Properties

Label 1680.2.f.a
Level $1680$
Weight $2$
Character orbit 1680.f
Analytic conductor $13.415$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1680,2,Mod(881,1680)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1680, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1680.881");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1680.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4148675396\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 420)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\zeta_{6} - 2) q^{3} + q^{5} + ( - 2 \zeta_{6} - 1) q^{7} + ( - 3 \zeta_{6} + 3) q^{9} + ( - 6 \zeta_{6} + 3) q^{11} + ( - 2 \zeta_{6} + 1) q^{13} + (\zeta_{6} - 2) q^{15} - 3 q^{17} + (4 \zeta_{6} - 2) q^{19}+ \cdots + ( - 9 \zeta_{6} - 9) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 3 q^{3} + 2 q^{5} - 4 q^{7} + 3 q^{9} - 3 q^{15} - 6 q^{17} + 9 q^{21} + 2 q^{25} + 9 q^{33} - 4 q^{35} - 16 q^{37} + 3 q^{39} - 12 q^{41} - 20 q^{43} + 3 q^{45} + 6 q^{47} + 2 q^{49} + 9 q^{51} - 6 q^{57}+ \cdots - 27 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1680\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(421\) \(1121\) \(1471\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
881.1
0.500000 0.866025i
0.500000 + 0.866025i
0 −1.50000 0.866025i 0 1.00000 0 −2.00000 + 1.73205i 0 1.50000 + 2.59808i 0
881.2 0 −1.50000 + 0.866025i 0 1.00000 0 −2.00000 1.73205i 0 1.50000 2.59808i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
21.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1680.2.f.a 2
3.b odd 2 1 1680.2.f.d 2
4.b odd 2 1 420.2.d.b yes 2
7.b odd 2 1 1680.2.f.d 2
12.b even 2 1 420.2.d.a 2
20.d odd 2 1 2100.2.d.a 2
20.e even 4 2 2100.2.f.d 4
21.c even 2 1 inner 1680.2.f.a 2
28.d even 2 1 420.2.d.a 2
60.h even 2 1 2100.2.d.e 2
60.l odd 4 2 2100.2.f.c 4
84.h odd 2 1 420.2.d.b yes 2
140.c even 2 1 2100.2.d.e 2
140.j odd 4 2 2100.2.f.c 4
420.o odd 2 1 2100.2.d.a 2
420.w even 4 2 2100.2.f.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
420.2.d.a 2 12.b even 2 1
420.2.d.a 2 28.d even 2 1
420.2.d.b yes 2 4.b odd 2 1
420.2.d.b yes 2 84.h odd 2 1
1680.2.f.a 2 1.a even 1 1 trivial
1680.2.f.a 2 21.c even 2 1 inner
1680.2.f.d 2 3.b odd 2 1
1680.2.f.d 2 7.b odd 2 1
2100.2.d.a 2 20.d odd 2 1
2100.2.d.a 2 420.o odd 2 1
2100.2.d.e 2 60.h even 2 1
2100.2.d.e 2 140.c even 2 1
2100.2.f.c 4 60.l odd 4 2
2100.2.f.c 4 140.j odd 4 2
2100.2.f.d 4 20.e even 4 2
2100.2.f.d 4 420.w even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1680, [\chi])\):

\( T_{11}^{2} + 27 \) Copy content Toggle raw display
\( T_{17} + 3 \) Copy content Toggle raw display
\( T_{41} + 6 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 3T + 3 \) Copy content Toggle raw display
$5$ \( (T - 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 4T + 7 \) Copy content Toggle raw display
$11$ \( T^{2} + 27 \) Copy content Toggle raw display
$13$ \( T^{2} + 3 \) Copy content Toggle raw display
$17$ \( (T + 3)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 12 \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 27 \) Copy content Toggle raw display
$31$ \( T^{2} + 108 \) Copy content Toggle raw display
$37$ \( (T + 8)^{2} \) Copy content Toggle raw display
$41$ \( (T + 6)^{2} \) Copy content Toggle raw display
$43$ \( (T + 10)^{2} \) Copy content Toggle raw display
$47$ \( (T - 3)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 108 \) Copy content Toggle raw display
$59$ \( (T - 6)^{2} \) Copy content Toggle raw display
$61$ \( T^{2} + 48 \) Copy content Toggle raw display
$67$ \( (T + 2)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} + 108 \) Copy content Toggle raw display
$73$ \( T^{2} + 48 \) Copy content Toggle raw display
$79$ \( (T - 13)^{2} \) Copy content Toggle raw display
$83$ \( (T + 12)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 3 \) Copy content Toggle raw display
show more
show less