Properties

Label 1664.2.b.j.833.6
Level $1664$
Weight $2$
Character 1664.833
Analytic conductor $13.287$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1664,2,Mod(833,1664)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1664, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1664.833");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1664 = 2^{7} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1664.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.2871068963\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.11574317056.3
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 45x^{4} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 833.6
Root \(0.386289 - 0.386289i\) of defining polynomial
Character \(\chi\) \(=\) 1664.833
Dual form 1664.2.b.j.833.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.81616i q^{3} +2.70156i q^{5} +2.58874 q^{7} -0.298438 q^{9} -0.772577i q^{11} +1.00000i q^{13} -4.90647 q^{15} -0.701562 q^{17} +4.40490i q^{19} +4.70156i q^{21} +3.63232 q^{23} -2.29844 q^{25} +4.90647i q^{27} +2.00000i q^{29} +5.95005 q^{31} +1.40312 q^{33} +6.99364i q^{35} +6.70156i q^{37} -1.81616 q^{39} -11.4031 q^{41} -10.0839i q^{43} -0.806248i q^{45} +9.31137 q^{47} -0.298438 q^{49} -1.27415i q^{51} -1.40312i q^{53} +2.08717 q^{55} -8.00000 q^{57} -2.85974i q^{59} -0.772577 q^{63} -2.70156 q^{65} -12.6727i q^{67} +6.59688i q^{69} -1.04358 q^{71} -7.40312 q^{73} -4.17433i q^{75} -2.00000i q^{77} -2.08717 q^{79} -9.80625 q^{81} +9.58237i q^{83} -1.89531i q^{85} -3.63232 q^{87} -11.4031 q^{89} +2.58874i q^{91} +10.8062i q^{93} -11.9001 q^{95} +10.0000 q^{97} +0.230566i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 28 q^{9} + 20 q^{17} - 44 q^{25} - 40 q^{33} - 40 q^{41} - 28 q^{49} - 64 q^{57} + 4 q^{65} - 8 q^{73} + 24 q^{81} - 40 q^{89} + 80 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1664\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(769\) \(1535\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.81616i 1.04856i 0.851546 + 0.524280i \(0.175666\pi\)
−0.851546 + 0.524280i \(0.824334\pi\)
\(4\) 0 0
\(5\) 2.70156i 1.20818i 0.796918 + 0.604088i \(0.206462\pi\)
−0.796918 + 0.604088i \(0.793538\pi\)
\(6\) 0 0
\(7\) 2.58874 0.978451 0.489225 0.872157i \(-0.337280\pi\)
0.489225 + 0.872157i \(0.337280\pi\)
\(8\) 0 0
\(9\) −0.298438 −0.0994793
\(10\) 0 0
\(11\) − 0.772577i − 0.232941i −0.993194 0.116470i \(-0.962842\pi\)
0.993194 0.116470i \(-0.0371580\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i
\(14\) 0 0
\(15\) −4.90647 −1.26685
\(16\) 0 0
\(17\) −0.701562 −0.170154 −0.0850769 0.996374i \(-0.527114\pi\)
−0.0850769 + 0.996374i \(0.527114\pi\)
\(18\) 0 0
\(19\) 4.40490i 1.01055i 0.862958 + 0.505276i \(0.168609\pi\)
−0.862958 + 0.505276i \(0.831391\pi\)
\(20\) 0 0
\(21\) 4.70156i 1.02596i
\(22\) 0 0
\(23\) 3.63232 0.757391 0.378696 0.925521i \(-0.376373\pi\)
0.378696 + 0.925521i \(0.376373\pi\)
\(24\) 0 0
\(25\) −2.29844 −0.459688
\(26\) 0 0
\(27\) 4.90647i 0.944251i
\(28\) 0 0
\(29\) 2.00000i 0.371391i 0.982607 + 0.185695i \(0.0594537\pi\)
−0.982607 + 0.185695i \(0.940546\pi\)
\(30\) 0 0
\(31\) 5.95005 1.06866 0.534330 0.845276i \(-0.320564\pi\)
0.534330 + 0.845276i \(0.320564\pi\)
\(32\) 0 0
\(33\) 1.40312 0.244253
\(34\) 0 0
\(35\) 6.99364i 1.18214i
\(36\) 0 0
\(37\) 6.70156i 1.10173i 0.834594 + 0.550865i \(0.185702\pi\)
−0.834594 + 0.550865i \(0.814298\pi\)
\(38\) 0 0
\(39\) −1.81616 −0.290818
\(40\) 0 0
\(41\) −11.4031 −1.78087 −0.890434 0.455112i \(-0.849599\pi\)
−0.890434 + 0.455112i \(0.849599\pi\)
\(42\) 0 0
\(43\) − 10.0839i − 1.53779i −0.639377 0.768894i \(-0.720808\pi\)
0.639377 0.768894i \(-0.279192\pi\)
\(44\) 0 0
\(45\) − 0.806248i − 0.120188i
\(46\) 0 0
\(47\) 9.31137 1.35820 0.679101 0.734045i \(-0.262370\pi\)
0.679101 + 0.734045i \(0.262370\pi\)
\(48\) 0 0
\(49\) −0.298438 −0.0426340
\(50\) 0 0
\(51\) − 1.27415i − 0.178417i
\(52\) 0 0
\(53\) − 1.40312i − 0.192734i −0.995346 0.0963670i \(-0.969278\pi\)
0.995346 0.0963670i \(-0.0307222\pi\)
\(54\) 0 0
\(55\) 2.08717 0.281433
\(56\) 0 0
\(57\) −8.00000 −1.05963
\(58\) 0 0
\(59\) − 2.85974i − 0.372307i −0.982521 0.186153i \(-0.940398\pi\)
0.982521 0.186153i \(-0.0596021\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) −0.772577 −0.0973356
\(64\) 0 0
\(65\) −2.70156 −0.335088
\(66\) 0 0
\(67\) − 12.6727i − 1.54821i −0.633054 0.774107i \(-0.718199\pi\)
0.633054 0.774107i \(-0.281801\pi\)
\(68\) 0 0
\(69\) 6.59688i 0.794171i
\(70\) 0 0
\(71\) −1.04358 −0.123850 −0.0619252 0.998081i \(-0.519724\pi\)
−0.0619252 + 0.998081i \(0.519724\pi\)
\(72\) 0 0
\(73\) −7.40312 −0.866470 −0.433235 0.901281i \(-0.642628\pi\)
−0.433235 + 0.901281i \(0.642628\pi\)
\(74\) 0 0
\(75\) − 4.17433i − 0.482010i
\(76\) 0 0
\(77\) − 2.00000i − 0.227921i
\(78\) 0 0
\(79\) −2.08717 −0.234824 −0.117412 0.993083i \(-0.537460\pi\)
−0.117412 + 0.993083i \(0.537460\pi\)
\(80\) 0 0
\(81\) −9.80625 −1.08958
\(82\) 0 0
\(83\) 9.58237i 1.05180i 0.850546 + 0.525901i \(0.176272\pi\)
−0.850546 + 0.525901i \(0.823728\pi\)
\(84\) 0 0
\(85\) − 1.89531i − 0.205576i
\(86\) 0 0
\(87\) −3.63232 −0.389426
\(88\) 0 0
\(89\) −11.4031 −1.20873 −0.604364 0.796708i \(-0.706573\pi\)
−0.604364 + 0.796708i \(0.706573\pi\)
\(90\) 0 0
\(91\) 2.58874i 0.271373i
\(92\) 0 0
\(93\) 10.8062i 1.12056i
\(94\) 0 0
\(95\) −11.9001 −1.22093
\(96\) 0 0
\(97\) 10.0000 1.01535 0.507673 0.861550i \(-0.330506\pi\)
0.507673 + 0.861550i \(0.330506\pi\)
\(98\) 0 0
\(99\) 0.230566i 0.0231728i
\(100\) 0 0
\(101\) − 6.80625i − 0.677247i −0.940922 0.338624i \(-0.890039\pi\)
0.940922 0.338624i \(-0.109961\pi\)
\(102\) 0 0
\(103\) −13.9873 −1.37821 −0.689103 0.724663i \(-0.741995\pi\)
−0.689103 + 0.724663i \(0.741995\pi\)
\(104\) 0 0
\(105\) −12.7016 −1.23955
\(106\) 0 0
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 0 0
\(109\) 1.29844i 0.124368i 0.998065 + 0.0621839i \(0.0198065\pi\)
−0.998065 + 0.0621839i \(0.980193\pi\)
\(110\) 0 0
\(111\) −12.1711 −1.15523
\(112\) 0 0
\(113\) −1.40312 −0.131995 −0.0659974 0.997820i \(-0.521023\pi\)
−0.0659974 + 0.997820i \(0.521023\pi\)
\(114\) 0 0
\(115\) 9.81294i 0.915061i
\(116\) 0 0
\(117\) − 0.298438i − 0.0275906i
\(118\) 0 0
\(119\) −1.81616 −0.166487
\(120\) 0 0
\(121\) 10.4031 0.945739
\(122\) 0 0
\(123\) − 20.7099i − 1.86735i
\(124\) 0 0
\(125\) 7.29844i 0.652792i
\(126\) 0 0
\(127\) 10.8970 0.966949 0.483474 0.875358i \(-0.339375\pi\)
0.483474 + 0.875358i \(0.339375\pi\)
\(128\) 0 0
\(129\) 18.3141 1.61246
\(130\) 0 0
\(131\) − 4.90647i − 0.428680i −0.976759 0.214340i \(-0.931240\pi\)
0.976759 0.214340i \(-0.0687601\pi\)
\(132\) 0 0
\(133\) 11.4031i 0.988776i
\(134\) 0 0
\(135\) −13.2551 −1.14082
\(136\) 0 0
\(137\) −14.0000 −1.19610 −0.598050 0.801459i \(-0.704058\pi\)
−0.598050 + 0.801459i \(0.704058\pi\)
\(138\) 0 0
\(139\) 12.1711i 1.03234i 0.856486 + 0.516170i \(0.172643\pi\)
−0.856486 + 0.516170i \(0.827357\pi\)
\(140\) 0 0
\(141\) 16.9109i 1.42416i
\(142\) 0 0
\(143\) 0.772577 0.0646062
\(144\) 0 0
\(145\) −5.40312 −0.448705
\(146\) 0 0
\(147\) − 0.542011i − 0.0447043i
\(148\) 0 0
\(149\) − 12.8062i − 1.04913i −0.851371 0.524564i \(-0.824228\pi\)
0.851371 0.524564i \(-0.175772\pi\)
\(150\) 0 0
\(151\) 23.8406 1.94012 0.970062 0.242856i \(-0.0780844\pi\)
0.970062 + 0.242856i \(0.0780844\pi\)
\(152\) 0 0
\(153\) 0.209373 0.0169268
\(154\) 0 0
\(155\) 16.0744i 1.29113i
\(156\) 0 0
\(157\) − 4.59688i − 0.366871i −0.983032 0.183435i \(-0.941278\pi\)
0.983032 0.183435i \(-0.0587218\pi\)
\(158\) 0 0
\(159\) 2.54830 0.202093
\(160\) 0 0
\(161\) 9.40312 0.741070
\(162\) 0 0
\(163\) − 16.8470i − 1.31956i −0.751459 0.659780i \(-0.770649\pi\)
0.751459 0.659780i \(-0.229351\pi\)
\(164\) 0 0
\(165\) 3.79063i 0.295100i
\(166\) 0 0
\(167\) −14.7598 −1.14215 −0.571076 0.820897i \(-0.693474\pi\)
−0.571076 + 0.820897i \(0.693474\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) − 1.31459i − 0.100529i
\(172\) 0 0
\(173\) 21.4031i 1.62725i 0.581390 + 0.813625i \(0.302509\pi\)
−0.581390 + 0.813625i \(0.697491\pi\)
\(174\) 0 0
\(175\) −5.95005 −0.449782
\(176\) 0 0
\(177\) 5.19375 0.390386
\(178\) 0 0
\(179\) − 24.0712i − 1.79917i −0.436749 0.899584i \(-0.643870\pi\)
0.436749 0.899584i \(-0.356130\pi\)
\(180\) 0 0
\(181\) − 14.0000i − 1.04061i −0.853980 0.520306i \(-0.825818\pi\)
0.853980 0.520306i \(-0.174182\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −18.1047 −1.33108
\(186\) 0 0
\(187\) 0.542011i 0.0396358i
\(188\) 0 0
\(189\) 12.7016i 0.923903i
\(190\) 0 0
\(191\) 5.17748 0.374629 0.187314 0.982300i \(-0.440022\pi\)
0.187314 + 0.982300i \(0.440022\pi\)
\(192\) 0 0
\(193\) 20.8062 1.49767 0.748833 0.662758i \(-0.230614\pi\)
0.748833 + 0.662758i \(0.230614\pi\)
\(194\) 0 0
\(195\) − 4.90647i − 0.351360i
\(196\) 0 0
\(197\) 0.104686i 0.00745859i 0.999993 + 0.00372930i \(0.00118707\pi\)
−0.999993 + 0.00372930i \(0.998813\pi\)
\(198\) 0 0
\(199\) −6.72263 −0.476555 −0.238277 0.971197i \(-0.576583\pi\)
−0.238277 + 0.971197i \(0.576583\pi\)
\(200\) 0 0
\(201\) 23.0156 1.62340
\(202\) 0 0
\(203\) 5.17748i 0.363388i
\(204\) 0 0
\(205\) − 30.8062i − 2.15160i
\(206\) 0 0
\(207\) −1.08402 −0.0753447
\(208\) 0 0
\(209\) 3.40312 0.235399
\(210\) 0 0
\(211\) 8.53879i 0.587835i 0.955831 + 0.293917i \(0.0949590\pi\)
−0.955831 + 0.293917i \(0.905041\pi\)
\(212\) 0 0
\(213\) − 1.89531i − 0.129865i
\(214\) 0 0
\(215\) 27.2424 1.85792
\(216\) 0 0
\(217\) 15.4031 1.04563
\(218\) 0 0
\(219\) − 13.4453i − 0.908546i
\(220\) 0 0
\(221\) − 0.701562i − 0.0471922i
\(222\) 0 0
\(223\) 20.2083 1.35325 0.676625 0.736328i \(-0.263442\pi\)
0.676625 + 0.736328i \(0.263442\pi\)
\(224\) 0 0
\(225\) 0.685941 0.0457294
\(226\) 0 0
\(227\) 0.230566i 0.0153032i 0.999971 + 0.00765161i \(0.00243561\pi\)
−0.999971 + 0.00765161i \(0.997564\pi\)
\(228\) 0 0
\(229\) 22.9109i 1.51400i 0.653417 + 0.756999i \(0.273335\pi\)
−0.653417 + 0.756999i \(0.726665\pi\)
\(230\) 0 0
\(231\) 3.63232 0.238989
\(232\) 0 0
\(233\) −21.5078 −1.40902 −0.704512 0.709692i \(-0.748834\pi\)
−0.704512 + 0.709692i \(0.748834\pi\)
\(234\) 0 0
\(235\) 25.1552i 1.64095i
\(236\) 0 0
\(237\) − 3.79063i − 0.246228i
\(238\) 0 0
\(239\) −27.9341 −1.80691 −0.903453 0.428686i \(-0.858977\pi\)
−0.903453 + 0.428686i \(0.858977\pi\)
\(240\) 0 0
\(241\) 15.4031 0.992202 0.496101 0.868265i \(-0.334764\pi\)
0.496101 + 0.868265i \(0.334764\pi\)
\(242\) 0 0
\(243\) − 3.09031i − 0.198243i
\(244\) 0 0
\(245\) − 0.806248i − 0.0515093i
\(246\) 0 0
\(247\) −4.40490 −0.280277
\(248\) 0 0
\(249\) −17.4031 −1.10288
\(250\) 0 0
\(251\) 26.4294i 1.66821i 0.551607 + 0.834104i \(0.314015\pi\)
−0.551607 + 0.834104i \(0.685985\pi\)
\(252\) 0 0
\(253\) − 2.80625i − 0.176427i
\(254\) 0 0
\(255\) 3.44219 0.215559
\(256\) 0 0
\(257\) 10.7016 0.667545 0.333773 0.942654i \(-0.391678\pi\)
0.333773 + 0.942654i \(0.391678\pi\)
\(258\) 0 0
\(259\) 17.3486i 1.07799i
\(260\) 0 0
\(261\) − 0.596876i − 0.0369457i
\(262\) 0 0
\(263\) 19.1647 1.18175 0.590874 0.806764i \(-0.298783\pi\)
0.590874 + 0.806764i \(0.298783\pi\)
\(264\) 0 0
\(265\) 3.79063 0.232856
\(266\) 0 0
\(267\) − 20.7099i − 1.26743i
\(268\) 0 0
\(269\) − 27.4031i − 1.67080i −0.549644 0.835399i \(-0.685237\pi\)
0.549644 0.835399i \(-0.314763\pi\)
\(270\) 0 0
\(271\) 23.8406 1.44822 0.724108 0.689686i \(-0.242252\pi\)
0.724108 + 0.689686i \(0.242252\pi\)
\(272\) 0 0
\(273\) −4.70156 −0.284551
\(274\) 0 0
\(275\) 1.77572i 0.107080i
\(276\) 0 0
\(277\) − 12.0000i − 0.721010i −0.932757 0.360505i \(-0.882604\pi\)
0.932757 0.360505i \(-0.117396\pi\)
\(278\) 0 0
\(279\) −1.77572 −0.106310
\(280\) 0 0
\(281\) 11.4031 0.680253 0.340127 0.940380i \(-0.389530\pi\)
0.340127 + 0.940380i \(0.389530\pi\)
\(282\) 0 0
\(283\) 1.54515i 0.0918499i 0.998945 + 0.0459250i \(0.0146235\pi\)
−0.998945 + 0.0459250i \(0.985376\pi\)
\(284\) 0 0
\(285\) − 21.6125i − 1.28021i
\(286\) 0 0
\(287\) −29.5197 −1.74249
\(288\) 0 0
\(289\) −16.5078 −0.971048
\(290\) 0 0
\(291\) 18.1616i 1.06465i
\(292\) 0 0
\(293\) − 8.10469i − 0.473481i −0.971573 0.236740i \(-0.923921\pi\)
0.971573 0.236740i \(-0.0760791\pi\)
\(294\) 0 0
\(295\) 7.72577 0.449812
\(296\) 0 0
\(297\) 3.79063 0.219955
\(298\) 0 0
\(299\) 3.63232i 0.210063i
\(300\) 0 0
\(301\) − 26.1047i − 1.50465i
\(302\) 0 0
\(303\) 12.3612 0.710135
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 23.5696i − 1.34519i −0.740011 0.672595i \(-0.765180\pi\)
0.740011 0.672595i \(-0.234820\pi\)
\(308\) 0 0
\(309\) − 25.4031i − 1.44513i
\(310\) 0 0
\(311\) 23.8002 1.34959 0.674793 0.738007i \(-0.264233\pi\)
0.674793 + 0.738007i \(0.264233\pi\)
\(312\) 0 0
\(313\) 6.10469 0.345057 0.172529 0.985005i \(-0.444806\pi\)
0.172529 + 0.985005i \(0.444806\pi\)
\(314\) 0 0
\(315\) − 2.08717i − 0.117598i
\(316\) 0 0
\(317\) 6.00000i 0.336994i 0.985702 + 0.168497i \(0.0538913\pi\)
−0.985702 + 0.168497i \(0.946109\pi\)
\(318\) 0 0
\(319\) 1.54515 0.0865121
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 3.09031i − 0.171949i
\(324\) 0 0
\(325\) − 2.29844i − 0.127494i
\(326\) 0 0
\(327\) −2.35817 −0.130407
\(328\) 0 0
\(329\) 24.1047 1.32893
\(330\) 0 0
\(331\) 18.3922i 1.01093i 0.862849 + 0.505463i \(0.168678\pi\)
−0.862849 + 0.505463i \(0.831322\pi\)
\(332\) 0 0
\(333\) − 2.00000i − 0.109599i
\(334\) 0 0
\(335\) 34.2360 1.87051
\(336\) 0 0
\(337\) 27.5078 1.49845 0.749223 0.662318i \(-0.230427\pi\)
0.749223 + 0.662318i \(0.230427\pi\)
\(338\) 0 0
\(339\) − 2.54830i − 0.138405i
\(340\) 0 0
\(341\) − 4.59688i − 0.248935i
\(342\) 0 0
\(343\) −18.8937 −1.02017
\(344\) 0 0
\(345\) −17.8219 −0.959497
\(346\) 0 0
\(347\) 16.3454i 0.877469i 0.898617 + 0.438735i \(0.144573\pi\)
−0.898617 + 0.438735i \(0.855427\pi\)
\(348\) 0 0
\(349\) − 2.70156i − 0.144611i −0.997383 0.0723057i \(-0.976964\pi\)
0.997383 0.0723057i \(-0.0230357\pi\)
\(350\) 0 0
\(351\) −4.90647 −0.261888
\(352\) 0 0
\(353\) −24.8062 −1.32030 −0.660152 0.751132i \(-0.729508\pi\)
−0.660152 + 0.751132i \(0.729508\pi\)
\(354\) 0 0
\(355\) − 2.81930i − 0.149633i
\(356\) 0 0
\(357\) − 3.29844i − 0.174572i
\(358\) 0 0
\(359\) −5.95005 −0.314032 −0.157016 0.987596i \(-0.550187\pi\)
−0.157016 + 0.987596i \(0.550187\pi\)
\(360\) 0 0
\(361\) −0.403124 −0.0212171
\(362\) 0 0
\(363\) 18.8937i 0.991664i
\(364\) 0 0
\(365\) − 20.0000i − 1.04685i
\(366\) 0 0
\(367\) −36.2423 −1.89183 −0.945917 0.324409i \(-0.894835\pi\)
−0.945917 + 0.324409i \(0.894835\pi\)
\(368\) 0 0
\(369\) 3.40312 0.177160
\(370\) 0 0
\(371\) − 3.63232i − 0.188581i
\(372\) 0 0
\(373\) 3.40312i 0.176207i 0.996111 + 0.0881035i \(0.0280806\pi\)
−0.996111 + 0.0881035i \(0.971919\pi\)
\(374\) 0 0
\(375\) −13.2551 −0.684492
\(376\) 0 0
\(377\) −2.00000 −0.103005
\(378\) 0 0
\(379\) 3.86289i 0.198423i 0.995066 + 0.0992116i \(0.0316321\pi\)
−0.995066 + 0.0992116i \(0.968368\pi\)
\(380\) 0 0
\(381\) 19.7906i 1.01390i
\(382\) 0 0
\(383\) 16.0340 0.819299 0.409649 0.912243i \(-0.365651\pi\)
0.409649 + 0.912243i \(0.365651\pi\)
\(384\) 0 0
\(385\) 5.40312 0.275369
\(386\) 0 0
\(387\) 3.00943i 0.152978i
\(388\) 0 0
\(389\) 19.4031i 0.983777i 0.870658 + 0.491889i \(0.163693\pi\)
−0.870658 + 0.491889i \(0.836307\pi\)
\(390\) 0 0
\(391\) −2.54830 −0.128873
\(392\) 0 0
\(393\) 8.91093 0.449497
\(394\) 0 0
\(395\) − 5.63861i − 0.283709i
\(396\) 0 0
\(397\) − 12.8062i − 0.642727i −0.946956 0.321364i \(-0.895859\pi\)
0.946956 0.321364i \(-0.104141\pi\)
\(398\) 0 0
\(399\) −20.7099 −1.03679
\(400\) 0 0
\(401\) 30.0000 1.49813 0.749064 0.662497i \(-0.230503\pi\)
0.749064 + 0.662497i \(0.230503\pi\)
\(402\) 0 0
\(403\) 5.95005i 0.296393i
\(404\) 0 0
\(405\) − 26.4922i − 1.31641i
\(406\) 0 0
\(407\) 5.17748 0.256638
\(408\) 0 0
\(409\) 36.8062 1.81995 0.909976 0.414661i \(-0.136100\pi\)
0.909976 + 0.414661i \(0.136100\pi\)
\(410\) 0 0
\(411\) − 25.4262i − 1.25418i
\(412\) 0 0
\(413\) − 7.40312i − 0.364284i
\(414\) 0 0
\(415\) −25.8874 −1.27076
\(416\) 0 0
\(417\) −22.1047 −1.08247
\(418\) 0 0
\(419\) 19.4358i 0.949499i 0.880121 + 0.474749i \(0.157461\pi\)
−0.880121 + 0.474749i \(0.842539\pi\)
\(420\) 0 0
\(421\) − 4.10469i − 0.200050i −0.994985 0.100025i \(-0.968108\pi\)
0.994985 0.100025i \(-0.0318923\pi\)
\(422\) 0 0
\(423\) −2.77886 −0.135113
\(424\) 0 0
\(425\) 1.61250 0.0782176
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 1.40312i 0.0677435i
\(430\) 0 0
\(431\) 15.0309 0.724011 0.362005 0.932176i \(-0.382092\pi\)
0.362005 + 0.932176i \(0.382092\pi\)
\(432\) 0 0
\(433\) 22.9109 1.10103 0.550515 0.834826i \(-0.314432\pi\)
0.550515 + 0.834826i \(0.314432\pi\)
\(434\) 0 0
\(435\) − 9.81294i − 0.470494i
\(436\) 0 0
\(437\) 16.0000i 0.765384i
\(438\) 0 0
\(439\) −17.6196 −0.840937 −0.420469 0.907307i \(-0.638134\pi\)
−0.420469 + 0.907307i \(0.638134\pi\)
\(440\) 0 0
\(441\) 0.0890652 0.00424120
\(442\) 0 0
\(443\) − 22.5261i − 1.07025i −0.844774 0.535123i \(-0.820265\pi\)
0.844774 0.535123i \(-0.179735\pi\)
\(444\) 0 0
\(445\) − 30.8062i − 1.46036i
\(446\) 0 0
\(447\) 23.2582 1.10008
\(448\) 0 0
\(449\) 27.6125 1.30311 0.651557 0.758600i \(-0.274116\pi\)
0.651557 + 0.758600i \(0.274116\pi\)
\(450\) 0 0
\(451\) 8.80980i 0.414837i
\(452\) 0 0
\(453\) 43.2984i 2.03434i
\(454\) 0 0
\(455\) −6.99364 −0.327867
\(456\) 0 0
\(457\) 11.4031 0.533416 0.266708 0.963777i \(-0.414064\pi\)
0.266708 + 0.963777i \(0.414064\pi\)
\(458\) 0 0
\(459\) − 3.44219i − 0.160668i
\(460\) 0 0
\(461\) 10.9109i 0.508173i 0.967182 + 0.254086i \(0.0817748\pi\)
−0.967182 + 0.254086i \(0.918225\pi\)
\(462\) 0 0
\(463\) 14.7598 0.685948 0.342974 0.939345i \(-0.388566\pi\)
0.342974 + 0.939345i \(0.388566\pi\)
\(464\) 0 0
\(465\) −29.1938 −1.35383
\(466\) 0 0
\(467\) − 2.62918i − 0.121664i −0.998148 0.0608319i \(-0.980625\pi\)
0.998148 0.0608319i \(-0.0193754\pi\)
\(468\) 0 0
\(469\) − 32.8062i − 1.51485i
\(470\) 0 0
\(471\) 8.34866 0.384686
\(472\) 0 0
\(473\) −7.79063 −0.358213
\(474\) 0 0
\(475\) − 10.1244i − 0.464539i
\(476\) 0 0
\(477\) 0.418745i 0.0191730i
\(478\) 0 0
\(479\) 18.1212 0.827977 0.413989 0.910282i \(-0.364135\pi\)
0.413989 + 0.910282i \(0.364135\pi\)
\(480\) 0 0
\(481\) −6.70156 −0.305565
\(482\) 0 0
\(483\) 17.0776i 0.777057i
\(484\) 0 0
\(485\) 27.0156i 1.22672i
\(486\) 0 0
\(487\) 12.1307 0.549693 0.274847 0.961488i \(-0.411373\pi\)
0.274847 + 0.961488i \(0.411373\pi\)
\(488\) 0 0
\(489\) 30.5969 1.38364
\(490\) 0 0
\(491\) − 27.7035i − 1.25024i −0.780527 0.625122i \(-0.785049\pi\)
0.780527 0.625122i \(-0.214951\pi\)
\(492\) 0 0
\(493\) − 1.40312i − 0.0631935i
\(494\) 0 0
\(495\) −0.622889 −0.0279968
\(496\) 0 0
\(497\) −2.70156 −0.121182
\(498\) 0 0
\(499\) 14.7598i 0.660742i 0.943851 + 0.330371i \(0.107174\pi\)
−0.943851 + 0.330371i \(0.892826\pi\)
\(500\) 0 0
\(501\) − 26.8062i − 1.19761i
\(502\) 0 0
\(503\) −23.3391 −1.04064 −0.520319 0.853972i \(-0.674187\pi\)
−0.520319 + 0.853972i \(0.674187\pi\)
\(504\) 0 0
\(505\) 18.3875 0.818233
\(506\) 0 0
\(507\) − 1.81616i − 0.0806585i
\(508\) 0 0
\(509\) 35.6125i 1.57850i 0.614074 + 0.789248i \(0.289529\pi\)
−0.614074 + 0.789248i \(0.710471\pi\)
\(510\) 0 0
\(511\) −19.1647 −0.847798
\(512\) 0 0
\(513\) −21.6125 −0.954215
\(514\) 0 0
\(515\) − 37.7875i − 1.66512i
\(516\) 0 0
\(517\) − 7.19375i − 0.316381i
\(518\) 0 0
\(519\) −38.8715 −1.70627
\(520\) 0 0
\(521\) 6.10469 0.267451 0.133726 0.991018i \(-0.457306\pi\)
0.133726 + 0.991018i \(0.457306\pi\)
\(522\) 0 0
\(523\) − 41.4198i − 1.81116i −0.424174 0.905581i \(-0.639436\pi\)
0.424174 0.905581i \(-0.360564\pi\)
\(524\) 0 0
\(525\) − 10.8062i − 0.471623i
\(526\) 0 0
\(527\) −4.17433 −0.181837
\(528\) 0 0
\(529\) −9.80625 −0.426359
\(530\) 0 0
\(531\) 0.853456i 0.0370368i
\(532\) 0 0
\(533\) − 11.4031i − 0.493924i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 43.7172 1.88654
\(538\) 0 0
\(539\) 0.230566i 0.00993120i
\(540\) 0 0
\(541\) − 25.2984i − 1.08766i −0.839194 0.543832i \(-0.816973\pi\)
0.839194 0.543832i \(-0.183027\pi\)
\(542\) 0 0
\(543\) 25.4262 1.09114
\(544\) 0 0
\(545\) −3.50781 −0.150258
\(546\) 0 0
\(547\) − 12.7131i − 0.543574i −0.962357 0.271787i \(-0.912385\pi\)
0.962357 0.271787i \(-0.0876146\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −8.80980 −0.375310
\(552\) 0 0
\(553\) −5.40312 −0.229764
\(554\) 0 0
\(555\) − 32.8810i − 1.39572i
\(556\) 0 0
\(557\) 38.7016i 1.63984i 0.572480 + 0.819919i \(0.305982\pi\)
−0.572480 + 0.819919i \(0.694018\pi\)
\(558\) 0 0
\(559\) 10.0839 0.426505
\(560\) 0 0
\(561\) −0.984379 −0.0415605
\(562\) 0 0
\(563\) − 19.8969i − 0.838554i −0.907858 0.419277i \(-0.862284\pi\)
0.907858 0.419277i \(-0.137716\pi\)
\(564\) 0 0
\(565\) − 3.79063i − 0.159473i
\(566\) 0 0
\(567\) −25.3858 −1.06610
\(568\) 0 0
\(569\) −28.1047 −1.17821 −0.589105 0.808057i \(-0.700520\pi\)
−0.589105 + 0.808057i \(0.700520\pi\)
\(570\) 0 0
\(571\) 0.813017i 0.0340237i 0.999855 + 0.0170118i \(0.00541530\pi\)
−0.999855 + 0.0170118i \(0.994585\pi\)
\(572\) 0 0
\(573\) 9.40312i 0.392821i
\(574\) 0 0
\(575\) −8.34866 −0.348163
\(576\) 0 0
\(577\) 1.79063 0.0745448 0.0372724 0.999305i \(-0.488133\pi\)
0.0372724 + 0.999305i \(0.488133\pi\)
\(578\) 0 0
\(579\) 37.7875i 1.57039i
\(580\) 0 0
\(581\) 24.8062i 1.02914i
\(582\) 0 0
\(583\) −1.08402 −0.0448956
\(584\) 0 0
\(585\) 0.806248 0.0333343
\(586\) 0 0
\(587\) − 30.2923i − 1.25030i −0.780506 0.625148i \(-0.785039\pi\)
0.780506 0.625148i \(-0.214961\pi\)
\(588\) 0 0
\(589\) 26.2094i 1.07994i
\(590\) 0 0
\(591\) −0.190127 −0.00782079
\(592\) 0 0
\(593\) 14.0000 0.574911 0.287456 0.957794i \(-0.407191\pi\)
0.287456 + 0.957794i \(0.407191\pi\)
\(594\) 0 0
\(595\) − 4.90647i − 0.201146i
\(596\) 0 0
\(597\) − 12.2094i − 0.499696i
\(598\) 0 0
\(599\) 25.3454 1.03558 0.517792 0.855507i \(-0.326754\pi\)
0.517792 + 0.855507i \(0.326754\pi\)
\(600\) 0 0
\(601\) 34.3141 1.39970 0.699850 0.714290i \(-0.253250\pi\)
0.699850 + 0.714290i \(0.253250\pi\)
\(602\) 0 0
\(603\) 3.78201i 0.154015i
\(604\) 0 0
\(605\) 28.1047i 1.14262i
\(606\) 0 0
\(607\) −33.6940 −1.36760 −0.683799 0.729670i \(-0.739674\pi\)
−0.683799 + 0.729670i \(0.739674\pi\)
\(608\) 0 0
\(609\) −9.40312 −0.381034
\(610\) 0 0
\(611\) 9.31137i 0.376698i
\(612\) 0 0
\(613\) − 46.4187i − 1.87484i −0.348207 0.937418i \(-0.613209\pi\)
0.348207 0.937418i \(-0.386791\pi\)
\(614\) 0 0
\(615\) 55.9491 2.25608
\(616\) 0 0
\(617\) −1.79063 −0.0720879 −0.0360440 0.999350i \(-0.511476\pi\)
−0.0360440 + 0.999350i \(0.511476\pi\)
\(618\) 0 0
\(619\) 15.2210i 0.611783i 0.952066 + 0.305891i \(0.0989545\pi\)
−0.952066 + 0.305891i \(0.901046\pi\)
\(620\) 0 0
\(621\) 17.8219i 0.715167i
\(622\) 0 0
\(623\) −29.5197 −1.18268
\(624\) 0 0
\(625\) −31.2094 −1.24837
\(626\) 0 0
\(627\) 6.18062i 0.246830i
\(628\) 0 0
\(629\) − 4.70156i − 0.187464i
\(630\) 0 0
\(631\) 37.2859 1.48433 0.742164 0.670218i \(-0.233799\pi\)
0.742164 + 0.670218i \(0.233799\pi\)
\(632\) 0 0
\(633\) −15.5078 −0.616380
\(634\) 0 0
\(635\) 29.4388i 1.16824i
\(636\) 0 0
\(637\) − 0.298438i − 0.0118245i
\(638\) 0 0
\(639\) 0.311445 0.0123206
\(640\) 0 0
\(641\) −8.20937 −0.324251 −0.162125 0.986770i \(-0.551835\pi\)
−0.162125 + 0.986770i \(0.551835\pi\)
\(642\) 0 0
\(643\) 19.9373i 0.786251i 0.919485 + 0.393126i \(0.128606\pi\)
−0.919485 + 0.393126i \(0.871394\pi\)
\(644\) 0 0
\(645\) 49.4766i 1.94814i
\(646\) 0 0
\(647\) −14.5293 −0.571205 −0.285603 0.958348i \(-0.592194\pi\)
−0.285603 + 0.958348i \(0.592194\pi\)
\(648\) 0 0
\(649\) −2.20937 −0.0867255
\(650\) 0 0
\(651\) 27.9745i 1.09641i
\(652\) 0 0
\(653\) − 23.4031i − 0.915835i −0.888995 0.457918i \(-0.848596\pi\)
0.888995 0.457918i \(-0.151404\pi\)
\(654\) 0 0
\(655\) 13.2551 0.517921
\(656\) 0 0
\(657\) 2.20937 0.0861958
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) − 10.0000i − 0.388955i −0.980907 0.194477i \(-0.937699\pi\)
0.980907 0.194477i \(-0.0623011\pi\)
\(662\) 0 0
\(663\) 1.27415 0.0494839
\(664\) 0 0
\(665\) −30.8062 −1.19462
\(666\) 0 0
\(667\) 7.26464i 0.281288i
\(668\) 0 0
\(669\) 36.7016i 1.41896i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −46.3141 −1.78528 −0.892638 0.450774i \(-0.851148\pi\)
−0.892638 + 0.450774i \(0.851148\pi\)
\(674\) 0 0
\(675\) − 11.2772i − 0.434060i
\(676\) 0 0
\(677\) − 15.0156i − 0.577097i −0.957465 0.288549i \(-0.906827\pi\)
0.957465 0.288549i \(-0.0931727\pi\)
\(678\) 0 0
\(679\) 25.8874 0.993466
\(680\) 0 0
\(681\) −0.418745 −0.0160464
\(682\) 0 0
\(683\) 46.8278i 1.79182i 0.444238 + 0.895909i \(0.353474\pi\)
−0.444238 + 0.895909i \(0.646526\pi\)
\(684\) 0 0
\(685\) − 37.8219i − 1.44510i
\(686\) 0 0
\(687\) −41.6099 −1.58752
\(688\) 0 0
\(689\) 1.40312 0.0534548
\(690\) 0 0
\(691\) 1.31459i 0.0500093i 0.999687 + 0.0250046i \(0.00796006\pi\)
−0.999687 + 0.0250046i \(0.992040\pi\)
\(692\) 0 0
\(693\) 0.596876i 0.0226734i
\(694\) 0 0
\(695\) −32.8810 −1.24725
\(696\) 0 0
\(697\) 8.00000 0.303022
\(698\) 0 0
\(699\) − 39.0616i − 1.47745i
\(700\) 0 0
\(701\) 8.80625i 0.332607i 0.986075 + 0.166304i \(0.0531832\pi\)
−0.986075 + 0.166304i \(0.946817\pi\)
\(702\) 0 0
\(703\) −29.5197 −1.11336
\(704\) 0 0
\(705\) −45.6859 −1.72063
\(706\) 0 0
\(707\) − 17.6196i − 0.662653i
\(708\) 0 0
\(709\) − 14.0000i − 0.525781i −0.964826 0.262891i \(-0.915324\pi\)
0.964826 0.262891i \(-0.0846758\pi\)
\(710\) 0 0
\(711\) 0.622889 0.0233602
\(712\) 0 0
\(713\) 21.6125 0.809394
\(714\) 0 0
\(715\) 2.08717i 0.0780556i
\(716\) 0 0
\(717\) − 50.7328i − 1.89465i
\(718\) 0 0
\(719\) −5.63861 −0.210285 −0.105142 0.994457i \(-0.533530\pi\)
−0.105142 + 0.994457i \(0.533530\pi\)
\(720\) 0 0
\(721\) −36.2094 −1.34851
\(722\) 0 0
\(723\) 27.9745i 1.04038i
\(724\) 0 0
\(725\) − 4.59688i − 0.170724i
\(726\) 0 0
\(727\) 15.0713 0.558963 0.279482 0.960151i \(-0.409837\pi\)
0.279482 + 0.960151i \(0.409837\pi\)
\(728\) 0 0
\(729\) −23.8062 −0.881713
\(730\) 0 0
\(731\) 7.07451i 0.261660i
\(732\) 0 0
\(733\) 39.1203i 1.44494i 0.691401 + 0.722471i \(0.256994\pi\)
−0.691401 + 0.722471i \(0.743006\pi\)
\(734\) 0 0
\(735\) 1.46428 0.0540106
\(736\) 0 0
\(737\) −9.79063 −0.360642
\(738\) 0 0
\(739\) − 4.40490i − 0.162037i −0.996713 0.0810184i \(-0.974183\pi\)
0.996713 0.0810184i \(-0.0258173\pi\)
\(740\) 0 0
\(741\) − 8.00000i − 0.293887i
\(742\) 0 0
\(743\) −21.2115 −0.778173 −0.389087 0.921201i \(-0.627209\pi\)
−0.389087 + 0.921201i \(0.627209\pi\)
\(744\) 0 0
\(745\) 34.5969 1.26753
\(746\) 0 0
\(747\) − 2.85974i − 0.104633i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 17.6196 0.642948 0.321474 0.946918i \(-0.395822\pi\)
0.321474 + 0.946918i \(0.395822\pi\)
\(752\) 0 0
\(753\) −48.0000 −1.74922
\(754\) 0 0
\(755\) 64.4070i 2.34401i
\(756\) 0 0
\(757\) − 28.2094i − 1.02529i −0.858602 0.512644i \(-0.828666\pi\)
0.858602 0.512644i \(-0.171334\pi\)
\(758\) 0 0
\(759\) 5.09660 0.184995
\(760\) 0 0
\(761\) 11.4031 0.413363 0.206681 0.978408i \(-0.433734\pi\)
0.206681 + 0.978408i \(0.433734\pi\)
\(762\) 0 0
\(763\) 3.36131i 0.121688i
\(764\) 0 0
\(765\) 0.565633i 0.0204505i
\(766\) 0 0
\(767\) 2.85974 0.103259
\(768\) 0 0
\(769\) −27.4031 −0.988182 −0.494091 0.869410i \(-0.664499\pi\)
−0.494091 + 0.869410i \(0.664499\pi\)
\(770\) 0 0
\(771\) 19.4358i 0.699961i
\(772\) 0 0
\(773\) 42.7016i 1.53587i 0.640529 + 0.767934i \(0.278715\pi\)
−0.640529 + 0.767934i \(0.721285\pi\)
\(774\) 0 0
\(775\) −13.6758 −0.491250
\(776\) 0 0
\(777\) −31.5078 −1.13034
\(778\) 0 0
\(779\) − 50.2296i − 1.79966i
\(780\) 0 0
\(781\) 0.806248i 0.0288498i
\(782\) 0 0
\(783\) −9.81294 −0.350686
\(784\) 0 0
\(785\) 12.4187 0.443244
\(786\) 0 0
\(787\) − 26.6600i − 0.950325i −0.879898 0.475162i \(-0.842389\pi\)
0.879898 0.475162i \(-0.157611\pi\)
\(788\) 0 0
\(789\) 34.8062i 1.23914i
\(790\) 0 0
\(791\) −3.63232 −0.129150
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 6.88439i 0.244164i
\(796\) 0 0
\(797\) 46.2094i 1.63682i 0.574635 + 0.818410i \(0.305144\pi\)
−0.574635 + 0.818410i \(0.694856\pi\)
\(798\) 0 0
\(799\) −6.53250 −0.231103
\(800\) 0 0
\(801\) 3.40312 0.120243
\(802\) 0 0
\(803\) 5.71949i 0.201836i
\(804\) 0 0
\(805\) 25.4031i 0.895342i
\(806\) 0 0
\(807\) 49.7685 1.75193
\(808\) 0 0
\(809\) −31.5078 −1.10776 −0.553878 0.832598i \(-0.686853\pi\)
−0.553878 + 0.832598i \(0.686853\pi\)
\(810\) 0 0
\(811\) 38.0989i 1.33783i 0.743337 + 0.668917i \(0.233242\pi\)
−0.743337 + 0.668917i \(0.766758\pi\)
\(812\) 0 0
\(813\) 43.2984i 1.51854i
\(814\) 0 0
\(815\) 45.5133 1.59426
\(816\) 0 0
\(817\) 44.4187 1.55402
\(818\) 0 0
\(819\) − 0.772577i − 0.0269960i
\(820\) 0 0
\(821\) − 18.4922i − 0.645382i −0.946504 0.322691i \(-0.895413\pi\)
0.946504 0.322691i \(-0.104587\pi\)
\(822\) 0 0
\(823\) −34.1552 −1.19057 −0.595287 0.803513i \(-0.702962\pi\)
−0.595287 + 0.803513i \(0.702962\pi\)
\(824\) 0 0
\(825\) −3.22499 −0.112280
\(826\) 0 0
\(827\) − 2.85974i − 0.0994430i −0.998763 0.0497215i \(-0.984167\pi\)
0.998763 0.0497215i \(-0.0158334\pi\)
\(828\) 0 0
\(829\) − 37.4031i − 1.29906i −0.760334 0.649532i \(-0.774965\pi\)
0.760334 0.649532i \(-0.225035\pi\)
\(830\) 0 0
\(831\) 21.7939 0.756023
\(832\) 0 0
\(833\) 0.209373 0.00725433
\(834\) 0 0
\(835\) − 39.8746i − 1.37992i
\(836\) 0 0
\(837\) 29.1938i 1.00908i
\(838\) 0 0
\(839\) 53.0893 1.83285 0.916424 0.400209i \(-0.131063\pi\)
0.916424 + 0.400209i \(0.131063\pi\)
\(840\) 0 0
\(841\) 25.0000 0.862069
\(842\) 0 0
\(843\) 20.7099i 0.713287i
\(844\) 0 0
\(845\) − 2.70156i − 0.0929366i
\(846\) 0 0
\(847\) 26.9310 0.925359
\(848\) 0 0
\(849\) −2.80625 −0.0963102
\(850\) 0 0
\(851\) 24.3422i 0.834441i
\(852\) 0 0
\(853\) 21.2984i 0.729245i 0.931156 + 0.364622i \(0.118802\pi\)
−0.931156 + 0.364622i \(0.881198\pi\)
\(854\) 0 0
\(855\) 3.55144 0.121457
\(856\) 0 0
\(857\) −50.4187 −1.72227 −0.861136 0.508375i \(-0.830246\pi\)
−0.861136 + 0.508375i \(0.830246\pi\)
\(858\) 0 0
\(859\) − 38.3295i − 1.30779i −0.756587 0.653893i \(-0.773135\pi\)
0.756587 0.653893i \(-0.226865\pi\)
\(860\) 0 0
\(861\) − 53.6125i − 1.82711i
\(862\) 0 0
\(863\) 21.2115 0.722047 0.361023 0.932557i \(-0.382427\pi\)
0.361023 + 0.932557i \(0.382427\pi\)
\(864\) 0 0
\(865\) −57.8219 −1.96600
\(866\) 0 0
\(867\) − 29.9808i − 1.01820i
\(868\) 0 0
\(869\) 1.61250i 0.0547002i
\(870\) 0 0
\(871\) 12.6727 0.429397
\(872\) 0 0
\(873\) −2.98438 −0.101006
\(874\) 0 0
\(875\) 18.8937i 0.638725i
\(876\) 0 0
\(877\) 48.3141i 1.63145i 0.578440 + 0.815725i \(0.303662\pi\)
−0.578440 + 0.815725i \(0.696338\pi\)
\(878\) 0 0
\(879\) 14.7194 0.496473
\(880\) 0 0
\(881\) −38.9109 −1.31094 −0.655471 0.755220i \(-0.727530\pi\)
−0.655471 + 0.755220i \(0.727530\pi\)
\(882\) 0 0
\(883\) − 11.1680i − 0.375832i −0.982185 0.187916i \(-0.939827\pi\)
0.982185 0.187916i \(-0.0601733\pi\)
\(884\) 0 0
\(885\) 14.0312i 0.471655i
\(886\) 0 0
\(887\) −42.9650 −1.44262 −0.721311 0.692611i \(-0.756460\pi\)
−0.721311 + 0.692611i \(0.756460\pi\)
\(888\) 0 0
\(889\) 28.2094 0.946112
\(890\) 0 0
\(891\) 7.57609i 0.253808i
\(892\) 0 0
\(893\) 41.0156i 1.37254i
\(894\) 0 0
\(895\) 65.0299 2.17371
\(896\) 0 0
\(897\) −6.59688 −0.220263
\(898\) 0 0
\(899\) 11.9001i 0.396891i
\(900\) 0 0
\(901\) 0.984379i 0.0327944i
\(902\) 0 0
\(903\) 47.4103 1.57772
\(904\) 0 0
\(905\) 37.8219 1.25724
\(906\) 0 0
\(907\) 41.6908i 1.38432i 0.721744 + 0.692160i \(0.243341\pi\)
−0.721744 + 0.692160i \(0.756659\pi\)
\(908\) 0 0
\(909\) 2.03124i 0.0673721i
\(910\) 0 0
\(911\) 19.7068 0.652914 0.326457 0.945212i \(-0.394145\pi\)
0.326457 + 0.945212i \(0.394145\pi\)
\(912\) 0 0
\(913\) 7.40312 0.245008
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 12.7016i − 0.419443i
\(918\) 0 0
\(919\) −28.4357 −0.938006 −0.469003 0.883196i \(-0.655387\pi\)
−0.469003 + 0.883196i \(0.655387\pi\)
\(920\) 0 0
\(921\) 42.8062 1.41051
\(922\) 0 0
\(923\) − 1.04358i − 0.0343499i
\(924\) 0 0
\(925\) − 15.4031i − 0.506452i
\(926\) 0 0
\(927\) 4.17433 0.137103
\(928\) 0 0
\(929\) 20.5969 0.675762 0.337881 0.941189i \(-0.390290\pi\)
0.337881 + 0.941189i \(0.390290\pi\)
\(930\) 0 0
\(931\) − 1.31459i − 0.0430839i
\(932\) 0 0
\(933\) 43.2250i 1.41512i
\(934\) 0 0
\(935\) −1.46428 −0.0478870
\(936\) 0 0
\(937\) −3.61250 −0.118015 −0.0590076 0.998258i \(-0.518794\pi\)
−0.0590076 + 0.998258i \(0.518794\pi\)
\(938\) 0 0
\(939\) 11.0871i 0.361813i
\(940\) 0 0
\(941\) − 52.5234i − 1.71221i −0.516798 0.856107i \(-0.672876\pi\)
0.516798 0.856107i \(-0.327124\pi\)
\(942\) 0 0
\(943\) −41.4198 −1.34881
\(944\) 0 0
\(945\) −34.3141 −1.11624
\(946\) 0 0
\(947\) − 37.0958i − 1.20545i −0.797949 0.602725i \(-0.794081\pi\)
0.797949 0.602725i \(-0.205919\pi\)
\(948\) 0 0
\(949\) − 7.40312i − 0.240316i
\(950\) 0 0
\(951\) −10.8970 −0.353358
\(952\) 0 0
\(953\) −13.2984 −0.430779 −0.215389 0.976528i \(-0.569102\pi\)
−0.215389 + 0.976528i \(0.569102\pi\)
\(954\) 0 0
\(955\) 13.9873i 0.452617i
\(956\) 0 0
\(957\) 2.80625i 0.0907131i
\(958\) 0 0
\(959\) −36.2423 −1.17033
\(960\) 0 0
\(961\) 4.40312 0.142036
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 56.2094i 1.80944i
\(966\) 0 0
\(967\) 2.04673 0.0658183 0.0329091 0.999458i \(-0.489523\pi\)
0.0329091 + 0.999458i \(0.489523\pi\)
\(968\) 0 0
\(969\) 5.61250 0.180299
\(970\) 0 0
\(971\) − 1.81616i − 0.0582834i −0.999575 0.0291417i \(-0.990723\pi\)
0.999575 0.0291417i \(-0.00927740\pi\)
\(972\) 0 0
\(973\) 31.5078i 1.01009i
\(974\) 0 0
\(975\) 4.17433 0.133686
\(976\) 0 0
\(977\) 7.19375 0.230149 0.115074 0.993357i \(-0.463289\pi\)
0.115074 + 0.993357i \(0.463289\pi\)
\(978\) 0 0
\(979\) 8.80980i 0.281562i
\(980\) 0 0
\(981\) − 0.387503i − 0.0123720i
\(982\) 0 0
\(983\) 3.04987 0.0972758 0.0486379 0.998816i \(-0.484512\pi\)
0.0486379 + 0.998816i \(0.484512\pi\)
\(984\) 0 0
\(985\) −0.282817 −0.00901129
\(986\) 0 0
\(987\) 43.7780i 1.39347i
\(988\) 0 0
\(989\) − 36.6281i − 1.16471i
\(990\) 0 0
\(991\) −40.9587 −1.30109 −0.650547 0.759466i \(-0.725461\pi\)
−0.650547 + 0.759466i \(0.725461\pi\)
\(992\) 0 0
\(993\) −33.4031 −1.06002
\(994\) 0 0
\(995\) − 18.1616i − 0.575761i
\(996\) 0 0
\(997\) 12.2094i 0.386675i 0.981132 + 0.193337i \(0.0619312\pi\)
−0.981132 + 0.193337i \(0.938069\pi\)
\(998\) 0 0
\(999\) −32.8810 −1.04031
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1664.2.b.j.833.6 yes 8
4.3 odd 2 inner 1664.2.b.j.833.4 yes 8
8.3 odd 2 inner 1664.2.b.j.833.5 yes 8
8.5 even 2 inner 1664.2.b.j.833.3 8
16.3 odd 4 3328.2.a.bk.1.3 4
16.5 even 4 3328.2.a.bl.1.3 4
16.11 odd 4 3328.2.a.bl.1.2 4
16.13 even 4 3328.2.a.bk.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1664.2.b.j.833.3 8 8.5 even 2 inner
1664.2.b.j.833.4 yes 8 4.3 odd 2 inner
1664.2.b.j.833.5 yes 8 8.3 odd 2 inner
1664.2.b.j.833.6 yes 8 1.1 even 1 trivial
3328.2.a.bk.1.2 4 16.13 even 4
3328.2.a.bk.1.3 4 16.3 odd 4
3328.2.a.bl.1.2 4 16.11 odd 4
3328.2.a.bl.1.3 4 16.5 even 4