Properties

Label 1682.2.a.m.1.2
Level 16821682
Weight 22
Character 1682.1
Self dual yes
Analytic conductor 13.43113.431
Analytic rank 11
Dimension 33
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1682,2,Mod(1,1682)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1682, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1682.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1682=2292 1682 = 2 \cdot 29^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1682.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 13.430837620013.4308376200
Analytic rank: 11
Dimension: 33
Coefficient field: Q(ζ14)+\Q(\zeta_{14})^+
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x3x22x+1 x^{3} - x^{2} - 2x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 58)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.2
Root 1.24698-1.24698 of defining polynomial
Character χ\chi == 1682.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q1.00000q20.554958q3+1.00000q4+0.198062q5+0.554958q6+0.109916q71.00000q82.69202q90.198062q101.33513q110.554958q12+3.93900q130.109916q140.109916q15+1.00000q162.91185q17+2.69202q18+1.29590q19+0.198062q200.0609989q21+1.33513q22+7.78986q23+0.554958q244.96077q253.93900q26+3.15883q27+0.109916q28+0.109916q309.34481q311.00000q32+0.740939q33+2.91185q34+0.0217703q352.69202q363.02715q371.29590q382.18598q390.198062q40+3.76271q41+0.0609989q426.66487q431.33513q440.533188q457.78986q46+0.801938q470.554958q486.98792q49+4.96077q50+1.61596q51+3.93900q52+8.33513q533.15883q540.264438q550.109916q560.719169q575.08815q590.109916q6011.0586q61+9.34481q620.295897q63+1.00000q64+0.780167q650.740939q6611.0000q672.91185q684.32304q690.0217703q70+10.9487q71+2.69202q72+7.94869q73+3.02715q74+2.75302q75+1.29590q760.146752q77+2.18598q78+4.89008q79+0.198062q80+6.32304q813.76271q8211.6746q830.0609989q840.576728q85+6.66487q86+1.33513q8811.4940q89+0.533188q90+0.432960q91+7.78986q92+5.18598q930.801938q94+0.256668q95+0.554958q9610.5918q97+6.98792q98+3.59419q99+O(q100)q-1.00000 q^{2} -0.554958 q^{3} +1.00000 q^{4} +0.198062 q^{5} +0.554958 q^{6} +0.109916 q^{7} -1.00000 q^{8} -2.69202 q^{9} -0.198062 q^{10} -1.33513 q^{11} -0.554958 q^{12} +3.93900 q^{13} -0.109916 q^{14} -0.109916 q^{15} +1.00000 q^{16} -2.91185 q^{17} +2.69202 q^{18} +1.29590 q^{19} +0.198062 q^{20} -0.0609989 q^{21} +1.33513 q^{22} +7.78986 q^{23} +0.554958 q^{24} -4.96077 q^{25} -3.93900 q^{26} +3.15883 q^{27} +0.109916 q^{28} +0.109916 q^{30} -9.34481 q^{31} -1.00000 q^{32} +0.740939 q^{33} +2.91185 q^{34} +0.0217703 q^{35} -2.69202 q^{36} -3.02715 q^{37} -1.29590 q^{38} -2.18598 q^{39} -0.198062 q^{40} +3.76271 q^{41} +0.0609989 q^{42} -6.66487 q^{43} -1.33513 q^{44} -0.533188 q^{45} -7.78986 q^{46} +0.801938 q^{47} -0.554958 q^{48} -6.98792 q^{49} +4.96077 q^{50} +1.61596 q^{51} +3.93900 q^{52} +8.33513 q^{53} -3.15883 q^{54} -0.264438 q^{55} -0.109916 q^{56} -0.719169 q^{57} -5.08815 q^{59} -0.109916 q^{60} -11.0586 q^{61} +9.34481 q^{62} -0.295897 q^{63} +1.00000 q^{64} +0.780167 q^{65} -0.740939 q^{66} -11.0000 q^{67} -2.91185 q^{68} -4.32304 q^{69} -0.0217703 q^{70} +10.9487 q^{71} +2.69202 q^{72} +7.94869 q^{73} +3.02715 q^{74} +2.75302 q^{75} +1.29590 q^{76} -0.146752 q^{77} +2.18598 q^{78} +4.89008 q^{79} +0.198062 q^{80} +6.32304 q^{81} -3.76271 q^{82} -11.6746 q^{83} -0.0609989 q^{84} -0.576728 q^{85} +6.66487 q^{86} +1.33513 q^{88} -11.4940 q^{89} +0.533188 q^{90} +0.432960 q^{91} +7.78986 q^{92} +5.18598 q^{93} -0.801938 q^{94} +0.256668 q^{95} +0.554958 q^{96} -10.5918 q^{97} +6.98792 q^{98} +3.59419 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 3q3q22q3+3q4+5q5+2q6+q73q83q95q103q112q12+2q13q14q15+3q165q17+3q1810q19+5q20++24q99+O(q100) 3 q - 3 q^{2} - 2 q^{3} + 3 q^{4} + 5 q^{5} + 2 q^{6} + q^{7} - 3 q^{8} - 3 q^{9} - 5 q^{10} - 3 q^{11} - 2 q^{12} + 2 q^{13} - q^{14} - q^{15} + 3 q^{16} - 5 q^{17} + 3 q^{18} - 10 q^{19} + 5 q^{20}+ \cdots + 24 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −1.00000 −0.707107
33 −0.554958 −0.320405 −0.160203 0.987084i 0.551215π-0.551215\pi
−0.160203 + 0.987084i 0.551215π0.551215\pi
44 1.00000 0.500000
55 0.198062 0.0885761 0.0442881 0.999019i 0.485898π-0.485898\pi
0.0442881 + 0.999019i 0.485898π0.485898\pi
66 0.554958 0.226561
77 0.109916 0.0415444 0.0207722 0.999784i 0.493388π-0.493388\pi
0.0207722 + 0.999784i 0.493388π0.493388\pi
88 −1.00000 −0.353553
99 −2.69202 −0.897340
1010 −0.198062 −0.0626328
1111 −1.33513 −0.402556 −0.201278 0.979534i 0.564509π-0.564509\pi
−0.201278 + 0.979534i 0.564509π0.564509\pi
1212 −0.554958 −0.160203
1313 3.93900 1.09248 0.546241 0.837628i 0.316058π-0.316058\pi
0.546241 + 0.837628i 0.316058π0.316058\pi
1414 −0.109916 −0.0293764
1515 −0.109916 −0.0283803
1616 1.00000 0.250000
1717 −2.91185 −0.706228 −0.353114 0.935580i 0.614877π-0.614877\pi
−0.353114 + 0.935580i 0.614877π0.614877\pi
1818 2.69202 0.634516
1919 1.29590 0.297299 0.148650 0.988890i 0.452507π-0.452507\pi
0.148650 + 0.988890i 0.452507π0.452507\pi
2020 0.198062 0.0442881
2121 −0.0609989 −0.0133111
2222 1.33513 0.284650
2323 7.78986 1.62430 0.812149 0.583451i 0.198298π-0.198298\pi
0.812149 + 0.583451i 0.198298π0.198298\pi
2424 0.554958 0.113280
2525 −4.96077 −0.992154
2626 −3.93900 −0.772502
2727 3.15883 0.607918
2828 0.109916 0.0207722
2929 0 0
3030 0.109916 0.0200679
3131 −9.34481 −1.67838 −0.839189 0.543840i 0.816970π-0.816970\pi
−0.839189 + 0.543840i 0.816970π0.816970\pi
3232 −1.00000 −0.176777
3333 0.740939 0.128981
3434 2.91185 0.499379
3535 0.0217703 0.00367985
3636 −2.69202 −0.448670
3737 −3.02715 −0.497660 −0.248830 0.968547i 0.580046π-0.580046\pi
−0.248830 + 0.968547i 0.580046π0.580046\pi
3838 −1.29590 −0.210222
3939 −2.18598 −0.350037
4040 −0.198062 −0.0313164
4141 3.76271 0.587636 0.293818 0.955861i 0.405074π-0.405074\pi
0.293818 + 0.955861i 0.405074π0.405074\pi
4242 0.0609989 0.00941234
4343 −6.66487 −1.01638 −0.508192 0.861244i 0.669686π-0.669686\pi
−0.508192 + 0.861244i 0.669686π0.669686\pi
4444 −1.33513 −0.201278
4545 −0.533188 −0.0794830
4646 −7.78986 −1.14855
4747 0.801938 0.116975 0.0584873 0.998288i 0.481372π-0.481372\pi
0.0584873 + 0.998288i 0.481372π0.481372\pi
4848 −0.554958 −0.0801013
4949 −6.98792 −0.998274
5050 4.96077 0.701559
5151 1.61596 0.226279
5252 3.93900 0.546241
5353 8.33513 1.14492 0.572459 0.819934i 0.305990π-0.305990\pi
0.572459 + 0.819934i 0.305990π0.305990\pi
5454 −3.15883 −0.429863
5555 −0.264438 −0.0356568
5656 −0.109916 −0.0146882
5757 −0.719169 −0.0952562
5858 0 0
5959 −5.08815 −0.662420 −0.331210 0.943557i 0.607457π-0.607457\pi
−0.331210 + 0.943557i 0.607457π0.607457\pi
6060 −0.109916 −0.0141901
6161 −11.0586 −1.41591 −0.707955 0.706258i 0.750382π-0.750382\pi
−0.707955 + 0.706258i 0.750382π0.750382\pi
6262 9.34481 1.18679
6363 −0.295897 −0.0372795
6464 1.00000 0.125000
6565 0.780167 0.0967679
6666 −0.740939 −0.0912033
6767 −11.0000 −1.34386 −0.671932 0.740613i 0.734535π-0.734535\pi
−0.671932 + 0.740613i 0.734535π0.734535\pi
6868 −2.91185 −0.353114
6969 −4.32304 −0.520433
7070 −0.0217703 −0.00260204
7171 10.9487 1.29937 0.649685 0.760203i 0.274901π-0.274901\pi
0.649685 + 0.760203i 0.274901π0.274901\pi
7272 2.69202 0.317258
7373 7.94869 0.930324 0.465162 0.885226i 0.345996π-0.345996\pi
0.465162 + 0.885226i 0.345996π0.345996\pi
7474 3.02715 0.351899
7575 2.75302 0.317891
7676 1.29590 0.148650
7777 −0.146752 −0.0167239
7878 2.18598 0.247514
7979 4.89008 0.550177 0.275089 0.961419i 0.411293π-0.411293\pi
0.275089 + 0.961419i 0.411293π0.411293\pi
8080 0.198062 0.0221440
8181 6.32304 0.702560
8282 −3.76271 −0.415522
8383 −11.6746 −1.28145 −0.640725 0.767771i 0.721366π-0.721366\pi
−0.640725 + 0.767771i 0.721366π0.721366\pi
8484 −0.0609989 −0.00665553
8585 −0.576728 −0.0625550
8686 6.66487 0.718692
8787 0 0
8888 1.33513 0.142325
8989 −11.4940 −1.21836 −0.609179 0.793033i 0.708501π-0.708501\pi
−0.609179 + 0.793033i 0.708501π0.708501\pi
9090 0.533188 0.0562029
9191 0.432960 0.0453866
9292 7.78986 0.812149
9393 5.18598 0.537761
9494 −0.801938 −0.0827136
9595 0.256668 0.0263336
9696 0.554958 0.0566402
9797 −10.5918 −1.07543 −0.537717 0.843125i 0.680713π-0.680713\pi
−0.537717 + 0.843125i 0.680713π0.680713\pi
9898 6.98792 0.705886
9999 3.59419 0.361229
100100 −4.96077 −0.496077
101101 5.97285 0.594321 0.297161 0.954828i 0.403960π-0.403960\pi
0.297161 + 0.954828i 0.403960π0.403960\pi
102102 −1.61596 −0.160004
103103 −14.3937 −1.41826 −0.709128 0.705080i 0.750911π-0.750911\pi
−0.709128 + 0.705080i 0.750911π0.750911\pi
104104 −3.93900 −0.386251
105105 −0.0120816 −0.00117904
106106 −8.33513 −0.809579
107107 −16.4916 −1.59430 −0.797150 0.603781i 0.793660π-0.793660\pi
−0.797150 + 0.603781i 0.793660π0.793660\pi
108108 3.15883 0.303959
109109 2.84117 0.272134 0.136067 0.990700i 0.456554π-0.456554\pi
0.136067 + 0.990700i 0.456554π0.456554\pi
110110 0.264438 0.0252132
111111 1.67994 0.159453
112112 0.109916 0.0103861
113113 15.6746 1.47454 0.737269 0.675599i 0.236115π-0.236115\pi
0.737269 + 0.675599i 0.236115π0.236115\pi
114114 0.719169 0.0673563
115115 1.54288 0.143874
116116 0 0
117117 −10.6039 −0.980329
118118 5.08815 0.468402
119119 −0.320060 −0.0293399
120120 0.109916 0.0100339
121121 −9.21744 −0.837949
122122 11.0586 1.00120
123123 −2.08815 −0.188282
124124 −9.34481 −0.839189
125125 −1.97285 −0.176457
126126 0.295897 0.0263606
127127 −2.70841 −0.240333 −0.120166 0.992754i 0.538343π-0.538343\pi
−0.120166 + 0.992754i 0.538343π0.538343\pi
128128 −1.00000 −0.0883883
129129 3.69873 0.325655
130130 −0.780167 −0.0684252
131131 −14.6136 −1.27679 −0.638397 0.769708i 0.720402π-0.720402\pi
−0.638397 + 0.769708i 0.720402π0.720402\pi
132132 0.740939 0.0644904
133133 0.142440 0.0123511
134134 11.0000 0.950255
135135 0.625646 0.0538470
136136 2.91185 0.249689
137137 −1.59419 −0.136201 −0.0681003 0.997678i 0.521694π-0.521694\pi
−0.0681003 + 0.997678i 0.521694π0.521694\pi
138138 4.32304 0.368002
139139 1.29052 0.109460 0.0547302 0.998501i 0.482570π-0.482570\pi
0.0547302 + 0.998501i 0.482570π0.482570\pi
140140 0.0217703 0.00183992
141141 −0.445042 −0.0374793
142142 −10.9487 −0.918794
143143 −5.25906 −0.439785
144144 −2.69202 −0.224335
145145 0 0
146146 −7.94869 −0.657838
147147 3.87800 0.319852
148148 −3.02715 −0.248830
149149 −6.69740 −0.548672 −0.274336 0.961634i 0.588458π-0.588458\pi
−0.274336 + 0.961634i 0.588458π0.588458\pi
150150 −2.75302 −0.224783
151151 −9.49396 −0.772607 −0.386304 0.922372i 0.626248π-0.626248\pi
−0.386304 + 0.922372i 0.626248π0.626248\pi
152152 −1.29590 −0.105111
153153 7.83877 0.633727
154154 0.146752 0.0118256
155155 −1.85086 −0.148664
156156 −2.18598 −0.175019
157157 9.39373 0.749701 0.374851 0.927085i 0.377694π-0.377694\pi
0.374851 + 0.927085i 0.377694π0.377694\pi
158158 −4.89008 −0.389034
159159 −4.62565 −0.366838
160160 −0.198062 −0.0156582
161161 0.856232 0.0674805
162162 −6.32304 −0.496785
163163 −16.2687 −1.27427 −0.637133 0.770754i 0.719880π-0.719880\pi
−0.637133 + 0.770754i 0.719880π0.719880\pi
164164 3.76271 0.293818
165165 0.146752 0.0114246
166166 11.6746 0.906122
167167 −13.7627 −1.06499 −0.532495 0.846433i 0.678746π-0.678746\pi
−0.532495 + 0.846433i 0.678746π0.678746\pi
168168 0.0609989 0.00470617
169169 2.51573 0.193518
170170 0.576728 0.0442330
171171 −3.48858 −0.266779
172172 −6.66487 −0.508192
173173 −0.119605 −0.00909340 −0.00454670 0.999990i 0.501447π-0.501447\pi
−0.00454670 + 0.999990i 0.501447π0.501447\pi
174174 0 0
175175 −0.545269 −0.0412185
176176 −1.33513 −0.100639
177177 2.82371 0.212243
178178 11.4940 0.861509
179179 −12.6799 −0.947743 −0.473872 0.880594i 0.657144π-0.657144\pi
−0.473872 + 0.880594i 0.657144π0.657144\pi
180180 −0.533188 −0.0397415
181181 7.13467 0.530316 0.265158 0.964205i 0.414576π-0.414576\pi
0.265158 + 0.964205i 0.414576π0.414576\pi
182182 −0.432960 −0.0320932
183183 6.13706 0.453665
184184 −7.78986 −0.574276
185185 −0.599564 −0.0440808
186186 −5.18598 −0.380255
187187 3.88769 0.284296
188188 0.801938 0.0584873
189189 0.347207 0.0252556
190190 −0.256668 −0.0186207
191191 3.19806 0.231404 0.115702 0.993284i 0.463088π-0.463088\pi
0.115702 + 0.993284i 0.463088π0.463088\pi
192192 −0.554958 −0.0400507
193193 −15.0707 −1.08481 −0.542406 0.840117i 0.682487π-0.682487\pi
−0.542406 + 0.840117i 0.682487π0.682487\pi
194194 10.5918 0.760446
195195 −0.432960 −0.0310049
196196 −6.98792 −0.499137
197197 −14.5187 −1.03442 −0.517208 0.855860i 0.673029π-0.673029\pi
−0.517208 + 0.855860i 0.673029π0.673029\pi
198198 −3.59419 −0.255428
199199 26.5284 1.88055 0.940274 0.340418i 0.110569π-0.110569\pi
0.940274 + 0.340418i 0.110569π0.110569\pi
200200 4.96077 0.350780
201201 6.10454 0.430581
202202 −5.97285 −0.420248
203203 0 0
204204 1.61596 0.113140
205205 0.745251 0.0520506
206206 14.3937 1.00286
207207 −20.9705 −1.45755
208208 3.93900 0.273121
209209 −1.73019 −0.119679
210210 0.0120816 0.000833709 0
211211 −16.7995 −1.15653 −0.578264 0.815850i 0.696270π-0.696270\pi
−0.578264 + 0.815850i 0.696270π0.696270\pi
212212 8.33513 0.572459
213213 −6.07606 −0.416325
214214 16.4916 1.12734
215215 −1.32006 −0.0900274
216216 −3.15883 −0.214931
217217 −1.02715 −0.0697273
218218 −2.84117 −0.192428
219219 −4.41119 −0.298081
220220 −0.264438 −0.0178284
221221 −11.4698 −0.771542
222222 −1.67994 −0.112750
223223 −1.43296 −0.0959581 −0.0479791 0.998848i 0.515278π-0.515278\pi
−0.0479791 + 0.998848i 0.515278π0.515278\pi
224224 −0.109916 −0.00734409
225225 13.3545 0.890300
226226 −15.6746 −1.04266
227227 −13.4155 −0.890418 −0.445209 0.895427i 0.646871π-0.646871\pi
−0.445209 + 0.895427i 0.646871π0.646871\pi
228228 −0.719169 −0.0476281
229229 11.5090 0.760538 0.380269 0.924876i 0.375831π-0.375831\pi
0.380269 + 0.924876i 0.375831π0.375831\pi
230230 −1.54288 −0.101734
231231 0.0814412 0.00535844
232232 0 0
233233 −0.735562 −0.0481883 −0.0240941 0.999710i 0.507670π-0.507670\pi
−0.0240941 + 0.999710i 0.507670π0.507670\pi
234234 10.6039 0.693197
235235 0.158834 0.0103612
236236 −5.08815 −0.331210
237237 −2.71379 −0.176280
238238 0.320060 0.0207464
239239 0.0881460 0.00570169 0.00285085 0.999996i 0.499093π-0.499093\pi
0.00285085 + 0.999996i 0.499093π0.499093\pi
240240 −0.109916 −0.00709506
241241 −6.21313 −0.400223 −0.200111 0.979773i 0.564130π-0.564130\pi
−0.200111 + 0.979773i 0.564130π0.564130\pi
242242 9.21744 0.592519
243243 −12.9855 −0.833022
244244 −11.0586 −0.707955
245245 −1.38404 −0.0884233
246246 2.08815 0.133135
247247 5.10454 0.324794
248248 9.34481 0.593396
249249 6.47889 0.410583
250250 1.97285 0.124774
251251 15.1914 0.958870 0.479435 0.877577i 0.340842π-0.340842\pi
0.479435 + 0.877577i 0.340842π0.340842\pi
252252 −0.295897 −0.0186398
253253 −10.4004 −0.653870
254254 2.70841 0.169941
255255 0.320060 0.0200429
256256 1.00000 0.0625000
257257 5.53079 0.345002 0.172501 0.985009i 0.444815π-0.444815\pi
0.172501 + 0.985009i 0.444815π0.444815\pi
258258 −3.69873 −0.230273
259259 −0.332733 −0.0206750
260260 0.780167 0.0483839
261261 0 0
262262 14.6136 0.902829
263263 2.18837 0.134941 0.0674704 0.997721i 0.478507π-0.478507\pi
0.0674704 + 0.997721i 0.478507π0.478507\pi
264264 −0.740939 −0.0456016
265265 1.65087 0.101412
266266 −0.142440 −0.00873357
267267 6.37867 0.390368
268268 −11.0000 −0.671932
269269 30.4577 1.85704 0.928520 0.371283i 0.121082π-0.121082\pi
0.928520 + 0.371283i 0.121082π0.121082\pi
270270 −0.625646 −0.0380756
271271 31.5459 1.91627 0.958137 0.286309i 0.0924285π-0.0924285\pi
0.958137 + 0.286309i 0.0924285π0.0924285\pi
272272 −2.91185 −0.176557
273273 −0.240275 −0.0145421
274274 1.59419 0.0963083
275275 6.62325 0.399397
276276 −4.32304 −0.260217
277277 14.2024 0.853338 0.426669 0.904408i 0.359687π-0.359687\pi
0.426669 + 0.904408i 0.359687π0.359687\pi
278278 −1.29052 −0.0774003
279279 25.1564 1.50608
280280 −0.0217703 −0.00130102
281281 20.7627 1.23860 0.619300 0.785155i 0.287417π-0.287417\pi
0.619300 + 0.785155i 0.287417π0.287417\pi
282282 0.445042 0.0265019
283283 −17.3472 −1.03118 −0.515592 0.856834i 0.672428π-0.672428\pi
−0.515592 + 0.856834i 0.672428π0.672428\pi
284284 10.9487 0.649685
285285 −0.142440 −0.00843743
286286 5.25906 0.310975
287287 0.413583 0.0244130
288288 2.69202 0.158629
289289 −8.52111 −0.501242
290290 0 0
291291 5.87800 0.344575
292292 7.94869 0.465162
293293 17.5278 1.02399 0.511993 0.858990i 0.328907π-0.328907\pi
0.511993 + 0.858990i 0.328907π0.328907\pi
294294 −3.87800 −0.226170
295295 −1.00777 −0.0586746
296296 3.02715 0.175949
297297 −4.21744 −0.244721
298298 6.69740 0.387970
299299 30.6843 1.77452
300300 2.75302 0.158946
301301 −0.732578 −0.0422251
302302 9.49396 0.546316
303303 −3.31468 −0.190424
304304 1.29590 0.0743248
305305 −2.19029 −0.125416
306306 −7.83877 −0.448113
307307 30.3618 1.73284 0.866420 0.499316i 0.166415π-0.166415\pi
0.866420 + 0.499316i 0.166415π0.166415\pi
308308 −0.146752 −0.00836197
309309 7.98792 0.454417
310310 1.85086 0.105122
311311 −23.7875 −1.34886 −0.674432 0.738337i 0.735611π-0.735611\pi
−0.674432 + 0.738337i 0.735611π0.735611\pi
312312 2.18598 0.123757
313313 −28.6746 −1.62078 −0.810391 0.585889i 0.800745π-0.800745\pi
−0.810391 + 0.585889i 0.800745π0.800745\pi
314314 −9.39373 −0.530119
315315 −0.0586060 −0.00330208
316316 4.89008 0.275089
317317 −7.55794 −0.424496 −0.212248 0.977216i 0.568079π-0.568079\pi
−0.212248 + 0.977216i 0.568079π0.568079\pi
318318 4.62565 0.259393
319319 0 0
320320 0.198062 0.0110720
321321 9.15213 0.510822
322322 −0.856232 −0.0477159
323323 −3.77346 −0.209961
324324 6.32304 0.351280
325325 −19.5405 −1.08391
326326 16.2687 0.901043
327327 −1.57673 −0.0871933
328328 −3.76271 −0.207761
329329 0.0881460 0.00485965
330330 −0.146752 −0.00807843
331331 −11.1860 −0.614837 −0.307419 0.951574i 0.599465π-0.599465\pi
−0.307419 + 0.951574i 0.599465π0.599465\pi
332332 −11.6746 −0.640725
333333 8.14914 0.446570
334334 13.7627 0.753062
335335 −2.17868 −0.119034
336336 −0.0609989 −0.00332776
337337 −20.7928 −1.13266 −0.566329 0.824179i 0.691637π-0.691637\pi
−0.566329 + 0.824179i 0.691637π0.691637\pi
338338 −2.51573 −0.136838
339339 −8.69873 −0.472450
340340 −0.576728 −0.0312775
341341 12.4765 0.675640
342342 3.48858 0.188641
343343 −1.53750 −0.0830172
344344 6.66487 0.359346
345345 −0.856232 −0.0460980
346346 0.119605 0.00643000
347347 0.0193774 0.00104023 0.000520116 1.00000i 0.499834π-0.499834\pi
0.000520116 1.00000i 0.499834π0.499834\pi
348348 0 0
349349 29.0315 1.55402 0.777009 0.629489i 0.216736π-0.216736\pi
0.777009 + 0.629489i 0.216736π0.216736\pi
350350 0.545269 0.0291459
351351 12.4426 0.664139
352352 1.33513 0.0711624
353353 20.6165 1.09731 0.548654 0.836049i 0.315140π-0.315140\pi
0.548654 + 0.836049i 0.315140π0.315140\pi
354354 −2.82371 −0.150078
355355 2.16852 0.115093
356356 −11.4940 −0.609179
357357 0.177620 0.00940065
358358 12.6799 0.670156
359359 20.8901 1.10254 0.551268 0.834328i 0.314144π-0.314144\pi
0.551268 + 0.834328i 0.314144π0.314144\pi
360360 0.533188 0.0281015
361361 −17.3207 −0.911613
362362 −7.13467 −0.374990
363363 5.11529 0.268483
364364 0.432960 0.0226933
365365 1.57434 0.0824045
366366 −6.13706 −0.320789
367367 3.76271 0.196412 0.0982059 0.995166i 0.468690π-0.468690\pi
0.0982059 + 0.995166i 0.468690π0.468690\pi
368368 7.78986 0.406074
369369 −10.1293 −0.527310
370370 0.599564 0.0311698
371371 0.916166 0.0475650
372372 5.18598 0.268881
373373 15.0140 0.777395 0.388698 0.921365i 0.372925π-0.372925\pi
0.388698 + 0.921365i 0.372925π0.372925\pi
374374 −3.88769 −0.201028
375375 1.09485 0.0565379
376376 −0.801938 −0.0413568
377377 0 0
378378 −0.347207 −0.0178584
379379 23.5646 1.21043 0.605217 0.796060i 0.293086π-0.293086\pi
0.605217 + 0.796060i 0.293086π0.293086\pi
380380 0.256668 0.0131668
381381 1.50306 0.0770039
382382 −3.19806 −0.163627
383383 −26.8213 −1.37051 −0.685253 0.728305i 0.740308π-0.740308\pi
−0.685253 + 0.728305i 0.740308π0.740308\pi
384384 0.554958 0.0283201
385385 −0.0290660 −0.00148134
386386 15.0707 0.767078
387387 17.9420 0.912042
388388 −10.5918 −0.537717
389389 −18.4034 −0.933090 −0.466545 0.884497i 0.654502π-0.654502\pi
−0.466545 + 0.884497i 0.654502π0.654502\pi
390390 0.432960 0.0219238
391391 −22.6829 −1.14712
392392 6.98792 0.352943
393393 8.10992 0.409091
394394 14.5187 0.731442
395395 0.968541 0.0487326
396396 3.59419 0.180615
397397 28.9071 1.45080 0.725402 0.688325i 0.241654π-0.241654\pi
0.725402 + 0.688325i 0.241654π0.241654\pi
398398 −26.5284 −1.32975
399399 −0.0790483 −0.00395737
400400 −4.96077 −0.248039
401401 15.3370 0.765895 0.382948 0.923770i 0.374909π-0.374909\pi
0.382948 + 0.923770i 0.374909π0.374909\pi
402402 −6.10454 −0.304467
403403 −36.8092 −1.83360
404404 5.97285 0.297161
405405 1.25236 0.0622301
406406 0 0
407407 4.04162 0.200336
408408 −1.61596 −0.0800018
409409 −34.7308 −1.71733 −0.858663 0.512540i 0.828705π-0.828705\pi
−0.858663 + 0.512540i 0.828705π0.828705\pi
410410 −0.745251 −0.0368053
411411 0.884707 0.0436394
412412 −14.3937 −0.709128
413413 −0.559270 −0.0275199
414414 20.9705 1.03064
415415 −2.31229 −0.113506
416416 −3.93900 −0.193125
417417 −0.716185 −0.0350717
418418 1.73019 0.0846261
419419 −21.9627 −1.07295 −0.536474 0.843917i 0.680244π-0.680244\pi
−0.536474 + 0.843917i 0.680244π0.680244\pi
420420 −0.0120816 −0.000589521 0
421421 40.4349 1.97068 0.985338 0.170615i 0.0545755π-0.0545755\pi
0.985338 + 0.170615i 0.0545755π0.0545755\pi
422422 16.7995 0.817789
423423 −2.15883 −0.104966
424424 −8.33513 −0.404789
425425 14.4450 0.700687
426426 6.07606 0.294386
427427 −1.21552 −0.0588232
428428 −16.4916 −0.797150
429429 2.91856 0.140909
430430 1.32006 0.0636590
431431 −22.1008 −1.06456 −0.532279 0.846569i 0.678664π-0.678664\pi
−0.532279 + 0.846569i 0.678664π0.678664\pi
432432 3.15883 0.151979
433433 −3.88710 −0.186802 −0.0934010 0.995629i 0.529774π-0.529774\pi
−0.0934010 + 0.995629i 0.529774π0.529774\pi
434434 1.02715 0.0493046
435435 0 0
436436 2.84117 0.136067
437437 10.0949 0.482902
438438 4.41119 0.210775
439439 10.1575 0.484791 0.242396 0.970177i 0.422067π-0.422067\pi
0.242396 + 0.970177i 0.422067π0.422067\pi
440440 0.264438 0.0126066
441441 18.8116 0.895792
442442 11.4698 0.545563
443443 19.2965 0.916804 0.458402 0.888745i 0.348422π-0.348422\pi
0.458402 + 0.888745i 0.348422π0.348422\pi
444444 1.67994 0.0797264
445445 −2.27652 −0.107917
446446 1.43296 0.0678526
447447 3.71678 0.175797
448448 0.109916 0.00519306
449449 21.6394 1.02123 0.510613 0.859811i 0.329419π-0.329419\pi
0.510613 + 0.859811i 0.329419π0.329419\pi
450450 −13.3545 −0.629537
451451 −5.02369 −0.236556
452452 15.6746 0.737269
453453 5.26875 0.247547
454454 13.4155 0.629621
455455 0.0857531 0.00402017
456456 0.719169 0.0336782
457457 2.53079 0.118386 0.0591928 0.998247i 0.481147π-0.481147\pi
0.0591928 + 0.998247i 0.481147π0.481147\pi
458458 −11.5090 −0.537781
459459 −9.19806 −0.429329
460460 1.54288 0.0719370
461461 10.7627 0.501269 0.250635 0.968082i 0.419361π-0.419361\pi
0.250635 + 0.968082i 0.419361π0.419361\pi
462462 −0.0814412 −0.00378899
463463 −6.12392 −0.284603 −0.142301 0.989823i 0.545450π-0.545450\pi
−0.142301 + 0.989823i 0.545450π0.545450\pi
464464 0 0
465465 1.02715 0.0476328
466466 0.735562 0.0340743
467467 34.9638 1.61793 0.808965 0.587857i 0.200028π-0.200028\pi
0.808965 + 0.587857i 0.200028π0.200028\pi
468468 −10.6039 −0.490164
469469 −1.20908 −0.0558301
470470 −0.158834 −0.00732645
471471 −5.21313 −0.240208
472472 5.08815 0.234201
473473 8.89844 0.409151
474474 2.71379 0.124649
475475 −6.42865 −0.294967
476476 −0.320060 −0.0146699
477477 −22.4383 −1.02738
478478 −0.0881460 −0.00403170
479479 −30.8732 −1.41063 −0.705317 0.708892i 0.749195π-0.749195\pi
−0.705317 + 0.708892i 0.749195π0.749195\pi
480480 0.109916 0.00501697
481481 −11.9239 −0.543685
482482 6.21313 0.283000
483483 −0.475173 −0.0216211
484484 −9.21744 −0.418975
485485 −2.09783 −0.0952578
486486 12.9855 0.589035
487487 −0.408206 −0.0184976 −0.00924879 0.999957i 0.502944π-0.502944\pi
−0.00924879 + 0.999957i 0.502944π0.502944\pi
488488 11.0586 0.500600
489489 9.02848 0.408282
490490 1.38404 0.0625247
491491 20.1618 0.909890 0.454945 0.890520i 0.349659π-0.349659\pi
0.454945 + 0.890520i 0.349659π0.349659\pi
492492 −2.08815 −0.0941409
493493 0 0
494494 −5.10454 −0.229664
495495 0.711873 0.0319963
496496 −9.34481 −0.419595
497497 1.20344 0.0539816
498498 −6.47889 −0.290326
499499 −10.3787 −0.464613 −0.232306 0.972643i 0.574627π-0.574627\pi
−0.232306 + 0.972643i 0.574627π0.574627\pi
500500 −1.97285 −0.0882287
501501 7.63773 0.341228
502502 −15.1914 −0.678023
503503 22.9909 1.02511 0.512557 0.858653i 0.328698π-0.328698\pi
0.512557 + 0.858653i 0.328698π0.328698\pi
504504 0.295897 0.0131803
505505 1.18300 0.0526427
506506 10.4004 0.462356
507507 −1.39612 −0.0620041
508508 −2.70841 −0.120166
509509 25.7041 1.13931 0.569657 0.821882i 0.307076π-0.307076\pi
0.569657 + 0.821882i 0.307076π0.307076\pi
510510 −0.320060 −0.0141725
511511 0.873690 0.0386498
512512 −1.00000 −0.0441942
513513 4.09352 0.180733
514514 −5.53079 −0.243953
515515 −2.85086 −0.125624
516516 3.69873 0.162827
517517 −1.07069 −0.0470888
518518 0.332733 0.0146194
519519 0.0663757 0.00291357
520520 −0.780167 −0.0342126
521521 17.1535 0.751507 0.375753 0.926720i 0.377384π-0.377384\pi
0.375753 + 0.926720i 0.377384π0.377384\pi
522522 0 0
523523 22.4494 0.981642 0.490821 0.871261i 0.336697π-0.336697\pi
0.490821 + 0.871261i 0.336697π0.336697\pi
524524 −14.6136 −0.638397
525525 0.302602 0.0132066
526526 −2.18837 −0.0954176
527527 27.2107 1.18532
528528 0.740939 0.0322452
529529 37.6819 1.63834
530530 −1.65087 −0.0717094
531531 13.6974 0.594416
532532 0.142440 0.00617556
533533 14.8213 0.641982
534534 −6.37867 −0.276032
535535 −3.26636 −0.141217
536536 11.0000 0.475128
537537 7.03684 0.303662
538538 −30.4577 −1.31313
539539 9.32975 0.401861
540540 0.625646 0.0269235
541541 −12.4426 −0.534951 −0.267476 0.963565i 0.586189π-0.586189\pi
−0.267476 + 0.963565i 0.586189π0.586189\pi
542542 −31.5459 −1.35501
543543 −3.95944 −0.169916
544544 2.91185 0.124845
545545 0.562728 0.0241046
546546 0.240275 0.0102828
547547 −11.7638 −0.502983 −0.251491 0.967860i 0.580921π-0.580921\pi
−0.251491 + 0.967860i 0.580921π0.580921\pi
548548 −1.59419 −0.0681003
549549 29.7700 1.27055
550550 −6.62325 −0.282416
551551 0 0
552552 4.32304 0.184001
553553 0.537500 0.0228568
554554 −14.2024 −0.603401
555555 0.332733 0.0141237
556556 1.29052 0.0547302
557557 32.7362 1.38708 0.693538 0.720420i 0.256051π-0.256051\pi
0.693538 + 0.720420i 0.256051π0.256051\pi
558558 −25.1564 −1.06496
559559 −26.2529 −1.11038
560560 0.0217703 0.000919962 0
561561 −2.15751 −0.0910900
562562 −20.7627 −0.875822
563563 −30.1105 −1.26901 −0.634503 0.772920i 0.718795π-0.718795\pi
−0.634503 + 0.772920i 0.718795π0.718795\pi
564564 −0.445042 −0.0187396
565565 3.10454 0.130609
566566 17.3472 0.729158
567567 0.695005 0.0291875
568568 −10.9487 −0.459397
569569 15.5773 0.653035 0.326518 0.945191i 0.394125π-0.394125\pi
0.326518 + 0.945191i 0.394125π0.394125\pi
570570 0.142440 0.00596616
571571 6.74572 0.282300 0.141150 0.989988i 0.454920π-0.454920\pi
0.141150 + 0.989988i 0.454920π0.454920\pi
572572 −5.25906 −0.219892
573573 −1.77479 −0.0741429
574574 −0.413583 −0.0172626
575575 −38.6437 −1.61155
576576 −2.69202 −0.112168
577577 −18.6974 −0.778383 −0.389191 0.921157i 0.627246π-0.627246\pi
−0.389191 + 0.921157i 0.627246π0.627246\pi
578578 8.52111 0.354431
579579 8.36360 0.347579
580580 0 0
581581 −1.28322 −0.0532371
582582 −5.87800 −0.243651
583583 −11.1284 −0.460893
584584 −7.94869 −0.328919
585585 −2.10023 −0.0868337
586586 −17.5278 −0.724067
587587 −16.2500 −0.670708 −0.335354 0.942092i 0.608856π-0.608856\pi
−0.335354 + 0.942092i 0.608856π0.608856\pi
588588 3.87800 0.159926
589589 −12.1099 −0.498980
590590 1.00777 0.0414892
591591 8.05728 0.331432
592592 −3.02715 −0.124415
593593 31.1715 1.28006 0.640030 0.768350i 0.278922π-0.278922\pi
0.640030 + 0.768350i 0.278922π0.278922\pi
594594 4.21744 0.173044
595595 −0.0633918 −0.00259881
596596 −6.69740 −0.274336
597597 −14.7222 −0.602538
598598 −30.6843 −1.25477
599599 7.82802 0.319844 0.159922 0.987130i 0.448876π-0.448876\pi
0.159922 + 0.987130i 0.448876π0.448876\pi
600600 −2.75302 −0.112392
601601 17.5730 0.716818 0.358409 0.933565i 0.383319π-0.383319\pi
0.358409 + 0.933565i 0.383319π0.383319\pi
602602 0.732578 0.0298577
603603 29.6122 1.20590
604604 −9.49396 −0.386304
605605 −1.82563 −0.0742223
606606 3.31468 0.134650
607607 −39.3448 −1.59696 −0.798478 0.602023i 0.794361π-0.794361\pi
−0.798478 + 0.602023i 0.794361π0.794361\pi
608608 −1.29590 −0.0525556
609609 0 0
610610 2.19029 0.0886824
611611 3.15883 0.127793
612612 7.83877 0.316864
613613 25.1317 1.01506 0.507530 0.861634i 0.330559π-0.330559\pi
0.507530 + 0.861634i 0.330559π0.330559\pi
614614 −30.3618 −1.22530
615615 −0.413583 −0.0166773
616616 0.146752 0.00591281
617617 −12.6233 −0.508193 −0.254097 0.967179i 0.581778π-0.581778\pi
−0.254097 + 0.967179i 0.581778π0.581778\pi
618618 −7.98792 −0.321321
619619 −21.7192 −0.872967 −0.436484 0.899712i 0.643776π-0.643776\pi
−0.436484 + 0.899712i 0.643776π0.643776\pi
620620 −1.85086 −0.0743321
621621 24.6069 0.987439
622622 23.7875 0.953790
623623 −1.26337 −0.0506160
624624 −2.18598 −0.0875093
625625 24.4131 0.976524
626626 28.6746 1.14607
627627 0.960180 0.0383459
628628 9.39373 0.374851
629629 8.81461 0.351462
630630 0.0586060 0.00233492
631631 −39.3594 −1.56687 −0.783437 0.621472i 0.786535π-0.786535\pi
−0.783437 + 0.621472i 0.786535π0.786535\pi
632632 −4.89008 −0.194517
633633 9.32304 0.370558
634634 7.55794 0.300164
635635 −0.536435 −0.0212878
636636 −4.62565 −0.183419
637637 −27.5254 −1.09060
638638 0 0
639639 −29.4741 −1.16598
640640 −0.198062 −0.00782910
641641 −4.92825 −0.194654 −0.0973270 0.995252i 0.531029π-0.531029\pi
−0.0973270 + 0.995252i 0.531029π0.531029\pi
642642 −9.15213 −0.361206
643643 −7.01075 −0.276477 −0.138239 0.990399i 0.544144π-0.544144\pi
−0.138239 + 0.990399i 0.544144π0.544144\pi
644644 0.856232 0.0337403
645645 0.732578 0.0288452
646646 3.77346 0.148465
647647 −14.7289 −0.579051 −0.289526 0.957170i 0.593498π-0.593498\pi
−0.289526 + 0.957170i 0.593498π0.593498\pi
648648 −6.32304 −0.248393
649649 6.79331 0.266661
650650 19.5405 0.766441
651651 0.570024 0.0223410
652652 −16.2687 −0.637133
653653 −25.0175 −0.979009 −0.489504 0.872001i 0.662822π-0.662822\pi
−0.489504 + 0.872001i 0.662822π0.662822\pi
654654 1.57673 0.0616550
655655 −2.89440 −0.113093
656656 3.76271 0.146909
657657 −21.3980 −0.834817
658658 −0.0881460 −0.00343629
659659 48.6590 1.89549 0.947743 0.319034i 0.103358π-0.103358\pi
0.947743 + 0.319034i 0.103358π0.103358\pi
660660 0.146752 0.00571231
661661 −28.7851 −1.11961 −0.559805 0.828625i 0.689124π-0.689124\pi
−0.559805 + 0.828625i 0.689124π0.689124\pi
662662 11.1860 0.434755
663663 6.36526 0.247206
664664 11.6746 0.453061
665665 0.0282120 0.00109402
666666 −8.14914 −0.315773
667667 0 0
668668 −13.7627 −0.532495
669669 0.795233 0.0307455
670670 2.17868 0.0841699
671671 14.7646 0.569982
672672 0.0609989 0.00235308
673673 23.1341 0.891753 0.445877 0.895094i 0.352892π-0.352892\pi
0.445877 + 0.895094i 0.352892π0.352892\pi
674674 20.7928 0.800910
675675 −15.6703 −0.603148
676676 2.51573 0.0967588
677677 −18.0573 −0.693998 −0.346999 0.937866i 0.612799π-0.612799\pi
−0.346999 + 0.937866i 0.612799π0.612799\pi
678678 8.69873 0.334073
679679 −1.16421 −0.0446783
680680 0.576728 0.0221165
681681 7.44504 0.285295
682682 −12.4765 −0.477750
683683 −44.1269 −1.68847 −0.844234 0.535974i 0.819944π-0.819944\pi
−0.844234 + 0.535974i 0.819944π0.819944\pi
684684 −3.48858 −0.133389
685685 −0.315748 −0.0120641
686686 1.53750 0.0587020
687687 −6.38703 −0.243680
688688 −6.66487 −0.254096
689689 32.8321 1.25080
690690 0.856232 0.0325962
691691 23.8495 0.907279 0.453639 0.891185i 0.350125π-0.350125\pi
0.453639 + 0.891185i 0.350125π0.350125\pi
692692 −0.119605 −0.00454670
693693 0.395060 0.0150071
694694 −0.0193774 −0.000735554 0
695695 0.255603 0.00969559
696696 0 0
697697 −10.9565 −0.415005
698698 −29.0315 −1.09886
699699 0.408206 0.0154398
700700 −0.545269 −0.0206092
701701 1.12200 0.0423773 0.0211886 0.999775i 0.493255π-0.493255\pi
0.0211886 + 0.999775i 0.493255π0.493255\pi
702702 −12.4426 −0.469618
703703 −3.92287 −0.147954
704704 −1.33513 −0.0503194
705705 −0.0881460 −0.00331977
706706 −20.6165 −0.775914
707707 0.656514 0.0246907
708708 2.82371 0.106121
709709 4.08383 0.153372 0.0766858 0.997055i 0.475566π-0.475566\pi
0.0766858 + 0.997055i 0.475566π0.475566\pi
710710 −2.16852 −0.0813832
711711 −13.1642 −0.493696
712712 11.4940 0.430754
713713 −72.7948 −2.72619
714714 −0.177620 −0.00664726
715715 −1.04162 −0.0389544
716716 −12.6799 −0.473872
717717 −0.0489173 −0.00182685
718718 −20.8901 −0.779611
719719 29.1237 1.08613 0.543065 0.839691i 0.317264π-0.317264\pi
0.543065 + 0.839691i 0.317264π0.317264\pi
720720 −0.533188 −0.0198707
721721 −1.58211 −0.0589207
722722 17.3207 0.644608
723723 3.44803 0.128233
724724 7.13467 0.265158
725725 0 0
726726 −5.11529 −0.189846
727727 −15.8586 −0.588164 −0.294082 0.955780i 0.595014π-0.595014\pi
−0.294082 + 0.955780i 0.595014π0.595014\pi
728728 −0.432960 −0.0160466
729729 −11.7627 −0.435656
730730 −1.57434 −0.0582688
731731 19.4071 0.717799
732732 6.13706 0.226832
733733 −21.4101 −0.790801 −0.395401 0.918509i 0.629394π-0.629394\pi
−0.395401 + 0.918509i 0.629394π0.629394\pi
734734 −3.76271 −0.138884
735735 0.768086 0.0283313
736736 −7.78986 −0.287138
737737 14.6864 0.540980
738738 10.1293 0.372864
739739 −33.6394 −1.23744 −0.618722 0.785610i 0.712349π-0.712349\pi
−0.618722 + 0.785610i 0.712349π0.712349\pi
740740 −0.599564 −0.0220404
741741 −2.83281 −0.104066
742742 −0.916166 −0.0336335
743743 5.43668 0.199452 0.0997262 0.995015i 0.468203π-0.468203\pi
0.0997262 + 0.995015i 0.468203π0.468203\pi
744744 −5.18598 −0.190127
745745 −1.32650 −0.0485993
746746 −15.0140 −0.549702
747747 31.4282 1.14990
748748 3.88769 0.142148
749749 −1.81269 −0.0662343
750750 −1.09485 −0.0399783
751751 −16.7976 −0.612954 −0.306477 0.951878i 0.599150π-0.599150\pi
−0.306477 + 0.951878i 0.599150π0.599150\pi
752752 0.801938 0.0292437
753753 −8.43057 −0.307227
754754 0 0
755755 −1.88040 −0.0684346
756756 0.347207 0.0126278
757757 2.51142 0.0912790 0.0456395 0.998958i 0.485467π-0.485467\pi
0.0456395 + 0.998958i 0.485467π0.485467\pi
758758 −23.5646 −0.855907
759759 5.77181 0.209503
760760 −0.256668 −0.00931034
761761 −53.5387 −1.94078 −0.970388 0.241552i 0.922344π-0.922344\pi
−0.970388 + 0.241552i 0.922344π0.922344\pi
762762 −1.50306 −0.0544500
763763 0.312290 0.0113057
764764 3.19806 0.115702
765765 1.55257 0.0561331
766766 26.8213 0.969094
767767 −20.0422 −0.723682
768768 −0.554958 −0.0200253
769769 9.24219 0.333282 0.166641 0.986018i 0.446708π-0.446708\pi
0.166641 + 0.986018i 0.446708π0.446708\pi
770770 0.0290660 0.00104747
771771 −3.06936 −0.110540
772772 −15.0707 −0.542406
773773 −37.4373 −1.34653 −0.673263 0.739404i 0.735108π-0.735108\pi
−0.673263 + 0.739404i 0.735108π0.735108\pi
774774 −17.9420 −0.644911
775775 46.3575 1.66521
776776 10.5918 0.380223
777777 0.184653 0.00662438
778778 18.4034 0.659795
779779 4.87608 0.174704
780780 −0.432960 −0.0155025
781781 −14.6179 −0.523069
782782 22.6829 0.811140
783783 0 0
784784 −6.98792 −0.249569
785785 1.86054 0.0664057
786786 −8.10992 −0.289271
787787 25.9372 0.924561 0.462281 0.886734i 0.347031π-0.347031\pi
0.462281 + 0.886734i 0.347031π0.347031\pi
788788 −14.5187 −0.517208
789789 −1.21446 −0.0432358
790790 −0.968541 −0.0344591
791791 1.72289 0.0612589
792792 −3.59419 −0.127714
793793 −43.5599 −1.54686
794794 −28.9071 −1.02587
795795 −0.916166 −0.0324931
796796 26.5284 0.940274
797797 20.1914 0.715215 0.357607 0.933872i 0.383593π-0.383593\pi
0.357607 + 0.933872i 0.383593π0.383593\pi
798798 0.0790483 0.00279828
799799 −2.33513 −0.0826108
800800 4.96077 0.175390
801801 30.9420 1.09328
802802 −15.3370 −0.541570
803803 −10.6125 −0.374507
804804 6.10454 0.215291
805805 0.169587 0.00597716
806806 36.8092 1.29655
807807 −16.9028 −0.595005
808808 −5.97285 −0.210124
809809 34.4413 1.21089 0.605446 0.795886i 0.292995π-0.292995\pi
0.605446 + 0.795886i 0.292995π0.292995\pi
810810 −1.25236 −0.0440033
811811 32.7536 1.15013 0.575067 0.818106i 0.304976π-0.304976\pi
0.575067 + 0.818106i 0.304976π0.304976\pi
812812 0 0
813813 −17.5066 −0.613984
814814 −4.04162 −0.141659
815815 −3.22223 −0.112870
816816 1.61596 0.0565698
817817 −8.63699 −0.302170
818818 34.7308 1.21433
819819 −1.16554 −0.0407272
820820 0.745251 0.0260253
821821 4.34614 0.151681 0.0758407 0.997120i 0.475836π-0.475836\pi
0.0758407 + 0.997120i 0.475836π0.475836\pi
822822 −0.884707 −0.0308577
823823 13.4101 0.467448 0.233724 0.972303i 0.424909π-0.424909\pi
0.233724 + 0.972303i 0.424909π0.424909\pi
824824 14.3937 0.501429
825825 −3.67563 −0.127969
826826 0.559270 0.0194595
827827 −26.3424 −0.916016 −0.458008 0.888948i 0.651437π-0.651437\pi
−0.458008 + 0.888948i 0.651437π0.651437\pi
828828 −20.9705 −0.728774
829829 −10.3618 −0.359880 −0.179940 0.983678i 0.557590π-0.557590\pi
−0.179940 + 0.983678i 0.557590π0.557590\pi
830830 2.31229 0.0802608
831831 −7.88172 −0.273414
832832 3.93900 0.136560
833833 20.3478 0.705009
834834 0.716185 0.0247994
835835 −2.72587 −0.0943327
836836 −1.73019 −0.0598397
837837 −29.5187 −1.02032
838838 21.9627 0.758689
839839 −26.6752 −0.920929 −0.460464 0.887678i 0.652317π-0.652317\pi
−0.460464 + 0.887678i 0.652317π0.652317\pi
840840 0.0120816 0.000416854 0
841841 0 0
842842 −40.4349 −1.39348
843843 −11.5224 −0.396854
844844 −16.7995 −0.578264
845845 0.498271 0.0171410
846846 2.15883 0.0742222
847847 −1.01315 −0.0348121
848848 8.33513 0.286229
849849 9.62697 0.330397
850850 −14.4450 −0.495461
851851 −23.5810 −0.808348
852852 −6.07606 −0.208163
853853 −19.7071 −0.674758 −0.337379 0.941369i 0.609540π-0.609540\pi
−0.337379 + 0.941369i 0.609540π0.609540\pi
854854 1.21552 0.0415943
855855 −0.690957 −0.0236302
856856 16.4916 0.563670
857857 2.15691 0.0736788 0.0368394 0.999321i 0.488271π-0.488271\pi
0.0368394 + 0.999321i 0.488271π0.488271\pi
858858 −2.91856 −0.0996380
859859 34.4510 1.17545 0.587727 0.809060i 0.300023π-0.300023\pi
0.587727 + 0.809060i 0.300023π0.300023\pi
860860 −1.32006 −0.0450137
861861 −0.229521 −0.00782206
862862 22.1008 0.752757
863863 −9.58881 −0.326407 −0.163203 0.986592i 0.552183π-0.552183\pi
−0.163203 + 0.986592i 0.552183π0.552183\pi
864864 −3.15883 −0.107466
865865 −0.0236892 −0.000805458 0
866866 3.88710 0.132089
867867 4.72886 0.160600
868868 −1.02715 −0.0348636
869869 −6.52888 −0.221477
870870 0 0
871871 −43.3290 −1.46815
872872 −2.84117 −0.0962140
873873 28.5133 0.965030
874874 −10.0949 −0.341463
875875 −0.216849 −0.00733082
876876 −4.41119 −0.149040
877877 −0.842231 −0.0284401 −0.0142201 0.999899i 0.504527π-0.504527\pi
−0.0142201 + 0.999899i 0.504527π0.504527\pi
878878 −10.1575 −0.342799
879879 −9.72720 −0.328090
880880 −0.264438 −0.00891420
881881 −8.22819 −0.277215 −0.138607 0.990347i 0.544263π-0.544263\pi
−0.138607 + 0.990347i 0.544263π0.544263\pi
882882 −18.8116 −0.633420
883883 54.3021 1.82741 0.913706 0.406376i 0.133208π-0.133208\pi
0.913706 + 0.406376i 0.133208π0.133208\pi
884884 −11.4698 −0.385771
885885 0.559270 0.0187997
886886 −19.2965 −0.648278
887887 −13.5013 −0.453328 −0.226664 0.973973i 0.572782π-0.572782\pi
−0.226664 + 0.973973i 0.572782π0.572782\pi
888888 −1.67994 −0.0563751
889889 −0.297699 −0.00998450
890890 2.27652 0.0763091
891891 −8.44206 −0.282820
892892 −1.43296 −0.0479791
893893 1.03923 0.0347765
894894 −3.71678 −0.124308
895895 −2.51142 −0.0839474
896896 −0.109916 −0.00367204
897897 −17.0285 −0.568564
898898 −21.6394 −0.722116
899899 0 0
900900 13.3545 0.445150
901901 −24.2707 −0.808573
902902 5.02369 0.167271
903903 0.406550 0.0135291
904904 −15.6746 −0.521328
905905 1.41311 0.0469733
906906 −5.26875 −0.175042
907907 −46.4795 −1.54333 −0.771663 0.636032i 0.780575π-0.780575\pi
−0.771663 + 0.636032i 0.780575π0.780575\pi
908908 −13.4155 −0.445209
909909 −16.0790 −0.533308
910910 −0.0857531 −0.00284269
911911 21.1685 0.701344 0.350672 0.936498i 0.385953π-0.385953\pi
0.350672 + 0.936498i 0.385953π0.385953\pi
912912 −0.719169 −0.0238141
913913 15.5870 0.515855
914914 −2.53079 −0.0837113
915915 1.21552 0.0401839
916916 11.5090 0.380269
917917 −1.60627 −0.0530437
918918 9.19806 0.303581
919919 −20.1605 −0.665033 −0.332517 0.943097i 0.607898π-0.607898\pi
−0.332517 + 0.943097i 0.607898π0.607898\pi
920920 −1.54288 −0.0508671
921921 −16.8495 −0.555211
922922 −10.7627 −0.354451
923923 43.1269 1.41954
924924 0.0814412 0.00267922
925925 15.0170 0.493755
926926 6.12392 0.201244
927927 38.7482 1.27266
928928 0 0
929929 19.7952 0.649461 0.324730 0.945807i 0.394726π-0.394726\pi
0.324730 + 0.945807i 0.394726π0.394726\pi
930930 −1.02715 −0.0336815
931931 −9.05562 −0.296786
932932 −0.735562 −0.0240941
933933 13.2010 0.432183
934934 −34.9638 −1.14405
935935 0.770005 0.0251819
936936 10.6039 0.346599
937937 −56.0883 −1.83232 −0.916162 0.400809i 0.868729π-0.868729\pi
−0.916162 + 0.400809i 0.868729π0.868729\pi
938938 1.20908 0.0394778
939939 15.9132 0.519307
940940 0.158834 0.00518058
941941 −2.40688 −0.0784620 −0.0392310 0.999230i 0.512491π-0.512491\pi
−0.0392310 + 0.999230i 0.512491π0.512491\pi
942942 5.21313 0.169853
943943 29.3110 0.954496
944944 −5.08815 −0.165605
945945 0.0687686 0.00223704
946946 −8.89844 −0.289313
947947 2.39745 0.0779067 0.0389534 0.999241i 0.487598π-0.487598\pi
0.0389534 + 0.999241i 0.487598π0.487598\pi
948948 −2.71379 −0.0881399
949949 31.3099 1.01636
950950 6.42865 0.208573
951951 4.19434 0.136011
952952 0.320060 0.0103732
953953 −33.4789 −1.08449 −0.542244 0.840221i 0.682425π-0.682425\pi
−0.542244 + 0.840221i 0.682425π0.682425\pi
954954 22.4383 0.726468
955955 0.633415 0.0204968
956956 0.0881460 0.00285085
957957 0 0
958958 30.8732 0.997468
959959 −0.175227 −0.00565838
960960 −0.109916 −0.00354753
961961 56.3256 1.81695
962962 11.9239 0.384443
963963 44.3957 1.43063
964964 −6.21313 −0.200111
965965 −2.98493 −0.0960884
966966 0.475173 0.0152884
967967 35.1739 1.13112 0.565558 0.824708i 0.308661π-0.308661\pi
0.565558 + 0.824708i 0.308661π0.308661\pi
968968 9.21744 0.296260
969969 2.09411 0.0672726
970970 2.09783 0.0673574
971971 −27.5332 −0.883582 −0.441791 0.897118i 0.645657π-0.645657\pi
−0.441791 + 0.897118i 0.645657π0.645657\pi
972972 −12.9855 −0.416511
973973 0.141849 0.00454748
974974 0.408206 0.0130798
975975 10.8442 0.347291
976976 −11.0586 −0.353977
977977 −11.3593 −0.363416 −0.181708 0.983353i 0.558163π-0.558163\pi
−0.181708 + 0.983353i 0.558163π0.558163\pi
978978 −9.02848 −0.288699
979979 15.3459 0.490456
980980 −1.38404 −0.0442116
981981 −7.64848 −0.244197
982982 −20.1618 −0.643389
983983 −32.9189 −1.04995 −0.524975 0.851118i 0.675925π-0.675925\pi
−0.524975 + 0.851118i 0.675925π0.675925\pi
984984 2.08815 0.0665677
985985 −2.87561 −0.0916245
986986 0 0
987987 −0.0489173 −0.00155706
988988 5.10454 0.162397
989989 −51.9184 −1.65091
990990 −0.711873 −0.0226248
991991 22.4814 0.714145 0.357073 0.934077i 0.383775π-0.383775\pi
0.357073 + 0.934077i 0.383775π0.383775\pi
992992 9.34481 0.296698
993993 6.20775 0.196997
994994 −1.20344 −0.0381708
995995 5.25428 0.166572
996996 6.47889 0.205292
997997 −22.1244 −0.700686 −0.350343 0.936621i 0.613935π-0.613935\pi
−0.350343 + 0.936621i 0.613935π0.613935\pi
998998 10.3787 0.328531
999999 −9.56225 −0.302536
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1682.2.a.m.1.2 3
29.12 odd 4 1682.2.b.g.1681.2 6
29.17 odd 4 1682.2.b.g.1681.5 6
29.23 even 7 58.2.d.a.7.1 6
29.24 even 7 58.2.d.a.25.1 yes 6
29.28 even 2 1682.2.a.n.1.2 3
87.23 odd 14 522.2.k.c.181.1 6
87.53 odd 14 522.2.k.c.199.1 6
116.23 odd 14 464.2.u.b.65.1 6
116.111 odd 14 464.2.u.b.257.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
58.2.d.a.7.1 6 29.23 even 7
58.2.d.a.25.1 yes 6 29.24 even 7
464.2.u.b.65.1 6 116.23 odd 14
464.2.u.b.257.1 6 116.111 odd 14
522.2.k.c.181.1 6 87.23 odd 14
522.2.k.c.199.1 6 87.53 odd 14
1682.2.a.m.1.2 3 1.1 even 1 trivial
1682.2.a.n.1.2 3 29.28 even 2
1682.2.b.g.1681.2 6 29.12 odd 4
1682.2.b.g.1681.5 6 29.17 odd 4