Properties

Label 1682.2.a.m
Level $1682$
Weight $2$
Character orbit 1682.a
Self dual yes
Analytic conductor $13.431$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1682,2,Mod(1,1682)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1682, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1682.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1682 = 2 \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1682.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.4308376200\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 58)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + ( - \beta_{2} - 1) q^{3} + q^{4} + ( - \beta_{2} + \beta_1 + 1) q^{5} + (\beta_{2} + 1) q^{6} + (2 \beta_{2} + 1) q^{7} - q^{8} + (\beta_{2} + \beta_1 - 1) q^{9} + (\beta_{2} - \beta_1 - 1) q^{10}+ \cdots + ( - 3 \beta_{2} + 3 \beta_1 + 6) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{2} - 2 q^{3} + 3 q^{4} + 5 q^{5} + 2 q^{6} + q^{7} - 3 q^{8} - 3 q^{9} - 5 q^{10} - 3 q^{11} - 2 q^{12} + 2 q^{13} - q^{14} - q^{15} + 3 q^{16} - 5 q^{17} + 3 q^{18} - 10 q^{19} + 5 q^{20}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{14} + \zeta_{14}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.80194
−1.24698
0.445042
−1.00000 −2.24698 1.00000 1.55496 2.24698 3.49396 −1.00000 2.04892 −1.55496
1.2 −1.00000 −0.554958 1.00000 0.198062 0.554958 0.109916 −1.00000 −2.69202 −0.198062
1.3 −1.00000 0.801938 1.00000 3.24698 −0.801938 −2.60388 −1.00000 −2.35690 −3.24698
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(29\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1682.2.a.m 3
29.b even 2 1 1682.2.a.n 3
29.c odd 4 2 1682.2.b.g 6
29.d even 7 2 58.2.d.a 6
87.j odd 14 2 522.2.k.c 6
116.j odd 14 2 464.2.u.b 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
58.2.d.a 6 29.d even 7 2
464.2.u.b 6 116.j odd 14 2
522.2.k.c 6 87.j odd 14 2
1682.2.a.m 3 1.a even 1 1 trivial
1682.2.a.n 3 29.b even 2 1
1682.2.b.g 6 29.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1682))\):

\( T_{3}^{3} + 2T_{3}^{2} - T_{3} - 1 \) Copy content Toggle raw display
\( T_{5}^{3} - 5T_{5}^{2} + 6T_{5} - 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} + 2T^{2} - T - 1 \) Copy content Toggle raw display
$5$ \( T^{3} - 5 T^{2} + \cdots - 1 \) Copy content Toggle raw display
$7$ \( T^{3} - T^{2} - 9T + 1 \) Copy content Toggle raw display
$11$ \( T^{3} + 3 T^{2} + \cdots - 27 \) Copy content Toggle raw display
$13$ \( T^{3} - 2 T^{2} + \cdots + 29 \) Copy content Toggle raw display
$17$ \( T^{3} + 5 T^{2} + \cdots - 41 \) Copy content Toggle raw display
$19$ \( T^{3} + 10 T^{2} + \cdots - 41 \) Copy content Toggle raw display
$23$ \( T^{3} - 49T - 91 \) Copy content Toggle raw display
$29$ \( T^{3} \) Copy content Toggle raw display
$31$ \( T^{3} + 5 T^{2} + \cdots + 43 \) Copy content Toggle raw display
$37$ \( T^{3} + 3 T^{2} + \cdots - 139 \) Copy content Toggle raw display
$41$ \( T^{3} + 6 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$43$ \( T^{3} + 21 T^{2} + \cdots + 203 \) Copy content Toggle raw display
$47$ \( T^{3} + 2T^{2} - T - 1 \) Copy content Toggle raw display
$53$ \( T^{3} - 24 T^{2} + \cdots - 337 \) Copy content Toggle raw display
$59$ \( T^{3} + 19 T^{2} + \cdots + 169 \) Copy content Toggle raw display
$61$ \( T^{3} + 2 T^{2} + \cdots + 13 \) Copy content Toggle raw display
$67$ \( (T + 11)^{3} \) Copy content Toggle raw display
$71$ \( T^{3} - T^{2} + \cdots - 251 \) Copy content Toggle raw display
$73$ \( T^{3} + 8 T^{2} + \cdots - 491 \) Copy content Toggle raw display
$79$ \( T^{3} - 14 T^{2} + \cdots - 56 \) Copy content Toggle raw display
$83$ \( T^{3} + 14 T^{2} + \cdots - 889 \) Copy content Toggle raw display
$89$ \( T^{3} + 25 T^{2} + \cdots + 503 \) Copy content Toggle raw display
$97$ \( T^{3} + 4 T^{2} + \cdots + 104 \) Copy content Toggle raw display
show more
show less