Properties

Label 3328.2.a.s.1.1
Level $3328$
Weight $2$
Character 3328.1
Self dual yes
Analytic conductor $26.574$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3328,2,Mod(1,3328)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3328, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3328.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3328 = 2^{8} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3328.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.5742137927\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 1664)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(1.41421\) of defining polynomial
Character \(\chi\) \(=\) 3328.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{5} -4.24264 q^{7} -3.00000 q^{9} -4.24264 q^{11} -1.00000 q^{13} +4.00000 q^{17} -4.24264 q^{19} -1.00000 q^{25} -2.00000 q^{29} -4.24264 q^{31} +8.48528 q^{35} -6.00000 q^{37} +2.00000 q^{41} +8.48528 q^{43} +6.00000 q^{45} -12.7279 q^{47} +11.0000 q^{49} -8.00000 q^{53} +8.48528 q^{55} +4.24264 q^{59} +12.7279 q^{63} +2.00000 q^{65} -4.24264 q^{67} -4.24264 q^{71} +6.00000 q^{73} +18.0000 q^{77} +8.48528 q^{79} +9.00000 q^{81} -12.7279 q^{83} -8.00000 q^{85} +10.0000 q^{89} +4.24264 q^{91} +8.48528 q^{95} +18.0000 q^{97} +12.7279 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{5} - 6 q^{9} - 2 q^{13} + 8 q^{17} - 2 q^{25} - 4 q^{29} - 12 q^{37} + 4 q^{41} + 12 q^{45} + 22 q^{49} - 16 q^{53} + 4 q^{65} + 12 q^{73} + 36 q^{77} + 18 q^{81} - 16 q^{85} + 20 q^{89} + 36 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(4\) 0 0
\(5\) −2.00000 −0.894427 −0.447214 0.894427i \(-0.647584\pi\)
−0.447214 + 0.894427i \(0.647584\pi\)
\(6\) 0 0
\(7\) −4.24264 −1.60357 −0.801784 0.597614i \(-0.796115\pi\)
−0.801784 + 0.597614i \(0.796115\pi\)
\(8\) 0 0
\(9\) −3.00000 −1.00000
\(10\) 0 0
\(11\) −4.24264 −1.27920 −0.639602 0.768706i \(-0.720901\pi\)
−0.639602 + 0.768706i \(0.720901\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.00000 0.970143 0.485071 0.874475i \(-0.338794\pi\)
0.485071 + 0.874475i \(0.338794\pi\)
\(18\) 0 0
\(19\) −4.24264 −0.973329 −0.486664 0.873589i \(-0.661786\pi\)
−0.486664 + 0.873589i \(0.661786\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) −4.24264 −0.762001 −0.381000 0.924575i \(-0.624420\pi\)
−0.381000 + 0.924575i \(0.624420\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 8.48528 1.43427
\(36\) 0 0
\(37\) −6.00000 −0.986394 −0.493197 0.869918i \(-0.664172\pi\)
−0.493197 + 0.869918i \(0.664172\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 2.00000 0.312348 0.156174 0.987730i \(-0.450084\pi\)
0.156174 + 0.987730i \(0.450084\pi\)
\(42\) 0 0
\(43\) 8.48528 1.29399 0.646997 0.762493i \(-0.276025\pi\)
0.646997 + 0.762493i \(0.276025\pi\)
\(44\) 0 0
\(45\) 6.00000 0.894427
\(46\) 0 0
\(47\) −12.7279 −1.85656 −0.928279 0.371884i \(-0.878712\pi\)
−0.928279 + 0.371884i \(0.878712\pi\)
\(48\) 0 0
\(49\) 11.0000 1.57143
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −8.00000 −1.09888 −0.549442 0.835532i \(-0.685160\pi\)
−0.549442 + 0.835532i \(0.685160\pi\)
\(54\) 0 0
\(55\) 8.48528 1.14416
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 4.24264 0.552345 0.276172 0.961108i \(-0.410934\pi\)
0.276172 + 0.961108i \(0.410934\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) 0 0
\(63\) 12.7279 1.60357
\(64\) 0 0
\(65\) 2.00000 0.248069
\(66\) 0 0
\(67\) −4.24264 −0.518321 −0.259161 0.965834i \(-0.583446\pi\)
−0.259161 + 0.965834i \(0.583446\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −4.24264 −0.503509 −0.251754 0.967791i \(-0.581008\pi\)
−0.251754 + 0.967791i \(0.581008\pi\)
\(72\) 0 0
\(73\) 6.00000 0.702247 0.351123 0.936329i \(-0.385800\pi\)
0.351123 + 0.936329i \(0.385800\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 18.0000 2.05129
\(78\) 0 0
\(79\) 8.48528 0.954669 0.477334 0.878722i \(-0.341603\pi\)
0.477334 + 0.878722i \(0.341603\pi\)
\(80\) 0 0
\(81\) 9.00000 1.00000
\(82\) 0 0
\(83\) −12.7279 −1.39707 −0.698535 0.715575i \(-0.746165\pi\)
−0.698535 + 0.715575i \(0.746165\pi\)
\(84\) 0 0
\(85\) −8.00000 −0.867722
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 10.0000 1.06000 0.529999 0.847998i \(-0.322192\pi\)
0.529999 + 0.847998i \(0.322192\pi\)
\(90\) 0 0
\(91\) 4.24264 0.444750
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 8.48528 0.870572
\(96\) 0 0
\(97\) 18.0000 1.82762 0.913812 0.406138i \(-0.133125\pi\)
0.913812 + 0.406138i \(0.133125\pi\)
\(98\) 0 0
\(99\) 12.7279 1.27920
\(100\) 0 0
\(101\) −4.00000 −0.398015 −0.199007 0.979998i \(-0.563772\pi\)
−0.199007 + 0.979998i \(0.563772\pi\)
\(102\) 0 0
\(103\) 16.9706 1.67216 0.836080 0.548608i \(-0.184842\pi\)
0.836080 + 0.548608i \(0.184842\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −16.9706 −1.64061 −0.820303 0.571929i \(-0.806195\pi\)
−0.820303 + 0.571929i \(0.806195\pi\)
\(108\) 0 0
\(109\) 2.00000 0.191565 0.0957826 0.995402i \(-0.469465\pi\)
0.0957826 + 0.995402i \(0.469465\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 16.0000 1.50515 0.752577 0.658505i \(-0.228811\pi\)
0.752577 + 0.658505i \(0.228811\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 3.00000 0.277350
\(118\) 0 0
\(119\) −16.9706 −1.55569
\(120\) 0 0
\(121\) 7.00000 0.636364
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 12.0000 1.07331
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 16.9706 1.48272 0.741362 0.671105i \(-0.234180\pi\)
0.741362 + 0.671105i \(0.234180\pi\)
\(132\) 0 0
\(133\) 18.0000 1.56080
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −2.00000 −0.170872 −0.0854358 0.996344i \(-0.527228\pi\)
−0.0854358 + 0.996344i \(0.527228\pi\)
\(138\) 0 0
\(139\) −16.9706 −1.43942 −0.719712 0.694273i \(-0.755726\pi\)
−0.719712 + 0.694273i \(0.755726\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 4.24264 0.354787
\(144\) 0 0
\(145\) 4.00000 0.332182
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −10.0000 −0.819232 −0.409616 0.912258i \(-0.634337\pi\)
−0.409616 + 0.912258i \(0.634337\pi\)
\(150\) 0 0
\(151\) 12.7279 1.03578 0.517892 0.855446i \(-0.326717\pi\)
0.517892 + 0.855446i \(0.326717\pi\)
\(152\) 0 0
\(153\) −12.0000 −0.970143
\(154\) 0 0
\(155\) 8.48528 0.681554
\(156\) 0 0
\(157\) −18.0000 −1.43656 −0.718278 0.695756i \(-0.755069\pi\)
−0.718278 + 0.695756i \(0.755069\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −21.2132 −1.66155 −0.830773 0.556611i \(-0.812101\pi\)
−0.830773 + 0.556611i \(0.812101\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 4.24264 0.328305 0.164153 0.986435i \(-0.447511\pi\)
0.164153 + 0.986435i \(0.447511\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 12.7279 0.973329
\(172\) 0 0
\(173\) 4.00000 0.304114 0.152057 0.988372i \(-0.451410\pi\)
0.152057 + 0.988372i \(0.451410\pi\)
\(174\) 0 0
\(175\) 4.24264 0.320713
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 8.48528 0.634220 0.317110 0.948389i \(-0.397288\pi\)
0.317110 + 0.948389i \(0.397288\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 12.0000 0.882258
\(186\) 0 0
\(187\) −16.9706 −1.24101
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −25.4558 −1.84192 −0.920960 0.389657i \(-0.872594\pi\)
−0.920960 + 0.389657i \(0.872594\pi\)
\(192\) 0 0
\(193\) −22.0000 −1.58359 −0.791797 0.610784i \(-0.790854\pi\)
−0.791797 + 0.610784i \(0.790854\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 26.0000 1.85242 0.926212 0.377004i \(-0.123046\pi\)
0.926212 + 0.377004i \(0.123046\pi\)
\(198\) 0 0
\(199\) −16.9706 −1.20301 −0.601506 0.798869i \(-0.705432\pi\)
−0.601506 + 0.798869i \(0.705432\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 8.48528 0.595550
\(204\) 0 0
\(205\) −4.00000 −0.279372
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 18.0000 1.24509
\(210\) 0 0
\(211\) −16.9706 −1.16830 −0.584151 0.811645i \(-0.698572\pi\)
−0.584151 + 0.811645i \(0.698572\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −16.9706 −1.15738
\(216\) 0 0
\(217\) 18.0000 1.22192
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −4.00000 −0.269069
\(222\) 0 0
\(223\) −12.7279 −0.852325 −0.426162 0.904647i \(-0.640135\pi\)
−0.426162 + 0.904647i \(0.640135\pi\)
\(224\) 0 0
\(225\) 3.00000 0.200000
\(226\) 0 0
\(227\) −21.2132 −1.40797 −0.703985 0.710215i \(-0.748598\pi\)
−0.703985 + 0.710215i \(0.748598\pi\)
\(228\) 0 0
\(229\) 22.0000 1.45380 0.726900 0.686743i \(-0.240960\pi\)
0.726900 + 0.686743i \(0.240960\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −10.0000 −0.655122 −0.327561 0.944830i \(-0.606227\pi\)
−0.327561 + 0.944830i \(0.606227\pi\)
\(234\) 0 0
\(235\) 25.4558 1.66056
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 4.24264 0.274434 0.137217 0.990541i \(-0.456184\pi\)
0.137217 + 0.990541i \(0.456184\pi\)
\(240\) 0 0
\(241\) −18.0000 −1.15948 −0.579741 0.814801i \(-0.696846\pi\)
−0.579741 + 0.814801i \(0.696846\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −22.0000 −1.40553
\(246\) 0 0
\(247\) 4.24264 0.269953
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 8.48528 0.535586 0.267793 0.963476i \(-0.413706\pi\)
0.267793 + 0.963476i \(0.413706\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 14.0000 0.873296 0.436648 0.899632i \(-0.356166\pi\)
0.436648 + 0.899632i \(0.356166\pi\)
\(258\) 0 0
\(259\) 25.4558 1.58175
\(260\) 0 0
\(261\) 6.00000 0.371391
\(262\) 0 0
\(263\) 8.48528 0.523225 0.261612 0.965173i \(-0.415746\pi\)
0.261612 + 0.965173i \(0.415746\pi\)
\(264\) 0 0
\(265\) 16.0000 0.982872
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 2.00000 0.121942 0.0609711 0.998140i \(-0.480580\pi\)
0.0609711 + 0.998140i \(0.480580\pi\)
\(270\) 0 0
\(271\) −12.7279 −0.773166 −0.386583 0.922255i \(-0.626345\pi\)
−0.386583 + 0.922255i \(0.626345\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 4.24264 0.255841
\(276\) 0 0
\(277\) −28.0000 −1.68236 −0.841178 0.540758i \(-0.818138\pi\)
−0.841178 + 0.540758i \(0.818138\pi\)
\(278\) 0 0
\(279\) 12.7279 0.762001
\(280\) 0 0
\(281\) 22.0000 1.31241 0.656205 0.754583i \(-0.272161\pi\)
0.656205 + 0.754583i \(0.272161\pi\)
\(282\) 0 0
\(283\) −8.48528 −0.504398 −0.252199 0.967675i \(-0.581154\pi\)
−0.252199 + 0.967675i \(0.581154\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −8.48528 −0.500870
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −2.00000 −0.116841 −0.0584206 0.998292i \(-0.518606\pi\)
−0.0584206 + 0.998292i \(0.518606\pi\)
\(294\) 0 0
\(295\) −8.48528 −0.494032
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −36.0000 −2.07501
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 29.6985 1.69498 0.847491 0.530810i \(-0.178112\pi\)
0.847491 + 0.530810i \(0.178112\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −16.9706 −0.962312 −0.481156 0.876635i \(-0.659783\pi\)
−0.481156 + 0.876635i \(0.659783\pi\)
\(312\) 0 0
\(313\) −8.00000 −0.452187 −0.226093 0.974106i \(-0.572595\pi\)
−0.226093 + 0.974106i \(0.572595\pi\)
\(314\) 0 0
\(315\) −25.4558 −1.43427
\(316\) 0 0
\(317\) 2.00000 0.112331 0.0561656 0.998421i \(-0.482113\pi\)
0.0561656 + 0.998421i \(0.482113\pi\)
\(318\) 0 0
\(319\) 8.48528 0.475085
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −16.9706 −0.944267
\(324\) 0 0
\(325\) 1.00000 0.0554700
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 54.0000 2.97712
\(330\) 0 0
\(331\) −12.7279 −0.699590 −0.349795 0.936826i \(-0.613749\pi\)
−0.349795 + 0.936826i \(0.613749\pi\)
\(332\) 0 0
\(333\) 18.0000 0.986394
\(334\) 0 0
\(335\) 8.48528 0.463600
\(336\) 0 0
\(337\) −12.0000 −0.653682 −0.326841 0.945079i \(-0.605984\pi\)
−0.326841 + 0.945079i \(0.605984\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 18.0000 0.974755
\(342\) 0 0
\(343\) −16.9706 −0.916324
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 33.9411 1.82206 0.911028 0.412346i \(-0.135290\pi\)
0.911028 + 0.412346i \(0.135290\pi\)
\(348\) 0 0
\(349\) −18.0000 −0.963518 −0.481759 0.876304i \(-0.660002\pi\)
−0.481759 + 0.876304i \(0.660002\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 10.0000 0.532246 0.266123 0.963939i \(-0.414257\pi\)
0.266123 + 0.963939i \(0.414257\pi\)
\(354\) 0 0
\(355\) 8.48528 0.450352
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −4.24264 −0.223918 −0.111959 0.993713i \(-0.535713\pi\)
−0.111959 + 0.993713i \(0.535713\pi\)
\(360\) 0 0
\(361\) −1.00000 −0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −12.0000 −0.628109
\(366\) 0 0
\(367\) 8.48528 0.442928 0.221464 0.975169i \(-0.428916\pi\)
0.221464 + 0.975169i \(0.428916\pi\)
\(368\) 0 0
\(369\) −6.00000 −0.312348
\(370\) 0 0
\(371\) 33.9411 1.76214
\(372\) 0 0
\(373\) −6.00000 −0.310668 −0.155334 0.987862i \(-0.549645\pi\)
−0.155334 + 0.987862i \(0.549645\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 2.00000 0.103005
\(378\) 0 0
\(379\) −12.7279 −0.653789 −0.326895 0.945061i \(-0.606002\pi\)
−0.326895 + 0.945061i \(0.606002\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 4.24264 0.216789 0.108394 0.994108i \(-0.465429\pi\)
0.108394 + 0.994108i \(0.465429\pi\)
\(384\) 0 0
\(385\) −36.0000 −1.83473
\(386\) 0 0
\(387\) −25.4558 −1.29399
\(388\) 0 0
\(389\) 26.0000 1.31825 0.659126 0.752032i \(-0.270926\pi\)
0.659126 + 0.752032i \(0.270926\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −16.9706 −0.853882
\(396\) 0 0
\(397\) −30.0000 −1.50566 −0.752828 0.658217i \(-0.771311\pi\)
−0.752828 + 0.658217i \(0.771311\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −26.0000 −1.29838 −0.649189 0.760627i \(-0.724892\pi\)
−0.649189 + 0.760627i \(0.724892\pi\)
\(402\) 0 0
\(403\) 4.24264 0.211341
\(404\) 0 0
\(405\) −18.0000 −0.894427
\(406\) 0 0
\(407\) 25.4558 1.26180
\(408\) 0 0
\(409\) 30.0000 1.48340 0.741702 0.670729i \(-0.234019\pi\)
0.741702 + 0.670729i \(0.234019\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −18.0000 −0.885722
\(414\) 0 0
\(415\) 25.4558 1.24958
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −16.9706 −0.829066 −0.414533 0.910034i \(-0.636055\pi\)
−0.414533 + 0.910034i \(0.636055\pi\)
\(420\) 0 0
\(421\) 26.0000 1.26716 0.633581 0.773676i \(-0.281584\pi\)
0.633581 + 0.773676i \(0.281584\pi\)
\(422\) 0 0
\(423\) 38.1838 1.85656
\(424\) 0 0
\(425\) −4.00000 −0.194029
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 12.7279 0.613082 0.306541 0.951857i \(-0.400828\pi\)
0.306541 + 0.951857i \(0.400828\pi\)
\(432\) 0 0
\(433\) −34.0000 −1.63394 −0.816968 0.576683i \(-0.804347\pi\)
−0.816968 + 0.576683i \(0.804347\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 16.9706 0.809961 0.404980 0.914325i \(-0.367278\pi\)
0.404980 + 0.914325i \(0.367278\pi\)
\(440\) 0 0
\(441\) −33.0000 −1.57143
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) −20.0000 −0.948091
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 14.0000 0.660701 0.330350 0.943858i \(-0.392833\pi\)
0.330350 + 0.943858i \(0.392833\pi\)
\(450\) 0 0
\(451\) −8.48528 −0.399556
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −8.48528 −0.397796
\(456\) 0 0
\(457\) −18.0000 −0.842004 −0.421002 0.907060i \(-0.638322\pi\)
−0.421002 + 0.907060i \(0.638322\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 14.0000 0.652045 0.326023 0.945362i \(-0.394291\pi\)
0.326023 + 0.945362i \(0.394291\pi\)
\(462\) 0 0
\(463\) 38.1838 1.77455 0.887275 0.461241i \(-0.152596\pi\)
0.887275 + 0.461241i \(0.152596\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −8.48528 −0.392652 −0.196326 0.980539i \(-0.562901\pi\)
−0.196326 + 0.980539i \(0.562901\pi\)
\(468\) 0 0
\(469\) 18.0000 0.831163
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −36.0000 −1.65528
\(474\) 0 0
\(475\) 4.24264 0.194666
\(476\) 0 0
\(477\) 24.0000 1.09888
\(478\) 0 0
\(479\) −4.24264 −0.193851 −0.0969256 0.995292i \(-0.530901\pi\)
−0.0969256 + 0.995292i \(0.530901\pi\)
\(480\) 0 0
\(481\) 6.00000 0.273576
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −36.0000 −1.63468
\(486\) 0 0
\(487\) −29.6985 −1.34577 −0.672883 0.739749i \(-0.734944\pi\)
−0.672883 + 0.739749i \(0.734944\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 25.4558 1.14881 0.574403 0.818573i \(-0.305234\pi\)
0.574403 + 0.818573i \(0.305234\pi\)
\(492\) 0 0
\(493\) −8.00000 −0.360302
\(494\) 0 0
\(495\) −25.4558 −1.14416
\(496\) 0 0
\(497\) 18.0000 0.807410
\(498\) 0 0
\(499\) −21.2132 −0.949633 −0.474817 0.880085i \(-0.657486\pi\)
−0.474817 + 0.880085i \(0.657486\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 8.48528 0.378340 0.189170 0.981944i \(-0.439420\pi\)
0.189170 + 0.981944i \(0.439420\pi\)
\(504\) 0 0
\(505\) 8.00000 0.355995
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −38.0000 −1.68432 −0.842160 0.539227i \(-0.818716\pi\)
−0.842160 + 0.539227i \(0.818716\pi\)
\(510\) 0 0
\(511\) −25.4558 −1.12610
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −33.9411 −1.49562
\(516\) 0 0
\(517\) 54.0000 2.37492
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −8.00000 −0.350486 −0.175243 0.984525i \(-0.556071\pi\)
−0.175243 + 0.984525i \(0.556071\pi\)
\(522\) 0 0
\(523\) 16.9706 0.742071 0.371035 0.928619i \(-0.379003\pi\)
0.371035 + 0.928619i \(0.379003\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −16.9706 −0.739249
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) −12.7279 −0.552345
\(532\) 0 0
\(533\) −2.00000 −0.0866296
\(534\) 0 0
\(535\) 33.9411 1.46740
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −46.6690 −2.01018
\(540\) 0 0
\(541\) 38.0000 1.63375 0.816874 0.576816i \(-0.195705\pi\)
0.816874 + 0.576816i \(0.195705\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −4.00000 −0.171341
\(546\) 0 0
\(547\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 8.48528 0.361485
\(552\) 0 0
\(553\) −36.0000 −1.53088
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 38.0000 1.61011 0.805056 0.593199i \(-0.202135\pi\)
0.805056 + 0.593199i \(0.202135\pi\)
\(558\) 0 0
\(559\) −8.48528 −0.358889
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 25.4558 1.07284 0.536418 0.843952i \(-0.319777\pi\)
0.536418 + 0.843952i \(0.319777\pi\)
\(564\) 0 0
\(565\) −32.0000 −1.34625
\(566\) 0 0
\(567\) −38.1838 −1.60357
\(568\) 0 0
\(569\) −26.0000 −1.08998 −0.544988 0.838444i \(-0.683466\pi\)
−0.544988 + 0.838444i \(0.683466\pi\)
\(570\) 0 0
\(571\) 8.48528 0.355098 0.177549 0.984112i \(-0.443183\pi\)
0.177549 + 0.984112i \(0.443183\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −34.0000 −1.41544 −0.707719 0.706494i \(-0.750276\pi\)
−0.707719 + 0.706494i \(0.750276\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 54.0000 2.24030
\(582\) 0 0
\(583\) 33.9411 1.40570
\(584\) 0 0
\(585\) −6.00000 −0.248069
\(586\) 0 0
\(587\) −12.7279 −0.525338 −0.262669 0.964886i \(-0.584603\pi\)
−0.262669 + 0.964886i \(0.584603\pi\)
\(588\) 0 0
\(589\) 18.0000 0.741677
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 14.0000 0.574911 0.287456 0.957794i \(-0.407191\pi\)
0.287456 + 0.957794i \(0.407191\pi\)
\(594\) 0 0
\(595\) 33.9411 1.39145
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 8.48528 0.346699 0.173350 0.984860i \(-0.444541\pi\)
0.173350 + 0.984860i \(0.444541\pi\)
\(600\) 0 0
\(601\) −8.00000 −0.326327 −0.163163 0.986599i \(-0.552170\pi\)
−0.163163 + 0.986599i \(0.552170\pi\)
\(602\) 0 0
\(603\) 12.7279 0.518321
\(604\) 0 0
\(605\) −14.0000 −0.569181
\(606\) 0 0
\(607\) 42.4264 1.72203 0.861017 0.508576i \(-0.169828\pi\)
0.861017 + 0.508576i \(0.169828\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 12.7279 0.514917
\(612\) 0 0
\(613\) −6.00000 −0.242338 −0.121169 0.992632i \(-0.538664\pi\)
−0.121169 + 0.992632i \(0.538664\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 22.0000 0.885687 0.442843 0.896599i \(-0.353970\pi\)
0.442843 + 0.896599i \(0.353970\pi\)
\(618\) 0 0
\(619\) 29.6985 1.19368 0.596841 0.802359i \(-0.296422\pi\)
0.596841 + 0.802359i \(0.296422\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −42.4264 −1.69978
\(624\) 0 0
\(625\) −19.0000 −0.760000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −24.0000 −0.956943
\(630\) 0 0
\(631\) −21.2132 −0.844484 −0.422242 0.906483i \(-0.638757\pi\)
−0.422242 + 0.906483i \(0.638757\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −11.0000 −0.435836
\(638\) 0 0
\(639\) 12.7279 0.503509
\(640\) 0 0
\(641\) −20.0000 −0.789953 −0.394976 0.918691i \(-0.629247\pi\)
−0.394976 + 0.918691i \(0.629247\pi\)
\(642\) 0 0
\(643\) 38.1838 1.50582 0.752910 0.658123i \(-0.228649\pi\)
0.752910 + 0.658123i \(0.228649\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) −18.0000 −0.706562
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 46.0000 1.80012 0.900060 0.435767i \(-0.143523\pi\)
0.900060 + 0.435767i \(0.143523\pi\)
\(654\) 0 0
\(655\) −33.9411 −1.32619
\(656\) 0 0
\(657\) −18.0000 −0.702247
\(658\) 0 0
\(659\) −16.9706 −0.661079 −0.330540 0.943792i \(-0.607231\pi\)
−0.330540 + 0.943792i \(0.607231\pi\)
\(660\) 0 0
\(661\) −18.0000 −0.700119 −0.350059 0.936727i \(-0.613839\pi\)
−0.350059 + 0.936727i \(0.613839\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −36.0000 −1.39602
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 28.0000 1.07932 0.539660 0.841883i \(-0.318553\pi\)
0.539660 + 0.841883i \(0.318553\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 16.0000 0.614930 0.307465 0.951559i \(-0.400519\pi\)
0.307465 + 0.951559i \(0.400519\pi\)
\(678\) 0 0
\(679\) −76.3675 −2.93072
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −38.1838 −1.46106 −0.730531 0.682880i \(-0.760727\pi\)
−0.730531 + 0.682880i \(0.760727\pi\)
\(684\) 0 0
\(685\) 4.00000 0.152832
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 8.00000 0.304776
\(690\) 0 0
\(691\) 12.7279 0.484193 0.242096 0.970252i \(-0.422165\pi\)
0.242096 + 0.970252i \(0.422165\pi\)
\(692\) 0 0
\(693\) −54.0000 −2.05129
\(694\) 0 0
\(695\) 33.9411 1.28746
\(696\) 0 0
\(697\) 8.00000 0.303022
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −38.0000 −1.43524 −0.717620 0.696435i \(-0.754769\pi\)
−0.717620 + 0.696435i \(0.754769\pi\)
\(702\) 0 0
\(703\) 25.4558 0.960085
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 16.9706 0.638244
\(708\) 0 0
\(709\) 10.0000 0.375558 0.187779 0.982211i \(-0.439871\pi\)
0.187779 + 0.982211i \(0.439871\pi\)
\(710\) 0 0
\(711\) −25.4558 −0.954669
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) −8.48528 −0.317332
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 16.9706 0.632895 0.316448 0.948610i \(-0.397510\pi\)
0.316448 + 0.948610i \(0.397510\pi\)
\(720\) 0 0
\(721\) −72.0000 −2.68142
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 2.00000 0.0742781
\(726\) 0 0
\(727\) −50.9117 −1.88821 −0.944105 0.329645i \(-0.893071\pi\)
−0.944105 + 0.329645i \(0.893071\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) 33.9411 1.25536
\(732\) 0 0
\(733\) 22.0000 0.812589 0.406294 0.913742i \(-0.366821\pi\)
0.406294 + 0.913742i \(0.366821\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 18.0000 0.663039
\(738\) 0 0
\(739\) 38.1838 1.40461 0.702306 0.711875i \(-0.252154\pi\)
0.702306 + 0.711875i \(0.252154\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 12.7279 0.466942 0.233471 0.972364i \(-0.424992\pi\)
0.233471 + 0.972364i \(0.424992\pi\)
\(744\) 0 0
\(745\) 20.0000 0.732743
\(746\) 0 0
\(747\) 38.1838 1.39707
\(748\) 0 0
\(749\) 72.0000 2.63082
\(750\) 0 0
\(751\) −16.9706 −0.619265 −0.309632 0.950856i \(-0.600206\pi\)
−0.309632 + 0.950856i \(0.600206\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −25.4558 −0.926433
\(756\) 0 0
\(757\) 16.0000 0.581530 0.290765 0.956795i \(-0.406090\pi\)
0.290765 + 0.956795i \(0.406090\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −34.0000 −1.23250 −0.616250 0.787551i \(-0.711349\pi\)
−0.616250 + 0.787551i \(0.711349\pi\)
\(762\) 0 0
\(763\) −8.48528 −0.307188
\(764\) 0 0
\(765\) 24.0000 0.867722
\(766\) 0 0
\(767\) −4.24264 −0.153193
\(768\) 0 0
\(769\) 22.0000 0.793340 0.396670 0.917961i \(-0.370166\pi\)
0.396670 + 0.917961i \(0.370166\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −26.0000 −0.935155 −0.467578 0.883952i \(-0.654873\pi\)
−0.467578 + 0.883952i \(0.654873\pi\)
\(774\) 0 0
\(775\) 4.24264 0.152400
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −8.48528 −0.304017
\(780\) 0 0
\(781\) 18.0000 0.644091
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 36.0000 1.28490
\(786\) 0 0
\(787\) −21.2132 −0.756169 −0.378085 0.925771i \(-0.623417\pi\)
−0.378085 + 0.925771i \(0.623417\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −67.8823 −2.41361
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −2.00000 −0.0708436 −0.0354218 0.999372i \(-0.511277\pi\)
−0.0354218 + 0.999372i \(0.511277\pi\)
\(798\) 0 0
\(799\) −50.9117 −1.80113
\(800\) 0 0
\(801\) −30.0000 −1.06000
\(802\) 0 0
\(803\) −25.4558 −0.898317
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −40.0000 −1.40633 −0.703163 0.711029i \(-0.748229\pi\)
−0.703163 + 0.711029i \(0.748229\pi\)
\(810\) 0 0
\(811\) −4.24264 −0.148979 −0.0744896 0.997222i \(-0.523733\pi\)
−0.0744896 + 0.997222i \(0.523733\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 42.4264 1.48613
\(816\) 0 0
\(817\) −36.0000 −1.25948
\(818\) 0 0
\(819\) −12.7279 −0.444750
\(820\) 0 0
\(821\) −10.0000 −0.349002 −0.174501 0.984657i \(-0.555831\pi\)
−0.174501 + 0.984657i \(0.555831\pi\)
\(822\) 0 0
\(823\) 33.9411 1.18311 0.591557 0.806263i \(-0.298514\pi\)
0.591557 + 0.806263i \(0.298514\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 4.24264 0.147531 0.0737655 0.997276i \(-0.476498\pi\)
0.0737655 + 0.997276i \(0.476498\pi\)
\(828\) 0 0
\(829\) −52.0000 −1.80603 −0.903017 0.429604i \(-0.858653\pi\)
−0.903017 + 0.429604i \(0.858653\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 44.0000 1.52451
\(834\) 0 0
\(835\) −8.48528 −0.293645
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 46.6690 1.61119 0.805597 0.592464i \(-0.201845\pi\)
0.805597 + 0.592464i \(0.201845\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −2.00000 −0.0688021
\(846\) 0 0
\(847\) −29.6985 −1.02045
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −6.00000 −0.205436 −0.102718 0.994711i \(-0.532754\pi\)
−0.102718 + 0.994711i \(0.532754\pi\)
\(854\) 0 0
\(855\) −25.4558 −0.870572
\(856\) 0 0
\(857\) 26.0000 0.888143 0.444072 0.895991i \(-0.353534\pi\)
0.444072 + 0.895991i \(0.353534\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 46.6690 1.58863 0.794316 0.607504i \(-0.207829\pi\)
0.794316 + 0.607504i \(0.207829\pi\)
\(864\) 0 0
\(865\) −8.00000 −0.272008
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −36.0000 −1.22122
\(870\) 0 0
\(871\) 4.24264 0.143756
\(872\) 0 0
\(873\) −54.0000 −1.82762
\(874\) 0 0
\(875\) −50.9117 −1.72113
\(876\) 0 0
\(877\) −54.0000 −1.82345 −0.911725 0.410801i \(-0.865249\pi\)
−0.911725 + 0.410801i \(0.865249\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 2.00000 0.0673817 0.0336909 0.999432i \(-0.489274\pi\)
0.0336909 + 0.999432i \(0.489274\pi\)
\(882\) 0 0
\(883\) −42.4264 −1.42776 −0.713881 0.700267i \(-0.753064\pi\)
−0.713881 + 0.700267i \(0.753064\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 42.4264 1.42454 0.712270 0.701906i \(-0.247667\pi\)
0.712270 + 0.701906i \(0.247667\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −38.1838 −1.27920
\(892\) 0 0
\(893\) 54.0000 1.80704
\(894\) 0 0
\(895\) −16.9706 −0.567263
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 8.48528 0.283000
\(900\) 0 0
\(901\) −32.0000 −1.06607
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −4.00000 −0.132964
\(906\) 0 0
\(907\) −42.4264 −1.40875 −0.704373 0.709830i \(-0.748772\pi\)
−0.704373 + 0.709830i \(0.748772\pi\)
\(908\) 0 0
\(909\) 12.0000 0.398015
\(910\) 0 0
\(911\) 8.48528 0.281130 0.140565 0.990071i \(-0.455108\pi\)
0.140565 + 0.990071i \(0.455108\pi\)
\(912\) 0 0
\(913\) 54.0000 1.78714
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −72.0000 −2.37765
\(918\) 0 0
\(919\) 42.4264 1.39952 0.699759 0.714379i \(-0.253291\pi\)
0.699759 + 0.714379i \(0.253291\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 4.24264 0.139648
\(924\) 0 0
\(925\) 6.00000 0.197279
\(926\) 0 0
\(927\) −50.9117 −1.67216
\(928\) 0 0
\(929\) 22.0000 0.721797 0.360898 0.932605i \(-0.382470\pi\)
0.360898 + 0.932605i \(0.382470\pi\)
\(930\) 0 0
\(931\) −46.6690 −1.52952
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 33.9411 1.10999
\(936\) 0 0
\(937\) −2.00000 −0.0653372 −0.0326686 0.999466i \(-0.510401\pi\)
−0.0326686 + 0.999466i \(0.510401\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −34.0000 −1.10837 −0.554184 0.832394i \(-0.686970\pi\)
−0.554184 + 0.832394i \(0.686970\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 4.24264 0.137867 0.0689336 0.997621i \(-0.478040\pi\)
0.0689336 + 0.997621i \(0.478040\pi\)
\(948\) 0 0
\(949\) −6.00000 −0.194768
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 10.0000 0.323932 0.161966 0.986796i \(-0.448217\pi\)
0.161966 + 0.986796i \(0.448217\pi\)
\(954\) 0 0
\(955\) 50.9117 1.64746
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 8.48528 0.274004
\(960\) 0 0
\(961\) −13.0000 −0.419355
\(962\) 0 0
\(963\) 50.9117 1.64061
\(964\) 0 0
\(965\) 44.0000 1.41641
\(966\) 0 0
\(967\) 46.6690 1.50078 0.750388 0.660998i \(-0.229867\pi\)
0.750388 + 0.660998i \(0.229867\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 33.9411 1.08922 0.544611 0.838689i \(-0.316677\pi\)
0.544611 + 0.838689i \(0.316677\pi\)
\(972\) 0 0
\(973\) 72.0000 2.30821
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 50.0000 1.59964 0.799821 0.600239i \(-0.204928\pi\)
0.799821 + 0.600239i \(0.204928\pi\)
\(978\) 0 0
\(979\) −42.4264 −1.35595
\(980\) 0 0
\(981\) −6.00000 −0.191565
\(982\) 0 0
\(983\) 21.2132 0.676596 0.338298 0.941039i \(-0.390149\pi\)
0.338298 + 0.941039i \(0.390149\pi\)
\(984\) 0 0
\(985\) −52.0000 −1.65686
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −25.4558 −0.808632 −0.404316 0.914619i \(-0.632490\pi\)
−0.404316 + 0.914619i \(0.632490\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 33.9411 1.07601
\(996\) 0 0
\(997\) 48.0000 1.52018 0.760088 0.649821i \(-0.225156\pi\)
0.760088 + 0.649821i \(0.225156\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3328.2.a.s.1.1 2
4.3 odd 2 inner 3328.2.a.s.1.2 2
8.3 odd 2 3328.2.a.w.1.2 2
8.5 even 2 3328.2.a.w.1.1 2
16.3 odd 4 1664.2.b.h.833.3 yes 4
16.5 even 4 1664.2.b.h.833.2 yes 4
16.11 odd 4 1664.2.b.h.833.1 4
16.13 even 4 1664.2.b.h.833.4 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1664.2.b.h.833.1 4 16.11 odd 4
1664.2.b.h.833.2 yes 4 16.5 even 4
1664.2.b.h.833.3 yes 4 16.3 odd 4
1664.2.b.h.833.4 yes 4 16.13 even 4
3328.2.a.s.1.1 2 1.1 even 1 trivial
3328.2.a.s.1.2 2 4.3 odd 2 inner
3328.2.a.w.1.1 2 8.5 even 2
3328.2.a.w.1.2 2 8.3 odd 2