Properties

Label 1682.2.b.g
Level $1682$
Weight $2$
Character orbit 1682.b
Analytic conductor $13.431$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1682,2,Mod(1681,1682)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1682, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1682.1681");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1682 = 2 \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1682.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4308376200\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.153664.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 5x^{4} + 6x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 58)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{5} q^{2} + (\beta_{5} + \beta_{3}) q^{3} - q^{4} + (\beta_{4} - 2) q^{5} + ( - \beta_{4} - \beta_{2}) q^{6} + (2 \beta_{4} + 2 \beta_{2} - 1) q^{7} - \beta_{5} q^{8} + ( - \beta_{4} - 2 \beta_{2} + 2) q^{9}+ \cdots + (9 \beta_{5} - 3 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{4} - 10 q^{5} - 4 q^{6} + 2 q^{7} + 6 q^{9} - 4 q^{13} + 6 q^{16} + 10 q^{20} - 6 q^{22} + 4 q^{24} - 4 q^{25} - 2 q^{28} + 2 q^{30} + 24 q^{33} - 10 q^{34} + 6 q^{35} - 6 q^{36} - 20 q^{38}+ \cdots - 4 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} + 5x^{4} + 6x^{2} + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} + 3\nu \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} + 3\nu^{2} + 1 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{5} + 4\nu^{3} + 3\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} - 3\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} - 3\beta_{2} + 5 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{5} - 4\beta_{3} + 9\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1682\mathbb{Z}\right)^\times\).

\(n\) \(843\)
\(\chi(n)\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1681.1
0.445042i
1.80194i
1.24698i
1.24698i
1.80194i
0.445042i
1.00000i 2.24698i −1.00000 −1.55496 −2.24698 3.49396 1.00000i −2.04892 1.55496i
1681.2 1.00000i 0.554958i −1.00000 −0.198062 −0.554958 0.109916 1.00000i 2.69202 0.198062i
1681.3 1.00000i 0.801938i −1.00000 −3.24698 0.801938 −2.60388 1.00000i 2.35690 3.24698i
1681.4 1.00000i 0.801938i −1.00000 −3.24698 0.801938 −2.60388 1.00000i 2.35690 3.24698i
1681.5 1.00000i 0.554958i −1.00000 −0.198062 −0.554958 0.109916 1.00000i 2.69202 0.198062i
1681.6 1.00000i 2.24698i −1.00000 −1.55496 −2.24698 3.49396 1.00000i −2.04892 1.55496i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1681.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
29.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1682.2.b.g 6
29.b even 2 1 inner 1682.2.b.g 6
29.c odd 4 1 1682.2.a.m 3
29.c odd 4 1 1682.2.a.n 3
29.f odd 28 2 58.2.d.a 6
87.k even 28 2 522.2.k.c 6
116.l even 28 2 464.2.u.b 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
58.2.d.a 6 29.f odd 28 2
464.2.u.b 6 116.l even 28 2
522.2.k.c 6 87.k even 28 2
1682.2.a.m 3 29.c odd 4 1
1682.2.a.n 3 29.c odd 4 1
1682.2.b.g 6 1.a even 1 1 trivial
1682.2.b.g 6 29.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1682, [\chi])\):

\( T_{3}^{6} + 6T_{3}^{4} + 5T_{3}^{2} + 1 \) Copy content Toggle raw display
\( T_{5}^{3} + 5T_{5}^{2} + 6T_{5} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 1)^{3} \) Copy content Toggle raw display
$3$ \( T^{6} + 6 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( (T^{3} + 5 T^{2} + 6 T + 1)^{2} \) Copy content Toggle raw display
$7$ \( (T^{3} - T^{2} - 9 T + 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{6} + 45 T^{4} + \cdots + 729 \) Copy content Toggle raw display
$13$ \( (T^{3} + 2 T^{2} - 15 T - 29)^{2} \) Copy content Toggle raw display
$17$ \( T^{6} + 41 T^{4} + \cdots + 1681 \) Copy content Toggle raw display
$19$ \( T^{6} + 66 T^{4} + \cdots + 1681 \) Copy content Toggle raw display
$23$ \( (T^{3} - 49 T - 91)^{2} \) Copy content Toggle raw display
$29$ \( T^{6} \) Copy content Toggle raw display
$31$ \( T^{6} + 97 T^{4} + \cdots + 1849 \) Copy content Toggle raw display
$37$ \( T^{6} + 101 T^{4} + \cdots + 19321 \) Copy content Toggle raw display
$41$ \( T^{6} + 110 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$43$ \( T^{6} + 189 T^{4} + \cdots + 41209 \) Copy content Toggle raw display
$47$ \( T^{6} + 6 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$53$ \( (T^{3} - 24 T^{2} + \cdots - 337)^{2} \) Copy content Toggle raw display
$59$ \( (T^{3} + 19 T^{2} + \cdots + 169)^{2} \) Copy content Toggle raw display
$61$ \( T^{6} + 202 T^{4} + \cdots + 169 \) Copy content Toggle raw display
$67$ \( (T - 11)^{6} \) Copy content Toggle raw display
$71$ \( (T^{3} + T^{2} - 86 T + 251)^{2} \) Copy content Toggle raw display
$73$ \( T^{6} + 194 T^{4} + \cdots + 241081 \) Copy content Toggle raw display
$79$ \( T^{6} + 84 T^{4} + \cdots + 3136 \) Copy content Toggle raw display
$83$ \( (T^{3} + 14 T^{2} + \cdots - 889)^{2} \) Copy content Toggle raw display
$89$ \( T^{6} + 227 T^{4} + \cdots + 253009 \) Copy content Toggle raw display
$97$ \( T^{6} + 136 T^{4} + \cdots + 10816 \) Copy content Toggle raw display
show more
show less