Properties

Label 1664.2.b.h.833.3
Level $1664$
Weight $2$
Character 1664.833
Analytic conductor $13.287$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1664,2,Mod(833,1664)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1664, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1664.833");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1664 = 2^{7} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1664.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.2871068963\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 833.3
Root \(-0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 1664.833
Dual form 1664.2.b.h.833.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000i q^{5} -4.24264 q^{7} +3.00000 q^{9} -4.24264i q^{11} -1.00000i q^{13} +4.00000 q^{17} +4.24264i q^{19} +1.00000 q^{25} -2.00000i q^{29} +4.24264 q^{31} -8.48528i q^{35} +6.00000i q^{37} -2.00000 q^{41} +8.48528i q^{43} +6.00000i q^{45} +12.7279 q^{47} +11.0000 q^{49} +8.00000i q^{53} +8.48528 q^{55} +4.24264i q^{59} -12.7279 q^{63} +2.00000 q^{65} +4.24264i q^{67} -4.24264 q^{71} -6.00000 q^{73} +18.0000i q^{77} -8.48528 q^{79} +9.00000 q^{81} +12.7279i q^{83} +8.00000i q^{85} -10.0000 q^{89} +4.24264i q^{91} -8.48528 q^{95} +18.0000 q^{97} -12.7279i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 12 q^{9} + 16 q^{17} + 4 q^{25} - 8 q^{41} + 44 q^{49} + 8 q^{65} - 24 q^{73} + 36 q^{81} - 40 q^{89} + 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1664\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(769\) \(1535\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(4\) 0 0
\(5\) 2.00000i 0.894427i 0.894427 + 0.447214i \(0.147584\pi\)
−0.894427 + 0.447214i \(0.852416\pi\)
\(6\) 0 0
\(7\) −4.24264 −1.60357 −0.801784 0.597614i \(-0.796115\pi\)
−0.801784 + 0.597614i \(0.796115\pi\)
\(8\) 0 0
\(9\) 3.00000 1.00000
\(10\) 0 0
\(11\) − 4.24264i − 1.27920i −0.768706 0.639602i \(-0.779099\pi\)
0.768706 0.639602i \(-0.220901\pi\)
\(12\) 0 0
\(13\) − 1.00000i − 0.277350i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.00000 0.970143 0.485071 0.874475i \(-0.338794\pi\)
0.485071 + 0.874475i \(0.338794\pi\)
\(18\) 0 0
\(19\) 4.24264i 0.973329i 0.873589 + 0.486664i \(0.161786\pi\)
−0.873589 + 0.486664i \(0.838214\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 2.00000i − 0.371391i −0.982607 0.185695i \(-0.940546\pi\)
0.982607 0.185695i \(-0.0594537\pi\)
\(30\) 0 0
\(31\) 4.24264 0.762001 0.381000 0.924575i \(-0.375580\pi\)
0.381000 + 0.924575i \(0.375580\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) − 8.48528i − 1.43427i
\(36\) 0 0
\(37\) 6.00000i 0.986394i 0.869918 + 0.493197i \(0.164172\pi\)
−0.869918 + 0.493197i \(0.835828\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −2.00000 −0.312348 −0.156174 0.987730i \(-0.549916\pi\)
−0.156174 + 0.987730i \(0.549916\pi\)
\(42\) 0 0
\(43\) 8.48528i 1.29399i 0.762493 + 0.646997i \(0.223975\pi\)
−0.762493 + 0.646997i \(0.776025\pi\)
\(44\) 0 0
\(45\) 6.00000i 0.894427i
\(46\) 0 0
\(47\) 12.7279 1.85656 0.928279 0.371884i \(-0.121288\pi\)
0.928279 + 0.371884i \(0.121288\pi\)
\(48\) 0 0
\(49\) 11.0000 1.57143
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 8.00000i 1.09888i 0.835532 + 0.549442i \(0.185160\pi\)
−0.835532 + 0.549442i \(0.814840\pi\)
\(54\) 0 0
\(55\) 8.48528 1.14416
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 4.24264i 0.552345i 0.961108 + 0.276172i \(0.0890661\pi\)
−0.961108 + 0.276172i \(0.910934\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) −12.7279 −1.60357
\(64\) 0 0
\(65\) 2.00000 0.248069
\(66\) 0 0
\(67\) 4.24264i 0.518321i 0.965834 + 0.259161i \(0.0834459\pi\)
−0.965834 + 0.259161i \(0.916554\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −4.24264 −0.503509 −0.251754 0.967791i \(-0.581008\pi\)
−0.251754 + 0.967791i \(0.581008\pi\)
\(72\) 0 0
\(73\) −6.00000 −0.702247 −0.351123 0.936329i \(-0.614200\pi\)
−0.351123 + 0.936329i \(0.614200\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 18.0000i 2.05129i
\(78\) 0 0
\(79\) −8.48528 −0.954669 −0.477334 0.878722i \(-0.658397\pi\)
−0.477334 + 0.878722i \(0.658397\pi\)
\(80\) 0 0
\(81\) 9.00000 1.00000
\(82\) 0 0
\(83\) 12.7279i 1.39707i 0.715575 + 0.698535i \(0.246165\pi\)
−0.715575 + 0.698535i \(0.753835\pi\)
\(84\) 0 0
\(85\) 8.00000i 0.867722i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −10.0000 −1.06000 −0.529999 0.847998i \(-0.677808\pi\)
−0.529999 + 0.847998i \(0.677808\pi\)
\(90\) 0 0
\(91\) 4.24264i 0.444750i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −8.48528 −0.870572
\(96\) 0 0
\(97\) 18.0000 1.82762 0.913812 0.406138i \(-0.133125\pi\)
0.913812 + 0.406138i \(0.133125\pi\)
\(98\) 0 0
\(99\) − 12.7279i − 1.27920i
\(100\) 0 0
\(101\) 4.00000i 0.398015i 0.979998 + 0.199007i \(0.0637718\pi\)
−0.979998 + 0.199007i \(0.936228\pi\)
\(102\) 0 0
\(103\) 16.9706 1.67216 0.836080 0.548608i \(-0.184842\pi\)
0.836080 + 0.548608i \(0.184842\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 16.9706i − 1.64061i −0.571929 0.820303i \(-0.693805\pi\)
0.571929 0.820303i \(-0.306195\pi\)
\(108\) 0 0
\(109\) 2.00000i 0.191565i 0.995402 + 0.0957826i \(0.0305354\pi\)
−0.995402 + 0.0957826i \(0.969465\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 16.0000 1.50515 0.752577 0.658505i \(-0.228811\pi\)
0.752577 + 0.658505i \(0.228811\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 3.00000i − 0.277350i
\(118\) 0 0
\(119\) −16.9706 −1.55569
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 12.0000i 1.07331i
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 16.9706i − 1.48272i −0.671105 0.741362i \(-0.734180\pi\)
0.671105 0.741362i \(-0.265820\pi\)
\(132\) 0 0
\(133\) − 18.0000i − 1.56080i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2.00000 0.170872 0.0854358 0.996344i \(-0.472772\pi\)
0.0854358 + 0.996344i \(0.472772\pi\)
\(138\) 0 0
\(139\) − 16.9706i − 1.43942i −0.694273 0.719712i \(-0.744274\pi\)
0.694273 0.719712i \(-0.255726\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −4.24264 −0.354787
\(144\) 0 0
\(145\) 4.00000 0.332182
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 10.0000i 0.819232i 0.912258 + 0.409616i \(0.134337\pi\)
−0.912258 + 0.409616i \(0.865663\pi\)
\(150\) 0 0
\(151\) 12.7279 1.03578 0.517892 0.855446i \(-0.326717\pi\)
0.517892 + 0.855446i \(0.326717\pi\)
\(152\) 0 0
\(153\) 12.0000 0.970143
\(154\) 0 0
\(155\) 8.48528i 0.681554i
\(156\) 0 0
\(157\) − 18.0000i − 1.43656i −0.695756 0.718278i \(-0.744931\pi\)
0.695756 0.718278i \(-0.255069\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 21.2132i 1.66155i 0.556611 + 0.830773i \(0.312101\pi\)
−0.556611 + 0.830773i \(0.687899\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 4.24264 0.328305 0.164153 0.986435i \(-0.447511\pi\)
0.164153 + 0.986435i \(0.447511\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) 12.7279i 0.973329i
\(172\) 0 0
\(173\) 4.00000i 0.304114i 0.988372 + 0.152057i \(0.0485898\pi\)
−0.988372 + 0.152057i \(0.951410\pi\)
\(174\) 0 0
\(175\) −4.24264 −0.320713
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 8.48528i − 0.634220i −0.948389 0.317110i \(-0.897288\pi\)
0.948389 0.317110i \(-0.102712\pi\)
\(180\) 0 0
\(181\) − 2.00000i − 0.148659i −0.997234 0.0743294i \(-0.976318\pi\)
0.997234 0.0743294i \(-0.0236816\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −12.0000 −0.882258
\(186\) 0 0
\(187\) − 16.9706i − 1.24101i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 25.4558 1.84192 0.920960 0.389657i \(-0.127406\pi\)
0.920960 + 0.389657i \(0.127406\pi\)
\(192\) 0 0
\(193\) −22.0000 −1.58359 −0.791797 0.610784i \(-0.790854\pi\)
−0.791797 + 0.610784i \(0.790854\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 26.0000i − 1.85242i −0.377004 0.926212i \(-0.623046\pi\)
0.377004 0.926212i \(-0.376954\pi\)
\(198\) 0 0
\(199\) −16.9706 −1.20301 −0.601506 0.798869i \(-0.705432\pi\)
−0.601506 + 0.798869i \(0.705432\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 8.48528i 0.595550i
\(204\) 0 0
\(205\) − 4.00000i − 0.279372i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 18.0000 1.24509
\(210\) 0 0
\(211\) 16.9706i 1.16830i 0.811645 + 0.584151i \(0.198572\pi\)
−0.811645 + 0.584151i \(0.801428\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −16.9706 −1.15738
\(216\) 0 0
\(217\) −18.0000 −1.22192
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 4.00000i − 0.269069i
\(222\) 0 0
\(223\) 12.7279 0.852325 0.426162 0.904647i \(-0.359865\pi\)
0.426162 + 0.904647i \(0.359865\pi\)
\(224\) 0 0
\(225\) 3.00000 0.200000
\(226\) 0 0
\(227\) 21.2132i 1.40797i 0.710215 + 0.703985i \(0.248598\pi\)
−0.710215 + 0.703985i \(0.751402\pi\)
\(228\) 0 0
\(229\) − 22.0000i − 1.45380i −0.686743 0.726900i \(-0.740960\pi\)
0.686743 0.726900i \(-0.259040\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 10.0000 0.655122 0.327561 0.944830i \(-0.393773\pi\)
0.327561 + 0.944830i \(0.393773\pi\)
\(234\) 0 0
\(235\) 25.4558i 1.66056i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −4.24264 −0.274434 −0.137217 0.990541i \(-0.543816\pi\)
−0.137217 + 0.990541i \(0.543816\pi\)
\(240\) 0 0
\(241\) −18.0000 −1.15948 −0.579741 0.814801i \(-0.696846\pi\)
−0.579741 + 0.814801i \(0.696846\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 22.0000i 1.40553i
\(246\) 0 0
\(247\) 4.24264 0.269953
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 8.48528i 0.535586i 0.963476 + 0.267793i \(0.0862944\pi\)
−0.963476 + 0.267793i \(0.913706\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 14.0000 0.873296 0.436648 0.899632i \(-0.356166\pi\)
0.436648 + 0.899632i \(0.356166\pi\)
\(258\) 0 0
\(259\) − 25.4558i − 1.58175i
\(260\) 0 0
\(261\) − 6.00000i − 0.371391i
\(262\) 0 0
\(263\) 8.48528 0.523225 0.261612 0.965173i \(-0.415746\pi\)
0.261612 + 0.965173i \(0.415746\pi\)
\(264\) 0 0
\(265\) −16.0000 −0.982872
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 2.00000i 0.121942i 0.998140 + 0.0609711i \(0.0194197\pi\)
−0.998140 + 0.0609711i \(0.980580\pi\)
\(270\) 0 0
\(271\) 12.7279 0.773166 0.386583 0.922255i \(-0.373655\pi\)
0.386583 + 0.922255i \(0.373655\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 4.24264i − 0.255841i
\(276\) 0 0
\(277\) 28.0000i 1.68236i 0.540758 + 0.841178i \(0.318138\pi\)
−0.540758 + 0.841178i \(0.681862\pi\)
\(278\) 0 0
\(279\) 12.7279 0.762001
\(280\) 0 0
\(281\) −22.0000 −1.31241 −0.656205 0.754583i \(-0.727839\pi\)
−0.656205 + 0.754583i \(0.727839\pi\)
\(282\) 0 0
\(283\) − 8.48528i − 0.504398i −0.967675 0.252199i \(-0.918846\pi\)
0.967675 0.252199i \(-0.0811537\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 8.48528 0.500870
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 2.00000i 0.116841i 0.998292 + 0.0584206i \(0.0186065\pi\)
−0.998292 + 0.0584206i \(0.981394\pi\)
\(294\) 0 0
\(295\) −8.48528 −0.494032
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) − 36.0000i − 2.07501i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 29.6985i − 1.69498i −0.530810 0.847491i \(-0.678112\pi\)
0.530810 0.847491i \(-0.321888\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −16.9706 −0.962312 −0.481156 0.876635i \(-0.659783\pi\)
−0.481156 + 0.876635i \(0.659783\pi\)
\(312\) 0 0
\(313\) 8.00000 0.452187 0.226093 0.974106i \(-0.427405\pi\)
0.226093 + 0.974106i \(0.427405\pi\)
\(314\) 0 0
\(315\) − 25.4558i − 1.43427i
\(316\) 0 0
\(317\) 2.00000i 0.112331i 0.998421 + 0.0561656i \(0.0178875\pi\)
−0.998421 + 0.0561656i \(0.982113\pi\)
\(318\) 0 0
\(319\) −8.48528 −0.475085
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 16.9706i 0.944267i
\(324\) 0 0
\(325\) − 1.00000i − 0.0554700i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −54.0000 −2.97712
\(330\) 0 0
\(331\) − 12.7279i − 0.699590i −0.936826 0.349795i \(-0.886251\pi\)
0.936826 0.349795i \(-0.113749\pi\)
\(332\) 0 0
\(333\) 18.0000i 0.986394i
\(334\) 0 0
\(335\) −8.48528 −0.463600
\(336\) 0 0
\(337\) −12.0000 −0.653682 −0.326841 0.945079i \(-0.605984\pi\)
−0.326841 + 0.945079i \(0.605984\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 18.0000i − 0.974755i
\(342\) 0 0
\(343\) −16.9706 −0.916324
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 33.9411i 1.82206i 0.412346 + 0.911028i \(0.364710\pi\)
−0.412346 + 0.911028i \(0.635290\pi\)
\(348\) 0 0
\(349\) − 18.0000i − 0.963518i −0.876304 0.481759i \(-0.839998\pi\)
0.876304 0.481759i \(-0.160002\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 10.0000 0.532246 0.266123 0.963939i \(-0.414257\pi\)
0.266123 + 0.963939i \(0.414257\pi\)
\(354\) 0 0
\(355\) − 8.48528i − 0.450352i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −4.24264 −0.223918 −0.111959 0.993713i \(-0.535713\pi\)
−0.111959 + 0.993713i \(0.535713\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 12.0000i − 0.628109i
\(366\) 0 0
\(367\) −8.48528 −0.442928 −0.221464 0.975169i \(-0.571084\pi\)
−0.221464 + 0.975169i \(0.571084\pi\)
\(368\) 0 0
\(369\) −6.00000 −0.312348
\(370\) 0 0
\(371\) − 33.9411i − 1.76214i
\(372\) 0 0
\(373\) 6.00000i 0.310668i 0.987862 + 0.155334i \(0.0496454\pi\)
−0.987862 + 0.155334i \(0.950355\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −2.00000 −0.103005
\(378\) 0 0
\(379\) − 12.7279i − 0.653789i −0.945061 0.326895i \(-0.893998\pi\)
0.945061 0.326895i \(-0.106002\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −4.24264 −0.216789 −0.108394 0.994108i \(-0.534571\pi\)
−0.108394 + 0.994108i \(0.534571\pi\)
\(384\) 0 0
\(385\) −36.0000 −1.83473
\(386\) 0 0
\(387\) 25.4558i 1.29399i
\(388\) 0 0
\(389\) − 26.0000i − 1.31825i −0.752032 0.659126i \(-0.770926\pi\)
0.752032 0.659126i \(-0.229074\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 16.9706i − 0.853882i
\(396\) 0 0
\(397\) − 30.0000i − 1.50566i −0.658217 0.752828i \(-0.728689\pi\)
0.658217 0.752828i \(-0.271311\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −26.0000 −1.29838 −0.649189 0.760627i \(-0.724892\pi\)
−0.649189 + 0.760627i \(0.724892\pi\)
\(402\) 0 0
\(403\) − 4.24264i − 0.211341i
\(404\) 0 0
\(405\) 18.0000i 0.894427i
\(406\) 0 0
\(407\) 25.4558 1.26180
\(408\) 0 0
\(409\) −30.0000 −1.48340 −0.741702 0.670729i \(-0.765981\pi\)
−0.741702 + 0.670729i \(0.765981\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 18.0000i − 0.885722i
\(414\) 0 0
\(415\) −25.4558 −1.24958
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 16.9706i 0.829066i 0.910034 + 0.414533i \(0.136055\pi\)
−0.910034 + 0.414533i \(0.863945\pi\)
\(420\) 0 0
\(421\) − 26.0000i − 1.26716i −0.773676 0.633581i \(-0.781584\pi\)
0.773676 0.633581i \(-0.218416\pi\)
\(422\) 0 0
\(423\) 38.1838 1.85656
\(424\) 0 0
\(425\) 4.00000 0.194029
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −12.7279 −0.613082 −0.306541 0.951857i \(-0.599172\pi\)
−0.306541 + 0.951857i \(0.599172\pi\)
\(432\) 0 0
\(433\) −34.0000 −1.63394 −0.816968 0.576683i \(-0.804347\pi\)
−0.816968 + 0.576683i \(0.804347\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 16.9706 0.809961 0.404980 0.914325i \(-0.367278\pi\)
0.404980 + 0.914325i \(0.367278\pi\)
\(440\) 0 0
\(441\) 33.0000 1.57143
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) − 20.0000i − 0.948091i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 14.0000 0.660701 0.330350 0.943858i \(-0.392833\pi\)
0.330350 + 0.943858i \(0.392833\pi\)
\(450\) 0 0
\(451\) 8.48528i 0.399556i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −8.48528 −0.397796
\(456\) 0 0
\(457\) 18.0000 0.842004 0.421002 0.907060i \(-0.361678\pi\)
0.421002 + 0.907060i \(0.361678\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 14.0000i 0.652045i 0.945362 + 0.326023i \(0.105709\pi\)
−0.945362 + 0.326023i \(0.894291\pi\)
\(462\) 0 0
\(463\) −38.1838 −1.77455 −0.887275 0.461241i \(-0.847404\pi\)
−0.887275 + 0.461241i \(0.847404\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 8.48528i 0.392652i 0.980539 + 0.196326i \(0.0629011\pi\)
−0.980539 + 0.196326i \(0.937099\pi\)
\(468\) 0 0
\(469\) − 18.0000i − 0.831163i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 36.0000 1.65528
\(474\) 0 0
\(475\) 4.24264i 0.194666i
\(476\) 0 0
\(477\) 24.0000i 1.09888i
\(478\) 0 0
\(479\) 4.24264 0.193851 0.0969256 0.995292i \(-0.469099\pi\)
0.0969256 + 0.995292i \(0.469099\pi\)
\(480\) 0 0
\(481\) 6.00000 0.273576
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 36.0000i 1.63468i
\(486\) 0 0
\(487\) −29.6985 −1.34577 −0.672883 0.739749i \(-0.734944\pi\)
−0.672883 + 0.739749i \(0.734944\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 25.4558i 1.14881i 0.818573 + 0.574403i \(0.194766\pi\)
−0.818573 + 0.574403i \(0.805234\pi\)
\(492\) 0 0
\(493\) − 8.00000i − 0.360302i
\(494\) 0 0
\(495\) 25.4558 1.14416
\(496\) 0 0
\(497\) 18.0000 0.807410
\(498\) 0 0
\(499\) 21.2132i 0.949633i 0.880085 + 0.474817i \(0.157486\pi\)
−0.880085 + 0.474817i \(0.842514\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 8.48528 0.378340 0.189170 0.981944i \(-0.439420\pi\)
0.189170 + 0.981944i \(0.439420\pi\)
\(504\) 0 0
\(505\) −8.00000 −0.355995
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 38.0000i − 1.68432i −0.539227 0.842160i \(-0.681284\pi\)
0.539227 0.842160i \(-0.318716\pi\)
\(510\) 0 0
\(511\) 25.4558 1.12610
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 33.9411i 1.49562i
\(516\) 0 0
\(517\) − 54.0000i − 2.37492i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 8.00000 0.350486 0.175243 0.984525i \(-0.443929\pi\)
0.175243 + 0.984525i \(0.443929\pi\)
\(522\) 0 0
\(523\) 16.9706i 0.742071i 0.928619 + 0.371035i \(0.120997\pi\)
−0.928619 + 0.371035i \(0.879003\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 16.9706 0.739249
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 12.7279i 0.552345i
\(532\) 0 0
\(533\) 2.00000i 0.0866296i
\(534\) 0 0
\(535\) 33.9411 1.46740
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 46.6690i − 2.01018i
\(540\) 0 0
\(541\) 38.0000i 1.63375i 0.576816 + 0.816874i \(0.304295\pi\)
−0.576816 + 0.816874i \(0.695705\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −4.00000 −0.171341
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 8.48528 0.361485
\(552\) 0 0
\(553\) 36.0000 1.53088
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 38.0000i 1.61011i 0.593199 + 0.805056i \(0.297865\pi\)
−0.593199 + 0.805056i \(0.702135\pi\)
\(558\) 0 0
\(559\) 8.48528 0.358889
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 25.4558i − 1.07284i −0.843952 0.536418i \(-0.819777\pi\)
0.843952 0.536418i \(-0.180223\pi\)
\(564\) 0 0
\(565\) 32.0000i 1.34625i
\(566\) 0 0
\(567\) −38.1838 −1.60357
\(568\) 0 0
\(569\) 26.0000 1.08998 0.544988 0.838444i \(-0.316534\pi\)
0.544988 + 0.838444i \(0.316534\pi\)
\(570\) 0 0
\(571\) 8.48528i 0.355098i 0.984112 + 0.177549i \(0.0568168\pi\)
−0.984112 + 0.177549i \(0.943183\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −34.0000 −1.41544 −0.707719 0.706494i \(-0.750276\pi\)
−0.707719 + 0.706494i \(0.750276\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 54.0000i − 2.24030i
\(582\) 0 0
\(583\) 33.9411 1.40570
\(584\) 0 0
\(585\) 6.00000 0.248069
\(586\) 0 0
\(587\) − 12.7279i − 0.525338i −0.964886 0.262669i \(-0.915397\pi\)
0.964886 0.262669i \(-0.0846027\pi\)
\(588\) 0 0
\(589\) 18.0000i 0.741677i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 14.0000 0.574911 0.287456 0.957794i \(-0.407191\pi\)
0.287456 + 0.957794i \(0.407191\pi\)
\(594\) 0 0
\(595\) − 33.9411i − 1.39145i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 8.48528 0.346699 0.173350 0.984860i \(-0.444541\pi\)
0.173350 + 0.984860i \(0.444541\pi\)
\(600\) 0 0
\(601\) 8.00000 0.326327 0.163163 0.986599i \(-0.447830\pi\)
0.163163 + 0.986599i \(0.447830\pi\)
\(602\) 0 0
\(603\) 12.7279i 0.518321i
\(604\) 0 0
\(605\) − 14.0000i − 0.569181i
\(606\) 0 0
\(607\) −42.4264 −1.72203 −0.861017 0.508576i \(-0.830172\pi\)
−0.861017 + 0.508576i \(0.830172\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 12.7279i − 0.514917i
\(612\) 0 0
\(613\) 6.00000i 0.242338i 0.992632 + 0.121169i \(0.0386643\pi\)
−0.992632 + 0.121169i \(0.961336\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −22.0000 −0.885687 −0.442843 0.896599i \(-0.646030\pi\)
−0.442843 + 0.896599i \(0.646030\pi\)
\(618\) 0 0
\(619\) 29.6985i 1.19368i 0.802359 + 0.596841i \(0.203578\pi\)
−0.802359 + 0.596841i \(0.796422\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 42.4264 1.69978
\(624\) 0 0
\(625\) −19.0000 −0.760000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 24.0000i 0.956943i
\(630\) 0 0
\(631\) −21.2132 −0.844484 −0.422242 0.906483i \(-0.638757\pi\)
−0.422242 + 0.906483i \(0.638757\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 11.0000i − 0.435836i
\(638\) 0 0
\(639\) −12.7279 −0.503509
\(640\) 0 0
\(641\) −20.0000 −0.789953 −0.394976 0.918691i \(-0.629247\pi\)
−0.394976 + 0.918691i \(0.629247\pi\)
\(642\) 0 0
\(643\) − 38.1838i − 1.50582i −0.658123 0.752910i \(-0.728649\pi\)
0.658123 0.752910i \(-0.271351\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 18.0000 0.706562
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 46.0000i 1.80012i 0.435767 + 0.900060i \(0.356477\pi\)
−0.435767 + 0.900060i \(0.643523\pi\)
\(654\) 0 0
\(655\) 33.9411 1.32619
\(656\) 0 0
\(657\) −18.0000 −0.702247
\(658\) 0 0
\(659\) 16.9706i 0.661079i 0.943792 + 0.330540i \(0.107231\pi\)
−0.943792 + 0.330540i \(0.892769\pi\)
\(660\) 0 0
\(661\) 18.0000i 0.700119i 0.936727 + 0.350059i \(0.113839\pi\)
−0.936727 + 0.350059i \(0.886161\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 36.0000 1.39602
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 28.0000 1.07932 0.539660 0.841883i \(-0.318553\pi\)
0.539660 + 0.841883i \(0.318553\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 16.0000i − 0.614930i −0.951559 0.307465i \(-0.900519\pi\)
0.951559 0.307465i \(-0.0994807\pi\)
\(678\) 0 0
\(679\) −76.3675 −2.93072
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 38.1838i − 1.46106i −0.682880 0.730531i \(-0.739273\pi\)
0.682880 0.730531i \(-0.260727\pi\)
\(684\) 0 0
\(685\) 4.00000i 0.152832i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 8.00000 0.304776
\(690\) 0 0
\(691\) − 12.7279i − 0.484193i −0.970252 0.242096i \(-0.922165\pi\)
0.970252 0.242096i \(-0.0778351\pi\)
\(692\) 0 0
\(693\) 54.0000i 2.05129i
\(694\) 0 0
\(695\) 33.9411 1.28746
\(696\) 0 0
\(697\) −8.00000 −0.303022
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 38.0000i − 1.43524i −0.696435 0.717620i \(-0.745231\pi\)
0.696435 0.717620i \(-0.254769\pi\)
\(702\) 0 0
\(703\) −25.4558 −0.960085
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 16.9706i − 0.638244i
\(708\) 0 0
\(709\) − 10.0000i − 0.375558i −0.982211 0.187779i \(-0.939871\pi\)
0.982211 0.187779i \(-0.0601289\pi\)
\(710\) 0 0
\(711\) −25.4558 −0.954669
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) − 8.48528i − 0.317332i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −16.9706 −0.632895 −0.316448 0.948610i \(-0.602490\pi\)
−0.316448 + 0.948610i \(0.602490\pi\)
\(720\) 0 0
\(721\) −72.0000 −2.68142
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 2.00000i − 0.0742781i
\(726\) 0 0
\(727\) −50.9117 −1.88821 −0.944105 0.329645i \(-0.893071\pi\)
−0.944105 + 0.329645i \(0.893071\pi\)
\(728\) 0 0
\(729\) 27.0000 1.00000
\(730\) 0 0
\(731\) 33.9411i 1.25536i
\(732\) 0 0
\(733\) 22.0000i 0.812589i 0.913742 + 0.406294i \(0.133179\pi\)
−0.913742 + 0.406294i \(0.866821\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 18.0000 0.663039
\(738\) 0 0
\(739\) − 38.1838i − 1.40461i −0.711875 0.702306i \(-0.752154\pi\)
0.711875 0.702306i \(-0.247846\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 12.7279 0.466942 0.233471 0.972364i \(-0.424992\pi\)
0.233471 + 0.972364i \(0.424992\pi\)
\(744\) 0 0
\(745\) −20.0000 −0.732743
\(746\) 0 0
\(747\) 38.1838i 1.39707i
\(748\) 0 0
\(749\) 72.0000i 2.63082i
\(750\) 0 0
\(751\) 16.9706 0.619265 0.309632 0.950856i \(-0.399794\pi\)
0.309632 + 0.950856i \(0.399794\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 25.4558i 0.926433i
\(756\) 0 0
\(757\) − 16.0000i − 0.581530i −0.956795 0.290765i \(-0.906090\pi\)
0.956795 0.290765i \(-0.0939098\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 34.0000 1.23250 0.616250 0.787551i \(-0.288651\pi\)
0.616250 + 0.787551i \(0.288651\pi\)
\(762\) 0 0
\(763\) − 8.48528i − 0.307188i
\(764\) 0 0
\(765\) 24.0000i 0.867722i
\(766\) 0 0
\(767\) 4.24264 0.153193
\(768\) 0 0
\(769\) 22.0000 0.793340 0.396670 0.917961i \(-0.370166\pi\)
0.396670 + 0.917961i \(0.370166\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 26.0000i 0.935155i 0.883952 + 0.467578i \(0.154873\pi\)
−0.883952 + 0.467578i \(0.845127\pi\)
\(774\) 0 0
\(775\) 4.24264 0.152400
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 8.48528i − 0.304017i
\(780\) 0 0
\(781\) 18.0000i 0.644091i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 36.0000 1.28490
\(786\) 0 0
\(787\) 21.2132i 0.756169i 0.925771 + 0.378085i \(0.123417\pi\)
−0.925771 + 0.378085i \(0.876583\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −67.8823 −2.41361
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 2.00000i − 0.0708436i −0.999372 0.0354218i \(-0.988723\pi\)
0.999372 0.0354218i \(-0.0112775\pi\)
\(798\) 0 0
\(799\) 50.9117 1.80113
\(800\) 0 0
\(801\) −30.0000 −1.06000
\(802\) 0 0
\(803\) 25.4558i 0.898317i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 40.0000 1.40633 0.703163 0.711029i \(-0.251771\pi\)
0.703163 + 0.711029i \(0.251771\pi\)
\(810\) 0 0
\(811\) − 4.24264i − 0.148979i −0.997222 0.0744896i \(-0.976267\pi\)
0.997222 0.0744896i \(-0.0237328\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −42.4264 −1.48613
\(816\) 0 0
\(817\) −36.0000 −1.25948
\(818\) 0 0
\(819\) 12.7279i 0.444750i
\(820\) 0 0
\(821\) 10.0000i 0.349002i 0.984657 + 0.174501i \(0.0558313\pi\)
−0.984657 + 0.174501i \(0.944169\pi\)
\(822\) 0 0
\(823\) 33.9411 1.18311 0.591557 0.806263i \(-0.298514\pi\)
0.591557 + 0.806263i \(0.298514\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 4.24264i 0.147531i 0.997276 + 0.0737655i \(0.0235016\pi\)
−0.997276 + 0.0737655i \(0.976498\pi\)
\(828\) 0 0
\(829\) − 52.0000i − 1.80603i −0.429604 0.903017i \(-0.641347\pi\)
0.429604 0.903017i \(-0.358653\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 44.0000 1.52451
\(834\) 0 0
\(835\) 8.48528i 0.293645i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 46.6690 1.61119 0.805597 0.592464i \(-0.201845\pi\)
0.805597 + 0.592464i \(0.201845\pi\)
\(840\) 0 0
\(841\) 25.0000 0.862069
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 2.00000i − 0.0688021i
\(846\) 0 0
\(847\) 29.6985 1.02045
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 6.00000i 0.205436i 0.994711 + 0.102718i \(0.0327539\pi\)
−0.994711 + 0.102718i \(0.967246\pi\)
\(854\) 0 0
\(855\) −25.4558 −0.870572
\(856\) 0 0
\(857\) −26.0000 −0.888143 −0.444072 0.895991i \(-0.646466\pi\)
−0.444072 + 0.895991i \(0.646466\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −46.6690 −1.58863 −0.794316 0.607504i \(-0.792171\pi\)
−0.794316 + 0.607504i \(0.792171\pi\)
\(864\) 0 0
\(865\) −8.00000 −0.272008
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 36.0000i 1.22122i
\(870\) 0 0
\(871\) 4.24264 0.143756
\(872\) 0 0
\(873\) 54.0000 1.82762
\(874\) 0 0
\(875\) − 50.9117i − 1.72113i
\(876\) 0 0
\(877\) − 54.0000i − 1.82345i −0.410801 0.911725i \(-0.634751\pi\)
0.410801 0.911725i \(-0.365249\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 2.00000 0.0673817 0.0336909 0.999432i \(-0.489274\pi\)
0.0336909 + 0.999432i \(0.489274\pi\)
\(882\) 0 0
\(883\) 42.4264i 1.42776i 0.700267 + 0.713881i \(0.253064\pi\)
−0.700267 + 0.713881i \(0.746936\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 42.4264 1.42454 0.712270 0.701906i \(-0.247667\pi\)
0.712270 + 0.701906i \(0.247667\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) − 38.1838i − 1.27920i
\(892\) 0 0
\(893\) 54.0000i 1.80704i
\(894\) 0 0
\(895\) 16.9706 0.567263
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 8.48528i − 0.283000i
\(900\) 0 0
\(901\) 32.0000i 1.06607i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 4.00000 0.132964
\(906\) 0 0
\(907\) − 42.4264i − 1.40875i −0.709830 0.704373i \(-0.751228\pi\)
0.709830 0.704373i \(-0.248772\pi\)
\(908\) 0 0
\(909\) 12.0000i 0.398015i
\(910\) 0 0
\(911\) −8.48528 −0.281130 −0.140565 0.990071i \(-0.544892\pi\)
−0.140565 + 0.990071i \(0.544892\pi\)
\(912\) 0 0
\(913\) 54.0000 1.78714
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 72.0000i 2.37765i
\(918\) 0 0
\(919\) 42.4264 1.39952 0.699759 0.714379i \(-0.253291\pi\)
0.699759 + 0.714379i \(0.253291\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 4.24264i 0.139648i
\(924\) 0 0
\(925\) 6.00000i 0.197279i
\(926\) 0 0
\(927\) 50.9117 1.67216
\(928\) 0 0
\(929\) 22.0000 0.721797 0.360898 0.932605i \(-0.382470\pi\)
0.360898 + 0.932605i \(0.382470\pi\)
\(930\) 0 0
\(931\) 46.6690i 1.52952i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 33.9411 1.10999
\(936\) 0 0
\(937\) 2.00000 0.0653372 0.0326686 0.999466i \(-0.489599\pi\)
0.0326686 + 0.999466i \(0.489599\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 34.0000i − 1.10837i −0.832394 0.554184i \(-0.813030\pi\)
0.832394 0.554184i \(-0.186970\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 4.24264i − 0.137867i −0.997621 0.0689336i \(-0.978040\pi\)
0.997621 0.0689336i \(-0.0219597\pi\)
\(948\) 0 0
\(949\) 6.00000i 0.194768i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −10.0000 −0.323932 −0.161966 0.986796i \(-0.551783\pi\)
−0.161966 + 0.986796i \(0.551783\pi\)
\(954\) 0 0
\(955\) 50.9117i 1.64746i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −8.48528 −0.274004
\(960\) 0 0
\(961\) −13.0000 −0.419355
\(962\) 0 0
\(963\) − 50.9117i − 1.64061i
\(964\) 0 0
\(965\) − 44.0000i − 1.41641i
\(966\) 0 0
\(967\) 46.6690 1.50078 0.750388 0.660998i \(-0.229867\pi\)
0.750388 + 0.660998i \(0.229867\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 33.9411i 1.08922i 0.838689 + 0.544611i \(0.183323\pi\)
−0.838689 + 0.544611i \(0.816677\pi\)
\(972\) 0 0
\(973\) 72.0000i 2.30821i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 50.0000 1.59964 0.799821 0.600239i \(-0.204928\pi\)
0.799821 + 0.600239i \(0.204928\pi\)
\(978\) 0 0
\(979\) 42.4264i 1.35595i
\(980\) 0 0
\(981\) 6.00000i 0.191565i
\(982\) 0 0
\(983\) 21.2132 0.676596 0.338298 0.941039i \(-0.390149\pi\)
0.338298 + 0.941039i \(0.390149\pi\)
\(984\) 0 0
\(985\) 52.0000 1.65686
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 25.4558 0.808632 0.404316 0.914619i \(-0.367510\pi\)
0.404316 + 0.914619i \(0.367510\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 33.9411i − 1.07601i
\(996\) 0 0
\(997\) − 48.0000i − 1.52018i −0.649821 0.760088i \(-0.725156\pi\)
0.649821 0.760088i \(-0.274844\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1664.2.b.h.833.3 yes 4
4.3 odd 2 inner 1664.2.b.h.833.4 yes 4
8.3 odd 2 inner 1664.2.b.h.833.2 yes 4
8.5 even 2 inner 1664.2.b.h.833.1 4
16.3 odd 4 3328.2.a.w.1.1 2
16.5 even 4 3328.2.a.s.1.2 2
16.11 odd 4 3328.2.a.s.1.1 2
16.13 even 4 3328.2.a.w.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1664.2.b.h.833.1 4 8.5 even 2 inner
1664.2.b.h.833.2 yes 4 8.3 odd 2 inner
1664.2.b.h.833.3 yes 4 1.1 even 1 trivial
1664.2.b.h.833.4 yes 4 4.3 odd 2 inner
3328.2.a.s.1.1 2 16.11 odd 4
3328.2.a.s.1.2 2 16.5 even 4
3328.2.a.w.1.1 2 16.3 odd 4
3328.2.a.w.1.2 2 16.13 even 4