\)
0.959892 + 0.280370i \(0.0904570\pi\)
\(234\) 4.44775 5.43129i 0.290758 0.355054i
\(235\) 0 0
\(236\) 1.68487i 0.109676i
\(237\) −20.4107 7.29090i −1.32582 0.473595i
\(238\) 1.33260 + 1.33260i 0.0863796 + 0.0863796i
\(239\) −26.0494 −1.68499 −0.842497 0.538701i \(-0.818915\pi\)
−0.842497 + 0.538701i \(0.818915\pi\)
\(240\) 0 0
\(241\) 2.19788 0.141578 0.0707890 0.997491i \(-0.477448\pi\)
0.0707890 + 0.997491i \(0.477448\pi\)
\(242\) 1.14633 + 1.14633i 0.0736889 + 0.0736889i
\(243\) 15.4257 + 2.24656i 0.989561 + 0.144117i
\(244\) 5.94846i 0.380811i
\(245\) 0 0
\(246\) 10.8190 + 22.8437i 0.689796 + 1.45646i
\(247\) 0.287249 0.287249i 0.0182772 0.0182772i
\(248\) −7.02682 + 7.02682i −0.446203 + 0.446203i
\(249\) 5.16960 + 10.9153i 0.327610 + 0.691727i
\(250\) 0 0
\(251\) 3.44023i 0.217145i −0.994089 0.108573i \(-0.965372\pi\)
0.994089 0.108573i \(-0.0346280\pi\)
\(252\) −0.0533012 0.535376i −0.00335766 0.0337255i
\(253\) 5.22177 + 5.22177i 0.328290 + 0.328290i
\(254\) 6.61938 0.415337
\(255\) 0 0
\(256\) 13.7442 0.859010
\(257\) −11.6741 11.6741i −0.728213 0.728213i 0.242051 0.970264i \(-0.422180\pi\)
−0.970264 + 0.242051i \(0.922180\pi\)
\(258\) 6.90804 + 2.46762i 0.430076 + 0.153627i
\(259\) 0.960586i 0.0596879i
\(260\) 0 0
\(261\) 22.5395 + 18.4579i 1.39516 + 1.14251i
\(262\) −19.7820 + 19.7820i −1.22214 + 1.22214i
\(263\) 15.9766 15.9766i 0.985158 0.985158i −0.0147331 0.999891i \(-0.504690\pi\)
0.999891 + 0.0147331i \(0.00468987\pi\)
\(264\) 3.48135 1.64881i 0.214262 0.101477i
\(265\) 0 0
\(266\) 0.130263i 0.00798692i
\(267\) 1.73617 4.86036i 0.106252 0.297449i
\(268\) 3.94224 + 3.94224i 0.240810 + 0.240810i
\(269\) 1.98520 0.121040 0.0605200 0.998167i \(-0.480724\pi\)
0.0605200 + 0.998167i \(0.480724\pi\)
\(270\) 0 0
\(271\) −16.7391 −1.01683 −0.508413 0.861113i \(-0.669768\pi\)
−0.508413 + 0.861113i \(0.669768\pi\)
\(272\) −13.9974 13.9974i −0.848720 0.848720i
\(273\) −0.240114 + 0.672195i −0.0145324 + 0.0406831i
\(274\) 32.9377i 1.98984i
\(275\) 0 0
\(276\) −7.26123 + 3.43900i −0.437075 + 0.207004i
\(277\) 15.6387 15.6387i 0.939637 0.939637i −0.0586420 0.998279i \(-0.518677\pi\)
0.998279 + 0.0586420i \(0.0186770\pi\)
\(278\) 4.12948 4.12948i 0.247670 0.247670i
\(279\) −10.3711 8.49301i −0.620901 0.508463i
\(280\) 0 0
\(281\) 11.1500i 0.665153i −0.943076 0.332577i \(-0.892082\pi\)
0.943076 0.332577i \(-0.107918\pi\)
\(282\) −14.9055 5.32440i −0.887610 0.317063i
\(283\) −9.74142 9.74142i −0.579068 0.579068i 0.355579 0.934646i \(-0.384284\pi\)
−0.934646 + 0.355579i \(0.884284\pi\)
\(284\) 0.426624 0.0253155
\(285\) 0 0
\(286\) 2.34002 0.138368
\(287\) −1.81730 1.81730i −0.107272 0.107272i
\(288\) 1.02050 + 10.2503i 0.0601336 + 0.604003i
\(289\) 0.421449i 0.0247911i
\(290\) 0 0
\(291\) −11.9668 25.2672i −0.701509 1.48119i
\(292\) −3.60648 + 3.60648i −0.211053 + 0.211053i
\(293\) −3.70667 + 3.70667i −0.216546 + 0.216546i −0.807041 0.590495i \(-0.798932\pi\)
0.590495 + 0.807041i \(0.298932\pi\)
\(294\) −8.31522 17.5570i −0.484953 1.02395i
\(295\) 0 0
\(296\) 7.48259i 0.434916i
\(297\) 2.67842 + 4.45265i 0.155418 + 0.258369i
\(298\) −13.3591 13.3591i −0.773872 0.773872i
\(299\) 10.6593 0.616442
\(300\) 0 0
\(301\) −0.745870 −0.0429912
\(302\) 19.1845 + 19.1845i 1.10395 + 1.10395i
\(303\) 27.4888 + 9.81926i 1.57919 + 0.564102i
\(304\) 1.36826i 0.0784751i
\(305\) 0 0
\(306\) 12.5464 15.3208i 0.717229 0.875831i
\(307\) −5.20688 + 5.20688i −0.297172 + 0.297172i −0.839905 0.542733i \(-0.817390\pi\)
0.542733 + 0.839905i \(0.317390\pi\)
\(308\) 0.126813 0.126813i 0.00722585 0.00722585i
\(309\) −10.6009 + 5.02073i −0.603067 + 0.285619i
\(310\) 0 0
\(311\) 22.2889i 1.26389i 0.775013 + 0.631945i \(0.217743\pi\)
−0.775013 + 0.631945i \(0.782257\pi\)
\(312\) 1.87040 5.23613i 0.105890 0.296437i
\(313\) 8.76264 + 8.76264i 0.495293 + 0.495293i 0.909969 0.414676i \(-0.136105\pi\)
−0.414676 + 0.909969i \(0.636105\pi\)
\(314\) 20.5913 1.16204
\(315\) 0 0
\(316\) 7.86026 0.442174
\(317\) 18.4371 + 18.4371i 1.03553 + 1.03553i 0.999345 + 0.0361858i \(0.0115208\pi\)
0.0361858 + 0.999345i \(0.488479\pi\)
\(318\) −6.35622 + 17.7941i −0.356439 + 0.997842i
\(319\) 9.71095i 0.543709i
\(320\) 0 0
\(321\) −1.21184 + 0.573942i −0.0676384 + 0.0320343i
\(322\) 2.41690 2.41690i 0.134689 0.134689i
\(323\) 0.810283 0.810283i 0.0450853 0.0450853i
\(324\) −5.54237 + 1.11463i −0.307909 + 0.0619238i
\(325\) 0 0
\(326\) 29.5280i 1.63541i
\(327\) −0.409794 0.146382i −0.0226617 0.00809496i
\(328\) 14.1561 + 14.1561i 0.781639 + 0.781639i
\(329\) 1.60937 0.0887273
\(330\) 0 0
\(331\) −0.848055 −0.0466133 −0.0233067 0.999728i \(-0.507419\pi\)
−0.0233067 + 0.999728i \(0.507419\pi\)
\(332\) −3.09718 3.09718i −0.169980 0.169980i
\(333\) 10.0438 0.999948i 0.550398 0.0547968i
\(334\) 3.41815i 0.187033i
\(335\) 0 0
\(336\) −1.02907 2.17281i −0.0561403 0.118537i
\(337\) −24.8680 + 24.8680i −1.35465 + 1.35465i −0.474264 + 0.880383i \(0.657286\pi\)
−0.880383 + 0.474264i \(0.842714\pi\)
\(338\) −12.5139 + 12.5139i −0.680669 + 0.680669i
\(339\) 2.51790 + 5.31639i 0.136754 + 0.288747i
\(340\) 0 0
\(341\) 4.46829i 0.241972i
\(342\) −1.36202 + 0.135600i −0.0736495 + 0.00733243i
\(343\) 2.80992 + 2.80992i 0.151721 + 0.151721i
\(344\) 5.81003 0.313256
\(345\) 0 0
\(346\) −28.2375 −1.51806
\(347\) 7.84495 + 7.84495i 0.421139 + 0.421139i 0.885596 0.464457i \(-0.153750\pi\)
−0.464457 + 0.885596i \(0.653750\pi\)
\(348\) −9.94964 3.55411i −0.533357 0.190520i
\(349\) 3.21032i 0.171845i 0.996302 + 0.0859223i \(0.0273837\pi\)
−0.996302 + 0.0859223i \(0.972616\pi\)
\(350\) 0 0
\(351\) 7.27838 + 1.81088i 0.388491 + 0.0966577i
\(352\) −2.42796 + 2.42796i −0.129410 + 0.129410i
\(353\) −2.32761 + 2.32761i −0.123886 + 0.123886i −0.766331 0.642445i \(-0.777920\pi\)
0.642445 + 0.766331i \(0.277920\pi\)
\(354\) 6.80683 3.22379i 0.361779 0.171343i
\(355\) 0 0
\(356\) 1.87175i 0.0992024i
\(357\) −0.677324 + 1.89615i −0.0358478 + 0.100355i
\(358\) −23.2860 23.2860i −1.23070 1.23070i
\(359\) −11.6869 −0.616811 −0.308406 0.951255i \(-0.599795\pi\)
−0.308406 + 0.951255i \(0.599795\pi\)
\(360\) 0 0
\(361\) 18.9208 0.995831
\(362\) 16.0707 + 16.0707i 0.844655 + 0.844655i
\(363\) −0.582649 + 1.63111i −0.0305811 + 0.0856111i
\(364\) 0.258865i 0.0135682i
\(365\) 0 0
\(366\) 24.0316 11.3816i 1.25615 0.594927i
\(367\) 6.60685 6.60685i 0.344875 0.344875i −0.513321 0.858196i \(-0.671585\pi\)
0.858196 + 0.513321i \(0.171585\pi\)
\(368\) −25.3868 + 25.3868i −1.32338 + 1.32338i
\(369\) −17.1098 + 20.8934i −0.890703 + 1.08767i
\(370\) 0 0
\(371\) 1.92125i 0.0997463i
\(372\) 4.57812 + 1.63535i 0.237365 + 0.0847890i
\(373\) 12.6827 + 12.6827i 0.656683 + 0.656683i 0.954594 0.297911i \(-0.0962898\pi\)
−0.297911 + 0.954594i \(0.596290\pi\)
\(374\) 6.60083 0.341321
\(375\) 0 0
\(376\) −12.5363 −0.646512
\(377\) 9.91155 + 9.91155i 0.510471 + 0.510471i
\(378\) 2.06091 1.23971i 0.106002 0.0637638i
\(379\) 6.12762i 0.314755i −0.987539 0.157377i \(-0.949696\pi\)
0.987539 0.157377i \(-0.0503039\pi\)
\(380\) 0 0
\(381\) 3.02712 + 6.39157i 0.155084 + 0.327450i
\(382\) −21.7619 + 21.7619i −1.11343 + 1.11343i
\(383\) 20.8849 20.8849i 1.06717 1.06717i 0.0695907 0.997576i \(-0.477831\pi\)
0.997576 0.0695907i \(-0.0221693\pi\)
\(384\) 10.0874 + 21.2990i 0.514772 + 1.08691i
\(385\) 0 0
\(386\) 1.71786i 0.0874367i
\(387\) 0.776434 + 7.79877i 0.0394684 + 0.396434i
\(388\) 7.16951 + 7.16951i 0.363977 + 0.363977i
\(389\) −17.8685 −0.905968 −0.452984 0.891519i \(-0.649640\pi\)
−0.452984 + 0.891519i \(0.649640\pi\)
\(390\) 0 0
\(391\) 30.0681 1.52061
\(392\) −10.8800 10.8800i −0.549522 0.549522i
\(393\) −28.1478 10.0547i −1.41987 0.507191i
\(394\) 0.500113i 0.0251953i
\(395\) 0 0
\(396\) −1.45796 1.19394i −0.0732652 0.0599977i
\(397\) −10.2866 + 10.2866i −0.516271 + 0.516271i −0.916441 0.400170i \(-0.868951\pi\)
0.400170 + 0.916441i \(0.368951\pi\)
\(398\) −3.00769 + 3.00769i −0.150762 + 0.150762i
\(399\) 0.125780 0.0595707i 0.00629686 0.00298226i
\(400\) 0 0
\(401\) 23.5884i 1.17795i 0.808151 + 0.588975i \(0.200468\pi\)
−0.808151 + 0.588975i \(0.799532\pi\)
\(402\) −8.38353 + 23.4695i −0.418132 + 1.17055i
\(403\) −4.56060 4.56060i −0.227180 0.227180i
\(404\) −10.5861 −0.526677
\(405\) 0 0
\(406\) 4.49473 0.223069
\(407\) 2.37906 + 2.37906i 0.117925 + 0.117925i
\(408\) 5.27609 14.7703i 0.261205 0.731238i
\(409\) 12.6076i 0.623405i 0.950180 + 0.311703i \(0.100899\pi\)
−0.950180 + 0.311703i \(0.899101\pi\)
\(410\) 0 0
\(411\) −31.8042 + 15.0628i −1.56878 + 0.742994i
\(412\) 3.00799 3.00799i 0.148193 0.148193i
\(413\) −0.541509 + 0.541509i −0.0266459 + 0.0266459i
\(414\) −27.7869 22.7550i −1.36565 1.11835i
\(415\) 0 0
\(416\) 4.95622i 0.242999i
\(417\) 5.87582 + 2.09890i 0.287740 + 0.102784i
\(418\) −0.322618 0.322618i −0.0157798 0.0157798i
\(419\) 33.5948 1.64121 0.820606 0.571495i \(-0.193636\pi\)
0.820606 + 0.571495i \(0.193636\pi\)
\(420\) 0 0
\(421\) −11.1669 −0.544240 −0.272120 0.962263i \(-0.587725\pi\)
−0.272120 + 0.962263i \(0.587725\pi\)
\(422\) 11.6213 + 11.6213i 0.565718 + 0.565718i
\(423\) −1.67532 16.8274i −0.0814566 0.818178i
\(424\) 14.9658i 0.726802i
\(425\) 0 0
\(426\) 0.816292 + 1.72355i 0.0395495 + 0.0835061i
\(427\) −1.91181 + 1.91181i −0.0925187 + 0.0925187i
\(428\) 0.343857 0.343857i 0.0166209 0.0166209i
\(429\) 1.07012 + 2.25949i 0.0516659 + 0.109089i
\(430\) 0 0
\(431\) 3.65334i 0.175975i 0.996122 + 0.0879875i \(0.0280436\pi\)
−0.996122 + 0.0879875i \(0.971956\pi\)
\(432\) −21.6476 + 13.0217i −1.04152 + 0.626508i
\(433\) −3.56615 3.56615i −0.171378 0.171378i 0.616207 0.787585i \(-0.288669\pi\)
−0.787585 + 0.616207i \(0.788669\pi\)
\(434\) −2.06816 −0.0992747
\(435\) 0 0
\(436\) 0.157814 0.00755790
\(437\) −1.46959 1.46959i −0.0703000 0.0703000i
\(438\) −21.4706 7.66952i −1.02591 0.366464i
\(439\) 34.7868i 1.66028i −0.557552 0.830142i \(-0.688259\pi\)
0.557552 0.830142i \(-0.311741\pi\)
\(440\) 0 0
\(441\) 13.1502 16.0581i 0.626198 0.764671i
\(442\) 6.73718 6.73718i 0.320455 0.320455i
\(443\) 10.4616 10.4616i 0.497045 0.497045i −0.413472 0.910517i \(-0.635684\pi\)
0.910517 + 0.413472i \(0.135684\pi\)
\(444\) −3.30824 + 1.56682i −0.157002 + 0.0743581i
\(445\) 0 0
\(446\) 34.8714i 1.65121i
\(447\) 6.79007 19.0086i 0.321159 0.899077i
\(448\) −0.839226 0.839226i −0.0396497 0.0396497i
\(449\) 18.1102 0.854671 0.427335 0.904093i \(-0.359452\pi\)
0.427335 + 0.904093i \(0.359452\pi\)
\(450\) 0 0
\(451\) −9.00173 −0.423875
\(452\) −1.50851 1.50851i −0.0709544 0.0709544i
\(453\) −9.75097 + 27.2976i −0.458140 + 1.28255i
\(454\) 22.4005i 1.05131i
\(455\) 0 0
\(456\) −0.979774 + 0.464032i −0.0458821 + 0.0217303i
\(457\) 4.07759 4.07759i 0.190742 0.190742i −0.605275 0.796016i \(-0.706937\pi\)
0.796016 + 0.605275i \(0.206937\pi\)
\(458\) 22.3561 22.3561i 1.04463 1.04463i
\(459\) 20.5311 + 5.10821i 0.958311 + 0.238431i
\(460\) 0 0
\(461\) 22.5889i 1.05207i −0.850462 0.526036i \(-0.823678\pi\)
0.850462 0.526036i \(-0.176322\pi\)
\(462\) 0.754962 + 0.269680i 0.0351240 + 0.0125466i
\(463\) 4.81057 + 4.81057i 0.223566 + 0.223566i 0.809998 0.586432i \(-0.199468\pi\)
−0.586432 + 0.809998i \(0.699468\pi\)
\(464\) −47.2120 −2.19176
\(465\) 0 0
\(466\) −23.7805 −1.10161
\(467\) −4.10549 4.10549i −0.189979 0.189979i 0.605708 0.795687i \(-0.292890\pi\)
−0.795687 + 0.605708i \(0.792890\pi\)
\(468\) −2.70668 + 0.269473i −0.125116 + 0.0124564i
\(469\) 2.53403i 0.117011i
\(470\) 0 0
\(471\) 9.41666 + 19.8827i 0.433897 + 0.916145i
\(472\) 4.21814 4.21814i 0.194156 0.194156i
\(473\) −1.84728 + 1.84728i −0.0849378 + 0.0849378i
\(474\) 15.0396 + 31.7552i 0.690793 + 1.45856i
\(475\) 0 0
\(476\) 0.730218i 0.0334695i
\(477\) −20.0885 + 1.99998i −0.919787 + 0.0915726i
\(478\) 29.8612 + 29.8612i 1.36582 + 1.36582i
\(479\) −5.74056 −0.262293 −0.131146 0.991363i \(-0.541866\pi\)
−0.131146 + 0.991363i \(0.541866\pi\)
\(480\) 0 0
\(481\) 4.85640 0.221433
\(482\) −2.51950 2.51950i −0.114760 0.114760i
\(483\) 3.43900 + 1.22845i 0.156480 + 0.0558962i
\(484\) 0.628149i 0.0285522i
\(485\) 0 0
\(486\) −15.1077 20.2583i −0.685299 0.918934i
\(487\) −15.2791 + 15.2791i −0.692361 + 0.692361i −0.962751 0.270390i \(-0.912847\pi\)
0.270390 + 0.962751i \(0.412847\pi\)
\(488\) 14.8922 14.8922i 0.674139 0.674139i
\(489\) −28.5118 + 13.5035i −1.28935 + 0.610650i
\(490\) 0 0
\(491\) 9.79503i 0.442043i 0.975269 + 0.221022i \(0.0709392\pi\)
−0.975269 + 0.221022i \(0.929061\pi\)
\(492\) 3.29454 9.22299i 0.148529 0.415804i
\(493\) 27.9589 + 27.9589i 1.25920 + 1.25920i
\(494\) −0.658565 −0.0296302
\(495\) 0 0
\(496\) 21.7236 0.975419
\(497\) −0.137115 0.137115i −0.00615044 0.00615044i
\(498\) 6.58644 18.4386i 0.295146 0.826253i
\(499\) 0.929617i 0.0416154i −0.999783 0.0208077i \(-0.993376\pi\)
0.999783 0.0208077i \(-0.00662377\pi\)
\(500\) 0 0
\(501\) 3.30051 1.56316i 0.147456 0.0698368i
\(502\) −3.94364 + 3.94364i −0.176013 + 0.176013i
\(503\) −6.49027 + 6.49027i −0.289387 + 0.289387i −0.836838 0.547451i \(-0.815598\pi\)
0.547451 + 0.836838i \(0.315598\pi\)
\(504\) 1.20689 1.47378i 0.0537593 0.0656472i
\(505\) 0 0
\(506\) 11.9718i 0.532209i
\(507\) −17.8060 6.36049i −0.790794 0.282479i
\(508\) −1.81359 1.81359i −0.0804651 0.0804651i
\(509\) 13.0970 0.580515 0.290257 0.956949i \(-0.406259\pi\)
0.290257 + 0.956949i \(0.406259\pi\)
\(510\) 0 0
\(511\) 2.31821 0.102552
\(512\) 3.48700 + 3.48700i 0.154105 + 0.154105i
\(513\) −0.753801 1.25313i −0.0332811 0.0553271i
\(514\) 26.7649i 1.18055i
\(515\) 0 0
\(516\) −1.21660 2.56876i −0.0535577 0.113084i
\(517\) 3.98588 3.98588i 0.175299 0.175299i
\(518\) 1.10115 1.10115i 0.0483817 0.0483817i
\(519\) −12.9133 27.2657i −0.566833 1.19683i
\(520\) 0 0
\(521\) 3.26098i 0.142866i −0.997445 0.0714330i \(-0.977243\pi\)
0.997445 0.0714330i \(-0.0227572\pi\)
\(522\) −4.67891 46.9966i −0.204790 2.05698i
\(523\) 17.8320 + 17.8320i 0.779737 + 0.779737i 0.979786 0.200049i \(-0.0641100\pi\)
−0.200049 + 0.979786i \(0.564110\pi\)
\(524\) 10.8399 0.473541
\(525\) 0 0
\(526\) −36.6289 −1.59710
\(527\) −12.8647 12.8647i −0.560396 0.560396i
\(528\) −7.93001 2.83268i −0.345109 0.123276i
\(529\) 31.5338i 1.37103i
\(530\) 0 0
\(531\) 6.22569 + 5.09829i 0.270172 + 0.221247i
\(532\) −0.0356897 + 0.0356897i −0.00154734 + 0.00154734i
\(533\) −9.18768 + 9.18768i −0.397963 + 0.397963i
\(534\) −7.56180 + 3.58136i −0.327231 + 0.154980i
\(535\) 0 0
\(536\) 19.7391i 0.852599i
\(537\) 11.8356 33.1335i 0.510745 1.42982i
\(538\) −2.27570 2.27570i −0.0981124 0.0981124i
\(539\) 6.91849 0.298000
\(540\) 0 0
\(541\) 29.4057 1.26425 0.632125 0.774866i \(-0.282183\pi\)
0.632125 + 0.774866i \(0.282183\pi\)
\(542\) 19.1885 + 19.1885i 0.824218 + 0.824218i
\(543\) −8.16828 + 22.8669i −0.350534 + 0.981312i
\(544\) 13.9807i 0.599418i
\(545\) 0 0
\(546\) 1.04581 0.495307i 0.0447564 0.0211972i
\(547\) 6.91991 6.91991i 0.295874 0.295874i −0.543521 0.839395i \(-0.682909\pi\)
0.839395 + 0.543521i \(0.182909\pi\)
\(548\) 9.02436 9.02436i 0.385501 0.385501i
\(549\) 21.9799 + 17.9996i 0.938078 + 0.768203i
\(550\) 0 0
\(551\) 2.73300i 0.116430i
\(552\) −26.7885 9.56911i −1.14019 0.407288i
\(553\) −2.52625 2.52625i −0.107427 0.107427i
\(554\) −35.8542 −1.52330
\(555\) 0 0
\(556\) −2.26281 −0.0959644
\(557\) 3.53461 + 3.53461i 0.149766 + 0.149766i 0.778014 0.628247i \(-0.216227\pi\)
−0.628247 + 0.778014i \(0.716227\pi\)
\(558\) 2.15290 + 21.6245i 0.0911397 + 0.915438i
\(559\) 3.77087i 0.159491i
\(560\) 0 0
\(561\) 3.01864 + 6.37366i 0.127447 + 0.269096i
\(562\) −12.7816 + 12.7816i −0.539159 + 0.539159i
\(563\) −11.1629 + 11.1629i −0.470458 + 0.470458i −0.902063 0.431605i \(-0.857948\pi\)
0.431605 + 0.902063i \(0.357948\pi\)
\(564\) 2.62506 + 5.54264i 0.110535 + 0.233387i
\(565\) 0 0
\(566\) 22.3338i 0.938759i
\(567\) 2.13953 + 1.42305i 0.0898516 + 0.0597626i
\(568\) 1.06807 + 1.06807i 0.0448152 + 0.0448152i
\(569\) 11.5279 0.483275 0.241637 0.970367i \(-0.422316\pi\)
0.241637 + 0.970367i \(0.422316\pi\)
\(570\) 0 0
\(571\) 37.5721 1.57234 0.786172 0.618008i \(-0.212060\pi\)
0.786172 + 0.618008i \(0.212060\pi\)
\(572\) −0.641125 0.641125i −0.0268068 0.0268068i
\(573\) −30.9649 11.0610i −1.29358 0.462079i
\(574\) 4.16646i 0.173905i
\(575\) 0 0
\(576\) −7.90127 + 9.64850i −0.329220 + 0.402021i
\(577\) 9.80937 9.80937i 0.408369 0.408369i −0.472800 0.881170i \(-0.656757\pi\)
0.881170 + 0.472800i \(0.156757\pi\)
\(578\) −0.483120 + 0.483120i −0.0200951 + 0.0200951i
\(579\) 1.65874 0.785598i 0.0689348 0.0326483i
\(580\) 0 0
\(581\) 1.99084i 0.0825939i
\(582\) −15.2466 + 42.6826i −0.631993 + 1.76925i
\(583\) −4.75830 4.75830i −0.197069 0.197069i
\(584\) −18.0580 −0.747243
\(585\) 0 0
\(586\) 8.49813 0.351055
\(587\) −28.3158 28.3158i −1.16872 1.16872i −0.982510 0.186209i \(-0.940380\pi\)
−0.186209 0.982510i \(-0.559620\pi\)
\(588\) −2.53210 + 7.08854i −0.104422 + 0.292326i
\(589\) 1.25754i 0.0518158i
\(590\) 0 0
\(591\) −0.482901 + 0.228708i −0.0198639 + 0.00940778i
\(592\) −11.5663 + 11.5663i −0.475373 + 0.475373i
\(593\) 22.0674 22.0674i 0.906199 0.906199i −0.0897641 0.995963i \(-0.528611\pi\)
0.995963 + 0.0897641i \(0.0286113\pi\)
\(594\) 2.03386 8.17456i 0.0834501 0.335406i
\(595\) 0 0
\(596\) 7.32031i 0.299852i
\(597\) −4.27963 1.52873i −0.175154 0.0625666i
\(598\) −12.2191 12.2191i −0.499674 0.499674i
\(599\) 13.7723 0.562721 0.281361 0.959602i \(-0.409214\pi\)
0.281361 + 0.959602i \(0.409214\pi\)
\(600\) 0 0
\(601\) 47.6415 1.94334 0.971669 0.236346i \(-0.0759500\pi\)
0.971669 + 0.236346i \(0.0759500\pi\)
\(602\) 0.855014 + 0.855014i 0.0348478 + 0.0348478i
\(603\) −26.4957 + 2.63787i −1.07899 + 0.107422i
\(604\) 10.5124i 0.427745i
\(605\) 0 0
\(606\) −20.2551 42.7674i −0.822808 1.73731i
\(607\) 24.2606 24.2606i 0.984709 0.984709i −0.0151761 0.999885i \(-0.504831\pi\)
0.999885 + 0.0151761i \(0.00483087\pi\)
\(608\) 0.683312 0.683312i 0.0277120 0.0277120i
\(609\) 2.05549 + 4.34004i 0.0832927 + 0.175867i
\(610\) 0 0
\(611\) 8.13643i 0.329165i
\(612\) −7.63511 + 0.760140i −0.308631 + 0.0307268i
\(613\) −2.32722 2.32722i −0.0939954 0.0939954i 0.658546 0.752541i \(-0.271172\pi\)
−0.752541 + 0.658546i \(0.771172\pi\)
\(614\) 11.9376 0.481763
\(615\) 0 0
\(616\) 0.634963 0.0255834
\(617\) 14.3887 + 14.3887i 0.579267 + 0.579267i 0.934701 0.355434i \(-0.115667\pi\)
−0.355434 + 0.934701i \(0.615667\pi\)
\(618\) 17.9076 + 6.39677i 0.720349 + 0.257316i
\(619\) 0.383560i 0.0154166i −0.999970 0.00770829i \(-0.997546\pi\)
0.999970 0.00770829i \(-0.00245365\pi\)
\(620\) 0 0
\(621\) 9.26463 37.2368i 0.371777 1.49426i
\(622\) 25.5505 25.5505i 1.02448 1.02448i
\(623\) 0.601571 0.601571i 0.0241014 0.0241014i
\(624\) −10.9850 + 5.20263i −0.439753 + 0.208272i
\(625\) 0 0
\(626\) 20.0898i 0.802948i
\(627\) 0.163978 0.459052i 0.00654864 0.0183328i
\(628\) −5.64166 5.64166i −0.225127 0.225127i
\(629\) 13.6991 0.546220
\(630\) 0 0
\(631\) 15.5344 0.618416 0.309208 0.950994i \(-0.399936\pi\)
0.309208 + 0.950994i \(0.399936\pi\)
\(632\) 19.6785 + 19.6785i 0.782768 + 0.782768i
\(633\) −5.90681 + 16.5360i −0.234774 + 0.657245i
\(634\) 42.2700i 1.67876i
\(635\) 0 0
\(636\) 6.61675 3.13377i 0.262371 0.124262i
\(637\) 7.06140 7.06140i 0.279783 0.279783i
\(638\) 11.1320 11.1320i 0.440718 0.440718i
\(639\) −1.29093 + 1.57640i −0.0510684 + 0.0623613i
\(640\) 0 0
\(641\) 30.7396i 1.21414i −0.794648 0.607071i \(-0.792344\pi\)
0.794648 0.607071i \(-0.207656\pi\)
\(642\) 2.04710 + 0.731243i 0.0807925 + 0.0288599i
\(643\) −5.50784 5.50784i −0.217208 0.217208i 0.590113 0.807321i \(-0.299083\pi\)
−0.807321 + 0.590113i \(0.799083\pi\)
\(644\) −1.32438 −0.0521878
\(645\) 0 0
\(646\) −1.85770 −0.0730904
\(647\) 1.83127 + 1.83127i 0.0719945 + 0.0719945i 0.742187 0.670193i \(-0.233789\pi\)
−0.670193 + 0.742187i \(0.733789\pi\)
\(648\) −16.6661 11.0850i −0.654704 0.435461i
\(649\) 2.68228i 0.105289i
\(650\) 0 0
\(651\) −0.945793 1.99698i −0.0370685 0.0782678i
\(652\) 8.09015 8.09015i 0.316835 0.316835i
\(653\) −2.26241 + 2.26241i −0.0885350 + 0.0885350i −0.749987 0.661452i \(-0.769940\pi\)
0.661452 + 0.749987i \(0.269940\pi\)
\(654\) 0.301957 + 0.637562i 0.0118074 + 0.0249306i
\(655\) 0 0
\(656\) 43.7639i 1.70870i
\(657\) −2.41321 24.2391i −0.0941481 0.945656i
\(658\) −1.84487 1.84487i −0.0719204 0.0719204i
\(659\) −21.4513 −0.835624 −0.417812 0.908534i \(-0.637203\pi\)
−0.417812 + 0.908534i \(0.637203\pi\)
\(660\) 0 0
\(661\) −23.6158 −0.918548 −0.459274 0.888295i \(-0.651890\pi\)
−0.459274 + 0.888295i \(0.651890\pi\)
\(662\) 0.972152 + 0.972152i 0.0377837 + 0.0377837i
\(663\) 9.58631 + 3.42433i 0.372302 + 0.132990i
\(664\) 15.5078i 0.601821i
\(665\) 0 0
\(666\) −12.6598 10.3673i −0.490558 0.401724i
\(667\) 50.7083 50.7083i 1.96343 1.96343i
\(668\) −0.936511 + 0.936511i −0.0362347 + 0.0362347i
\(669\) −33.6713 + 15.9471i −1.30181 + 0.616552i
\(670\) 0 0
\(671\) 9.46983i 0.365579i
\(672\) −0.571188 + 1.59903i −0.0220341 + 0.0616838i
\(673\) −5.74356 5.74356i −0.221398 0.221398i 0.587689 0.809087i \(-0.300038\pi\)
−0.809087 + 0.587689i \(0.800038\pi\)
\(674\) 57.0139 2.19609
\(675\) 0 0
\(676\) 6.85719 0.263738
\(677\) 1.13494 + 1.13494i 0.0436194 + 0.0436194i 0.728580 0.684961i \(-0.240181\pi\)
−0.684961 + 0.728580i \(0.740181\pi\)
\(678\) 3.20799 8.98069i 0.123202 0.344901i
\(679\) 4.60849i 0.176858i
\(680\) 0 0
\(681\) −21.6296 + 10.2440i −0.828849 + 0.392552i
\(682\) −5.12214 + 5.12214i −0.196137 + 0.196137i
\(683\) −1.61763 + 1.61763i −0.0618968 + 0.0618968i −0.737378 0.675481i \(-0.763936\pi\)
0.675481 + 0.737378i \(0.263936\pi\)
\(684\) 0.410321 + 0.336017i 0.0156890 + 0.0128479i
\(685\) 0 0
\(686\) 6.44219i 0.245964i
\(687\) 31.8104 + 11.3630i 1.21364 + 0.433524i
\(688\) −8.98095 8.98095i −0.342395 0.342395i
\(689\) −9.71319 −0.370043
\(690\) 0 0
\(691\) −26.3783 −1.00348 −0.501739 0.865019i \(-0.667306\pi\)
−0.501739 + 0.865019i \(0.667306\pi\)
\(692\) 7.73657 + 7.73657i 0.294100 + 0.294100i
\(693\) 0.0848544 + 0.852307i 0.00322335 + 0.0323765i
\(694\) 17.9858i 0.682732i
\(695\) 0 0
\(696\) −16.0115 33.8072i −0.606913 1.28146i
\(697\) −25.9170 + 25.9170i −0.981675 + 0.981675i
\(698\) 3.68009 3.68009i 0.139293 0.139293i
\(699\) −10.8751 22.9621i −0.411335 0.868507i
\(700\) 0 0
\(701\) 11.2314i 0.424205i −0.977247 0.212102i \(-0.931969\pi\)
0.977247 0.212102i \(-0.0680310\pi\)
\(702\) −6.26756 10.4193i −0.236554 0.393251i
\(703\) −0.669550 0.669550i −0.0252526 0.0252526i
\(704\) −4.15697 −0.156672
\(705\) 0 0
\(706\) 5.33641 0.200839
\(707\) 3.40231 + 3.40231i 0.127957 + 0.127957i
\(708\) −2.74821 0.981688i −0.103284 0.0368941i
\(709\) 13.2746i 0.498538i −0.968434 0.249269i \(-0.919810\pi\)
0.968434 0.249269i \(-0.0801903\pi\)
\(710\) 0 0
\(711\) −23.7845 + 29.0441i −0.891989 + 1.08924i
\(712\) −4.68600 + 4.68600i −0.175615 + 0.175615i
\(713\) −23.3324 + 23.3324i −0.873805 + 0.873805i
\(714\) 2.95006 1.39718i 0.110403 0.0522882i
\(715\) 0 0
\(716\) 12.7599i 0.476859i
\(717\) −15.1776 + 42.4894i −0.566819 + 1.58680i
\(718\) 13.3971 + 13.3971i 0.499974 + 0.499974i
\(719\) 45.9916 1.71520 0.857600 0.514318i \(-0.171955\pi\)
0.857600 + 0.514318i \(0.171955\pi\)
\(720\) 0 0
\(721\) −1.93351 −0.0720076
\(722\) −21.6895 21.6895i −0.807199 0.807199i
\(723\) 1.28059 3.58499i 0.0476257 0.133327i
\(724\) 8.80615i 0.327278i
\(725\) 0 0
\(726\) 2.53770 1.20188i 0.0941829 0.0446061i
\(727\) 5.64032 5.64032i 0.209188 0.209188i −0.594734 0.803922i \(-0.702743\pi\)
0.803922 + 0.594734i \(0.202743\pi\)
\(728\) 0.648080 0.648080i 0.0240194 0.0240194i
\(729\) 12.6522 23.8521i 0.468598 0.883411i
\(730\) 0 0
\(731\) 10.6370i 0.393424i
\(732\) −9.70259 3.46586i −0.358618 0.128102i
\(733\) −33.8431 33.8431i −1.25002 1.25002i −0.955709 0.294313i \(-0.904909\pi\)
−0.294313 0.955709i \(-0.595091\pi\)
\(734\) −15.1473 −0.559096
\(735\) 0 0
\(736\) 25.3565 0.934651
\(737\) −6.27596 6.27596i −0.231178 0.231178i
\(738\) 43.5643 4.33719i 1.60362 0.159654i
\(739\) 5.33288i 0.196173i −0.995178 0.0980866i \(-0.968728\pi\)
0.995178 0.0980866i \(-0.0312722\pi\)
\(740\) 0 0
\(741\) −0.301169 0.635900i −0.0110637 0.0233604i
\(742\) −2.20239 + 2.20239i −0.0808522 + 0.0808522i
\(743\) −28.7768 + 28.7768i −1.05572 + 1.05572i −0.0573664 + 0.998353i \(0.518270\pi\)
−0.998353 + 0.0573664i \(0.981730\pi\)
\(744\) 7.36735 + 15.5557i 0.270100 + 0.570299i
\(745\) 0 0
\(746\) 29.0770i 1.06459i
\(747\) 20.8161 2.07242i 0.761620 0.0758258i
\(748\) −1.80851 1.80851i −0.0661256 0.0661256i
\(749\) −0.221028 −0.00807618
\(750\) 0 0
\(751\) 14.4158 0.526040 0.263020 0.964790i \(-0.415281\pi\)
0.263020 + 0.964790i \(0.415281\pi\)
\(752\) 19.3782 + 19.3782i 0.706652 + 0.706652i
\(753\) −5.61140 2.00445i −0.204491 0.0730461i
\(754\) 22.7238i 0.827553i
\(755\) 0 0
\(756\) −0.904312 0.224996i −0.0328895 0.00818301i
\(757\) −28.9382 + 28.9382i −1.05178 + 1.05178i −0.0531933 + 0.998584i \(0.516940\pi\)
−0.998584 + 0.0531933i \(0.983060\pi\)
\(758\) −7.02428 + 7.02428i −0.255133 + 0.255133i
\(759\) 11.5597 5.47482i 0.419592 0.198724i
\(760\) 0 0
\(761\) 18.7778i 0.680696i 0.940299 + 0.340348i \(0.110545\pi\)
−0.940299 + 0.340348i \(0.889455\pi\)
\(762\) 3.85677 10.7969i 0.139716 0.391132i
\(763\) −0.0507205 0.0507205i −0.00183621 0.00183621i
\(764\) 11.9247 0.431422
\(765\) 0 0
\(766\) −47.8819 −1.73004
\(767\) 2.73769 + 2.73769i 0.0988523 + 0.0988523i
\(768\) 8.00801 22.4182i 0.288964 0.808948i
\(769\) 0.107567i 0.00387895i −0.999998 0.00193948i \(-0.999383\pi\)
0.999998 0.00193948i \(-0.000617355\pi\)
\(770\) 0 0
\(771\) −25.8437 + 12.2399i −0.930740 + 0.440809i
\(772\) −0.470663 + 0.470663i −0.0169395 + 0.0169395i
\(773\) 4.72647 4.72647i 0.169999 0.169999i −0.616980 0.786979i \(-0.711644\pi\)
0.786979 + 0.616980i \(0.211644\pi\)
\(774\) 8.04992 9.83002i 0.289348 0.353333i
\(775\) 0 0
\(776\) 35.8983i 1.28867i
\(777\) 1.56682 + 0.559684i 0.0562094 + 0.0200786i
\(778\) 20.4832 + 20.4832i 0.734358 + 0.734358i
\(779\) 2.53340 0.0907686
\(780\) 0 0
\(781\) −0.679177 −0.0243029
\(782\) −34.4680 34.4680i −1.23257 1.23257i
\(783\) 43.2394 26.0100i 1.54525 0.929521i
\(784\) 33.6358i 1.20128i
\(785\) 0 0
\(786\) 20.7407 + 43.7927i 0.739797 + 1.56203i
\(787\) 20.3978 20.3978i 0.727103 0.727103i −0.242939 0.970042i \(-0.578111\pi\)
0.970042 + 0.242939i \(0.0781115\pi\)
\(788\) 0.137022 0.137022i 0.00488121 0.00488121i
\(789\) −16.7508 35.3683i −0.596346 1.25914i
\(790\) 0 0
\(791\) 0.969657i 0.0344770i
\(792\) −0.660982 6.63914i −0.0234870 0.235911i
\(793\) 9.66545 + 9.66545i 0.343230 + 0.343230i
\(794\) 23.5838 0.836957
\(795\) 0 0
\(796\) 1.64811 0.0584156
\(797\) 15.7865 + 15.7865i 0.559186 + 0.559186i 0.929076 0.369889i \(-0.120604\pi\)
−0.369889 + 0.929076i \(0.620604\pi\)
\(798\) −0.212473 0.0758974i −0.00752145 0.00268674i
\(799\) 22.9515i 0.811967i
\(800\) 0 0
\(801\) −6.91620 5.66376i −0.244372 0.200119i
\(802\) 27.0401 27.0401i 0.954821 0.954821i
\(803\) 5.74145 5.74145i 0.202611 0.202611i
\(804\) 8.72716 4.13328i 0.307783 0.145770i
\(805\) 0 0
\(806\) 10.4559i 0.368294i
\(807\) 1.15668 3.23808i 0.0407169 0.113986i
\(808\) −26.5026 26.5026i −0.932360 0.932360i
\(809\) −47.1778 −1.65868 −0.829341 0.558742i \(-0.811284\pi\)
−0.829341 + 0.558742i \(0.811284\pi\)
\(810\) 0 0
\(811\) −42.0723 −1.47736 −0.738680 0.674057i \(-0.764550\pi\)
−0.738680 + 0.674057i \(0.764550\pi\)
\(812\) −1.23148 1.23148i −0.0432163 0.0432163i
\(813\) −9.75300 + 27.3033i −0.342053 + 0.957568i
\(814\) 5.45437i 0.191176i
\(815\) 0 0
\(816\) −30.9870 + 14.6758i −1.08476 + 0.513755i
\(817\) 0.519888 0.519888i 0.0181886 0.0181886i
\(818\) 14.4525 14.4525i 0.505319 0.505319i
\(819\) 0.956521 + 0.783306i 0.0334235 + 0.0273709i
\(820\) 0 0
\(821\) 44.0134i 1.53608i 0.640403 + 0.768039i \(0.278767\pi\)
−0.640403 + 0.768039i \(0.721233\pi\)
\(822\) 53.7251 + 19.1911i 1.87388 + 0.669368i
\(823\) 12.1320 + 12.1320i 0.422896 + 0.422896i 0.886200 0.463303i \(-0.153336\pi\)
−0.463303 + 0.886200i \(0.653336\pi\)
\(824\) 15.0613 0.524684
\(825\) 0 0
\(826\) 1.24150 0.0431972
\(827\) −14.5719 14.5719i −0.506716 0.506716i 0.406801 0.913517i \(-0.366644\pi\)
−0.913517 + 0.406801i \(0.866644\pi\)
\(828\) 1.37865 + 13.8476i 0.0479113 + 0.481237i
\(829\) 34.3317i 1.19239i 0.802840 + 0.596195i \(0.203321\pi\)
−0.802840 + 0.596195i \(0.796679\pi\)
\(830\) 0 0
\(831\) −16.3966 34.6203i −0.568790 1.20096i
\(832\) −4.24284 + 4.24284i −0.147094 + 0.147094i
\(833\) 19.9191 19.9191i 0.690155 0.690155i
\(834\) −4.32960 9.14167i −0.149922 0.316550i
\(835\) 0 0
\(836\) 0.176783i 0.00611417i
\(837\) −19.8957 + 11.9680i −0.687697 + 0.413673i
\(838\) −38.5107 38.5107i −1.33033 1.33033i
\(839\) 7.37612 0.254652 0.127326 0.991861i \(-0.459361\pi\)
0.127326 + 0.991861i \(0.459361\pi\)
\(840\) 0 0
\(841\) 65.3025 2.25181
\(842\) 12.8009 + 12.8009i 0.441149 + 0.441149i
\(843\) −18.1869 6.49653i −0.626389 0.223752i
\(844\) 6.36808i 0.219198i
\(845\) 0 0
\(846\) −17.3694 + 21.2103i −0.597171 + 0.729225i
\(847\) −0.201884 + 0.201884i −0.00693681 + 0.00693681i
\(848\) 23.1336 23.1336i 0.794410 0.794410i
\(849\) −21.5652 + 10.2135i −0.740115 + 0.350527i
\(850\) 0 0
\(851\) 24.8458i 0.851702i
\(852\) 0.248572 0.695871i 0.00851593 0.0238401i
\(853\) 22.1377 + 22.1377i 0.757980 + 0.757980i 0.975955 0.217974i \(-0.0699449\pi\)
−0.217974 + 0.975955i \(0.569945\pi\)
\(854\) 4.38312 0.149987
\(855\) 0 0
\(856\) 1.72172 0.0588471
\(857\) 8.67169 + 8.67169i 0.296219 + 0.296219i 0.839531 0.543312i \(-0.182830\pi\)
−0.543312 + 0.839531i \(0.682830\pi\)
\(858\) 1.36341 3.81683i 0.0465461 0.130305i
\(859\) 15.3607i 0.524101i 0.965054 + 0.262050i \(0.0843987\pi\)
−0.965054 + 0.262050i \(0.915601\pi\)
\(860\) 0 0
\(861\) −4.02307 + 1.90537i −0.137106 + 0.0649350i
\(862\) 4.18793 4.18793i 0.142642 0.142642i
\(863\) 25.8970 25.8970i 0.881543 0.881543i −0.112149 0.993691i \(-0.535773\pi\)
0.993691 + 0.112149i \(0.0357732\pi\)
\(864\) 17.3139 + 4.30775i 0.589031 + 0.146553i
\(865\) 0 0
\(866\) 8.17597i 0.277831i
\(867\) −0.687429 0.245556i −0.0233463 0.00833953i
\(868\) 0.566638 + 0.566638i 0.0192329 + 0.0192329i
\(869\) −12.5134 −0.424487
\(870\) 0 0
\(871\) −12.8112 −0.434091
\(872\) 0.395093 + 0.395093i 0.0133795 + 0.0133795i
\(873\) −48.1861 + 4.79733i −1.63085 + 0.162365i
\(874\) 3.36927i 0.113967i
\(875\) 0 0
\(876\) 3.78126 + 7.98388i 0.127757 + 0.269750i
\(877\) −11.3433 + 11.3433i −0.383037 + 0.383037i −0.872195 0.489158i \(-0.837304\pi\)
0.489158 + 0.872195i \(0.337304\pi\)
\(878\) −39.8772 + 39.8772i −1.34579 + 1.34579i
\(879\) 3.88630 + 8.20566i 0.131082 + 0.276770i
\(880\) 0 0
\(881\) 45.7437i 1.54115i 0.637352 + 0.770573i \(0.280030\pi\)
−0.637352 + 0.770573i \(0.719970\pi\)
\(882\) −33.4823 + 3.33345i −1.12741 + 0.112243i
\(883\) −33.5492 33.5492i −1.12902 1.12902i −0.990337 0.138685i \(-0.955713\pi\)
−0.138685 0.990337i \(-0.544287\pi\)
\(884\) −3.69174 −0.124167
\(885\) 0 0
\(886\) −23.9849 −0.805788
\(887\) 41.1834 + 41.1834i 1.38280 + 1.38280i 0.839601 + 0.543204i \(0.182789\pi\)
0.543204 + 0.839601i \(0.317211\pi\)
\(888\) −12.2049 4.35972i −0.409570 0.146303i
\(889\) 1.16576i 0.0390983i
\(890\) 0 0
\(891\) 8.82334 1.77446i 0.295593 0.0594468i
\(892\) 9.55416 9.55416i 0.319897 0.319897i
\(893\) −1.12177 + 1.12177i −0.0375384 + 0.0375384i
\(894\) −29.5738 + 14.0065i −0.989097 + 0.468448i
\(895\) 0 0
\(896\) 3.88472i 0.129779i
\(897\) 6.21061 17.3865i 0.207366 0.580517i
\(898\) −20.7602 20.7602i −0.692778 0.692778i
\(899\) −43.3914 −1.44718
\(900\) 0 0
\(901\) −27.3994 −0.912805
\(902\) 10.3190 + 10.3190i 0.343584 + 0.343584i
\(903\) −0.434580 + 1.21660i −0.0144619 + 0.0404858i
\(904\) 7.55324i 0.251217i
\(905\) 0 0
\(906\) 42.4699 20.1142i 1.41097 0.668251i
\(907\) −40.3742 + 40.3742i −1.34060 + 1.34060i −0.445143 + 0.895459i \(0.646847\pi\)
−0.895459 + 0.445143i \(0.853153\pi\)
\(908\) 6.13735 6.13735i 0.203675 0.203675i
\(909\) 32.0326 39.1161i 1.06245 1.29740i
\(910\) 0 0
\(911\) 3.96308i 0.131303i 0.997843 + 0.0656514i \(0.0209125\pi\)
−0.997843 + 0.0656514i \(0.979087\pi\)
\(912\) 2.23178 + 0.797215i 0.0739018 + 0.0263984i
\(913\) 4.93065 + 4.93065i 0.163181 + 0.163181i
\(914\) −9.34853 −0.309222
\(915\) 0 0
\(916\) −12.2503 −0.404762
\(917\) −3.48388 3.48388i −0.115048 0.115048i
\(918\) −17.6798 29.3912i −0.583519 0.970053i
\(919\) 7.06389i 0.233016i 0.993190 + 0.116508i \(0.0371701\pi\)
−0.993190 + 0.116508i \(0.962830\pi\)
\(920\) 0 0
\(921\) 5.45921 + 11.5268i 0.179887 + 0.379820i
\(922\) −25.8944 + 25.8944i −0.852787 + 0.852787i
\(923\) −0.693207 + 0.693207i −0.0228172 + 0.0228172i
\(924\) −0.132959 0.280734i −0.00437402 0.00923546i
\(925\) 0 0
\(926\) 11.0290i 0.362436i
\(927\) 2.01274 + 20.2166i 0.0661070 + 0.664001i
\(928\) 23.5778 + 23.5778i 0.773978 + 0.773978i
\(929\) 5.42663 0.178042 0.0890210 0.996030i \(-0.471626\pi\)
0.0890210 + 0.996030i \(0.471626\pi\)
\(930\) 0 0
\(931\) −1.94711 −0.0638138
\(932\) 6.51545 + 6.51545i 0.213421 + 0.213421i
\(933\) 36.3557 + 12.9866i 1.19023 + 0.425163i
\(934\) 9.41249i 0.307986i
\(935\) 0 0
\(936\) −7.45092 6.10165i −0.243541 0.199439i
\(937\) −29.0081 + 29.0081i −0.947653 + 0.947653i −0.998696 0.0510439i \(-0.983745\pi\)
0.0510439 + 0.998696i \(0.483745\pi\)
\(938\) −2.90484 + 2.90484i −0.0948463 + 0.0948463i
\(939\) 19.3984 9.18729i 0.633042 0.299816i
\(940\) 0 0
\(941\) 17.7369i 0.578208i 0.957298 + 0.289104i \(0.0933573\pi\)
−0.957298 + 0.289104i \(0.906643\pi\)
\(942\) 11.9975 33.5867i 0.390900 1.09431i
\(943\) 47.0050 + 47.0050i 1.53069 + 1.53069i
\(944\) −13.0405 −0.424433
\(945\) 0 0
\(946\) 4.23518 0.137697
\(947\) 14.6533 + 14.6533i 0.476169 + 0.476169i 0.903904 0.427735i \(-0.140688\pi\)
−0.427735 + 0.903904i \(0.640688\pi\)
\(948\) 4.57977 12.8209i 0.148744 0.416405i
\(949\) 11.7201i 0.380451i
\(950\) 0 0
\(951\) 40.8153 19.3306i 1.32353 0.626838i
\(952\) 1.82813 1.82813i 0.0592500 0.0592500i
\(953\) −11.7199 + 11.7199i −0.379646 + 0.379646i −0.870975 0.491328i \(-0.836512\pi\)
0.491328 + 0.870975i \(0.336512\pi\)
\(954\) 25.3206 + 20.7354i 0.819786 + 0.671333i
\(955\) 0 0
\(956\) 16.3629i 0.529213i
\(957\) 15.8396 + 5.65807i 0.512022 + 0.182899i
\(958\) 6.58058 + 6.58058i 0.212609 + 0.212609i
\(959\) −5.80077 −0.187317
\(960\) 0 0
\(961\) −11.0344 −0.355947
\(962\) −5.56704 5.56704i −0.179489 0.179489i
\(963\) 0.230085 + 2.31105i 0.00741438 + 0.0744726i
\(964\) 1.38060i 0.0444660i
\(965\) 0 0
\(966\) −2.53403 5.35044i −0.0815311 0.172148i
\(967\) 21.1658 21.1658i 0.680647 0.680647i −0.279499 0.960146i \(-0.590168\pi\)
0.960146 + 0.279499i \(0.0901685\pi\)
\(968\) 1.57260 1.57260i 0.0505451 0.0505451i
\(969\) −0.849551 1.79377i −0.0272915 0.0576242i
\(970\) 0 0
\(971\) 15.3244i 0.491783i −0.969297 0.245891i \(-0.920919\pi\)
0.969297 0.245891i \(-0.0790807\pi\)
\(972\) −1.41117 + 9.68965i −0.0452634 + 0.310796i
\(973\) 0.727255 + 0.727255i 0.0233147 + 0.0233147i
\(974\) 35.0297 1.12243
\(975\) 0 0
\(976\) −46.0397 −1.47370
\(977\) 9.31965 + 9.31965i 0.298162 + 0.298162i 0.840294 0.542132i \(-0.182383\pi\)
−0.542132 + 0.840294i \(0.682383\pi\)
\(978\) 48.1635 + 17.2045i 1.54010 + 0.550138i
\(979\) 2.97979i 0.0952344i
\(980\) 0 0
\(981\) −0.477532 + 0.583129i −0.0152464 + 0.0186179i
\(982\) 11.2283 11.2283i 0.358311 0.358311i
\(983\) 22.0174 22.0174i 0.702247 0.702247i −0.262645 0.964892i \(-0.584595\pi\)
0.964892 + 0.262645i \(0.0845949\pi\)
\(984\) 31.3381 14.8421i 0.999024 0.473149i
\(985\) 0 0
\(986\) 64.1003i 2.04137i
\(987\) 0.937696 2.62506i 0.0298472 0.0835565i
\(988\) 0.180435 + 0.180435i 0.00574040 + 0.00574040i
\(989\) 19.2921 0.613453
\(990\) 0 0
\(991\) −1.02170 −0.0324553 −0.0162276 0.999868i \(-0.505166\pi\)
−0.0162276 + 0.999868i \(0.505166\pi\)
\(992\) −10.8488 10.8488i −0.344450 0.344450i
\(993\) −0.494118 + 1.38327i −0.0156804 + 0.0438968i
\(994\) 0.314358i 0.00997083i
\(995\) 0 0
\(996\) −6.85641 + 3.24728i −0.217254 + 0.102894i
\(997\) 23.8372 23.8372i 0.754932 0.754932i −0.220464 0.975395i \(-0.570757\pi\)
0.975395 + 0.220464i \(0.0707570\pi\)
\(998\) −1.06565 + 1.06565i −0.0337325 + 0.0337325i
\(999\) 4.22100 16.9652i 0.133546 0.536755i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 825.2.k.j.518.2 16
3.2 odd 2 825.2.k.i.518.7 16
5.2 odd 4 825.2.k.i.782.7 16
5.3 odd 4 165.2.k.d.122.2 yes 16
5.4 even 2 165.2.k.c.23.7 16
15.2 even 4 inner 825.2.k.j.782.2 16
15.8 even 4 165.2.k.c.122.7 yes 16
15.14 odd 2 165.2.k.d.23.2 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
165.2.k.c.23.7 16 5.4 even 2
165.2.k.c.122.7 yes 16 15.8 even 4
165.2.k.d.23.2 yes 16 15.14 odd 2
165.2.k.d.122.2 yes 16 5.3 odd 4
825.2.k.i.518.7 16 3.2 odd 2
825.2.k.i.782.7 16 5.2 odd 4
825.2.k.j.518.2 16 1.1 even 1 trivial
825.2.k.j.782.2 16 15.2 even 4 inner