Properties

Label 1682.2.a.n.1.2
Level $1682$
Weight $2$
Character 1682.1
Self dual yes
Analytic conductor $13.431$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1682,2,Mod(1,1682)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1682, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1682.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1682 = 2 \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1682.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.4308376200\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 58)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(0.445042\) of defining polynomial
Character \(\chi\) \(=\) 1682.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +0.554958 q^{3} +1.00000 q^{4} +0.198062 q^{5} +0.554958 q^{6} +0.109916 q^{7} +1.00000 q^{8} -2.69202 q^{9} +0.198062 q^{10} +1.33513 q^{11} +0.554958 q^{12} +3.93900 q^{13} +0.109916 q^{14} +0.109916 q^{15} +1.00000 q^{16} +2.91185 q^{17} -2.69202 q^{18} -1.29590 q^{19} +0.198062 q^{20} +0.0609989 q^{21} +1.33513 q^{22} +7.78986 q^{23} +0.554958 q^{24} -4.96077 q^{25} +3.93900 q^{26} -3.15883 q^{27} +0.109916 q^{28} +0.109916 q^{30} +9.34481 q^{31} +1.00000 q^{32} +0.740939 q^{33} +2.91185 q^{34} +0.0217703 q^{35} -2.69202 q^{36} +3.02715 q^{37} -1.29590 q^{38} +2.18598 q^{39} +0.198062 q^{40} -3.76271 q^{41} +0.0609989 q^{42} +6.66487 q^{43} +1.33513 q^{44} -0.533188 q^{45} +7.78986 q^{46} -0.801938 q^{47} +0.554958 q^{48} -6.98792 q^{49} -4.96077 q^{50} +1.61596 q^{51} +3.93900 q^{52} +8.33513 q^{53} -3.15883 q^{54} +0.264438 q^{55} +0.109916 q^{56} -0.719169 q^{57} -5.08815 q^{59} +0.109916 q^{60} +11.0586 q^{61} +9.34481 q^{62} -0.295897 q^{63} +1.00000 q^{64} +0.780167 q^{65} +0.740939 q^{66} -11.0000 q^{67} +2.91185 q^{68} +4.32304 q^{69} +0.0217703 q^{70} +10.9487 q^{71} -2.69202 q^{72} -7.94869 q^{73} +3.02715 q^{74} -2.75302 q^{75} -1.29590 q^{76} +0.146752 q^{77} +2.18598 q^{78} -4.89008 q^{79} +0.198062 q^{80} +6.32304 q^{81} -3.76271 q^{82} -11.6746 q^{83} +0.0609989 q^{84} +0.576728 q^{85} +6.66487 q^{86} +1.33513 q^{88} +11.4940 q^{89} -0.533188 q^{90} +0.432960 q^{91} +7.78986 q^{92} +5.18598 q^{93} -0.801938 q^{94} -0.256668 q^{95} +0.554958 q^{96} +10.5918 q^{97} -6.98792 q^{98} -3.59419 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{2} + 2 q^{3} + 3 q^{4} + 5 q^{5} + 2 q^{6} + q^{7} + 3 q^{8} - 3 q^{9} + 5 q^{10} + 3 q^{11} + 2 q^{12} + 2 q^{13} + q^{14} + q^{15} + 3 q^{16} + 5 q^{17} - 3 q^{18} + 10 q^{19} + 5 q^{20}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0.554958 0.320405 0.160203 0.987084i \(-0.448785\pi\)
0.160203 + 0.987084i \(0.448785\pi\)
\(4\) 1.00000 0.500000
\(5\) 0.198062 0.0885761 0.0442881 0.999019i \(-0.485898\pi\)
0.0442881 + 0.999019i \(0.485898\pi\)
\(6\) 0.554958 0.226561
\(7\) 0.109916 0.0415444 0.0207722 0.999784i \(-0.493388\pi\)
0.0207722 + 0.999784i \(0.493388\pi\)
\(8\) 1.00000 0.353553
\(9\) −2.69202 −0.897340
\(10\) 0.198062 0.0626328
\(11\) 1.33513 0.402556 0.201278 0.979534i \(-0.435491\pi\)
0.201278 + 0.979534i \(0.435491\pi\)
\(12\) 0.554958 0.160203
\(13\) 3.93900 1.09248 0.546241 0.837628i \(-0.316058\pi\)
0.546241 + 0.837628i \(0.316058\pi\)
\(14\) 0.109916 0.0293764
\(15\) 0.109916 0.0283803
\(16\) 1.00000 0.250000
\(17\) 2.91185 0.706228 0.353114 0.935580i \(-0.385123\pi\)
0.353114 + 0.935580i \(0.385123\pi\)
\(18\) −2.69202 −0.634516
\(19\) −1.29590 −0.297299 −0.148650 0.988890i \(-0.547493\pi\)
−0.148650 + 0.988890i \(0.547493\pi\)
\(20\) 0.198062 0.0442881
\(21\) 0.0609989 0.0133111
\(22\) 1.33513 0.284650
\(23\) 7.78986 1.62430 0.812149 0.583451i \(-0.198298\pi\)
0.812149 + 0.583451i \(0.198298\pi\)
\(24\) 0.554958 0.113280
\(25\) −4.96077 −0.992154
\(26\) 3.93900 0.772502
\(27\) −3.15883 −0.607918
\(28\) 0.109916 0.0207722
\(29\) 0 0
\(30\) 0.109916 0.0200679
\(31\) 9.34481 1.67838 0.839189 0.543840i \(-0.183030\pi\)
0.839189 + 0.543840i \(0.183030\pi\)
\(32\) 1.00000 0.176777
\(33\) 0.740939 0.128981
\(34\) 2.91185 0.499379
\(35\) 0.0217703 0.00367985
\(36\) −2.69202 −0.448670
\(37\) 3.02715 0.497660 0.248830 0.968547i \(-0.419954\pi\)
0.248830 + 0.968547i \(0.419954\pi\)
\(38\) −1.29590 −0.210222
\(39\) 2.18598 0.350037
\(40\) 0.198062 0.0313164
\(41\) −3.76271 −0.587636 −0.293818 0.955861i \(-0.594926\pi\)
−0.293818 + 0.955861i \(0.594926\pi\)
\(42\) 0.0609989 0.00941234
\(43\) 6.66487 1.01638 0.508192 0.861244i \(-0.330314\pi\)
0.508192 + 0.861244i \(0.330314\pi\)
\(44\) 1.33513 0.201278
\(45\) −0.533188 −0.0794830
\(46\) 7.78986 1.14855
\(47\) −0.801938 −0.116975 −0.0584873 0.998288i \(-0.518628\pi\)
−0.0584873 + 0.998288i \(0.518628\pi\)
\(48\) 0.554958 0.0801013
\(49\) −6.98792 −0.998274
\(50\) −4.96077 −0.701559
\(51\) 1.61596 0.226279
\(52\) 3.93900 0.546241
\(53\) 8.33513 1.14492 0.572459 0.819934i \(-0.305990\pi\)
0.572459 + 0.819934i \(0.305990\pi\)
\(54\) −3.15883 −0.429863
\(55\) 0.264438 0.0356568
\(56\) 0.109916 0.0146882
\(57\) −0.719169 −0.0952562
\(58\) 0 0
\(59\) −5.08815 −0.662420 −0.331210 0.943557i \(-0.607457\pi\)
−0.331210 + 0.943557i \(0.607457\pi\)
\(60\) 0.109916 0.0141901
\(61\) 11.0586 1.41591 0.707955 0.706258i \(-0.249618\pi\)
0.707955 + 0.706258i \(0.249618\pi\)
\(62\) 9.34481 1.18679
\(63\) −0.295897 −0.0372795
\(64\) 1.00000 0.125000
\(65\) 0.780167 0.0967679
\(66\) 0.740939 0.0912033
\(67\) −11.0000 −1.34386 −0.671932 0.740613i \(-0.734535\pi\)
−0.671932 + 0.740613i \(0.734535\pi\)
\(68\) 2.91185 0.353114
\(69\) 4.32304 0.520433
\(70\) 0.0217703 0.00260204
\(71\) 10.9487 1.29937 0.649685 0.760203i \(-0.274901\pi\)
0.649685 + 0.760203i \(0.274901\pi\)
\(72\) −2.69202 −0.317258
\(73\) −7.94869 −0.930324 −0.465162 0.885226i \(-0.654004\pi\)
−0.465162 + 0.885226i \(0.654004\pi\)
\(74\) 3.02715 0.351899
\(75\) −2.75302 −0.317891
\(76\) −1.29590 −0.148650
\(77\) 0.146752 0.0167239
\(78\) 2.18598 0.247514
\(79\) −4.89008 −0.550177 −0.275089 0.961419i \(-0.588707\pi\)
−0.275089 + 0.961419i \(0.588707\pi\)
\(80\) 0.198062 0.0221440
\(81\) 6.32304 0.702560
\(82\) −3.76271 −0.415522
\(83\) −11.6746 −1.28145 −0.640725 0.767771i \(-0.721366\pi\)
−0.640725 + 0.767771i \(0.721366\pi\)
\(84\) 0.0609989 0.00665553
\(85\) 0.576728 0.0625550
\(86\) 6.66487 0.718692
\(87\) 0 0
\(88\) 1.33513 0.142325
\(89\) 11.4940 1.21836 0.609179 0.793033i \(-0.291499\pi\)
0.609179 + 0.793033i \(0.291499\pi\)
\(90\) −0.533188 −0.0562029
\(91\) 0.432960 0.0453866
\(92\) 7.78986 0.812149
\(93\) 5.18598 0.537761
\(94\) −0.801938 −0.0827136
\(95\) −0.256668 −0.0263336
\(96\) 0.554958 0.0566402
\(97\) 10.5918 1.07543 0.537717 0.843125i \(-0.319287\pi\)
0.537717 + 0.843125i \(0.319287\pi\)
\(98\) −6.98792 −0.705886
\(99\) −3.59419 −0.361229
\(100\) −4.96077 −0.496077
\(101\) −5.97285 −0.594321 −0.297161 0.954828i \(-0.596040\pi\)
−0.297161 + 0.954828i \(0.596040\pi\)
\(102\) 1.61596 0.160004
\(103\) −14.3937 −1.41826 −0.709128 0.705080i \(-0.750911\pi\)
−0.709128 + 0.705080i \(0.750911\pi\)
\(104\) 3.93900 0.386251
\(105\) 0.0120816 0.00117904
\(106\) 8.33513 0.809579
\(107\) −16.4916 −1.59430 −0.797150 0.603781i \(-0.793660\pi\)
−0.797150 + 0.603781i \(0.793660\pi\)
\(108\) −3.15883 −0.303959
\(109\) 2.84117 0.272134 0.136067 0.990700i \(-0.456554\pi\)
0.136067 + 0.990700i \(0.456554\pi\)
\(110\) 0.264438 0.0252132
\(111\) 1.67994 0.159453
\(112\) 0.109916 0.0103861
\(113\) −15.6746 −1.47454 −0.737269 0.675599i \(-0.763885\pi\)
−0.737269 + 0.675599i \(0.763885\pi\)
\(114\) −0.719169 −0.0673563
\(115\) 1.54288 0.143874
\(116\) 0 0
\(117\) −10.6039 −0.980329
\(118\) −5.08815 −0.468402
\(119\) 0.320060 0.0293399
\(120\) 0.109916 0.0100339
\(121\) −9.21744 −0.837949
\(122\) 11.0586 1.00120
\(123\) −2.08815 −0.188282
\(124\) 9.34481 0.839189
\(125\) −1.97285 −0.176457
\(126\) −0.295897 −0.0263606
\(127\) 2.70841 0.240333 0.120166 0.992754i \(-0.461657\pi\)
0.120166 + 0.992754i \(0.461657\pi\)
\(128\) 1.00000 0.0883883
\(129\) 3.69873 0.325655
\(130\) 0.780167 0.0684252
\(131\) 14.6136 1.27679 0.638397 0.769708i \(-0.279598\pi\)
0.638397 + 0.769708i \(0.279598\pi\)
\(132\) 0.740939 0.0644904
\(133\) −0.142440 −0.0123511
\(134\) −11.0000 −0.950255
\(135\) −0.625646 −0.0538470
\(136\) 2.91185 0.249689
\(137\) 1.59419 0.136201 0.0681003 0.997678i \(-0.478306\pi\)
0.0681003 + 0.997678i \(0.478306\pi\)
\(138\) 4.32304 0.368002
\(139\) 1.29052 0.109460 0.0547302 0.998501i \(-0.482570\pi\)
0.0547302 + 0.998501i \(0.482570\pi\)
\(140\) 0.0217703 0.00183992
\(141\) −0.445042 −0.0374793
\(142\) 10.9487 0.918794
\(143\) 5.25906 0.439785
\(144\) −2.69202 −0.224335
\(145\) 0 0
\(146\) −7.94869 −0.657838
\(147\) −3.87800 −0.319852
\(148\) 3.02715 0.248830
\(149\) −6.69740 −0.548672 −0.274336 0.961634i \(-0.588458\pi\)
−0.274336 + 0.961634i \(0.588458\pi\)
\(150\) −2.75302 −0.224783
\(151\) −9.49396 −0.772607 −0.386304 0.922372i \(-0.626248\pi\)
−0.386304 + 0.922372i \(0.626248\pi\)
\(152\) −1.29590 −0.105111
\(153\) −7.83877 −0.633727
\(154\) 0.146752 0.0118256
\(155\) 1.85086 0.148664
\(156\) 2.18598 0.175019
\(157\) −9.39373 −0.749701 −0.374851 0.927085i \(-0.622306\pi\)
−0.374851 + 0.927085i \(0.622306\pi\)
\(158\) −4.89008 −0.389034
\(159\) 4.62565 0.366838
\(160\) 0.198062 0.0156582
\(161\) 0.856232 0.0674805
\(162\) 6.32304 0.496785
\(163\) 16.2687 1.27427 0.637133 0.770754i \(-0.280120\pi\)
0.637133 + 0.770754i \(0.280120\pi\)
\(164\) −3.76271 −0.293818
\(165\) 0.146752 0.0114246
\(166\) −11.6746 −0.906122
\(167\) −13.7627 −1.06499 −0.532495 0.846433i \(-0.678746\pi\)
−0.532495 + 0.846433i \(0.678746\pi\)
\(168\) 0.0609989 0.00470617
\(169\) 2.51573 0.193518
\(170\) 0.576728 0.0442330
\(171\) 3.48858 0.266779
\(172\) 6.66487 0.508192
\(173\) −0.119605 −0.00909340 −0.00454670 0.999990i \(-0.501447\pi\)
−0.00454670 + 0.999990i \(0.501447\pi\)
\(174\) 0 0
\(175\) −0.545269 −0.0412185
\(176\) 1.33513 0.100639
\(177\) −2.82371 −0.212243
\(178\) 11.4940 0.861509
\(179\) −12.6799 −0.947743 −0.473872 0.880594i \(-0.657144\pi\)
−0.473872 + 0.880594i \(0.657144\pi\)
\(180\) −0.533188 −0.0397415
\(181\) 7.13467 0.530316 0.265158 0.964205i \(-0.414576\pi\)
0.265158 + 0.964205i \(0.414576\pi\)
\(182\) 0.432960 0.0320932
\(183\) 6.13706 0.453665
\(184\) 7.78986 0.574276
\(185\) 0.599564 0.0440808
\(186\) 5.18598 0.380255
\(187\) 3.88769 0.284296
\(188\) −0.801938 −0.0584873
\(189\) −0.347207 −0.0252556
\(190\) −0.256668 −0.0186207
\(191\) −3.19806 −0.231404 −0.115702 0.993284i \(-0.536912\pi\)
−0.115702 + 0.993284i \(0.536912\pi\)
\(192\) 0.554958 0.0400507
\(193\) 15.0707 1.08481 0.542406 0.840117i \(-0.317513\pi\)
0.542406 + 0.840117i \(0.317513\pi\)
\(194\) 10.5918 0.760446
\(195\) 0.432960 0.0310049
\(196\) −6.98792 −0.499137
\(197\) −14.5187 −1.03442 −0.517208 0.855860i \(-0.673029\pi\)
−0.517208 + 0.855860i \(0.673029\pi\)
\(198\) −3.59419 −0.255428
\(199\) 26.5284 1.88055 0.940274 0.340418i \(-0.110569\pi\)
0.940274 + 0.340418i \(0.110569\pi\)
\(200\) −4.96077 −0.350780
\(201\) −6.10454 −0.430581
\(202\) −5.97285 −0.420248
\(203\) 0 0
\(204\) 1.61596 0.113140
\(205\) −0.745251 −0.0520506
\(206\) −14.3937 −1.00286
\(207\) −20.9705 −1.45755
\(208\) 3.93900 0.273121
\(209\) −1.73019 −0.119679
\(210\) 0.0120816 0.000833709 0
\(211\) 16.7995 1.15653 0.578264 0.815850i \(-0.303730\pi\)
0.578264 + 0.815850i \(0.303730\pi\)
\(212\) 8.33513 0.572459
\(213\) 6.07606 0.416325
\(214\) −16.4916 −1.12734
\(215\) 1.32006 0.0900274
\(216\) −3.15883 −0.214931
\(217\) 1.02715 0.0697273
\(218\) 2.84117 0.192428
\(219\) −4.41119 −0.298081
\(220\) 0.264438 0.0178284
\(221\) 11.4698 0.771542
\(222\) 1.67994 0.112750
\(223\) −1.43296 −0.0959581 −0.0479791 0.998848i \(-0.515278\pi\)
−0.0479791 + 0.998848i \(0.515278\pi\)
\(224\) 0.109916 0.00734409
\(225\) 13.3545 0.890300
\(226\) −15.6746 −1.04266
\(227\) −13.4155 −0.890418 −0.445209 0.895427i \(-0.646871\pi\)
−0.445209 + 0.895427i \(0.646871\pi\)
\(228\) −0.719169 −0.0476281
\(229\) −11.5090 −0.760538 −0.380269 0.924876i \(-0.624169\pi\)
−0.380269 + 0.924876i \(0.624169\pi\)
\(230\) 1.54288 0.101734
\(231\) 0.0814412 0.00535844
\(232\) 0 0
\(233\) −0.735562 −0.0481883 −0.0240941 0.999710i \(-0.507670\pi\)
−0.0240941 + 0.999710i \(0.507670\pi\)
\(234\) −10.6039 −0.693197
\(235\) −0.158834 −0.0103612
\(236\) −5.08815 −0.331210
\(237\) −2.71379 −0.176280
\(238\) 0.320060 0.0207464
\(239\) 0.0881460 0.00570169 0.00285085 0.999996i \(-0.499093\pi\)
0.00285085 + 0.999996i \(0.499093\pi\)
\(240\) 0.109916 0.00709506
\(241\) −6.21313 −0.400223 −0.200111 0.979773i \(-0.564130\pi\)
−0.200111 + 0.979773i \(0.564130\pi\)
\(242\) −9.21744 −0.592519
\(243\) 12.9855 0.833022
\(244\) 11.0586 0.707955
\(245\) −1.38404 −0.0884233
\(246\) −2.08815 −0.133135
\(247\) −5.10454 −0.324794
\(248\) 9.34481 0.593396
\(249\) −6.47889 −0.410583
\(250\) −1.97285 −0.124774
\(251\) −15.1914 −0.958870 −0.479435 0.877577i \(-0.659158\pi\)
−0.479435 + 0.877577i \(0.659158\pi\)
\(252\) −0.295897 −0.0186398
\(253\) 10.4004 0.653870
\(254\) 2.70841 0.169941
\(255\) 0.320060 0.0200429
\(256\) 1.00000 0.0625000
\(257\) 5.53079 0.345002 0.172501 0.985009i \(-0.444815\pi\)
0.172501 + 0.985009i \(0.444815\pi\)
\(258\) 3.69873 0.230273
\(259\) 0.332733 0.0206750
\(260\) 0.780167 0.0483839
\(261\) 0 0
\(262\) 14.6136 0.902829
\(263\) −2.18837 −0.134941 −0.0674704 0.997721i \(-0.521493\pi\)
−0.0674704 + 0.997721i \(0.521493\pi\)
\(264\) 0.740939 0.0456016
\(265\) 1.65087 0.101412
\(266\) −0.142440 −0.00873357
\(267\) 6.37867 0.390368
\(268\) −11.0000 −0.671932
\(269\) −30.4577 −1.85704 −0.928520 0.371283i \(-0.878918\pi\)
−0.928520 + 0.371283i \(0.878918\pi\)
\(270\) −0.625646 −0.0380756
\(271\) −31.5459 −1.91627 −0.958137 0.286309i \(-0.907572\pi\)
−0.958137 + 0.286309i \(0.907572\pi\)
\(272\) 2.91185 0.176557
\(273\) 0.240275 0.0145421
\(274\) 1.59419 0.0963083
\(275\) −6.62325 −0.399397
\(276\) 4.32304 0.260217
\(277\) 14.2024 0.853338 0.426669 0.904408i \(-0.359687\pi\)
0.426669 + 0.904408i \(0.359687\pi\)
\(278\) 1.29052 0.0774003
\(279\) −25.1564 −1.50608
\(280\) 0.0217703 0.00130102
\(281\) 20.7627 1.23860 0.619300 0.785155i \(-0.287417\pi\)
0.619300 + 0.785155i \(0.287417\pi\)
\(282\) −0.445042 −0.0265019
\(283\) −17.3472 −1.03118 −0.515592 0.856834i \(-0.672428\pi\)
−0.515592 + 0.856834i \(0.672428\pi\)
\(284\) 10.9487 0.649685
\(285\) −0.142440 −0.00843743
\(286\) 5.25906 0.310975
\(287\) −0.413583 −0.0244130
\(288\) −2.69202 −0.158629
\(289\) −8.52111 −0.501242
\(290\) 0 0
\(291\) 5.87800 0.344575
\(292\) −7.94869 −0.465162
\(293\) −17.5278 −1.02399 −0.511993 0.858990i \(-0.671093\pi\)
−0.511993 + 0.858990i \(0.671093\pi\)
\(294\) −3.87800 −0.226170
\(295\) −1.00777 −0.0586746
\(296\) 3.02715 0.175949
\(297\) −4.21744 −0.244721
\(298\) −6.69740 −0.387970
\(299\) 30.6843 1.77452
\(300\) −2.75302 −0.158946
\(301\) 0.732578 0.0422251
\(302\) −9.49396 −0.546316
\(303\) −3.31468 −0.190424
\(304\) −1.29590 −0.0743248
\(305\) 2.19029 0.125416
\(306\) −7.83877 −0.448113
\(307\) −30.3618 −1.73284 −0.866420 0.499316i \(-0.833585\pi\)
−0.866420 + 0.499316i \(0.833585\pi\)
\(308\) 0.146752 0.00836197
\(309\) −7.98792 −0.454417
\(310\) 1.85086 0.105122
\(311\) 23.7875 1.34886 0.674432 0.738337i \(-0.264389\pi\)
0.674432 + 0.738337i \(0.264389\pi\)
\(312\) 2.18598 0.123757
\(313\) −28.6746 −1.62078 −0.810391 0.585889i \(-0.800745\pi\)
−0.810391 + 0.585889i \(0.800745\pi\)
\(314\) −9.39373 −0.530119
\(315\) −0.0586060 −0.00330208
\(316\) −4.89008 −0.275089
\(317\) 7.55794 0.424496 0.212248 0.977216i \(-0.431921\pi\)
0.212248 + 0.977216i \(0.431921\pi\)
\(318\) 4.62565 0.259393
\(319\) 0 0
\(320\) 0.198062 0.0110720
\(321\) −9.15213 −0.510822
\(322\) 0.856232 0.0477159
\(323\) −3.77346 −0.209961
\(324\) 6.32304 0.351280
\(325\) −19.5405 −1.08391
\(326\) 16.2687 0.901043
\(327\) 1.57673 0.0871933
\(328\) −3.76271 −0.207761
\(329\) −0.0881460 −0.00485965
\(330\) 0.146752 0.00807843
\(331\) 11.1860 0.614837 0.307419 0.951574i \(-0.400535\pi\)
0.307419 + 0.951574i \(0.400535\pi\)
\(332\) −11.6746 −0.640725
\(333\) −8.14914 −0.446570
\(334\) −13.7627 −0.753062
\(335\) −2.17868 −0.119034
\(336\) 0.0609989 0.00332776
\(337\) 20.7928 1.13266 0.566329 0.824179i \(-0.308363\pi\)
0.566329 + 0.824179i \(0.308363\pi\)
\(338\) 2.51573 0.136838
\(339\) −8.69873 −0.472450
\(340\) 0.576728 0.0312775
\(341\) 12.4765 0.675640
\(342\) 3.48858 0.188641
\(343\) −1.53750 −0.0830172
\(344\) 6.66487 0.359346
\(345\) 0.856232 0.0460980
\(346\) −0.119605 −0.00643000
\(347\) 0.0193774 0.00104023 0.000520116 1.00000i \(-0.499834\pi\)
0.000520116 1.00000i \(0.499834\pi\)
\(348\) 0 0
\(349\) 29.0315 1.55402 0.777009 0.629489i \(-0.216736\pi\)
0.777009 + 0.629489i \(0.216736\pi\)
\(350\) −0.545269 −0.0291459
\(351\) −12.4426 −0.664139
\(352\) 1.33513 0.0711624
\(353\) 20.6165 1.09731 0.548654 0.836049i \(-0.315140\pi\)
0.548654 + 0.836049i \(0.315140\pi\)
\(354\) −2.82371 −0.150078
\(355\) 2.16852 0.115093
\(356\) 11.4940 0.609179
\(357\) 0.177620 0.00940065
\(358\) −12.6799 −0.670156
\(359\) −20.8901 −1.10254 −0.551268 0.834328i \(-0.685856\pi\)
−0.551268 + 0.834328i \(0.685856\pi\)
\(360\) −0.533188 −0.0281015
\(361\) −17.3207 −0.911613
\(362\) 7.13467 0.374990
\(363\) −5.11529 −0.268483
\(364\) 0.432960 0.0226933
\(365\) −1.57434 −0.0824045
\(366\) 6.13706 0.320789
\(367\) −3.76271 −0.196412 −0.0982059 0.995166i \(-0.531310\pi\)
−0.0982059 + 0.995166i \(0.531310\pi\)
\(368\) 7.78986 0.406074
\(369\) 10.1293 0.527310
\(370\) 0.599564 0.0311698
\(371\) 0.916166 0.0475650
\(372\) 5.18598 0.268881
\(373\) 15.0140 0.777395 0.388698 0.921365i \(-0.372925\pi\)
0.388698 + 0.921365i \(0.372925\pi\)
\(374\) 3.88769 0.201028
\(375\) −1.09485 −0.0565379
\(376\) −0.801938 −0.0413568
\(377\) 0 0
\(378\) −0.347207 −0.0178584
\(379\) −23.5646 −1.21043 −0.605217 0.796060i \(-0.706914\pi\)
−0.605217 + 0.796060i \(0.706914\pi\)
\(380\) −0.256668 −0.0131668
\(381\) 1.50306 0.0770039
\(382\) −3.19806 −0.163627
\(383\) −26.8213 −1.37051 −0.685253 0.728305i \(-0.740308\pi\)
−0.685253 + 0.728305i \(0.740308\pi\)
\(384\) 0.554958 0.0283201
\(385\) 0.0290660 0.00148134
\(386\) 15.0707 0.767078
\(387\) −17.9420 −0.912042
\(388\) 10.5918 0.537717
\(389\) 18.4034 0.933090 0.466545 0.884497i \(-0.345498\pi\)
0.466545 + 0.884497i \(0.345498\pi\)
\(390\) 0.432960 0.0219238
\(391\) 22.6829 1.14712
\(392\) −6.98792 −0.352943
\(393\) 8.10992 0.409091
\(394\) −14.5187 −0.731442
\(395\) −0.968541 −0.0487326
\(396\) −3.59419 −0.180615
\(397\) 28.9071 1.45080 0.725402 0.688325i \(-0.241654\pi\)
0.725402 + 0.688325i \(0.241654\pi\)
\(398\) 26.5284 1.32975
\(399\) −0.0790483 −0.00395737
\(400\) −4.96077 −0.248039
\(401\) 15.3370 0.765895 0.382948 0.923770i \(-0.374909\pi\)
0.382948 + 0.923770i \(0.374909\pi\)
\(402\) −6.10454 −0.304467
\(403\) 36.8092 1.83360
\(404\) −5.97285 −0.297161
\(405\) 1.25236 0.0622301
\(406\) 0 0
\(407\) 4.04162 0.200336
\(408\) 1.61596 0.0800018
\(409\) 34.7308 1.71733 0.858663 0.512540i \(-0.171295\pi\)
0.858663 + 0.512540i \(0.171295\pi\)
\(410\) −0.745251 −0.0368053
\(411\) 0.884707 0.0436394
\(412\) −14.3937 −0.709128
\(413\) −0.559270 −0.0275199
\(414\) −20.9705 −1.03064
\(415\) −2.31229 −0.113506
\(416\) 3.93900 0.193125
\(417\) 0.716185 0.0350717
\(418\) −1.73019 −0.0846261
\(419\) −21.9627 −1.07295 −0.536474 0.843917i \(-0.680244\pi\)
−0.536474 + 0.843917i \(0.680244\pi\)
\(420\) 0.0120816 0.000589521 0
\(421\) −40.4349 −1.97068 −0.985338 0.170615i \(-0.945424\pi\)
−0.985338 + 0.170615i \(0.945424\pi\)
\(422\) 16.7995 0.817789
\(423\) 2.15883 0.104966
\(424\) 8.33513 0.404789
\(425\) −14.4450 −0.700687
\(426\) 6.07606 0.294386
\(427\) 1.21552 0.0588232
\(428\) −16.4916 −0.797150
\(429\) 2.91856 0.140909
\(430\) 1.32006 0.0636590
\(431\) −22.1008 −1.06456 −0.532279 0.846569i \(-0.678664\pi\)
−0.532279 + 0.846569i \(0.678664\pi\)
\(432\) −3.15883 −0.151979
\(433\) 3.88710 0.186802 0.0934010 0.995629i \(-0.470226\pi\)
0.0934010 + 0.995629i \(0.470226\pi\)
\(434\) 1.02715 0.0493046
\(435\) 0 0
\(436\) 2.84117 0.136067
\(437\) −10.0949 −0.482902
\(438\) −4.41119 −0.210775
\(439\) 10.1575 0.484791 0.242396 0.970177i \(-0.422067\pi\)
0.242396 + 0.970177i \(0.422067\pi\)
\(440\) 0.264438 0.0126066
\(441\) 18.8116 0.895792
\(442\) 11.4698 0.545563
\(443\) −19.2965 −0.916804 −0.458402 0.888745i \(-0.651578\pi\)
−0.458402 + 0.888745i \(0.651578\pi\)
\(444\) 1.67994 0.0797264
\(445\) 2.27652 0.107917
\(446\) −1.43296 −0.0678526
\(447\) −3.71678 −0.175797
\(448\) 0.109916 0.00519306
\(449\) −21.6394 −1.02123 −0.510613 0.859811i \(-0.670581\pi\)
−0.510613 + 0.859811i \(0.670581\pi\)
\(450\) 13.3545 0.629537
\(451\) −5.02369 −0.236556
\(452\) −15.6746 −0.737269
\(453\) −5.26875 −0.247547
\(454\) −13.4155 −0.629621
\(455\) 0.0857531 0.00402017
\(456\) −0.719169 −0.0336782
\(457\) 2.53079 0.118386 0.0591928 0.998247i \(-0.481147\pi\)
0.0591928 + 0.998247i \(0.481147\pi\)
\(458\) −11.5090 −0.537781
\(459\) −9.19806 −0.429329
\(460\) 1.54288 0.0719370
\(461\) −10.7627 −0.501269 −0.250635 0.968082i \(-0.580639\pi\)
−0.250635 + 0.968082i \(0.580639\pi\)
\(462\) 0.0814412 0.00378899
\(463\) −6.12392 −0.284603 −0.142301 0.989823i \(-0.545450\pi\)
−0.142301 + 0.989823i \(0.545450\pi\)
\(464\) 0 0
\(465\) 1.02715 0.0476328
\(466\) −0.735562 −0.0340743
\(467\) −34.9638 −1.61793 −0.808965 0.587857i \(-0.799972\pi\)
−0.808965 + 0.587857i \(0.799972\pi\)
\(468\) −10.6039 −0.490164
\(469\) −1.20908 −0.0558301
\(470\) −0.158834 −0.00732645
\(471\) −5.21313 −0.240208
\(472\) −5.08815 −0.234201
\(473\) 8.89844 0.409151
\(474\) −2.71379 −0.124649
\(475\) 6.42865 0.294967
\(476\) 0.320060 0.0146699
\(477\) −22.4383 −1.02738
\(478\) 0.0881460 0.00403170
\(479\) 30.8732 1.41063 0.705317 0.708892i \(-0.250805\pi\)
0.705317 + 0.708892i \(0.250805\pi\)
\(480\) 0.109916 0.00501697
\(481\) 11.9239 0.543685
\(482\) −6.21313 −0.283000
\(483\) 0.475173 0.0216211
\(484\) −9.21744 −0.418975
\(485\) 2.09783 0.0952578
\(486\) 12.9855 0.589035
\(487\) −0.408206 −0.0184976 −0.00924879 0.999957i \(-0.502944\pi\)
−0.00924879 + 0.999957i \(0.502944\pi\)
\(488\) 11.0586 0.500600
\(489\) 9.02848 0.408282
\(490\) −1.38404 −0.0625247
\(491\) −20.1618 −0.909890 −0.454945 0.890520i \(-0.650341\pi\)
−0.454945 + 0.890520i \(0.650341\pi\)
\(492\) −2.08815 −0.0941409
\(493\) 0 0
\(494\) −5.10454 −0.229664
\(495\) −0.711873 −0.0319963
\(496\) 9.34481 0.419595
\(497\) 1.20344 0.0539816
\(498\) −6.47889 −0.290326
\(499\) −10.3787 −0.464613 −0.232306 0.972643i \(-0.574627\pi\)
−0.232306 + 0.972643i \(0.574627\pi\)
\(500\) −1.97285 −0.0882287
\(501\) −7.63773 −0.341228
\(502\) −15.1914 −0.678023
\(503\) −22.9909 −1.02511 −0.512557 0.858653i \(-0.671302\pi\)
−0.512557 + 0.858653i \(0.671302\pi\)
\(504\) −0.295897 −0.0131803
\(505\) −1.18300 −0.0526427
\(506\) 10.4004 0.462356
\(507\) 1.39612 0.0620041
\(508\) 2.70841 0.120166
\(509\) 25.7041 1.13931 0.569657 0.821882i \(-0.307076\pi\)
0.569657 + 0.821882i \(0.307076\pi\)
\(510\) 0.320060 0.0141725
\(511\) −0.873690 −0.0386498
\(512\) 1.00000 0.0441942
\(513\) 4.09352 0.180733
\(514\) 5.53079 0.243953
\(515\) −2.85086 −0.125624
\(516\) 3.69873 0.162827
\(517\) −1.07069 −0.0470888
\(518\) 0.332733 0.0146194
\(519\) −0.0663757 −0.00291357
\(520\) 0.780167 0.0342126
\(521\) 17.1535 0.751507 0.375753 0.926720i \(-0.377384\pi\)
0.375753 + 0.926720i \(0.377384\pi\)
\(522\) 0 0
\(523\) 22.4494 0.981642 0.490821 0.871261i \(-0.336697\pi\)
0.490821 + 0.871261i \(0.336697\pi\)
\(524\) 14.6136 0.638397
\(525\) −0.302602 −0.0132066
\(526\) −2.18837 −0.0954176
\(527\) 27.2107 1.18532
\(528\) 0.740939 0.0322452
\(529\) 37.6819 1.63834
\(530\) 1.65087 0.0717094
\(531\) 13.6974 0.594416
\(532\) −0.142440 −0.00617556
\(533\) −14.8213 −0.641982
\(534\) 6.37867 0.276032
\(535\) −3.26636 −0.141217
\(536\) −11.0000 −0.475128
\(537\) −7.03684 −0.303662
\(538\) −30.4577 −1.31313
\(539\) −9.32975 −0.401861
\(540\) −0.625646 −0.0269235
\(541\) 12.4426 0.534951 0.267476 0.963565i \(-0.413811\pi\)
0.267476 + 0.963565i \(0.413811\pi\)
\(542\) −31.5459 −1.35501
\(543\) 3.95944 0.169916
\(544\) 2.91185 0.124845
\(545\) 0.562728 0.0241046
\(546\) 0.240275 0.0102828
\(547\) −11.7638 −0.502983 −0.251491 0.967860i \(-0.580921\pi\)
−0.251491 + 0.967860i \(0.580921\pi\)
\(548\) 1.59419 0.0681003
\(549\) −29.7700 −1.27055
\(550\) −6.62325 −0.282416
\(551\) 0 0
\(552\) 4.32304 0.184001
\(553\) −0.537500 −0.0228568
\(554\) 14.2024 0.603401
\(555\) 0.332733 0.0141237
\(556\) 1.29052 0.0547302
\(557\) 32.7362 1.38708 0.693538 0.720420i \(-0.256051\pi\)
0.693538 + 0.720420i \(0.256051\pi\)
\(558\) −25.1564 −1.06496
\(559\) 26.2529 1.11038
\(560\) 0.0217703 0.000919962 0
\(561\) 2.15751 0.0910900
\(562\) 20.7627 0.875822
\(563\) 30.1105 1.26901 0.634503 0.772920i \(-0.281205\pi\)
0.634503 + 0.772920i \(0.281205\pi\)
\(564\) −0.445042 −0.0187396
\(565\) −3.10454 −0.130609
\(566\) −17.3472 −0.729158
\(567\) 0.695005 0.0291875
\(568\) 10.9487 0.459397
\(569\) −15.5773 −0.653035 −0.326518 0.945191i \(-0.605875\pi\)
−0.326518 + 0.945191i \(0.605875\pi\)
\(570\) −0.142440 −0.00596616
\(571\) 6.74572 0.282300 0.141150 0.989988i \(-0.454920\pi\)
0.141150 + 0.989988i \(0.454920\pi\)
\(572\) 5.25906 0.219892
\(573\) −1.77479 −0.0741429
\(574\) −0.413583 −0.0172626
\(575\) −38.6437 −1.61155
\(576\) −2.69202 −0.112168
\(577\) 18.6974 0.778383 0.389191 0.921157i \(-0.372754\pi\)
0.389191 + 0.921157i \(0.372754\pi\)
\(578\) −8.52111 −0.354431
\(579\) 8.36360 0.347579
\(580\) 0 0
\(581\) −1.28322 −0.0532371
\(582\) 5.87800 0.243651
\(583\) 11.1284 0.460893
\(584\) −7.94869 −0.328919
\(585\) −2.10023 −0.0868337
\(586\) −17.5278 −0.724067
\(587\) −16.2500 −0.670708 −0.335354 0.942092i \(-0.608856\pi\)
−0.335354 + 0.942092i \(0.608856\pi\)
\(588\) −3.87800 −0.159926
\(589\) −12.1099 −0.498980
\(590\) −1.00777 −0.0414892
\(591\) −8.05728 −0.331432
\(592\) 3.02715 0.124415
\(593\) 31.1715 1.28006 0.640030 0.768350i \(-0.278922\pi\)
0.640030 + 0.768350i \(0.278922\pi\)
\(594\) −4.21744 −0.173044
\(595\) 0.0633918 0.00259881
\(596\) −6.69740 −0.274336
\(597\) 14.7222 0.602538
\(598\) 30.6843 1.25477
\(599\) −7.82802 −0.319844 −0.159922 0.987130i \(-0.551124\pi\)
−0.159922 + 0.987130i \(0.551124\pi\)
\(600\) −2.75302 −0.112392
\(601\) −17.5730 −0.716818 −0.358409 0.933565i \(-0.616681\pi\)
−0.358409 + 0.933565i \(0.616681\pi\)
\(602\) 0.732578 0.0298577
\(603\) 29.6122 1.20590
\(604\) −9.49396 −0.386304
\(605\) −1.82563 −0.0742223
\(606\) −3.31468 −0.134650
\(607\) 39.3448 1.59696 0.798478 0.602023i \(-0.205639\pi\)
0.798478 + 0.602023i \(0.205639\pi\)
\(608\) −1.29590 −0.0525556
\(609\) 0 0
\(610\) 2.19029 0.0886824
\(611\) −3.15883 −0.127793
\(612\) −7.83877 −0.316864
\(613\) 25.1317 1.01506 0.507530 0.861634i \(-0.330559\pi\)
0.507530 + 0.861634i \(0.330559\pi\)
\(614\) −30.3618 −1.22530
\(615\) −0.413583 −0.0166773
\(616\) 0.146752 0.00591281
\(617\) 12.6233 0.508193 0.254097 0.967179i \(-0.418222\pi\)
0.254097 + 0.967179i \(0.418222\pi\)
\(618\) −7.98792 −0.321321
\(619\) 21.7192 0.872967 0.436484 0.899712i \(-0.356224\pi\)
0.436484 + 0.899712i \(0.356224\pi\)
\(620\) 1.85086 0.0743321
\(621\) −24.6069 −0.987439
\(622\) 23.7875 0.953790
\(623\) 1.26337 0.0506160
\(624\) 2.18598 0.0875093
\(625\) 24.4131 0.976524
\(626\) −28.6746 −1.14607
\(627\) −0.960180 −0.0383459
\(628\) −9.39373 −0.374851
\(629\) 8.81461 0.351462
\(630\) −0.0586060 −0.00233492
\(631\) −39.3594 −1.56687 −0.783437 0.621472i \(-0.786535\pi\)
−0.783437 + 0.621472i \(0.786535\pi\)
\(632\) −4.89008 −0.194517
\(633\) 9.32304 0.370558
\(634\) 7.55794 0.300164
\(635\) 0.536435 0.0212878
\(636\) 4.62565 0.183419
\(637\) −27.5254 −1.09060
\(638\) 0 0
\(639\) −29.4741 −1.16598
\(640\) 0.198062 0.00782910
\(641\) 4.92825 0.194654 0.0973270 0.995252i \(-0.468971\pi\)
0.0973270 + 0.995252i \(0.468971\pi\)
\(642\) −9.15213 −0.361206
\(643\) −7.01075 −0.276477 −0.138239 0.990399i \(-0.544144\pi\)
−0.138239 + 0.990399i \(0.544144\pi\)
\(644\) 0.856232 0.0337403
\(645\) 0.732578 0.0288452
\(646\) −3.77346 −0.148465
\(647\) −14.7289 −0.579051 −0.289526 0.957170i \(-0.593498\pi\)
−0.289526 + 0.957170i \(0.593498\pi\)
\(648\) 6.32304 0.248393
\(649\) −6.79331 −0.266661
\(650\) −19.5405 −0.766441
\(651\) 0.570024 0.0223410
\(652\) 16.2687 0.637133
\(653\) 25.0175 0.979009 0.489504 0.872001i \(-0.337178\pi\)
0.489504 + 0.872001i \(0.337178\pi\)
\(654\) 1.57673 0.0616550
\(655\) 2.89440 0.113093
\(656\) −3.76271 −0.146909
\(657\) 21.3980 0.834817
\(658\) −0.0881460 −0.00343629
\(659\) −48.6590 −1.89549 −0.947743 0.319034i \(-0.896642\pi\)
−0.947743 + 0.319034i \(0.896642\pi\)
\(660\) 0.146752 0.00571231
\(661\) −28.7851 −1.11961 −0.559805 0.828625i \(-0.689124\pi\)
−0.559805 + 0.828625i \(0.689124\pi\)
\(662\) 11.1860 0.434755
\(663\) 6.36526 0.247206
\(664\) −11.6746 −0.453061
\(665\) −0.0282120 −0.00109402
\(666\) −8.14914 −0.315773
\(667\) 0 0
\(668\) −13.7627 −0.532495
\(669\) −0.795233 −0.0307455
\(670\) −2.17868 −0.0841699
\(671\) 14.7646 0.569982
\(672\) 0.0609989 0.00235308
\(673\) 23.1341 0.891753 0.445877 0.895094i \(-0.352892\pi\)
0.445877 + 0.895094i \(0.352892\pi\)
\(674\) 20.7928 0.800910
\(675\) 15.6703 0.603148
\(676\) 2.51573 0.0967588
\(677\) 18.0573 0.693998 0.346999 0.937866i \(-0.387201\pi\)
0.346999 + 0.937866i \(0.387201\pi\)
\(678\) −8.69873 −0.334073
\(679\) 1.16421 0.0446783
\(680\) 0.576728 0.0221165
\(681\) −7.44504 −0.285295
\(682\) 12.4765 0.477750
\(683\) −44.1269 −1.68847 −0.844234 0.535974i \(-0.819944\pi\)
−0.844234 + 0.535974i \(0.819944\pi\)
\(684\) 3.48858 0.133389
\(685\) 0.315748 0.0120641
\(686\) −1.53750 −0.0587020
\(687\) −6.38703 −0.243680
\(688\) 6.66487 0.254096
\(689\) 32.8321 1.25080
\(690\) 0.856232 0.0325962
\(691\) 23.8495 0.907279 0.453639 0.891185i \(-0.350125\pi\)
0.453639 + 0.891185i \(0.350125\pi\)
\(692\) −0.119605 −0.00454670
\(693\) −0.395060 −0.0150071
\(694\) 0.0193774 0.000735554 0
\(695\) 0.255603 0.00969559
\(696\) 0 0
\(697\) −10.9565 −0.415005
\(698\) 29.0315 1.09886
\(699\) −0.408206 −0.0154398
\(700\) −0.545269 −0.0206092
\(701\) 1.12200 0.0423773 0.0211886 0.999775i \(-0.493255\pi\)
0.0211886 + 0.999775i \(0.493255\pi\)
\(702\) −12.4426 −0.469618
\(703\) −3.92287 −0.147954
\(704\) 1.33513 0.0503194
\(705\) −0.0881460 −0.00331977
\(706\) 20.6165 0.775914
\(707\) −0.656514 −0.0246907
\(708\) −2.82371 −0.106121
\(709\) 4.08383 0.153372 0.0766858 0.997055i \(-0.475566\pi\)
0.0766858 + 0.997055i \(0.475566\pi\)
\(710\) 2.16852 0.0813832
\(711\) 13.1642 0.493696
\(712\) 11.4940 0.430754
\(713\) 72.7948 2.72619
\(714\) 0.177620 0.00664726
\(715\) 1.04162 0.0389544
\(716\) −12.6799 −0.473872
\(717\) 0.0489173 0.00182685
\(718\) −20.8901 −0.779611
\(719\) 29.1237 1.08613 0.543065 0.839691i \(-0.317264\pi\)
0.543065 + 0.839691i \(0.317264\pi\)
\(720\) −0.533188 −0.0198707
\(721\) −1.58211 −0.0589207
\(722\) −17.3207 −0.644608
\(723\) −3.44803 −0.128233
\(724\) 7.13467 0.265158
\(725\) 0 0
\(726\) −5.11529 −0.189846
\(727\) 15.8586 0.588164 0.294082 0.955780i \(-0.404986\pi\)
0.294082 + 0.955780i \(0.404986\pi\)
\(728\) 0.432960 0.0160466
\(729\) −11.7627 −0.435656
\(730\) −1.57434 −0.0582688
\(731\) 19.4071 0.717799
\(732\) 6.13706 0.226832
\(733\) 21.4101 0.790801 0.395401 0.918509i \(-0.370606\pi\)
0.395401 + 0.918509i \(0.370606\pi\)
\(734\) −3.76271 −0.138884
\(735\) −0.768086 −0.0283313
\(736\) 7.78986 0.287138
\(737\) −14.6864 −0.540980
\(738\) 10.1293 0.372864
\(739\) 33.6394 1.23744 0.618722 0.785610i \(-0.287651\pi\)
0.618722 + 0.785610i \(0.287651\pi\)
\(740\) 0.599564 0.0220404
\(741\) −2.83281 −0.104066
\(742\) 0.916166 0.0336335
\(743\) −5.43668 −0.199452 −0.0997262 0.995015i \(-0.531797\pi\)
−0.0997262 + 0.995015i \(0.531797\pi\)
\(744\) 5.18598 0.190127
\(745\) −1.32650 −0.0485993
\(746\) 15.0140 0.549702
\(747\) 31.4282 1.14990
\(748\) 3.88769 0.142148
\(749\) −1.81269 −0.0662343
\(750\) −1.09485 −0.0399783
\(751\) 16.7976 0.612954 0.306477 0.951878i \(-0.400850\pi\)
0.306477 + 0.951878i \(0.400850\pi\)
\(752\) −0.801938 −0.0292437
\(753\) −8.43057 −0.307227
\(754\) 0 0
\(755\) −1.88040 −0.0684346
\(756\) −0.347207 −0.0126278
\(757\) −2.51142 −0.0912790 −0.0456395 0.998958i \(-0.514533\pi\)
−0.0456395 + 0.998958i \(0.514533\pi\)
\(758\) −23.5646 −0.855907
\(759\) 5.77181 0.209503
\(760\) −0.256668 −0.00931034
\(761\) −53.5387 −1.94078 −0.970388 0.241552i \(-0.922344\pi\)
−0.970388 + 0.241552i \(0.922344\pi\)
\(762\) 1.50306 0.0544500
\(763\) 0.312290 0.0113057
\(764\) −3.19806 −0.115702
\(765\) −1.55257 −0.0561331
\(766\) −26.8213 −0.969094
\(767\) −20.0422 −0.723682
\(768\) 0.554958 0.0200253
\(769\) −9.24219 −0.333282 −0.166641 0.986018i \(-0.553292\pi\)
−0.166641 + 0.986018i \(0.553292\pi\)
\(770\) 0.0290660 0.00104747
\(771\) 3.06936 0.110540
\(772\) 15.0707 0.542406
\(773\) 37.4373 1.34653 0.673263 0.739404i \(-0.264892\pi\)
0.673263 + 0.739404i \(0.264892\pi\)
\(774\) −17.9420 −0.644911
\(775\) −46.3575 −1.66521
\(776\) 10.5918 0.380223
\(777\) 0.184653 0.00662438
\(778\) 18.4034 0.659795
\(779\) 4.87608 0.174704
\(780\) 0.432960 0.0155025
\(781\) 14.6179 0.523069
\(782\) 22.6829 0.811140
\(783\) 0 0
\(784\) −6.98792 −0.249569
\(785\) −1.86054 −0.0664057
\(786\) 8.10992 0.289271
\(787\) 25.9372 0.924561 0.462281 0.886734i \(-0.347031\pi\)
0.462281 + 0.886734i \(0.347031\pi\)
\(788\) −14.5187 −0.517208
\(789\) −1.21446 −0.0432358
\(790\) −0.968541 −0.0344591
\(791\) −1.72289 −0.0612589
\(792\) −3.59419 −0.127714
\(793\) 43.5599 1.54686
\(794\) 28.9071 1.02587
\(795\) 0.916166 0.0324931
\(796\) 26.5284 0.940274
\(797\) −20.1914 −0.715215 −0.357607 0.933872i \(-0.616407\pi\)
−0.357607 + 0.933872i \(0.616407\pi\)
\(798\) −0.0790483 −0.00279828
\(799\) −2.33513 −0.0826108
\(800\) −4.96077 −0.175390
\(801\) −30.9420 −1.09328
\(802\) 15.3370 0.541570
\(803\) −10.6125 −0.374507
\(804\) −6.10454 −0.215291
\(805\) 0.169587 0.00597716
\(806\) 36.8092 1.29655
\(807\) −16.9028 −0.595005
\(808\) −5.97285 −0.210124
\(809\) −34.4413 −1.21089 −0.605446 0.795886i \(-0.707005\pi\)
−0.605446 + 0.795886i \(0.707005\pi\)
\(810\) 1.25236 0.0440033
\(811\) 32.7536 1.15013 0.575067 0.818106i \(-0.304976\pi\)
0.575067 + 0.818106i \(0.304976\pi\)
\(812\) 0 0
\(813\) −17.5066 −0.613984
\(814\) 4.04162 0.141659
\(815\) 3.22223 0.112870
\(816\) 1.61596 0.0565698
\(817\) −8.63699 −0.302170
\(818\) 34.7308 1.21433
\(819\) −1.16554 −0.0407272
\(820\) −0.745251 −0.0260253
\(821\) 4.34614 0.151681 0.0758407 0.997120i \(-0.475836\pi\)
0.0758407 + 0.997120i \(0.475836\pi\)
\(822\) 0.884707 0.0308577
\(823\) −13.4101 −0.467448 −0.233724 0.972303i \(-0.575091\pi\)
−0.233724 + 0.972303i \(0.575091\pi\)
\(824\) −14.3937 −0.501429
\(825\) −3.67563 −0.127969
\(826\) −0.559270 −0.0194595
\(827\) 26.3424 0.916016 0.458008 0.888948i \(-0.348563\pi\)
0.458008 + 0.888948i \(0.348563\pi\)
\(828\) −20.9705 −0.728774
\(829\) 10.3618 0.359880 0.179940 0.983678i \(-0.442410\pi\)
0.179940 + 0.983678i \(0.442410\pi\)
\(830\) −2.31229 −0.0802608
\(831\) 7.88172 0.273414
\(832\) 3.93900 0.136560
\(833\) −20.3478 −0.705009
\(834\) 0.716185 0.0247994
\(835\) −2.72587 −0.0943327
\(836\) −1.73019 −0.0598397
\(837\) −29.5187 −1.02032
\(838\) −21.9627 −0.758689
\(839\) 26.6752 0.920929 0.460464 0.887678i \(-0.347683\pi\)
0.460464 + 0.887678i \(0.347683\pi\)
\(840\) 0.0120816 0.000416854 0
\(841\) 0 0
\(842\) −40.4349 −1.39348
\(843\) 11.5224 0.396854
\(844\) 16.7995 0.578264
\(845\) 0.498271 0.0171410
\(846\) 2.15883 0.0742222
\(847\) −1.01315 −0.0348121
\(848\) 8.33513 0.286229
\(849\) −9.62697 −0.330397
\(850\) −14.4450 −0.495461
\(851\) 23.5810 0.808348
\(852\) 6.07606 0.208163
\(853\) 19.7071 0.674758 0.337379 0.941369i \(-0.390460\pi\)
0.337379 + 0.941369i \(0.390460\pi\)
\(854\) 1.21552 0.0415943
\(855\) 0.690957 0.0236302
\(856\) −16.4916 −0.563670
\(857\) 2.15691 0.0736788 0.0368394 0.999321i \(-0.488271\pi\)
0.0368394 + 0.999321i \(0.488271\pi\)
\(858\) 2.91856 0.0996380
\(859\) −34.4510 −1.17545 −0.587727 0.809060i \(-0.699977\pi\)
−0.587727 + 0.809060i \(0.699977\pi\)
\(860\) 1.32006 0.0450137
\(861\) −0.229521 −0.00782206
\(862\) −22.1008 −0.752757
\(863\) −9.58881 −0.326407 −0.163203 0.986592i \(-0.552183\pi\)
−0.163203 + 0.986592i \(0.552183\pi\)
\(864\) −3.15883 −0.107466
\(865\) −0.0236892 −0.000805458 0
\(866\) 3.88710 0.132089
\(867\) −4.72886 −0.160600
\(868\) 1.02715 0.0348636
\(869\) −6.52888 −0.221477
\(870\) 0 0
\(871\) −43.3290 −1.46815
\(872\) 2.84117 0.0962140
\(873\) −28.5133 −0.965030
\(874\) −10.0949 −0.341463
\(875\) −0.216849 −0.00733082
\(876\) −4.41119 −0.149040
\(877\) −0.842231 −0.0284401 −0.0142201 0.999899i \(-0.504527\pi\)
−0.0142201 + 0.999899i \(0.504527\pi\)
\(878\) 10.1575 0.342799
\(879\) −9.72720 −0.328090
\(880\) 0.264438 0.00891420
\(881\) 8.22819 0.277215 0.138607 0.990347i \(-0.455737\pi\)
0.138607 + 0.990347i \(0.455737\pi\)
\(882\) 18.8116 0.633420
\(883\) 54.3021 1.82741 0.913706 0.406376i \(-0.133208\pi\)
0.913706 + 0.406376i \(0.133208\pi\)
\(884\) 11.4698 0.385771
\(885\) −0.559270 −0.0187997
\(886\) −19.2965 −0.648278
\(887\) 13.5013 0.453328 0.226664 0.973973i \(-0.427218\pi\)
0.226664 + 0.973973i \(0.427218\pi\)
\(888\) 1.67994 0.0563751
\(889\) 0.297699 0.00998450
\(890\) 2.27652 0.0763091
\(891\) 8.44206 0.282820
\(892\) −1.43296 −0.0479791
\(893\) 1.03923 0.0347765
\(894\) −3.71678 −0.124308
\(895\) −2.51142 −0.0839474
\(896\) 0.109916 0.00367204
\(897\) 17.0285 0.568564
\(898\) −21.6394 −0.722116
\(899\) 0 0
\(900\) 13.3545 0.445150
\(901\) 24.2707 0.808573
\(902\) −5.02369 −0.167271
\(903\) 0.406550 0.0135291
\(904\) −15.6746 −0.521328
\(905\) 1.41311 0.0469733
\(906\) −5.26875 −0.175042
\(907\) 46.4795 1.54333 0.771663 0.636032i \(-0.219425\pi\)
0.771663 + 0.636032i \(0.219425\pi\)
\(908\) −13.4155 −0.445209
\(909\) 16.0790 0.533308
\(910\) 0.0857531 0.00284269
\(911\) −21.1685 −0.701344 −0.350672 0.936498i \(-0.614047\pi\)
−0.350672 + 0.936498i \(0.614047\pi\)
\(912\) −0.719169 −0.0238141
\(913\) −15.5870 −0.515855
\(914\) 2.53079 0.0837113
\(915\) 1.21552 0.0401839
\(916\) −11.5090 −0.380269
\(917\) 1.60627 0.0530437
\(918\) −9.19806 −0.303581
\(919\) −20.1605 −0.665033 −0.332517 0.943097i \(-0.607898\pi\)
−0.332517 + 0.943097i \(0.607898\pi\)
\(920\) 1.54288 0.0508671
\(921\) −16.8495 −0.555211
\(922\) −10.7627 −0.354451
\(923\) 43.1269 1.41954
\(924\) 0.0814412 0.00267922
\(925\) −15.0170 −0.493755
\(926\) −6.12392 −0.201244
\(927\) 38.7482 1.27266
\(928\) 0 0
\(929\) 19.7952 0.649461 0.324730 0.945807i \(-0.394726\pi\)
0.324730 + 0.945807i \(0.394726\pi\)
\(930\) 1.02715 0.0336815
\(931\) 9.05562 0.296786
\(932\) −0.735562 −0.0240941
\(933\) 13.2010 0.432183
\(934\) −34.9638 −1.14405
\(935\) 0.770005 0.0251819
\(936\) −10.6039 −0.346599
\(937\) −56.0883 −1.83232 −0.916162 0.400809i \(-0.868729\pi\)
−0.916162 + 0.400809i \(0.868729\pi\)
\(938\) −1.20908 −0.0394778
\(939\) −15.9132 −0.519307
\(940\) −0.158834 −0.00518058
\(941\) −2.40688 −0.0784620 −0.0392310 0.999230i \(-0.512491\pi\)
−0.0392310 + 0.999230i \(0.512491\pi\)
\(942\) −5.21313 −0.169853
\(943\) −29.3110 −0.954496
\(944\) −5.08815 −0.165605
\(945\) −0.0687686 −0.00223704
\(946\) 8.89844 0.289313
\(947\) −2.39745 −0.0779067 −0.0389534 0.999241i \(-0.512402\pi\)
−0.0389534 + 0.999241i \(0.512402\pi\)
\(948\) −2.71379 −0.0881399
\(949\) −31.3099 −1.01636
\(950\) 6.42865 0.208573
\(951\) 4.19434 0.136011
\(952\) 0.320060 0.0103732
\(953\) −33.4789 −1.08449 −0.542244 0.840221i \(-0.682425\pi\)
−0.542244 + 0.840221i \(0.682425\pi\)
\(954\) −22.4383 −0.726468
\(955\) −0.633415 −0.0204968
\(956\) 0.0881460 0.00285085
\(957\) 0 0
\(958\) 30.8732 0.997468
\(959\) 0.175227 0.00565838
\(960\) 0.109916 0.00354753
\(961\) 56.3256 1.81695
\(962\) 11.9239 0.384443
\(963\) 44.3957 1.43063
\(964\) −6.21313 −0.200111
\(965\) 2.98493 0.0960884
\(966\) 0.475173 0.0152884
\(967\) −35.1739 −1.13112 −0.565558 0.824708i \(-0.691339\pi\)
−0.565558 + 0.824708i \(0.691339\pi\)
\(968\) −9.21744 −0.296260
\(969\) −2.09411 −0.0672726
\(970\) 2.09783 0.0673574
\(971\) 27.5332 0.883582 0.441791 0.897118i \(-0.354343\pi\)
0.441791 + 0.897118i \(0.354343\pi\)
\(972\) 12.9855 0.416511
\(973\) 0.141849 0.00454748
\(974\) −0.408206 −0.0130798
\(975\) −10.8442 −0.347291
\(976\) 11.0586 0.353977
\(977\) −11.3593 −0.363416 −0.181708 0.983353i \(-0.558163\pi\)
−0.181708 + 0.983353i \(0.558163\pi\)
\(978\) 9.02848 0.288699
\(979\) 15.3459 0.490456
\(980\) −1.38404 −0.0442116
\(981\) −7.64848 −0.244197
\(982\) −20.1618 −0.643389
\(983\) 32.9189 1.04995 0.524975 0.851118i \(-0.324075\pi\)
0.524975 + 0.851118i \(0.324075\pi\)
\(984\) −2.08815 −0.0665677
\(985\) −2.87561 −0.0916245
\(986\) 0 0
\(987\) −0.0489173 −0.00155706
\(988\) −5.10454 −0.162397
\(989\) 51.9184 1.65091
\(990\) −0.711873 −0.0226248
\(991\) 22.4814 0.714145 0.357073 0.934077i \(-0.383775\pi\)
0.357073 + 0.934077i \(0.383775\pi\)
\(992\) 9.34481 0.296698
\(993\) 6.20775 0.196997
\(994\) 1.20344 0.0381708
\(995\) 5.25428 0.166572
\(996\) −6.47889 −0.205292
\(997\) 22.1244 0.700686 0.350343 0.936621i \(-0.386065\pi\)
0.350343 + 0.936621i \(0.386065\pi\)
\(998\) −10.3787 −0.328531
\(999\) −9.56225 −0.302536
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1682.2.a.n.1.2 3
29.5 even 14 58.2.d.a.25.1 yes 6
29.6 even 14 58.2.d.a.7.1 6
29.12 odd 4 1682.2.b.g.1681.5 6
29.17 odd 4 1682.2.b.g.1681.2 6
29.28 even 2 1682.2.a.m.1.2 3
87.5 odd 14 522.2.k.c.199.1 6
87.35 odd 14 522.2.k.c.181.1 6
116.35 odd 14 464.2.u.b.65.1 6
116.63 odd 14 464.2.u.b.257.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
58.2.d.a.7.1 6 29.6 even 14
58.2.d.a.25.1 yes 6 29.5 even 14
464.2.u.b.65.1 6 116.35 odd 14
464.2.u.b.257.1 6 116.63 odd 14
522.2.k.c.181.1 6 87.35 odd 14
522.2.k.c.199.1 6 87.5 odd 14
1682.2.a.m.1.2 3 29.28 even 2
1682.2.a.n.1.2 3 1.1 even 1 trivial
1682.2.b.g.1681.2 6 29.17 odd 4
1682.2.b.g.1681.5 6 29.12 odd 4