Properties

Label 3328.2.a.bk.1.2
Level $3328$
Weight $2$
Character 3328.1
Self dual yes
Analytic conductor $26.574$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3328,2,Mod(1,3328)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3328, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3328.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3328 = 2^{8} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3328.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.5742137927\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.13448.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 7x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 1664)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.58874\) of defining polynomial
Character \(\chi\) \(=\) 3328.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.81616 q^{3} +2.70156 q^{5} -2.58874 q^{7} +0.298438 q^{9} -0.772577 q^{11} -1.00000 q^{13} -4.90647 q^{15} -0.701562 q^{17} -4.40490 q^{19} +4.70156 q^{21} -3.63232 q^{23} +2.29844 q^{25} +4.90647 q^{27} -2.00000 q^{29} +5.95005 q^{31} +1.40312 q^{33} -6.99364 q^{35} +6.70156 q^{37} +1.81616 q^{39} +11.4031 q^{41} -10.0839 q^{43} +0.806248 q^{45} +9.31137 q^{47} -0.298438 q^{49} +1.27415 q^{51} -1.40312 q^{53} -2.08717 q^{55} +8.00000 q^{57} -2.85974 q^{59} -0.772577 q^{63} -2.70156 q^{65} +12.6727 q^{67} +6.59688 q^{69} +1.04358 q^{71} +7.40312 q^{73} -4.17433 q^{75} +2.00000 q^{77} -2.08717 q^{79} -9.80625 q^{81} -9.58237 q^{83} -1.89531 q^{85} +3.63232 q^{87} +11.4031 q^{89} +2.58874 q^{91} -10.8062 q^{93} -11.9001 q^{95} +10.0000 q^{97} -0.230566 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{5} + 14 q^{9} - 4 q^{13} + 10 q^{17} + 6 q^{21} + 22 q^{25} - 8 q^{29} - 20 q^{33} + 14 q^{37} + 20 q^{41} - 48 q^{45} - 14 q^{49} + 20 q^{53} + 32 q^{57} + 2 q^{65} + 52 q^{69} + 4 q^{73} + 8 q^{77}+ \cdots + 40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.81616 −1.04856 −0.524280 0.851546i \(-0.675666\pi\)
−0.524280 + 0.851546i \(0.675666\pi\)
\(4\) 0 0
\(5\) 2.70156 1.20818 0.604088 0.796918i \(-0.293538\pi\)
0.604088 + 0.796918i \(0.293538\pi\)
\(6\) 0 0
\(7\) −2.58874 −0.978451 −0.489225 0.872157i \(-0.662720\pi\)
−0.489225 + 0.872157i \(0.662720\pi\)
\(8\) 0 0
\(9\) 0.298438 0.0994793
\(10\) 0 0
\(11\) −0.772577 −0.232941 −0.116470 0.993194i \(-0.537158\pi\)
−0.116470 + 0.993194i \(0.537158\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) −4.90647 −1.26685
\(16\) 0 0
\(17\) −0.701562 −0.170154 −0.0850769 0.996374i \(-0.527114\pi\)
−0.0850769 + 0.996374i \(0.527114\pi\)
\(18\) 0 0
\(19\) −4.40490 −1.01055 −0.505276 0.862958i \(-0.668609\pi\)
−0.505276 + 0.862958i \(0.668609\pi\)
\(20\) 0 0
\(21\) 4.70156 1.02596
\(22\) 0 0
\(23\) −3.63232 −0.757391 −0.378696 0.925521i \(-0.623627\pi\)
−0.378696 + 0.925521i \(0.623627\pi\)
\(24\) 0 0
\(25\) 2.29844 0.459688
\(26\) 0 0
\(27\) 4.90647 0.944251
\(28\) 0 0
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) 5.95005 1.06866 0.534330 0.845276i \(-0.320564\pi\)
0.534330 + 0.845276i \(0.320564\pi\)
\(32\) 0 0
\(33\) 1.40312 0.244253
\(34\) 0 0
\(35\) −6.99364 −1.18214
\(36\) 0 0
\(37\) 6.70156 1.10173 0.550865 0.834594i \(-0.314298\pi\)
0.550865 + 0.834594i \(0.314298\pi\)
\(38\) 0 0
\(39\) 1.81616 0.290818
\(40\) 0 0
\(41\) 11.4031 1.78087 0.890434 0.455112i \(-0.150401\pi\)
0.890434 + 0.455112i \(0.150401\pi\)
\(42\) 0 0
\(43\) −10.0839 −1.53779 −0.768894 0.639377i \(-0.779192\pi\)
−0.768894 + 0.639377i \(0.779192\pi\)
\(44\) 0 0
\(45\) 0.806248 0.120188
\(46\) 0 0
\(47\) 9.31137 1.35820 0.679101 0.734045i \(-0.262370\pi\)
0.679101 + 0.734045i \(0.262370\pi\)
\(48\) 0 0
\(49\) −0.298438 −0.0426340
\(50\) 0 0
\(51\) 1.27415 0.178417
\(52\) 0 0
\(53\) −1.40312 −0.192734 −0.0963670 0.995346i \(-0.530722\pi\)
−0.0963670 + 0.995346i \(0.530722\pi\)
\(54\) 0 0
\(55\) −2.08717 −0.281433
\(56\) 0 0
\(57\) 8.00000 1.05963
\(58\) 0 0
\(59\) −2.85974 −0.372307 −0.186153 0.982521i \(-0.559602\pi\)
−0.186153 + 0.982521i \(0.559602\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) 0 0
\(63\) −0.772577 −0.0973356
\(64\) 0 0
\(65\) −2.70156 −0.335088
\(66\) 0 0
\(67\) 12.6727 1.54821 0.774107 0.633054i \(-0.218199\pi\)
0.774107 + 0.633054i \(0.218199\pi\)
\(68\) 0 0
\(69\) 6.59688 0.794171
\(70\) 0 0
\(71\) 1.04358 0.123850 0.0619252 0.998081i \(-0.480276\pi\)
0.0619252 + 0.998081i \(0.480276\pi\)
\(72\) 0 0
\(73\) 7.40312 0.866470 0.433235 0.901281i \(-0.357372\pi\)
0.433235 + 0.901281i \(0.357372\pi\)
\(74\) 0 0
\(75\) −4.17433 −0.482010
\(76\) 0 0
\(77\) 2.00000 0.227921
\(78\) 0 0
\(79\) −2.08717 −0.234824 −0.117412 0.993083i \(-0.537460\pi\)
−0.117412 + 0.993083i \(0.537460\pi\)
\(80\) 0 0
\(81\) −9.80625 −1.08958
\(82\) 0 0
\(83\) −9.58237 −1.05180 −0.525901 0.850546i \(-0.676272\pi\)
−0.525901 + 0.850546i \(0.676272\pi\)
\(84\) 0 0
\(85\) −1.89531 −0.205576
\(86\) 0 0
\(87\) 3.63232 0.389426
\(88\) 0 0
\(89\) 11.4031 1.20873 0.604364 0.796708i \(-0.293427\pi\)
0.604364 + 0.796708i \(0.293427\pi\)
\(90\) 0 0
\(91\) 2.58874 0.271373
\(92\) 0 0
\(93\) −10.8062 −1.12056
\(94\) 0 0
\(95\) −11.9001 −1.22093
\(96\) 0 0
\(97\) 10.0000 1.01535 0.507673 0.861550i \(-0.330506\pi\)
0.507673 + 0.861550i \(0.330506\pi\)
\(98\) 0 0
\(99\) −0.230566 −0.0231728
\(100\) 0 0
\(101\) −6.80625 −0.677247 −0.338624 0.940922i \(-0.609961\pi\)
−0.338624 + 0.940922i \(0.609961\pi\)
\(102\) 0 0
\(103\) 13.9873 1.37821 0.689103 0.724663i \(-0.258005\pi\)
0.689103 + 0.724663i \(0.258005\pi\)
\(104\) 0 0
\(105\) 12.7016 1.23955
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) −1.29844 −0.124368 −0.0621839 0.998065i \(-0.519807\pi\)
−0.0621839 + 0.998065i \(0.519807\pi\)
\(110\) 0 0
\(111\) −12.1711 −1.15523
\(112\) 0 0
\(113\) −1.40312 −0.131995 −0.0659974 0.997820i \(-0.521023\pi\)
−0.0659974 + 0.997820i \(0.521023\pi\)
\(114\) 0 0
\(115\) −9.81294 −0.915061
\(116\) 0 0
\(117\) −0.298438 −0.0275906
\(118\) 0 0
\(119\) 1.81616 0.166487
\(120\) 0 0
\(121\) −10.4031 −0.945739
\(122\) 0 0
\(123\) −20.7099 −1.86735
\(124\) 0 0
\(125\) −7.29844 −0.652792
\(126\) 0 0
\(127\) 10.8970 0.966949 0.483474 0.875358i \(-0.339375\pi\)
0.483474 + 0.875358i \(0.339375\pi\)
\(128\) 0 0
\(129\) 18.3141 1.61246
\(130\) 0 0
\(131\) 4.90647 0.428680 0.214340 0.976759i \(-0.431240\pi\)
0.214340 + 0.976759i \(0.431240\pi\)
\(132\) 0 0
\(133\) 11.4031 0.988776
\(134\) 0 0
\(135\) 13.2551 1.14082
\(136\) 0 0
\(137\) 14.0000 1.19610 0.598050 0.801459i \(-0.295942\pi\)
0.598050 + 0.801459i \(0.295942\pi\)
\(138\) 0 0
\(139\) 12.1711 1.03234 0.516170 0.856486i \(-0.327357\pi\)
0.516170 + 0.856486i \(0.327357\pi\)
\(140\) 0 0
\(141\) −16.9109 −1.42416
\(142\) 0 0
\(143\) 0.772577 0.0646062
\(144\) 0 0
\(145\) −5.40312 −0.448705
\(146\) 0 0
\(147\) 0.542011 0.0447043
\(148\) 0 0
\(149\) −12.8062 −1.04913 −0.524564 0.851371i \(-0.675772\pi\)
−0.524564 + 0.851371i \(0.675772\pi\)
\(150\) 0 0
\(151\) −23.8406 −1.94012 −0.970062 0.242856i \(-0.921916\pi\)
−0.970062 + 0.242856i \(0.921916\pi\)
\(152\) 0 0
\(153\) −0.209373 −0.0169268
\(154\) 0 0
\(155\) 16.0744 1.29113
\(156\) 0 0
\(157\) 4.59688 0.366871 0.183435 0.983032i \(-0.441278\pi\)
0.183435 + 0.983032i \(0.441278\pi\)
\(158\) 0 0
\(159\) 2.54830 0.202093
\(160\) 0 0
\(161\) 9.40312 0.741070
\(162\) 0 0
\(163\) 16.8470 1.31956 0.659780 0.751459i \(-0.270649\pi\)
0.659780 + 0.751459i \(0.270649\pi\)
\(164\) 0 0
\(165\) 3.79063 0.295100
\(166\) 0 0
\(167\) 14.7598 1.14215 0.571076 0.820897i \(-0.306526\pi\)
0.571076 + 0.820897i \(0.306526\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) −1.31459 −0.100529
\(172\) 0 0
\(173\) −21.4031 −1.62725 −0.813625 0.581390i \(-0.802509\pi\)
−0.813625 + 0.581390i \(0.802509\pi\)
\(174\) 0 0
\(175\) −5.95005 −0.449782
\(176\) 0 0
\(177\) 5.19375 0.390386
\(178\) 0 0
\(179\) 24.0712 1.79917 0.899584 0.436749i \(-0.143870\pi\)
0.899584 + 0.436749i \(0.143870\pi\)
\(180\) 0 0
\(181\) −14.0000 −1.04061 −0.520306 0.853980i \(-0.674182\pi\)
−0.520306 + 0.853980i \(0.674182\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 18.1047 1.33108
\(186\) 0 0
\(187\) 0.542011 0.0396358
\(188\) 0 0
\(189\) −12.7016 −0.923903
\(190\) 0 0
\(191\) 5.17748 0.374629 0.187314 0.982300i \(-0.440022\pi\)
0.187314 + 0.982300i \(0.440022\pi\)
\(192\) 0 0
\(193\) 20.8062 1.49767 0.748833 0.662758i \(-0.230614\pi\)
0.748833 + 0.662758i \(0.230614\pi\)
\(194\) 0 0
\(195\) 4.90647 0.351360
\(196\) 0 0
\(197\) 0.104686 0.00745859 0.00372930 0.999993i \(-0.498813\pi\)
0.00372930 + 0.999993i \(0.498813\pi\)
\(198\) 0 0
\(199\) 6.72263 0.476555 0.238277 0.971197i \(-0.423417\pi\)
0.238277 + 0.971197i \(0.423417\pi\)
\(200\) 0 0
\(201\) −23.0156 −1.62340
\(202\) 0 0
\(203\) 5.17748 0.363388
\(204\) 0 0
\(205\) 30.8062 2.15160
\(206\) 0 0
\(207\) −1.08402 −0.0753447
\(208\) 0 0
\(209\) 3.40312 0.235399
\(210\) 0 0
\(211\) −8.53879 −0.587835 −0.293917 0.955831i \(-0.594959\pi\)
−0.293917 + 0.955831i \(0.594959\pi\)
\(212\) 0 0
\(213\) −1.89531 −0.129865
\(214\) 0 0
\(215\) −27.2424 −1.85792
\(216\) 0 0
\(217\) −15.4031 −1.04563
\(218\) 0 0
\(219\) −13.4453 −0.908546
\(220\) 0 0
\(221\) 0.701562 0.0471922
\(222\) 0 0
\(223\) 20.2083 1.35325 0.676625 0.736328i \(-0.263442\pi\)
0.676625 + 0.736328i \(0.263442\pi\)
\(224\) 0 0
\(225\) 0.685941 0.0457294
\(226\) 0 0
\(227\) −0.230566 −0.0153032 −0.00765161 0.999971i \(-0.502436\pi\)
−0.00765161 + 0.999971i \(0.502436\pi\)
\(228\) 0 0
\(229\) 22.9109 1.51400 0.756999 0.653417i \(-0.226665\pi\)
0.756999 + 0.653417i \(0.226665\pi\)
\(230\) 0 0
\(231\) −3.63232 −0.238989
\(232\) 0 0
\(233\) 21.5078 1.40902 0.704512 0.709692i \(-0.251166\pi\)
0.704512 + 0.709692i \(0.251166\pi\)
\(234\) 0 0
\(235\) 25.1552 1.64095
\(236\) 0 0
\(237\) 3.79063 0.246228
\(238\) 0 0
\(239\) −27.9341 −1.80691 −0.903453 0.428686i \(-0.858977\pi\)
−0.903453 + 0.428686i \(0.858977\pi\)
\(240\) 0 0
\(241\) 15.4031 0.992202 0.496101 0.868265i \(-0.334764\pi\)
0.496101 + 0.868265i \(0.334764\pi\)
\(242\) 0 0
\(243\) 3.09031 0.198243
\(244\) 0 0
\(245\) −0.806248 −0.0515093
\(246\) 0 0
\(247\) 4.40490 0.280277
\(248\) 0 0
\(249\) 17.4031 1.10288
\(250\) 0 0
\(251\) 26.4294 1.66821 0.834104 0.551607i \(-0.185985\pi\)
0.834104 + 0.551607i \(0.185985\pi\)
\(252\) 0 0
\(253\) 2.80625 0.176427
\(254\) 0 0
\(255\) 3.44219 0.215559
\(256\) 0 0
\(257\) 10.7016 0.667545 0.333773 0.942654i \(-0.391678\pi\)
0.333773 + 0.942654i \(0.391678\pi\)
\(258\) 0 0
\(259\) −17.3486 −1.07799
\(260\) 0 0
\(261\) −0.596876 −0.0369457
\(262\) 0 0
\(263\) −19.1647 −1.18175 −0.590874 0.806764i \(-0.701217\pi\)
−0.590874 + 0.806764i \(0.701217\pi\)
\(264\) 0 0
\(265\) −3.79063 −0.232856
\(266\) 0 0
\(267\) −20.7099 −1.26743
\(268\) 0 0
\(269\) 27.4031 1.67080 0.835399 0.549644i \(-0.185237\pi\)
0.835399 + 0.549644i \(0.185237\pi\)
\(270\) 0 0
\(271\) 23.8406 1.44822 0.724108 0.689686i \(-0.242252\pi\)
0.724108 + 0.689686i \(0.242252\pi\)
\(272\) 0 0
\(273\) −4.70156 −0.284551
\(274\) 0 0
\(275\) −1.77572 −0.107080
\(276\) 0 0
\(277\) −12.0000 −0.721010 −0.360505 0.932757i \(-0.617396\pi\)
−0.360505 + 0.932757i \(0.617396\pi\)
\(278\) 0 0
\(279\) 1.77572 0.106310
\(280\) 0 0
\(281\) −11.4031 −0.680253 −0.340127 0.940380i \(-0.610470\pi\)
−0.340127 + 0.940380i \(0.610470\pi\)
\(282\) 0 0
\(283\) 1.54515 0.0918499 0.0459250 0.998945i \(-0.485376\pi\)
0.0459250 + 0.998945i \(0.485376\pi\)
\(284\) 0 0
\(285\) 21.6125 1.28021
\(286\) 0 0
\(287\) −29.5197 −1.74249
\(288\) 0 0
\(289\) −16.5078 −0.971048
\(290\) 0 0
\(291\) −18.1616 −1.06465
\(292\) 0 0
\(293\) −8.10469 −0.473481 −0.236740 0.971573i \(-0.576079\pi\)
−0.236740 + 0.971573i \(0.576079\pi\)
\(294\) 0 0
\(295\) −7.72577 −0.449812
\(296\) 0 0
\(297\) −3.79063 −0.219955
\(298\) 0 0
\(299\) 3.63232 0.210063
\(300\) 0 0
\(301\) 26.1047 1.50465
\(302\) 0 0
\(303\) 12.3612 0.710135
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 23.5696 1.34519 0.672595 0.740011i \(-0.265180\pi\)
0.672595 + 0.740011i \(0.265180\pi\)
\(308\) 0 0
\(309\) −25.4031 −1.44513
\(310\) 0 0
\(311\) −23.8002 −1.34959 −0.674793 0.738007i \(-0.735767\pi\)
−0.674793 + 0.738007i \(0.735767\pi\)
\(312\) 0 0
\(313\) −6.10469 −0.345057 −0.172529 0.985005i \(-0.555194\pi\)
−0.172529 + 0.985005i \(0.555194\pi\)
\(314\) 0 0
\(315\) −2.08717 −0.117598
\(316\) 0 0
\(317\) −6.00000 −0.336994 −0.168497 0.985702i \(-0.553891\pi\)
−0.168497 + 0.985702i \(0.553891\pi\)
\(318\) 0 0
\(319\) 1.54515 0.0865121
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 3.09031 0.171949
\(324\) 0 0
\(325\) −2.29844 −0.127494
\(326\) 0 0
\(327\) 2.35817 0.130407
\(328\) 0 0
\(329\) −24.1047 −1.32893
\(330\) 0 0
\(331\) 18.3922 1.01093 0.505463 0.862849i \(-0.331322\pi\)
0.505463 + 0.862849i \(0.331322\pi\)
\(332\) 0 0
\(333\) 2.00000 0.109599
\(334\) 0 0
\(335\) 34.2360 1.87051
\(336\) 0 0
\(337\) 27.5078 1.49845 0.749223 0.662318i \(-0.230427\pi\)
0.749223 + 0.662318i \(0.230427\pi\)
\(338\) 0 0
\(339\) 2.54830 0.138405
\(340\) 0 0
\(341\) −4.59688 −0.248935
\(342\) 0 0
\(343\) 18.8937 1.02017
\(344\) 0 0
\(345\) 17.8219 0.959497
\(346\) 0 0
\(347\) 16.3454 0.877469 0.438735 0.898617i \(-0.355427\pi\)
0.438735 + 0.898617i \(0.355427\pi\)
\(348\) 0 0
\(349\) 2.70156 0.144611 0.0723057 0.997383i \(-0.476964\pi\)
0.0723057 + 0.997383i \(0.476964\pi\)
\(350\) 0 0
\(351\) −4.90647 −0.261888
\(352\) 0 0
\(353\) −24.8062 −1.32030 −0.660152 0.751132i \(-0.729508\pi\)
−0.660152 + 0.751132i \(0.729508\pi\)
\(354\) 0 0
\(355\) 2.81930 0.149633
\(356\) 0 0
\(357\) −3.29844 −0.174572
\(358\) 0 0
\(359\) 5.95005 0.314032 0.157016 0.987596i \(-0.449813\pi\)
0.157016 + 0.987596i \(0.449813\pi\)
\(360\) 0 0
\(361\) 0.403124 0.0212171
\(362\) 0 0
\(363\) 18.8937 0.991664
\(364\) 0 0
\(365\) 20.0000 1.04685
\(366\) 0 0
\(367\) −36.2423 −1.89183 −0.945917 0.324409i \(-0.894835\pi\)
−0.945917 + 0.324409i \(0.894835\pi\)
\(368\) 0 0
\(369\) 3.40312 0.177160
\(370\) 0 0
\(371\) 3.63232 0.188581
\(372\) 0 0
\(373\) 3.40312 0.176207 0.0881035 0.996111i \(-0.471919\pi\)
0.0881035 + 0.996111i \(0.471919\pi\)
\(374\) 0 0
\(375\) 13.2551 0.684492
\(376\) 0 0
\(377\) 2.00000 0.103005
\(378\) 0 0
\(379\) 3.86289 0.198423 0.0992116 0.995066i \(-0.468368\pi\)
0.0992116 + 0.995066i \(0.468368\pi\)
\(380\) 0 0
\(381\) −19.7906 −1.01390
\(382\) 0 0
\(383\) 16.0340 0.819299 0.409649 0.912243i \(-0.365651\pi\)
0.409649 + 0.912243i \(0.365651\pi\)
\(384\) 0 0
\(385\) 5.40312 0.275369
\(386\) 0 0
\(387\) −3.00943 −0.152978
\(388\) 0 0
\(389\) 19.4031 0.983777 0.491889 0.870658i \(-0.336307\pi\)
0.491889 + 0.870658i \(0.336307\pi\)
\(390\) 0 0
\(391\) 2.54830 0.128873
\(392\) 0 0
\(393\) −8.91093 −0.449497
\(394\) 0 0
\(395\) −5.63861 −0.283709
\(396\) 0 0
\(397\) 12.8062 0.642727 0.321364 0.946956i \(-0.395859\pi\)
0.321364 + 0.946956i \(0.395859\pi\)
\(398\) 0 0
\(399\) −20.7099 −1.03679
\(400\) 0 0
\(401\) 30.0000 1.49813 0.749064 0.662497i \(-0.230503\pi\)
0.749064 + 0.662497i \(0.230503\pi\)
\(402\) 0 0
\(403\) −5.95005 −0.296393
\(404\) 0 0
\(405\) −26.4922 −1.31641
\(406\) 0 0
\(407\) −5.17748 −0.256638
\(408\) 0 0
\(409\) −36.8062 −1.81995 −0.909976 0.414661i \(-0.863900\pi\)
−0.909976 + 0.414661i \(0.863900\pi\)
\(410\) 0 0
\(411\) −25.4262 −1.25418
\(412\) 0 0
\(413\) 7.40312 0.364284
\(414\) 0 0
\(415\) −25.8874 −1.27076
\(416\) 0 0
\(417\) −22.1047 −1.08247
\(418\) 0 0
\(419\) −19.4358 −0.949499 −0.474749 0.880121i \(-0.657461\pi\)
−0.474749 + 0.880121i \(0.657461\pi\)
\(420\) 0 0
\(421\) −4.10469 −0.200050 −0.100025 0.994985i \(-0.531892\pi\)
−0.100025 + 0.994985i \(0.531892\pi\)
\(422\) 0 0
\(423\) 2.77886 0.135113
\(424\) 0 0
\(425\) −1.61250 −0.0782176
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −1.40312 −0.0677435
\(430\) 0 0
\(431\) 15.0309 0.724011 0.362005 0.932176i \(-0.382092\pi\)
0.362005 + 0.932176i \(0.382092\pi\)
\(432\) 0 0
\(433\) 22.9109 1.10103 0.550515 0.834826i \(-0.314432\pi\)
0.550515 + 0.834826i \(0.314432\pi\)
\(434\) 0 0
\(435\) 9.81294 0.470494
\(436\) 0 0
\(437\) 16.0000 0.765384
\(438\) 0 0
\(439\) 17.6196 0.840937 0.420469 0.907307i \(-0.361866\pi\)
0.420469 + 0.907307i \(0.361866\pi\)
\(440\) 0 0
\(441\) −0.0890652 −0.00424120
\(442\) 0 0
\(443\) −22.5261 −1.07025 −0.535123 0.844774i \(-0.679735\pi\)
−0.535123 + 0.844774i \(0.679735\pi\)
\(444\) 0 0
\(445\) 30.8062 1.46036
\(446\) 0 0
\(447\) 23.2582 1.10008
\(448\) 0 0
\(449\) 27.6125 1.30311 0.651557 0.758600i \(-0.274116\pi\)
0.651557 + 0.758600i \(0.274116\pi\)
\(450\) 0 0
\(451\) −8.80980 −0.414837
\(452\) 0 0
\(453\) 43.2984 2.03434
\(454\) 0 0
\(455\) 6.99364 0.327867
\(456\) 0 0
\(457\) −11.4031 −0.533416 −0.266708 0.963777i \(-0.585936\pi\)
−0.266708 + 0.963777i \(0.585936\pi\)
\(458\) 0 0
\(459\) −3.44219 −0.160668
\(460\) 0 0
\(461\) −10.9109 −0.508173 −0.254086 0.967182i \(-0.581775\pi\)
−0.254086 + 0.967182i \(0.581775\pi\)
\(462\) 0 0
\(463\) 14.7598 0.685948 0.342974 0.939345i \(-0.388566\pi\)
0.342974 + 0.939345i \(0.388566\pi\)
\(464\) 0 0
\(465\) −29.1938 −1.35383
\(466\) 0 0
\(467\) 2.62918 0.121664 0.0608319 0.998148i \(-0.480625\pi\)
0.0608319 + 0.998148i \(0.480625\pi\)
\(468\) 0 0
\(469\) −32.8062 −1.51485
\(470\) 0 0
\(471\) −8.34866 −0.384686
\(472\) 0 0
\(473\) 7.79063 0.358213
\(474\) 0 0
\(475\) −10.1244 −0.464539
\(476\) 0 0
\(477\) −0.418745 −0.0191730
\(478\) 0 0
\(479\) 18.1212 0.827977 0.413989 0.910282i \(-0.364135\pi\)
0.413989 + 0.910282i \(0.364135\pi\)
\(480\) 0 0
\(481\) −6.70156 −0.305565
\(482\) 0 0
\(483\) −17.0776 −0.777057
\(484\) 0 0
\(485\) 27.0156 1.22672
\(486\) 0 0
\(487\) −12.1307 −0.549693 −0.274847 0.961488i \(-0.588627\pi\)
−0.274847 + 0.961488i \(0.588627\pi\)
\(488\) 0 0
\(489\) −30.5969 −1.38364
\(490\) 0 0
\(491\) −27.7035 −1.25024 −0.625122 0.780527i \(-0.714951\pi\)
−0.625122 + 0.780527i \(0.714951\pi\)
\(492\) 0 0
\(493\) 1.40312 0.0631935
\(494\) 0 0
\(495\) −0.622889 −0.0279968
\(496\) 0 0
\(497\) −2.70156 −0.121182
\(498\) 0 0
\(499\) −14.7598 −0.660742 −0.330371 0.943851i \(-0.607174\pi\)
−0.330371 + 0.943851i \(0.607174\pi\)
\(500\) 0 0
\(501\) −26.8062 −1.19761
\(502\) 0 0
\(503\) 23.3391 1.04064 0.520319 0.853972i \(-0.325813\pi\)
0.520319 + 0.853972i \(0.325813\pi\)
\(504\) 0 0
\(505\) −18.3875 −0.818233
\(506\) 0 0
\(507\) −1.81616 −0.0806585
\(508\) 0 0
\(509\) −35.6125 −1.57850 −0.789248 0.614074i \(-0.789529\pi\)
−0.789248 + 0.614074i \(0.789529\pi\)
\(510\) 0 0
\(511\) −19.1647 −0.847798
\(512\) 0 0
\(513\) −21.6125 −0.954215
\(514\) 0 0
\(515\) 37.7875 1.66512
\(516\) 0 0
\(517\) −7.19375 −0.316381
\(518\) 0 0
\(519\) 38.8715 1.70627
\(520\) 0 0
\(521\) −6.10469 −0.267451 −0.133726 0.991018i \(-0.542694\pi\)
−0.133726 + 0.991018i \(0.542694\pi\)
\(522\) 0 0
\(523\) −41.4198 −1.81116 −0.905581 0.424174i \(-0.860564\pi\)
−0.905581 + 0.424174i \(0.860564\pi\)
\(524\) 0 0
\(525\) 10.8062 0.471623
\(526\) 0 0
\(527\) −4.17433 −0.181837
\(528\) 0 0
\(529\) −9.80625 −0.426359
\(530\) 0 0
\(531\) −0.853456 −0.0370368
\(532\) 0 0
\(533\) −11.4031 −0.493924
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −43.7172 −1.88654
\(538\) 0 0
\(539\) 0.230566 0.00993120
\(540\) 0 0
\(541\) 25.2984 1.08766 0.543832 0.839194i \(-0.316973\pi\)
0.543832 + 0.839194i \(0.316973\pi\)
\(542\) 0 0
\(543\) 25.4262 1.09114
\(544\) 0 0
\(545\) −3.50781 −0.150258
\(546\) 0 0
\(547\) 12.7131 0.543574 0.271787 0.962357i \(-0.412385\pi\)
0.271787 + 0.962357i \(0.412385\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 8.80980 0.375310
\(552\) 0 0
\(553\) 5.40312 0.229764
\(554\) 0 0
\(555\) −32.8810 −1.39572
\(556\) 0 0
\(557\) −38.7016 −1.63984 −0.819919 0.572480i \(-0.805982\pi\)
−0.819919 + 0.572480i \(0.805982\pi\)
\(558\) 0 0
\(559\) 10.0839 0.426505
\(560\) 0 0
\(561\) −0.984379 −0.0415605
\(562\) 0 0
\(563\) 19.8969 0.838554 0.419277 0.907858i \(-0.362284\pi\)
0.419277 + 0.907858i \(0.362284\pi\)
\(564\) 0 0
\(565\) −3.79063 −0.159473
\(566\) 0 0
\(567\) 25.3858 1.06610
\(568\) 0 0
\(569\) 28.1047 1.17821 0.589105 0.808057i \(-0.299480\pi\)
0.589105 + 0.808057i \(0.299480\pi\)
\(570\) 0 0
\(571\) 0.813017 0.0340237 0.0170118 0.999855i \(-0.494585\pi\)
0.0170118 + 0.999855i \(0.494585\pi\)
\(572\) 0 0
\(573\) −9.40312 −0.392821
\(574\) 0 0
\(575\) −8.34866 −0.348163
\(576\) 0 0
\(577\) 1.79063 0.0745448 0.0372724 0.999305i \(-0.488133\pi\)
0.0372724 + 0.999305i \(0.488133\pi\)
\(578\) 0 0
\(579\) −37.7875 −1.57039
\(580\) 0 0
\(581\) 24.8062 1.02914
\(582\) 0 0
\(583\) 1.08402 0.0448956
\(584\) 0 0
\(585\) −0.806248 −0.0333343
\(586\) 0 0
\(587\) −30.2923 −1.25030 −0.625148 0.780506i \(-0.714961\pi\)
−0.625148 + 0.780506i \(0.714961\pi\)
\(588\) 0 0
\(589\) −26.2094 −1.07994
\(590\) 0 0
\(591\) −0.190127 −0.00782079
\(592\) 0 0
\(593\) 14.0000 0.574911 0.287456 0.957794i \(-0.407191\pi\)
0.287456 + 0.957794i \(0.407191\pi\)
\(594\) 0 0
\(595\) 4.90647 0.201146
\(596\) 0 0
\(597\) −12.2094 −0.499696
\(598\) 0 0
\(599\) −25.3454 −1.03558 −0.517792 0.855507i \(-0.673246\pi\)
−0.517792 + 0.855507i \(0.673246\pi\)
\(600\) 0 0
\(601\) −34.3141 −1.39970 −0.699850 0.714290i \(-0.746750\pi\)
−0.699850 + 0.714290i \(0.746750\pi\)
\(602\) 0 0
\(603\) 3.78201 0.154015
\(604\) 0 0
\(605\) −28.1047 −1.14262
\(606\) 0 0
\(607\) −33.6940 −1.36760 −0.683799 0.729670i \(-0.739674\pi\)
−0.683799 + 0.729670i \(0.739674\pi\)
\(608\) 0 0
\(609\) −9.40312 −0.381034
\(610\) 0 0
\(611\) −9.31137 −0.376698
\(612\) 0 0
\(613\) −46.4187 −1.87484 −0.937418 0.348207i \(-0.886791\pi\)
−0.937418 + 0.348207i \(0.886791\pi\)
\(614\) 0 0
\(615\) −55.9491 −2.25608
\(616\) 0 0
\(617\) 1.79063 0.0720879 0.0360440 0.999350i \(-0.488524\pi\)
0.0360440 + 0.999350i \(0.488524\pi\)
\(618\) 0 0
\(619\) 15.2210 0.611783 0.305891 0.952066i \(-0.401046\pi\)
0.305891 + 0.952066i \(0.401046\pi\)
\(620\) 0 0
\(621\) −17.8219 −0.715167
\(622\) 0 0
\(623\) −29.5197 −1.18268
\(624\) 0 0
\(625\) −31.2094 −1.24837
\(626\) 0 0
\(627\) −6.18062 −0.246830
\(628\) 0 0
\(629\) −4.70156 −0.187464
\(630\) 0 0
\(631\) −37.2859 −1.48433 −0.742164 0.670218i \(-0.766201\pi\)
−0.742164 + 0.670218i \(0.766201\pi\)
\(632\) 0 0
\(633\) 15.5078 0.616380
\(634\) 0 0
\(635\) 29.4388 1.16824
\(636\) 0 0
\(637\) 0.298438 0.0118245
\(638\) 0 0
\(639\) 0.311445 0.0123206
\(640\) 0 0
\(641\) −8.20937 −0.324251 −0.162125 0.986770i \(-0.551835\pi\)
−0.162125 + 0.986770i \(0.551835\pi\)
\(642\) 0 0
\(643\) −19.9373 −0.786251 −0.393126 0.919485i \(-0.628606\pi\)
−0.393126 + 0.919485i \(0.628606\pi\)
\(644\) 0 0
\(645\) 49.4766 1.94814
\(646\) 0 0
\(647\) 14.5293 0.571205 0.285603 0.958348i \(-0.407806\pi\)
0.285603 + 0.958348i \(0.407806\pi\)
\(648\) 0 0
\(649\) 2.20937 0.0867255
\(650\) 0 0
\(651\) 27.9745 1.09641
\(652\) 0 0
\(653\) 23.4031 0.915835 0.457918 0.888995i \(-0.348596\pi\)
0.457918 + 0.888995i \(0.348596\pi\)
\(654\) 0 0
\(655\) 13.2551 0.517921
\(656\) 0 0
\(657\) 2.20937 0.0861958
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) −10.0000 −0.388955 −0.194477 0.980907i \(-0.562301\pi\)
−0.194477 + 0.980907i \(0.562301\pi\)
\(662\) 0 0
\(663\) −1.27415 −0.0494839
\(664\) 0 0
\(665\) 30.8062 1.19462
\(666\) 0 0
\(667\) 7.26464 0.281288
\(668\) 0 0
\(669\) −36.7016 −1.41896
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −46.3141 −1.78528 −0.892638 0.450774i \(-0.851148\pi\)
−0.892638 + 0.450774i \(0.851148\pi\)
\(674\) 0 0
\(675\) 11.2772 0.434060
\(676\) 0 0
\(677\) −15.0156 −0.577097 −0.288549 0.957465i \(-0.593173\pi\)
−0.288549 + 0.957465i \(0.593173\pi\)
\(678\) 0 0
\(679\) −25.8874 −0.993466
\(680\) 0 0
\(681\) 0.418745 0.0160464
\(682\) 0 0
\(683\) 46.8278 1.79182 0.895909 0.444238i \(-0.146526\pi\)
0.895909 + 0.444238i \(0.146526\pi\)
\(684\) 0 0
\(685\) 37.8219 1.44510
\(686\) 0 0
\(687\) −41.6099 −1.58752
\(688\) 0 0
\(689\) 1.40312 0.0534548
\(690\) 0 0
\(691\) −1.31459 −0.0500093 −0.0250046 0.999687i \(-0.507960\pi\)
−0.0250046 + 0.999687i \(0.507960\pi\)
\(692\) 0 0
\(693\) 0.596876 0.0226734
\(694\) 0 0
\(695\) 32.8810 1.24725
\(696\) 0 0
\(697\) −8.00000 −0.303022
\(698\) 0 0
\(699\) −39.0616 −1.47745
\(700\) 0 0
\(701\) −8.80625 −0.332607 −0.166304 0.986075i \(-0.553183\pi\)
−0.166304 + 0.986075i \(0.553183\pi\)
\(702\) 0 0
\(703\) −29.5197 −1.11336
\(704\) 0 0
\(705\) −45.6859 −1.72063
\(706\) 0 0
\(707\) 17.6196 0.662653
\(708\) 0 0
\(709\) −14.0000 −0.525781 −0.262891 0.964826i \(-0.584676\pi\)
−0.262891 + 0.964826i \(0.584676\pi\)
\(710\) 0 0
\(711\) −0.622889 −0.0233602
\(712\) 0 0
\(713\) −21.6125 −0.809394
\(714\) 0 0
\(715\) 2.08717 0.0780556
\(716\) 0 0
\(717\) 50.7328 1.89465
\(718\) 0 0
\(719\) −5.63861 −0.210285 −0.105142 0.994457i \(-0.533530\pi\)
−0.105142 + 0.994457i \(0.533530\pi\)
\(720\) 0 0
\(721\) −36.2094 −1.34851
\(722\) 0 0
\(723\) −27.9745 −1.04038
\(724\) 0 0
\(725\) −4.59688 −0.170724
\(726\) 0 0
\(727\) −15.0713 −0.558963 −0.279482 0.960151i \(-0.590163\pi\)
−0.279482 + 0.960151i \(0.590163\pi\)
\(728\) 0 0
\(729\) 23.8062 0.881713
\(730\) 0 0
\(731\) 7.07451 0.261660
\(732\) 0 0
\(733\) −39.1203 −1.44494 −0.722471 0.691401i \(-0.756994\pi\)
−0.722471 + 0.691401i \(0.756994\pi\)
\(734\) 0 0
\(735\) 1.46428 0.0540106
\(736\) 0 0
\(737\) −9.79063 −0.360642
\(738\) 0 0
\(739\) 4.40490 0.162037 0.0810184 0.996713i \(-0.474183\pi\)
0.0810184 + 0.996713i \(0.474183\pi\)
\(740\) 0 0
\(741\) −8.00000 −0.293887
\(742\) 0 0
\(743\) 21.2115 0.778173 0.389087 0.921201i \(-0.372791\pi\)
0.389087 + 0.921201i \(0.372791\pi\)
\(744\) 0 0
\(745\) −34.5969 −1.26753
\(746\) 0 0
\(747\) −2.85974 −0.104633
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 17.6196 0.642948 0.321474 0.946918i \(-0.395822\pi\)
0.321474 + 0.946918i \(0.395822\pi\)
\(752\) 0 0
\(753\) −48.0000 −1.74922
\(754\) 0 0
\(755\) −64.4070 −2.34401
\(756\) 0 0
\(757\) −28.2094 −1.02529 −0.512644 0.858602i \(-0.671334\pi\)
−0.512644 + 0.858602i \(0.671334\pi\)
\(758\) 0 0
\(759\) −5.09660 −0.184995
\(760\) 0 0
\(761\) −11.4031 −0.413363 −0.206681 0.978408i \(-0.566266\pi\)
−0.206681 + 0.978408i \(0.566266\pi\)
\(762\) 0 0
\(763\) 3.36131 0.121688
\(764\) 0 0
\(765\) −0.565633 −0.0204505
\(766\) 0 0
\(767\) 2.85974 0.103259
\(768\) 0 0
\(769\) −27.4031 −0.988182 −0.494091 0.869410i \(-0.664499\pi\)
−0.494091 + 0.869410i \(0.664499\pi\)
\(770\) 0 0
\(771\) −19.4358 −0.699961
\(772\) 0 0
\(773\) 42.7016 1.53587 0.767934 0.640529i \(-0.221285\pi\)
0.767934 + 0.640529i \(0.221285\pi\)
\(774\) 0 0
\(775\) 13.6758 0.491250
\(776\) 0 0
\(777\) 31.5078 1.13034
\(778\) 0 0
\(779\) −50.2296 −1.79966
\(780\) 0 0
\(781\) −0.806248 −0.0288498
\(782\) 0 0
\(783\) −9.81294 −0.350686
\(784\) 0 0
\(785\) 12.4187 0.443244
\(786\) 0 0
\(787\) 26.6600 0.950325 0.475162 0.879898i \(-0.342389\pi\)
0.475162 + 0.879898i \(0.342389\pi\)
\(788\) 0 0
\(789\) 34.8062 1.23914
\(790\) 0 0
\(791\) 3.63232 0.129150
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 6.88439 0.244164
\(796\) 0 0
\(797\) −46.2094 −1.63682 −0.818410 0.574635i \(-0.805144\pi\)
−0.818410 + 0.574635i \(0.805144\pi\)
\(798\) 0 0
\(799\) −6.53250 −0.231103
\(800\) 0 0
\(801\) 3.40312 0.120243
\(802\) 0 0
\(803\) −5.71949 −0.201836
\(804\) 0 0
\(805\) 25.4031 0.895342
\(806\) 0 0
\(807\) −49.7685 −1.75193
\(808\) 0 0
\(809\) 31.5078 1.10776 0.553878 0.832598i \(-0.313147\pi\)
0.553878 + 0.832598i \(0.313147\pi\)
\(810\) 0 0
\(811\) 38.0989 1.33783 0.668917 0.743337i \(-0.266758\pi\)
0.668917 + 0.743337i \(0.266758\pi\)
\(812\) 0 0
\(813\) −43.2984 −1.51854
\(814\) 0 0
\(815\) 45.5133 1.59426
\(816\) 0 0
\(817\) 44.4187 1.55402
\(818\) 0 0
\(819\) 0.772577 0.0269960
\(820\) 0 0
\(821\) −18.4922 −0.645382 −0.322691 0.946504i \(-0.604587\pi\)
−0.322691 + 0.946504i \(0.604587\pi\)
\(822\) 0 0
\(823\) 34.1552 1.19057 0.595287 0.803513i \(-0.297038\pi\)
0.595287 + 0.803513i \(0.297038\pi\)
\(824\) 0 0
\(825\) 3.22499 0.112280
\(826\) 0 0
\(827\) −2.85974 −0.0994430 −0.0497215 0.998763i \(-0.515833\pi\)
−0.0497215 + 0.998763i \(0.515833\pi\)
\(828\) 0 0
\(829\) 37.4031 1.29906 0.649532 0.760334i \(-0.274965\pi\)
0.649532 + 0.760334i \(0.274965\pi\)
\(830\) 0 0
\(831\) 21.7939 0.756023
\(832\) 0 0
\(833\) 0.209373 0.00725433
\(834\) 0 0
\(835\) 39.8746 1.37992
\(836\) 0 0
\(837\) 29.1938 1.00908
\(838\) 0 0
\(839\) −53.0893 −1.83285 −0.916424 0.400209i \(-0.868937\pi\)
−0.916424 + 0.400209i \(0.868937\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 0 0
\(843\) 20.7099 0.713287
\(844\) 0 0
\(845\) 2.70156 0.0929366
\(846\) 0 0
\(847\) 26.9310 0.925359
\(848\) 0 0
\(849\) −2.80625 −0.0963102
\(850\) 0 0
\(851\) −24.3422 −0.834441
\(852\) 0 0
\(853\) 21.2984 0.729245 0.364622 0.931156i \(-0.381198\pi\)
0.364622 + 0.931156i \(0.381198\pi\)
\(854\) 0 0
\(855\) −3.55144 −0.121457
\(856\) 0 0
\(857\) 50.4187 1.72227 0.861136 0.508375i \(-0.169754\pi\)
0.861136 + 0.508375i \(0.169754\pi\)
\(858\) 0 0
\(859\) −38.3295 −1.30779 −0.653893 0.756587i \(-0.726865\pi\)
−0.653893 + 0.756587i \(0.726865\pi\)
\(860\) 0 0
\(861\) 53.6125 1.82711
\(862\) 0 0
\(863\) 21.2115 0.722047 0.361023 0.932557i \(-0.382427\pi\)
0.361023 + 0.932557i \(0.382427\pi\)
\(864\) 0 0
\(865\) −57.8219 −1.96600
\(866\) 0 0
\(867\) 29.9808 1.01820
\(868\) 0 0
\(869\) 1.61250 0.0547002
\(870\) 0 0
\(871\) −12.6727 −0.429397
\(872\) 0 0
\(873\) 2.98438 0.101006
\(874\) 0 0
\(875\) 18.8937 0.638725
\(876\) 0 0
\(877\) −48.3141 −1.63145 −0.815725 0.578440i \(-0.803662\pi\)
−0.815725 + 0.578440i \(0.803662\pi\)
\(878\) 0 0
\(879\) 14.7194 0.496473
\(880\) 0 0
\(881\) −38.9109 −1.31094 −0.655471 0.755220i \(-0.727530\pi\)
−0.655471 + 0.755220i \(0.727530\pi\)
\(882\) 0 0
\(883\) 11.1680 0.375832 0.187916 0.982185i \(-0.439827\pi\)
0.187916 + 0.982185i \(0.439827\pi\)
\(884\) 0 0
\(885\) 14.0312 0.471655
\(886\) 0 0
\(887\) 42.9650 1.44262 0.721311 0.692611i \(-0.243540\pi\)
0.721311 + 0.692611i \(0.243540\pi\)
\(888\) 0 0
\(889\) −28.2094 −0.946112
\(890\) 0 0
\(891\) 7.57609 0.253808
\(892\) 0 0
\(893\) −41.0156 −1.37254
\(894\) 0 0
\(895\) 65.0299 2.17371
\(896\) 0 0
\(897\) −6.59688 −0.220263
\(898\) 0 0
\(899\) −11.9001 −0.396891
\(900\) 0 0
\(901\) 0.984379 0.0327944
\(902\) 0 0
\(903\) −47.4103 −1.57772
\(904\) 0 0
\(905\) −37.8219 −1.25724
\(906\) 0 0
\(907\) 41.6908 1.38432 0.692160 0.721744i \(-0.256659\pi\)
0.692160 + 0.721744i \(0.256659\pi\)
\(908\) 0 0
\(909\) −2.03124 −0.0673721
\(910\) 0 0
\(911\) 19.7068 0.652914 0.326457 0.945212i \(-0.394145\pi\)
0.326457 + 0.945212i \(0.394145\pi\)
\(912\) 0 0
\(913\) 7.40312 0.245008
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −12.7016 −0.419443
\(918\) 0 0
\(919\) 28.4357 0.938006 0.469003 0.883196i \(-0.344613\pi\)
0.469003 + 0.883196i \(0.344613\pi\)
\(920\) 0 0
\(921\) −42.8062 −1.41051
\(922\) 0 0
\(923\) −1.04358 −0.0343499
\(924\) 0 0
\(925\) 15.4031 0.506452
\(926\) 0 0
\(927\) 4.17433 0.137103
\(928\) 0 0
\(929\) 20.5969 0.675762 0.337881 0.941189i \(-0.390290\pi\)
0.337881 + 0.941189i \(0.390290\pi\)
\(930\) 0 0
\(931\) 1.31459 0.0430839
\(932\) 0 0
\(933\) 43.2250 1.41512
\(934\) 0 0
\(935\) 1.46428 0.0478870
\(936\) 0 0
\(937\) 3.61250 0.118015 0.0590076 0.998258i \(-0.481206\pi\)
0.0590076 + 0.998258i \(0.481206\pi\)
\(938\) 0 0
\(939\) 11.0871 0.361813
\(940\) 0 0
\(941\) 52.5234 1.71221 0.856107 0.516798i \(-0.172876\pi\)
0.856107 + 0.516798i \(0.172876\pi\)
\(942\) 0 0
\(943\) −41.4198 −1.34881
\(944\) 0 0
\(945\) −34.3141 −1.11624
\(946\) 0 0
\(947\) 37.0958 1.20545 0.602725 0.797949i \(-0.294081\pi\)
0.602725 + 0.797949i \(0.294081\pi\)
\(948\) 0 0
\(949\) −7.40312 −0.240316
\(950\) 0 0
\(951\) 10.8970 0.353358
\(952\) 0 0
\(953\) 13.2984 0.430779 0.215389 0.976528i \(-0.430898\pi\)
0.215389 + 0.976528i \(0.430898\pi\)
\(954\) 0 0
\(955\) 13.9873 0.452617
\(956\) 0 0
\(957\) −2.80625 −0.0907131
\(958\) 0 0
\(959\) −36.2423 −1.17033
\(960\) 0 0
\(961\) 4.40312 0.142036
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 56.2094 1.80944
\(966\) 0 0
\(967\) −2.04673 −0.0658183 −0.0329091 0.999458i \(-0.510477\pi\)
−0.0329091 + 0.999458i \(0.510477\pi\)
\(968\) 0 0
\(969\) −5.61250 −0.180299
\(970\) 0 0
\(971\) −1.81616 −0.0582834 −0.0291417 0.999575i \(-0.509277\pi\)
−0.0291417 + 0.999575i \(0.509277\pi\)
\(972\) 0 0
\(973\) −31.5078 −1.01009
\(974\) 0 0
\(975\) 4.17433 0.133686
\(976\) 0 0
\(977\) 7.19375 0.230149 0.115074 0.993357i \(-0.463289\pi\)
0.115074 + 0.993357i \(0.463289\pi\)
\(978\) 0 0
\(979\) −8.80980 −0.281562
\(980\) 0 0
\(981\) −0.387503 −0.0123720
\(982\) 0 0
\(983\) −3.04987 −0.0972758 −0.0486379 0.998816i \(-0.515488\pi\)
−0.0486379 + 0.998816i \(0.515488\pi\)
\(984\) 0 0
\(985\) 0.282817 0.00901129
\(986\) 0 0
\(987\) 43.7780 1.39347
\(988\) 0 0
\(989\) 36.6281 1.16471
\(990\) 0 0
\(991\) −40.9587 −1.30109 −0.650547 0.759466i \(-0.725461\pi\)
−0.650547 + 0.759466i \(0.725461\pi\)
\(992\) 0 0
\(993\) −33.4031 −1.06002
\(994\) 0 0
\(995\) 18.1616 0.575761
\(996\) 0 0
\(997\) 12.2094 0.386675 0.193337 0.981132i \(-0.438069\pi\)
0.193337 + 0.981132i \(0.438069\pi\)
\(998\) 0 0
\(999\) 32.8810 1.04031
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3328.2.a.bk.1.2 4
4.3 odd 2 inner 3328.2.a.bk.1.3 4
8.3 odd 2 3328.2.a.bl.1.2 4
8.5 even 2 3328.2.a.bl.1.3 4
16.3 odd 4 1664.2.b.j.833.5 yes 8
16.5 even 4 1664.2.b.j.833.6 yes 8
16.11 odd 4 1664.2.b.j.833.4 yes 8
16.13 even 4 1664.2.b.j.833.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1664.2.b.j.833.3 8 16.13 even 4
1664.2.b.j.833.4 yes 8 16.11 odd 4
1664.2.b.j.833.5 yes 8 16.3 odd 4
1664.2.b.j.833.6 yes 8 16.5 even 4
3328.2.a.bk.1.2 4 1.1 even 1 trivial
3328.2.a.bk.1.3 4 4.3 odd 2 inner
3328.2.a.bl.1.2 4 8.3 odd 2
3328.2.a.bl.1.3 4 8.5 even 2