Properties

Label 1682.2.a.m.1.2
Level $1682$
Weight $2$
Character 1682.1
Self dual yes
Analytic conductor $13.431$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1682,2,Mod(1,1682)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1682, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1682.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1682 = 2 \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1682.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.4308376200\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 58)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.24698\) of defining polynomial
Character \(\chi\) \(=\) 1682.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -0.554958 q^{3} +1.00000 q^{4} +0.198062 q^{5} +0.554958 q^{6} +0.109916 q^{7} -1.00000 q^{8} -2.69202 q^{9} -0.198062 q^{10} -1.33513 q^{11} -0.554958 q^{12} +3.93900 q^{13} -0.109916 q^{14} -0.109916 q^{15} +1.00000 q^{16} -2.91185 q^{17} +2.69202 q^{18} +1.29590 q^{19} +0.198062 q^{20} -0.0609989 q^{21} +1.33513 q^{22} +7.78986 q^{23} +0.554958 q^{24} -4.96077 q^{25} -3.93900 q^{26} +3.15883 q^{27} +0.109916 q^{28} +0.109916 q^{30} -9.34481 q^{31} -1.00000 q^{32} +0.740939 q^{33} +2.91185 q^{34} +0.0217703 q^{35} -2.69202 q^{36} -3.02715 q^{37} -1.29590 q^{38} -2.18598 q^{39} -0.198062 q^{40} +3.76271 q^{41} +0.0609989 q^{42} -6.66487 q^{43} -1.33513 q^{44} -0.533188 q^{45} -7.78986 q^{46} +0.801938 q^{47} -0.554958 q^{48} -6.98792 q^{49} +4.96077 q^{50} +1.61596 q^{51} +3.93900 q^{52} +8.33513 q^{53} -3.15883 q^{54} -0.264438 q^{55} -0.109916 q^{56} -0.719169 q^{57} -5.08815 q^{59} -0.109916 q^{60} -11.0586 q^{61} +9.34481 q^{62} -0.295897 q^{63} +1.00000 q^{64} +0.780167 q^{65} -0.740939 q^{66} -11.0000 q^{67} -2.91185 q^{68} -4.32304 q^{69} -0.0217703 q^{70} +10.9487 q^{71} +2.69202 q^{72} +7.94869 q^{73} +3.02715 q^{74} +2.75302 q^{75} +1.29590 q^{76} -0.146752 q^{77} +2.18598 q^{78} +4.89008 q^{79} +0.198062 q^{80} +6.32304 q^{81} -3.76271 q^{82} -11.6746 q^{83} -0.0609989 q^{84} -0.576728 q^{85} +6.66487 q^{86} +1.33513 q^{88} -11.4940 q^{89} +0.533188 q^{90} +0.432960 q^{91} +7.78986 q^{92} +5.18598 q^{93} -0.801938 q^{94} +0.256668 q^{95} +0.554958 q^{96} -10.5918 q^{97} +6.98792 q^{98} +3.59419 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{2} - 2 q^{3} + 3 q^{4} + 5 q^{5} + 2 q^{6} + q^{7} - 3 q^{8} - 3 q^{9} - 5 q^{10} - 3 q^{11} - 2 q^{12} + 2 q^{13} - q^{14} - q^{15} + 3 q^{16} - 5 q^{17} + 3 q^{18} - 10 q^{19} + 5 q^{20}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −0.554958 −0.320405 −0.160203 0.987084i \(-0.551215\pi\)
−0.160203 + 0.987084i \(0.551215\pi\)
\(4\) 1.00000 0.500000
\(5\) 0.198062 0.0885761 0.0442881 0.999019i \(-0.485898\pi\)
0.0442881 + 0.999019i \(0.485898\pi\)
\(6\) 0.554958 0.226561
\(7\) 0.109916 0.0415444 0.0207722 0.999784i \(-0.493388\pi\)
0.0207722 + 0.999784i \(0.493388\pi\)
\(8\) −1.00000 −0.353553
\(9\) −2.69202 −0.897340
\(10\) −0.198062 −0.0626328
\(11\) −1.33513 −0.402556 −0.201278 0.979534i \(-0.564509\pi\)
−0.201278 + 0.979534i \(0.564509\pi\)
\(12\) −0.554958 −0.160203
\(13\) 3.93900 1.09248 0.546241 0.837628i \(-0.316058\pi\)
0.546241 + 0.837628i \(0.316058\pi\)
\(14\) −0.109916 −0.0293764
\(15\) −0.109916 −0.0283803
\(16\) 1.00000 0.250000
\(17\) −2.91185 −0.706228 −0.353114 0.935580i \(-0.614877\pi\)
−0.353114 + 0.935580i \(0.614877\pi\)
\(18\) 2.69202 0.634516
\(19\) 1.29590 0.297299 0.148650 0.988890i \(-0.452507\pi\)
0.148650 + 0.988890i \(0.452507\pi\)
\(20\) 0.198062 0.0442881
\(21\) −0.0609989 −0.0133111
\(22\) 1.33513 0.284650
\(23\) 7.78986 1.62430 0.812149 0.583451i \(-0.198298\pi\)
0.812149 + 0.583451i \(0.198298\pi\)
\(24\) 0.554958 0.113280
\(25\) −4.96077 −0.992154
\(26\) −3.93900 −0.772502
\(27\) 3.15883 0.607918
\(28\) 0.109916 0.0207722
\(29\) 0 0
\(30\) 0.109916 0.0200679
\(31\) −9.34481 −1.67838 −0.839189 0.543840i \(-0.816970\pi\)
−0.839189 + 0.543840i \(0.816970\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0.740939 0.128981
\(34\) 2.91185 0.499379
\(35\) 0.0217703 0.00367985
\(36\) −2.69202 −0.448670
\(37\) −3.02715 −0.497660 −0.248830 0.968547i \(-0.580046\pi\)
−0.248830 + 0.968547i \(0.580046\pi\)
\(38\) −1.29590 −0.210222
\(39\) −2.18598 −0.350037
\(40\) −0.198062 −0.0313164
\(41\) 3.76271 0.587636 0.293818 0.955861i \(-0.405074\pi\)
0.293818 + 0.955861i \(0.405074\pi\)
\(42\) 0.0609989 0.00941234
\(43\) −6.66487 −1.01638 −0.508192 0.861244i \(-0.669686\pi\)
−0.508192 + 0.861244i \(0.669686\pi\)
\(44\) −1.33513 −0.201278
\(45\) −0.533188 −0.0794830
\(46\) −7.78986 −1.14855
\(47\) 0.801938 0.116975 0.0584873 0.998288i \(-0.481372\pi\)
0.0584873 + 0.998288i \(0.481372\pi\)
\(48\) −0.554958 −0.0801013
\(49\) −6.98792 −0.998274
\(50\) 4.96077 0.701559
\(51\) 1.61596 0.226279
\(52\) 3.93900 0.546241
\(53\) 8.33513 1.14492 0.572459 0.819934i \(-0.305990\pi\)
0.572459 + 0.819934i \(0.305990\pi\)
\(54\) −3.15883 −0.429863
\(55\) −0.264438 −0.0356568
\(56\) −0.109916 −0.0146882
\(57\) −0.719169 −0.0952562
\(58\) 0 0
\(59\) −5.08815 −0.662420 −0.331210 0.943557i \(-0.607457\pi\)
−0.331210 + 0.943557i \(0.607457\pi\)
\(60\) −0.109916 −0.0141901
\(61\) −11.0586 −1.41591 −0.707955 0.706258i \(-0.750382\pi\)
−0.707955 + 0.706258i \(0.750382\pi\)
\(62\) 9.34481 1.18679
\(63\) −0.295897 −0.0372795
\(64\) 1.00000 0.125000
\(65\) 0.780167 0.0967679
\(66\) −0.740939 −0.0912033
\(67\) −11.0000 −1.34386 −0.671932 0.740613i \(-0.734535\pi\)
−0.671932 + 0.740613i \(0.734535\pi\)
\(68\) −2.91185 −0.353114
\(69\) −4.32304 −0.520433
\(70\) −0.0217703 −0.00260204
\(71\) 10.9487 1.29937 0.649685 0.760203i \(-0.274901\pi\)
0.649685 + 0.760203i \(0.274901\pi\)
\(72\) 2.69202 0.317258
\(73\) 7.94869 0.930324 0.465162 0.885226i \(-0.345996\pi\)
0.465162 + 0.885226i \(0.345996\pi\)
\(74\) 3.02715 0.351899
\(75\) 2.75302 0.317891
\(76\) 1.29590 0.148650
\(77\) −0.146752 −0.0167239
\(78\) 2.18598 0.247514
\(79\) 4.89008 0.550177 0.275089 0.961419i \(-0.411293\pi\)
0.275089 + 0.961419i \(0.411293\pi\)
\(80\) 0.198062 0.0221440
\(81\) 6.32304 0.702560
\(82\) −3.76271 −0.415522
\(83\) −11.6746 −1.28145 −0.640725 0.767771i \(-0.721366\pi\)
−0.640725 + 0.767771i \(0.721366\pi\)
\(84\) −0.0609989 −0.00665553
\(85\) −0.576728 −0.0625550
\(86\) 6.66487 0.718692
\(87\) 0 0
\(88\) 1.33513 0.142325
\(89\) −11.4940 −1.21836 −0.609179 0.793033i \(-0.708501\pi\)
−0.609179 + 0.793033i \(0.708501\pi\)
\(90\) 0.533188 0.0562029
\(91\) 0.432960 0.0453866
\(92\) 7.78986 0.812149
\(93\) 5.18598 0.537761
\(94\) −0.801938 −0.0827136
\(95\) 0.256668 0.0263336
\(96\) 0.554958 0.0566402
\(97\) −10.5918 −1.07543 −0.537717 0.843125i \(-0.680713\pi\)
−0.537717 + 0.843125i \(0.680713\pi\)
\(98\) 6.98792 0.705886
\(99\) 3.59419 0.361229
\(100\) −4.96077 −0.496077
\(101\) 5.97285 0.594321 0.297161 0.954828i \(-0.403960\pi\)
0.297161 + 0.954828i \(0.403960\pi\)
\(102\) −1.61596 −0.160004
\(103\) −14.3937 −1.41826 −0.709128 0.705080i \(-0.750911\pi\)
−0.709128 + 0.705080i \(0.750911\pi\)
\(104\) −3.93900 −0.386251
\(105\) −0.0120816 −0.00117904
\(106\) −8.33513 −0.809579
\(107\) −16.4916 −1.59430 −0.797150 0.603781i \(-0.793660\pi\)
−0.797150 + 0.603781i \(0.793660\pi\)
\(108\) 3.15883 0.303959
\(109\) 2.84117 0.272134 0.136067 0.990700i \(-0.456554\pi\)
0.136067 + 0.990700i \(0.456554\pi\)
\(110\) 0.264438 0.0252132
\(111\) 1.67994 0.159453
\(112\) 0.109916 0.0103861
\(113\) 15.6746 1.47454 0.737269 0.675599i \(-0.236115\pi\)
0.737269 + 0.675599i \(0.236115\pi\)
\(114\) 0.719169 0.0673563
\(115\) 1.54288 0.143874
\(116\) 0 0
\(117\) −10.6039 −0.980329
\(118\) 5.08815 0.468402
\(119\) −0.320060 −0.0293399
\(120\) 0.109916 0.0100339
\(121\) −9.21744 −0.837949
\(122\) 11.0586 1.00120
\(123\) −2.08815 −0.188282
\(124\) −9.34481 −0.839189
\(125\) −1.97285 −0.176457
\(126\) 0.295897 0.0263606
\(127\) −2.70841 −0.240333 −0.120166 0.992754i \(-0.538343\pi\)
−0.120166 + 0.992754i \(0.538343\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 3.69873 0.325655
\(130\) −0.780167 −0.0684252
\(131\) −14.6136 −1.27679 −0.638397 0.769708i \(-0.720402\pi\)
−0.638397 + 0.769708i \(0.720402\pi\)
\(132\) 0.740939 0.0644904
\(133\) 0.142440 0.0123511
\(134\) 11.0000 0.950255
\(135\) 0.625646 0.0538470
\(136\) 2.91185 0.249689
\(137\) −1.59419 −0.136201 −0.0681003 0.997678i \(-0.521694\pi\)
−0.0681003 + 0.997678i \(0.521694\pi\)
\(138\) 4.32304 0.368002
\(139\) 1.29052 0.109460 0.0547302 0.998501i \(-0.482570\pi\)
0.0547302 + 0.998501i \(0.482570\pi\)
\(140\) 0.0217703 0.00183992
\(141\) −0.445042 −0.0374793
\(142\) −10.9487 −0.918794
\(143\) −5.25906 −0.439785
\(144\) −2.69202 −0.224335
\(145\) 0 0
\(146\) −7.94869 −0.657838
\(147\) 3.87800 0.319852
\(148\) −3.02715 −0.248830
\(149\) −6.69740 −0.548672 −0.274336 0.961634i \(-0.588458\pi\)
−0.274336 + 0.961634i \(0.588458\pi\)
\(150\) −2.75302 −0.224783
\(151\) −9.49396 −0.772607 −0.386304 0.922372i \(-0.626248\pi\)
−0.386304 + 0.922372i \(0.626248\pi\)
\(152\) −1.29590 −0.105111
\(153\) 7.83877 0.633727
\(154\) 0.146752 0.0118256
\(155\) −1.85086 −0.148664
\(156\) −2.18598 −0.175019
\(157\) 9.39373 0.749701 0.374851 0.927085i \(-0.377694\pi\)
0.374851 + 0.927085i \(0.377694\pi\)
\(158\) −4.89008 −0.389034
\(159\) −4.62565 −0.366838
\(160\) −0.198062 −0.0156582
\(161\) 0.856232 0.0674805
\(162\) −6.32304 −0.496785
\(163\) −16.2687 −1.27427 −0.637133 0.770754i \(-0.719880\pi\)
−0.637133 + 0.770754i \(0.719880\pi\)
\(164\) 3.76271 0.293818
\(165\) 0.146752 0.0114246
\(166\) 11.6746 0.906122
\(167\) −13.7627 −1.06499 −0.532495 0.846433i \(-0.678746\pi\)
−0.532495 + 0.846433i \(0.678746\pi\)
\(168\) 0.0609989 0.00470617
\(169\) 2.51573 0.193518
\(170\) 0.576728 0.0442330
\(171\) −3.48858 −0.266779
\(172\) −6.66487 −0.508192
\(173\) −0.119605 −0.00909340 −0.00454670 0.999990i \(-0.501447\pi\)
−0.00454670 + 0.999990i \(0.501447\pi\)
\(174\) 0 0
\(175\) −0.545269 −0.0412185
\(176\) −1.33513 −0.100639
\(177\) 2.82371 0.212243
\(178\) 11.4940 0.861509
\(179\) −12.6799 −0.947743 −0.473872 0.880594i \(-0.657144\pi\)
−0.473872 + 0.880594i \(0.657144\pi\)
\(180\) −0.533188 −0.0397415
\(181\) 7.13467 0.530316 0.265158 0.964205i \(-0.414576\pi\)
0.265158 + 0.964205i \(0.414576\pi\)
\(182\) −0.432960 −0.0320932
\(183\) 6.13706 0.453665
\(184\) −7.78986 −0.574276
\(185\) −0.599564 −0.0440808
\(186\) −5.18598 −0.380255
\(187\) 3.88769 0.284296
\(188\) 0.801938 0.0584873
\(189\) 0.347207 0.0252556
\(190\) −0.256668 −0.0186207
\(191\) 3.19806 0.231404 0.115702 0.993284i \(-0.463088\pi\)
0.115702 + 0.993284i \(0.463088\pi\)
\(192\) −0.554958 −0.0400507
\(193\) −15.0707 −1.08481 −0.542406 0.840117i \(-0.682487\pi\)
−0.542406 + 0.840117i \(0.682487\pi\)
\(194\) 10.5918 0.760446
\(195\) −0.432960 −0.0310049
\(196\) −6.98792 −0.499137
\(197\) −14.5187 −1.03442 −0.517208 0.855860i \(-0.673029\pi\)
−0.517208 + 0.855860i \(0.673029\pi\)
\(198\) −3.59419 −0.255428
\(199\) 26.5284 1.88055 0.940274 0.340418i \(-0.110569\pi\)
0.940274 + 0.340418i \(0.110569\pi\)
\(200\) 4.96077 0.350780
\(201\) 6.10454 0.430581
\(202\) −5.97285 −0.420248
\(203\) 0 0
\(204\) 1.61596 0.113140
\(205\) 0.745251 0.0520506
\(206\) 14.3937 1.00286
\(207\) −20.9705 −1.45755
\(208\) 3.93900 0.273121
\(209\) −1.73019 −0.119679
\(210\) 0.0120816 0.000833709 0
\(211\) −16.7995 −1.15653 −0.578264 0.815850i \(-0.696270\pi\)
−0.578264 + 0.815850i \(0.696270\pi\)
\(212\) 8.33513 0.572459
\(213\) −6.07606 −0.416325
\(214\) 16.4916 1.12734
\(215\) −1.32006 −0.0900274
\(216\) −3.15883 −0.214931
\(217\) −1.02715 −0.0697273
\(218\) −2.84117 −0.192428
\(219\) −4.41119 −0.298081
\(220\) −0.264438 −0.0178284
\(221\) −11.4698 −0.771542
\(222\) −1.67994 −0.112750
\(223\) −1.43296 −0.0959581 −0.0479791 0.998848i \(-0.515278\pi\)
−0.0479791 + 0.998848i \(0.515278\pi\)
\(224\) −0.109916 −0.00734409
\(225\) 13.3545 0.890300
\(226\) −15.6746 −1.04266
\(227\) −13.4155 −0.890418 −0.445209 0.895427i \(-0.646871\pi\)
−0.445209 + 0.895427i \(0.646871\pi\)
\(228\) −0.719169 −0.0476281
\(229\) 11.5090 0.760538 0.380269 0.924876i \(-0.375831\pi\)
0.380269 + 0.924876i \(0.375831\pi\)
\(230\) −1.54288 −0.101734
\(231\) 0.0814412 0.00535844
\(232\) 0 0
\(233\) −0.735562 −0.0481883 −0.0240941 0.999710i \(-0.507670\pi\)
−0.0240941 + 0.999710i \(0.507670\pi\)
\(234\) 10.6039 0.693197
\(235\) 0.158834 0.0103612
\(236\) −5.08815 −0.331210
\(237\) −2.71379 −0.176280
\(238\) 0.320060 0.0207464
\(239\) 0.0881460 0.00570169 0.00285085 0.999996i \(-0.499093\pi\)
0.00285085 + 0.999996i \(0.499093\pi\)
\(240\) −0.109916 −0.00709506
\(241\) −6.21313 −0.400223 −0.200111 0.979773i \(-0.564130\pi\)
−0.200111 + 0.979773i \(0.564130\pi\)
\(242\) 9.21744 0.592519
\(243\) −12.9855 −0.833022
\(244\) −11.0586 −0.707955
\(245\) −1.38404 −0.0884233
\(246\) 2.08815 0.133135
\(247\) 5.10454 0.324794
\(248\) 9.34481 0.593396
\(249\) 6.47889 0.410583
\(250\) 1.97285 0.124774
\(251\) 15.1914 0.958870 0.479435 0.877577i \(-0.340842\pi\)
0.479435 + 0.877577i \(0.340842\pi\)
\(252\) −0.295897 −0.0186398
\(253\) −10.4004 −0.653870
\(254\) 2.70841 0.169941
\(255\) 0.320060 0.0200429
\(256\) 1.00000 0.0625000
\(257\) 5.53079 0.345002 0.172501 0.985009i \(-0.444815\pi\)
0.172501 + 0.985009i \(0.444815\pi\)
\(258\) −3.69873 −0.230273
\(259\) −0.332733 −0.0206750
\(260\) 0.780167 0.0483839
\(261\) 0 0
\(262\) 14.6136 0.902829
\(263\) 2.18837 0.134941 0.0674704 0.997721i \(-0.478507\pi\)
0.0674704 + 0.997721i \(0.478507\pi\)
\(264\) −0.740939 −0.0456016
\(265\) 1.65087 0.101412
\(266\) −0.142440 −0.00873357
\(267\) 6.37867 0.390368
\(268\) −11.0000 −0.671932
\(269\) 30.4577 1.85704 0.928520 0.371283i \(-0.121082\pi\)
0.928520 + 0.371283i \(0.121082\pi\)
\(270\) −0.625646 −0.0380756
\(271\) 31.5459 1.91627 0.958137 0.286309i \(-0.0924285\pi\)
0.958137 + 0.286309i \(0.0924285\pi\)
\(272\) −2.91185 −0.176557
\(273\) −0.240275 −0.0145421
\(274\) 1.59419 0.0963083
\(275\) 6.62325 0.399397
\(276\) −4.32304 −0.260217
\(277\) 14.2024 0.853338 0.426669 0.904408i \(-0.359687\pi\)
0.426669 + 0.904408i \(0.359687\pi\)
\(278\) −1.29052 −0.0774003
\(279\) 25.1564 1.50608
\(280\) −0.0217703 −0.00130102
\(281\) 20.7627 1.23860 0.619300 0.785155i \(-0.287417\pi\)
0.619300 + 0.785155i \(0.287417\pi\)
\(282\) 0.445042 0.0265019
\(283\) −17.3472 −1.03118 −0.515592 0.856834i \(-0.672428\pi\)
−0.515592 + 0.856834i \(0.672428\pi\)
\(284\) 10.9487 0.649685
\(285\) −0.142440 −0.00843743
\(286\) 5.25906 0.310975
\(287\) 0.413583 0.0244130
\(288\) 2.69202 0.158629
\(289\) −8.52111 −0.501242
\(290\) 0 0
\(291\) 5.87800 0.344575
\(292\) 7.94869 0.465162
\(293\) 17.5278 1.02399 0.511993 0.858990i \(-0.328907\pi\)
0.511993 + 0.858990i \(0.328907\pi\)
\(294\) −3.87800 −0.226170
\(295\) −1.00777 −0.0586746
\(296\) 3.02715 0.175949
\(297\) −4.21744 −0.244721
\(298\) 6.69740 0.387970
\(299\) 30.6843 1.77452
\(300\) 2.75302 0.158946
\(301\) −0.732578 −0.0422251
\(302\) 9.49396 0.546316
\(303\) −3.31468 −0.190424
\(304\) 1.29590 0.0743248
\(305\) −2.19029 −0.125416
\(306\) −7.83877 −0.448113
\(307\) 30.3618 1.73284 0.866420 0.499316i \(-0.166415\pi\)
0.866420 + 0.499316i \(0.166415\pi\)
\(308\) −0.146752 −0.00836197
\(309\) 7.98792 0.454417
\(310\) 1.85086 0.105122
\(311\) −23.7875 −1.34886 −0.674432 0.738337i \(-0.735611\pi\)
−0.674432 + 0.738337i \(0.735611\pi\)
\(312\) 2.18598 0.123757
\(313\) −28.6746 −1.62078 −0.810391 0.585889i \(-0.800745\pi\)
−0.810391 + 0.585889i \(0.800745\pi\)
\(314\) −9.39373 −0.530119
\(315\) −0.0586060 −0.00330208
\(316\) 4.89008 0.275089
\(317\) −7.55794 −0.424496 −0.212248 0.977216i \(-0.568079\pi\)
−0.212248 + 0.977216i \(0.568079\pi\)
\(318\) 4.62565 0.259393
\(319\) 0 0
\(320\) 0.198062 0.0110720
\(321\) 9.15213 0.510822
\(322\) −0.856232 −0.0477159
\(323\) −3.77346 −0.209961
\(324\) 6.32304 0.351280
\(325\) −19.5405 −1.08391
\(326\) 16.2687 0.901043
\(327\) −1.57673 −0.0871933
\(328\) −3.76271 −0.207761
\(329\) 0.0881460 0.00485965
\(330\) −0.146752 −0.00807843
\(331\) −11.1860 −0.614837 −0.307419 0.951574i \(-0.599465\pi\)
−0.307419 + 0.951574i \(0.599465\pi\)
\(332\) −11.6746 −0.640725
\(333\) 8.14914 0.446570
\(334\) 13.7627 0.753062
\(335\) −2.17868 −0.119034
\(336\) −0.0609989 −0.00332776
\(337\) −20.7928 −1.13266 −0.566329 0.824179i \(-0.691637\pi\)
−0.566329 + 0.824179i \(0.691637\pi\)
\(338\) −2.51573 −0.136838
\(339\) −8.69873 −0.472450
\(340\) −0.576728 −0.0312775
\(341\) 12.4765 0.675640
\(342\) 3.48858 0.188641
\(343\) −1.53750 −0.0830172
\(344\) 6.66487 0.359346
\(345\) −0.856232 −0.0460980
\(346\) 0.119605 0.00643000
\(347\) 0.0193774 0.00104023 0.000520116 1.00000i \(-0.499834\pi\)
0.000520116 1.00000i \(0.499834\pi\)
\(348\) 0 0
\(349\) 29.0315 1.55402 0.777009 0.629489i \(-0.216736\pi\)
0.777009 + 0.629489i \(0.216736\pi\)
\(350\) 0.545269 0.0291459
\(351\) 12.4426 0.664139
\(352\) 1.33513 0.0711624
\(353\) 20.6165 1.09731 0.548654 0.836049i \(-0.315140\pi\)
0.548654 + 0.836049i \(0.315140\pi\)
\(354\) −2.82371 −0.150078
\(355\) 2.16852 0.115093
\(356\) −11.4940 −0.609179
\(357\) 0.177620 0.00940065
\(358\) 12.6799 0.670156
\(359\) 20.8901 1.10254 0.551268 0.834328i \(-0.314144\pi\)
0.551268 + 0.834328i \(0.314144\pi\)
\(360\) 0.533188 0.0281015
\(361\) −17.3207 −0.911613
\(362\) −7.13467 −0.374990
\(363\) 5.11529 0.268483
\(364\) 0.432960 0.0226933
\(365\) 1.57434 0.0824045
\(366\) −6.13706 −0.320789
\(367\) 3.76271 0.196412 0.0982059 0.995166i \(-0.468690\pi\)
0.0982059 + 0.995166i \(0.468690\pi\)
\(368\) 7.78986 0.406074
\(369\) −10.1293 −0.527310
\(370\) 0.599564 0.0311698
\(371\) 0.916166 0.0475650
\(372\) 5.18598 0.268881
\(373\) 15.0140 0.777395 0.388698 0.921365i \(-0.372925\pi\)
0.388698 + 0.921365i \(0.372925\pi\)
\(374\) −3.88769 −0.201028
\(375\) 1.09485 0.0565379
\(376\) −0.801938 −0.0413568
\(377\) 0 0
\(378\) −0.347207 −0.0178584
\(379\) 23.5646 1.21043 0.605217 0.796060i \(-0.293086\pi\)
0.605217 + 0.796060i \(0.293086\pi\)
\(380\) 0.256668 0.0131668
\(381\) 1.50306 0.0770039
\(382\) −3.19806 −0.163627
\(383\) −26.8213 −1.37051 −0.685253 0.728305i \(-0.740308\pi\)
−0.685253 + 0.728305i \(0.740308\pi\)
\(384\) 0.554958 0.0283201
\(385\) −0.0290660 −0.00148134
\(386\) 15.0707 0.767078
\(387\) 17.9420 0.912042
\(388\) −10.5918 −0.537717
\(389\) −18.4034 −0.933090 −0.466545 0.884497i \(-0.654502\pi\)
−0.466545 + 0.884497i \(0.654502\pi\)
\(390\) 0.432960 0.0219238
\(391\) −22.6829 −1.14712
\(392\) 6.98792 0.352943
\(393\) 8.10992 0.409091
\(394\) 14.5187 0.731442
\(395\) 0.968541 0.0487326
\(396\) 3.59419 0.180615
\(397\) 28.9071 1.45080 0.725402 0.688325i \(-0.241654\pi\)
0.725402 + 0.688325i \(0.241654\pi\)
\(398\) −26.5284 −1.32975
\(399\) −0.0790483 −0.00395737
\(400\) −4.96077 −0.248039
\(401\) 15.3370 0.765895 0.382948 0.923770i \(-0.374909\pi\)
0.382948 + 0.923770i \(0.374909\pi\)
\(402\) −6.10454 −0.304467
\(403\) −36.8092 −1.83360
\(404\) 5.97285 0.297161
\(405\) 1.25236 0.0622301
\(406\) 0 0
\(407\) 4.04162 0.200336
\(408\) −1.61596 −0.0800018
\(409\) −34.7308 −1.71733 −0.858663 0.512540i \(-0.828705\pi\)
−0.858663 + 0.512540i \(0.828705\pi\)
\(410\) −0.745251 −0.0368053
\(411\) 0.884707 0.0436394
\(412\) −14.3937 −0.709128
\(413\) −0.559270 −0.0275199
\(414\) 20.9705 1.03064
\(415\) −2.31229 −0.113506
\(416\) −3.93900 −0.193125
\(417\) −0.716185 −0.0350717
\(418\) 1.73019 0.0846261
\(419\) −21.9627 −1.07295 −0.536474 0.843917i \(-0.680244\pi\)
−0.536474 + 0.843917i \(0.680244\pi\)
\(420\) −0.0120816 −0.000589521 0
\(421\) 40.4349 1.97068 0.985338 0.170615i \(-0.0545755\pi\)
0.985338 + 0.170615i \(0.0545755\pi\)
\(422\) 16.7995 0.817789
\(423\) −2.15883 −0.104966
\(424\) −8.33513 −0.404789
\(425\) 14.4450 0.700687
\(426\) 6.07606 0.294386
\(427\) −1.21552 −0.0588232
\(428\) −16.4916 −0.797150
\(429\) 2.91856 0.140909
\(430\) 1.32006 0.0636590
\(431\) −22.1008 −1.06456 −0.532279 0.846569i \(-0.678664\pi\)
−0.532279 + 0.846569i \(0.678664\pi\)
\(432\) 3.15883 0.151979
\(433\) −3.88710 −0.186802 −0.0934010 0.995629i \(-0.529774\pi\)
−0.0934010 + 0.995629i \(0.529774\pi\)
\(434\) 1.02715 0.0493046
\(435\) 0 0
\(436\) 2.84117 0.136067
\(437\) 10.0949 0.482902
\(438\) 4.41119 0.210775
\(439\) 10.1575 0.484791 0.242396 0.970177i \(-0.422067\pi\)
0.242396 + 0.970177i \(0.422067\pi\)
\(440\) 0.264438 0.0126066
\(441\) 18.8116 0.895792
\(442\) 11.4698 0.545563
\(443\) 19.2965 0.916804 0.458402 0.888745i \(-0.348422\pi\)
0.458402 + 0.888745i \(0.348422\pi\)
\(444\) 1.67994 0.0797264
\(445\) −2.27652 −0.107917
\(446\) 1.43296 0.0678526
\(447\) 3.71678 0.175797
\(448\) 0.109916 0.00519306
\(449\) 21.6394 1.02123 0.510613 0.859811i \(-0.329419\pi\)
0.510613 + 0.859811i \(0.329419\pi\)
\(450\) −13.3545 −0.629537
\(451\) −5.02369 −0.236556
\(452\) 15.6746 0.737269
\(453\) 5.26875 0.247547
\(454\) 13.4155 0.629621
\(455\) 0.0857531 0.00402017
\(456\) 0.719169 0.0336782
\(457\) 2.53079 0.118386 0.0591928 0.998247i \(-0.481147\pi\)
0.0591928 + 0.998247i \(0.481147\pi\)
\(458\) −11.5090 −0.537781
\(459\) −9.19806 −0.429329
\(460\) 1.54288 0.0719370
\(461\) 10.7627 0.501269 0.250635 0.968082i \(-0.419361\pi\)
0.250635 + 0.968082i \(0.419361\pi\)
\(462\) −0.0814412 −0.00378899
\(463\) −6.12392 −0.284603 −0.142301 0.989823i \(-0.545450\pi\)
−0.142301 + 0.989823i \(0.545450\pi\)
\(464\) 0 0
\(465\) 1.02715 0.0476328
\(466\) 0.735562 0.0340743
\(467\) 34.9638 1.61793 0.808965 0.587857i \(-0.200028\pi\)
0.808965 + 0.587857i \(0.200028\pi\)
\(468\) −10.6039 −0.490164
\(469\) −1.20908 −0.0558301
\(470\) −0.158834 −0.00732645
\(471\) −5.21313 −0.240208
\(472\) 5.08815 0.234201
\(473\) 8.89844 0.409151
\(474\) 2.71379 0.124649
\(475\) −6.42865 −0.294967
\(476\) −0.320060 −0.0146699
\(477\) −22.4383 −1.02738
\(478\) −0.0881460 −0.00403170
\(479\) −30.8732 −1.41063 −0.705317 0.708892i \(-0.749195\pi\)
−0.705317 + 0.708892i \(0.749195\pi\)
\(480\) 0.109916 0.00501697
\(481\) −11.9239 −0.543685
\(482\) 6.21313 0.283000
\(483\) −0.475173 −0.0216211
\(484\) −9.21744 −0.418975
\(485\) −2.09783 −0.0952578
\(486\) 12.9855 0.589035
\(487\) −0.408206 −0.0184976 −0.00924879 0.999957i \(-0.502944\pi\)
−0.00924879 + 0.999957i \(0.502944\pi\)
\(488\) 11.0586 0.500600
\(489\) 9.02848 0.408282
\(490\) 1.38404 0.0625247
\(491\) 20.1618 0.909890 0.454945 0.890520i \(-0.349659\pi\)
0.454945 + 0.890520i \(0.349659\pi\)
\(492\) −2.08815 −0.0941409
\(493\) 0 0
\(494\) −5.10454 −0.229664
\(495\) 0.711873 0.0319963
\(496\) −9.34481 −0.419595
\(497\) 1.20344 0.0539816
\(498\) −6.47889 −0.290326
\(499\) −10.3787 −0.464613 −0.232306 0.972643i \(-0.574627\pi\)
−0.232306 + 0.972643i \(0.574627\pi\)
\(500\) −1.97285 −0.0882287
\(501\) 7.63773 0.341228
\(502\) −15.1914 −0.678023
\(503\) 22.9909 1.02511 0.512557 0.858653i \(-0.328698\pi\)
0.512557 + 0.858653i \(0.328698\pi\)
\(504\) 0.295897 0.0131803
\(505\) 1.18300 0.0526427
\(506\) 10.4004 0.462356
\(507\) −1.39612 −0.0620041
\(508\) −2.70841 −0.120166
\(509\) 25.7041 1.13931 0.569657 0.821882i \(-0.307076\pi\)
0.569657 + 0.821882i \(0.307076\pi\)
\(510\) −0.320060 −0.0141725
\(511\) 0.873690 0.0386498
\(512\) −1.00000 −0.0441942
\(513\) 4.09352 0.180733
\(514\) −5.53079 −0.243953
\(515\) −2.85086 −0.125624
\(516\) 3.69873 0.162827
\(517\) −1.07069 −0.0470888
\(518\) 0.332733 0.0146194
\(519\) 0.0663757 0.00291357
\(520\) −0.780167 −0.0342126
\(521\) 17.1535 0.751507 0.375753 0.926720i \(-0.377384\pi\)
0.375753 + 0.926720i \(0.377384\pi\)
\(522\) 0 0
\(523\) 22.4494 0.981642 0.490821 0.871261i \(-0.336697\pi\)
0.490821 + 0.871261i \(0.336697\pi\)
\(524\) −14.6136 −0.638397
\(525\) 0.302602 0.0132066
\(526\) −2.18837 −0.0954176
\(527\) 27.2107 1.18532
\(528\) 0.740939 0.0322452
\(529\) 37.6819 1.63834
\(530\) −1.65087 −0.0717094
\(531\) 13.6974 0.594416
\(532\) 0.142440 0.00617556
\(533\) 14.8213 0.641982
\(534\) −6.37867 −0.276032
\(535\) −3.26636 −0.141217
\(536\) 11.0000 0.475128
\(537\) 7.03684 0.303662
\(538\) −30.4577 −1.31313
\(539\) 9.32975 0.401861
\(540\) 0.625646 0.0269235
\(541\) −12.4426 −0.534951 −0.267476 0.963565i \(-0.586189\pi\)
−0.267476 + 0.963565i \(0.586189\pi\)
\(542\) −31.5459 −1.35501
\(543\) −3.95944 −0.169916
\(544\) 2.91185 0.124845
\(545\) 0.562728 0.0241046
\(546\) 0.240275 0.0102828
\(547\) −11.7638 −0.502983 −0.251491 0.967860i \(-0.580921\pi\)
−0.251491 + 0.967860i \(0.580921\pi\)
\(548\) −1.59419 −0.0681003
\(549\) 29.7700 1.27055
\(550\) −6.62325 −0.282416
\(551\) 0 0
\(552\) 4.32304 0.184001
\(553\) 0.537500 0.0228568
\(554\) −14.2024 −0.603401
\(555\) 0.332733 0.0141237
\(556\) 1.29052 0.0547302
\(557\) 32.7362 1.38708 0.693538 0.720420i \(-0.256051\pi\)
0.693538 + 0.720420i \(0.256051\pi\)
\(558\) −25.1564 −1.06496
\(559\) −26.2529 −1.11038
\(560\) 0.0217703 0.000919962 0
\(561\) −2.15751 −0.0910900
\(562\) −20.7627 −0.875822
\(563\) −30.1105 −1.26901 −0.634503 0.772920i \(-0.718795\pi\)
−0.634503 + 0.772920i \(0.718795\pi\)
\(564\) −0.445042 −0.0187396
\(565\) 3.10454 0.130609
\(566\) 17.3472 0.729158
\(567\) 0.695005 0.0291875
\(568\) −10.9487 −0.459397
\(569\) 15.5773 0.653035 0.326518 0.945191i \(-0.394125\pi\)
0.326518 + 0.945191i \(0.394125\pi\)
\(570\) 0.142440 0.00596616
\(571\) 6.74572 0.282300 0.141150 0.989988i \(-0.454920\pi\)
0.141150 + 0.989988i \(0.454920\pi\)
\(572\) −5.25906 −0.219892
\(573\) −1.77479 −0.0741429
\(574\) −0.413583 −0.0172626
\(575\) −38.6437 −1.61155
\(576\) −2.69202 −0.112168
\(577\) −18.6974 −0.778383 −0.389191 0.921157i \(-0.627246\pi\)
−0.389191 + 0.921157i \(0.627246\pi\)
\(578\) 8.52111 0.354431
\(579\) 8.36360 0.347579
\(580\) 0 0
\(581\) −1.28322 −0.0532371
\(582\) −5.87800 −0.243651
\(583\) −11.1284 −0.460893
\(584\) −7.94869 −0.328919
\(585\) −2.10023 −0.0868337
\(586\) −17.5278 −0.724067
\(587\) −16.2500 −0.670708 −0.335354 0.942092i \(-0.608856\pi\)
−0.335354 + 0.942092i \(0.608856\pi\)
\(588\) 3.87800 0.159926
\(589\) −12.1099 −0.498980
\(590\) 1.00777 0.0414892
\(591\) 8.05728 0.331432
\(592\) −3.02715 −0.124415
\(593\) 31.1715 1.28006 0.640030 0.768350i \(-0.278922\pi\)
0.640030 + 0.768350i \(0.278922\pi\)
\(594\) 4.21744 0.173044
\(595\) −0.0633918 −0.00259881
\(596\) −6.69740 −0.274336
\(597\) −14.7222 −0.602538
\(598\) −30.6843 −1.25477
\(599\) 7.82802 0.319844 0.159922 0.987130i \(-0.448876\pi\)
0.159922 + 0.987130i \(0.448876\pi\)
\(600\) −2.75302 −0.112392
\(601\) 17.5730 0.716818 0.358409 0.933565i \(-0.383319\pi\)
0.358409 + 0.933565i \(0.383319\pi\)
\(602\) 0.732578 0.0298577
\(603\) 29.6122 1.20590
\(604\) −9.49396 −0.386304
\(605\) −1.82563 −0.0742223
\(606\) 3.31468 0.134650
\(607\) −39.3448 −1.59696 −0.798478 0.602023i \(-0.794361\pi\)
−0.798478 + 0.602023i \(0.794361\pi\)
\(608\) −1.29590 −0.0525556
\(609\) 0 0
\(610\) 2.19029 0.0886824
\(611\) 3.15883 0.127793
\(612\) 7.83877 0.316864
\(613\) 25.1317 1.01506 0.507530 0.861634i \(-0.330559\pi\)
0.507530 + 0.861634i \(0.330559\pi\)
\(614\) −30.3618 −1.22530
\(615\) −0.413583 −0.0166773
\(616\) 0.146752 0.00591281
\(617\) −12.6233 −0.508193 −0.254097 0.967179i \(-0.581778\pi\)
−0.254097 + 0.967179i \(0.581778\pi\)
\(618\) −7.98792 −0.321321
\(619\) −21.7192 −0.872967 −0.436484 0.899712i \(-0.643776\pi\)
−0.436484 + 0.899712i \(0.643776\pi\)
\(620\) −1.85086 −0.0743321
\(621\) 24.6069 0.987439
\(622\) 23.7875 0.953790
\(623\) −1.26337 −0.0506160
\(624\) −2.18598 −0.0875093
\(625\) 24.4131 0.976524
\(626\) 28.6746 1.14607
\(627\) 0.960180 0.0383459
\(628\) 9.39373 0.374851
\(629\) 8.81461 0.351462
\(630\) 0.0586060 0.00233492
\(631\) −39.3594 −1.56687 −0.783437 0.621472i \(-0.786535\pi\)
−0.783437 + 0.621472i \(0.786535\pi\)
\(632\) −4.89008 −0.194517
\(633\) 9.32304 0.370558
\(634\) 7.55794 0.300164
\(635\) −0.536435 −0.0212878
\(636\) −4.62565 −0.183419
\(637\) −27.5254 −1.09060
\(638\) 0 0
\(639\) −29.4741 −1.16598
\(640\) −0.198062 −0.00782910
\(641\) −4.92825 −0.194654 −0.0973270 0.995252i \(-0.531029\pi\)
−0.0973270 + 0.995252i \(0.531029\pi\)
\(642\) −9.15213 −0.361206
\(643\) −7.01075 −0.276477 −0.138239 0.990399i \(-0.544144\pi\)
−0.138239 + 0.990399i \(0.544144\pi\)
\(644\) 0.856232 0.0337403
\(645\) 0.732578 0.0288452
\(646\) 3.77346 0.148465
\(647\) −14.7289 −0.579051 −0.289526 0.957170i \(-0.593498\pi\)
−0.289526 + 0.957170i \(0.593498\pi\)
\(648\) −6.32304 −0.248393
\(649\) 6.79331 0.266661
\(650\) 19.5405 0.766441
\(651\) 0.570024 0.0223410
\(652\) −16.2687 −0.637133
\(653\) −25.0175 −0.979009 −0.489504 0.872001i \(-0.662822\pi\)
−0.489504 + 0.872001i \(0.662822\pi\)
\(654\) 1.57673 0.0616550
\(655\) −2.89440 −0.113093
\(656\) 3.76271 0.146909
\(657\) −21.3980 −0.834817
\(658\) −0.0881460 −0.00343629
\(659\) 48.6590 1.89549 0.947743 0.319034i \(-0.103358\pi\)
0.947743 + 0.319034i \(0.103358\pi\)
\(660\) 0.146752 0.00571231
\(661\) −28.7851 −1.11961 −0.559805 0.828625i \(-0.689124\pi\)
−0.559805 + 0.828625i \(0.689124\pi\)
\(662\) 11.1860 0.434755
\(663\) 6.36526 0.247206
\(664\) 11.6746 0.453061
\(665\) 0.0282120 0.00109402
\(666\) −8.14914 −0.315773
\(667\) 0 0
\(668\) −13.7627 −0.532495
\(669\) 0.795233 0.0307455
\(670\) 2.17868 0.0841699
\(671\) 14.7646 0.569982
\(672\) 0.0609989 0.00235308
\(673\) 23.1341 0.891753 0.445877 0.895094i \(-0.352892\pi\)
0.445877 + 0.895094i \(0.352892\pi\)
\(674\) 20.7928 0.800910
\(675\) −15.6703 −0.603148
\(676\) 2.51573 0.0967588
\(677\) −18.0573 −0.693998 −0.346999 0.937866i \(-0.612799\pi\)
−0.346999 + 0.937866i \(0.612799\pi\)
\(678\) 8.69873 0.334073
\(679\) −1.16421 −0.0446783
\(680\) 0.576728 0.0221165
\(681\) 7.44504 0.285295
\(682\) −12.4765 −0.477750
\(683\) −44.1269 −1.68847 −0.844234 0.535974i \(-0.819944\pi\)
−0.844234 + 0.535974i \(0.819944\pi\)
\(684\) −3.48858 −0.133389
\(685\) −0.315748 −0.0120641
\(686\) 1.53750 0.0587020
\(687\) −6.38703 −0.243680
\(688\) −6.66487 −0.254096
\(689\) 32.8321 1.25080
\(690\) 0.856232 0.0325962
\(691\) 23.8495 0.907279 0.453639 0.891185i \(-0.350125\pi\)
0.453639 + 0.891185i \(0.350125\pi\)
\(692\) −0.119605 −0.00454670
\(693\) 0.395060 0.0150071
\(694\) −0.0193774 −0.000735554 0
\(695\) 0.255603 0.00969559
\(696\) 0 0
\(697\) −10.9565 −0.415005
\(698\) −29.0315 −1.09886
\(699\) 0.408206 0.0154398
\(700\) −0.545269 −0.0206092
\(701\) 1.12200 0.0423773 0.0211886 0.999775i \(-0.493255\pi\)
0.0211886 + 0.999775i \(0.493255\pi\)
\(702\) −12.4426 −0.469618
\(703\) −3.92287 −0.147954
\(704\) −1.33513 −0.0503194
\(705\) −0.0881460 −0.00331977
\(706\) −20.6165 −0.775914
\(707\) 0.656514 0.0246907
\(708\) 2.82371 0.106121
\(709\) 4.08383 0.153372 0.0766858 0.997055i \(-0.475566\pi\)
0.0766858 + 0.997055i \(0.475566\pi\)
\(710\) −2.16852 −0.0813832
\(711\) −13.1642 −0.493696
\(712\) 11.4940 0.430754
\(713\) −72.7948 −2.72619
\(714\) −0.177620 −0.00664726
\(715\) −1.04162 −0.0389544
\(716\) −12.6799 −0.473872
\(717\) −0.0489173 −0.00182685
\(718\) −20.8901 −0.779611
\(719\) 29.1237 1.08613 0.543065 0.839691i \(-0.317264\pi\)
0.543065 + 0.839691i \(0.317264\pi\)
\(720\) −0.533188 −0.0198707
\(721\) −1.58211 −0.0589207
\(722\) 17.3207 0.644608
\(723\) 3.44803 0.128233
\(724\) 7.13467 0.265158
\(725\) 0 0
\(726\) −5.11529 −0.189846
\(727\) −15.8586 −0.588164 −0.294082 0.955780i \(-0.595014\pi\)
−0.294082 + 0.955780i \(0.595014\pi\)
\(728\) −0.432960 −0.0160466
\(729\) −11.7627 −0.435656
\(730\) −1.57434 −0.0582688
\(731\) 19.4071 0.717799
\(732\) 6.13706 0.226832
\(733\) −21.4101 −0.790801 −0.395401 0.918509i \(-0.629394\pi\)
−0.395401 + 0.918509i \(0.629394\pi\)
\(734\) −3.76271 −0.138884
\(735\) 0.768086 0.0283313
\(736\) −7.78986 −0.287138
\(737\) 14.6864 0.540980
\(738\) 10.1293 0.372864
\(739\) −33.6394 −1.23744 −0.618722 0.785610i \(-0.712349\pi\)
−0.618722 + 0.785610i \(0.712349\pi\)
\(740\) −0.599564 −0.0220404
\(741\) −2.83281 −0.104066
\(742\) −0.916166 −0.0336335
\(743\) 5.43668 0.199452 0.0997262 0.995015i \(-0.468203\pi\)
0.0997262 + 0.995015i \(0.468203\pi\)
\(744\) −5.18598 −0.190127
\(745\) −1.32650 −0.0485993
\(746\) −15.0140 −0.549702
\(747\) 31.4282 1.14990
\(748\) 3.88769 0.142148
\(749\) −1.81269 −0.0662343
\(750\) −1.09485 −0.0399783
\(751\) −16.7976 −0.612954 −0.306477 0.951878i \(-0.599150\pi\)
−0.306477 + 0.951878i \(0.599150\pi\)
\(752\) 0.801938 0.0292437
\(753\) −8.43057 −0.307227
\(754\) 0 0
\(755\) −1.88040 −0.0684346
\(756\) 0.347207 0.0126278
\(757\) 2.51142 0.0912790 0.0456395 0.998958i \(-0.485467\pi\)
0.0456395 + 0.998958i \(0.485467\pi\)
\(758\) −23.5646 −0.855907
\(759\) 5.77181 0.209503
\(760\) −0.256668 −0.00931034
\(761\) −53.5387 −1.94078 −0.970388 0.241552i \(-0.922344\pi\)
−0.970388 + 0.241552i \(0.922344\pi\)
\(762\) −1.50306 −0.0544500
\(763\) 0.312290 0.0113057
\(764\) 3.19806 0.115702
\(765\) 1.55257 0.0561331
\(766\) 26.8213 0.969094
\(767\) −20.0422 −0.723682
\(768\) −0.554958 −0.0200253
\(769\) 9.24219 0.333282 0.166641 0.986018i \(-0.446708\pi\)
0.166641 + 0.986018i \(0.446708\pi\)
\(770\) 0.0290660 0.00104747
\(771\) −3.06936 −0.110540
\(772\) −15.0707 −0.542406
\(773\) −37.4373 −1.34653 −0.673263 0.739404i \(-0.735108\pi\)
−0.673263 + 0.739404i \(0.735108\pi\)
\(774\) −17.9420 −0.644911
\(775\) 46.3575 1.66521
\(776\) 10.5918 0.380223
\(777\) 0.184653 0.00662438
\(778\) 18.4034 0.659795
\(779\) 4.87608 0.174704
\(780\) −0.432960 −0.0155025
\(781\) −14.6179 −0.523069
\(782\) 22.6829 0.811140
\(783\) 0 0
\(784\) −6.98792 −0.249569
\(785\) 1.86054 0.0664057
\(786\) −8.10992 −0.289271
\(787\) 25.9372 0.924561 0.462281 0.886734i \(-0.347031\pi\)
0.462281 + 0.886734i \(0.347031\pi\)
\(788\) −14.5187 −0.517208
\(789\) −1.21446 −0.0432358
\(790\) −0.968541 −0.0344591
\(791\) 1.72289 0.0612589
\(792\) −3.59419 −0.127714
\(793\) −43.5599 −1.54686
\(794\) −28.9071 −1.02587
\(795\) −0.916166 −0.0324931
\(796\) 26.5284 0.940274
\(797\) 20.1914 0.715215 0.357607 0.933872i \(-0.383593\pi\)
0.357607 + 0.933872i \(0.383593\pi\)
\(798\) 0.0790483 0.00279828
\(799\) −2.33513 −0.0826108
\(800\) 4.96077 0.175390
\(801\) 30.9420 1.09328
\(802\) −15.3370 −0.541570
\(803\) −10.6125 −0.374507
\(804\) 6.10454 0.215291
\(805\) 0.169587 0.00597716
\(806\) 36.8092 1.29655
\(807\) −16.9028 −0.595005
\(808\) −5.97285 −0.210124
\(809\) 34.4413 1.21089 0.605446 0.795886i \(-0.292995\pi\)
0.605446 + 0.795886i \(0.292995\pi\)
\(810\) −1.25236 −0.0440033
\(811\) 32.7536 1.15013 0.575067 0.818106i \(-0.304976\pi\)
0.575067 + 0.818106i \(0.304976\pi\)
\(812\) 0 0
\(813\) −17.5066 −0.613984
\(814\) −4.04162 −0.141659
\(815\) −3.22223 −0.112870
\(816\) 1.61596 0.0565698
\(817\) −8.63699 −0.302170
\(818\) 34.7308 1.21433
\(819\) −1.16554 −0.0407272
\(820\) 0.745251 0.0260253
\(821\) 4.34614 0.151681 0.0758407 0.997120i \(-0.475836\pi\)
0.0758407 + 0.997120i \(0.475836\pi\)
\(822\) −0.884707 −0.0308577
\(823\) 13.4101 0.467448 0.233724 0.972303i \(-0.424909\pi\)
0.233724 + 0.972303i \(0.424909\pi\)
\(824\) 14.3937 0.501429
\(825\) −3.67563 −0.127969
\(826\) 0.559270 0.0194595
\(827\) −26.3424 −0.916016 −0.458008 0.888948i \(-0.651437\pi\)
−0.458008 + 0.888948i \(0.651437\pi\)
\(828\) −20.9705 −0.728774
\(829\) −10.3618 −0.359880 −0.179940 0.983678i \(-0.557590\pi\)
−0.179940 + 0.983678i \(0.557590\pi\)
\(830\) 2.31229 0.0802608
\(831\) −7.88172 −0.273414
\(832\) 3.93900 0.136560
\(833\) 20.3478 0.705009
\(834\) 0.716185 0.0247994
\(835\) −2.72587 −0.0943327
\(836\) −1.73019 −0.0598397
\(837\) −29.5187 −1.02032
\(838\) 21.9627 0.758689
\(839\) −26.6752 −0.920929 −0.460464 0.887678i \(-0.652317\pi\)
−0.460464 + 0.887678i \(0.652317\pi\)
\(840\) 0.0120816 0.000416854 0
\(841\) 0 0
\(842\) −40.4349 −1.39348
\(843\) −11.5224 −0.396854
\(844\) −16.7995 −0.578264
\(845\) 0.498271 0.0171410
\(846\) 2.15883 0.0742222
\(847\) −1.01315 −0.0348121
\(848\) 8.33513 0.286229
\(849\) 9.62697 0.330397
\(850\) −14.4450 −0.495461
\(851\) −23.5810 −0.808348
\(852\) −6.07606 −0.208163
\(853\) −19.7071 −0.674758 −0.337379 0.941369i \(-0.609540\pi\)
−0.337379 + 0.941369i \(0.609540\pi\)
\(854\) 1.21552 0.0415943
\(855\) −0.690957 −0.0236302
\(856\) 16.4916 0.563670
\(857\) 2.15691 0.0736788 0.0368394 0.999321i \(-0.488271\pi\)
0.0368394 + 0.999321i \(0.488271\pi\)
\(858\) −2.91856 −0.0996380
\(859\) 34.4510 1.17545 0.587727 0.809060i \(-0.300023\pi\)
0.587727 + 0.809060i \(0.300023\pi\)
\(860\) −1.32006 −0.0450137
\(861\) −0.229521 −0.00782206
\(862\) 22.1008 0.752757
\(863\) −9.58881 −0.326407 −0.163203 0.986592i \(-0.552183\pi\)
−0.163203 + 0.986592i \(0.552183\pi\)
\(864\) −3.15883 −0.107466
\(865\) −0.0236892 −0.000805458 0
\(866\) 3.88710 0.132089
\(867\) 4.72886 0.160600
\(868\) −1.02715 −0.0348636
\(869\) −6.52888 −0.221477
\(870\) 0 0
\(871\) −43.3290 −1.46815
\(872\) −2.84117 −0.0962140
\(873\) 28.5133 0.965030
\(874\) −10.0949 −0.341463
\(875\) −0.216849 −0.00733082
\(876\) −4.41119 −0.149040
\(877\) −0.842231 −0.0284401 −0.0142201 0.999899i \(-0.504527\pi\)
−0.0142201 + 0.999899i \(0.504527\pi\)
\(878\) −10.1575 −0.342799
\(879\) −9.72720 −0.328090
\(880\) −0.264438 −0.00891420
\(881\) −8.22819 −0.277215 −0.138607 0.990347i \(-0.544263\pi\)
−0.138607 + 0.990347i \(0.544263\pi\)
\(882\) −18.8116 −0.633420
\(883\) 54.3021 1.82741 0.913706 0.406376i \(-0.133208\pi\)
0.913706 + 0.406376i \(0.133208\pi\)
\(884\) −11.4698 −0.385771
\(885\) 0.559270 0.0187997
\(886\) −19.2965 −0.648278
\(887\) −13.5013 −0.453328 −0.226664 0.973973i \(-0.572782\pi\)
−0.226664 + 0.973973i \(0.572782\pi\)
\(888\) −1.67994 −0.0563751
\(889\) −0.297699 −0.00998450
\(890\) 2.27652 0.0763091
\(891\) −8.44206 −0.282820
\(892\) −1.43296 −0.0479791
\(893\) 1.03923 0.0347765
\(894\) −3.71678 −0.124308
\(895\) −2.51142 −0.0839474
\(896\) −0.109916 −0.00367204
\(897\) −17.0285 −0.568564
\(898\) −21.6394 −0.722116
\(899\) 0 0
\(900\) 13.3545 0.445150
\(901\) −24.2707 −0.808573
\(902\) 5.02369 0.167271
\(903\) 0.406550 0.0135291
\(904\) −15.6746 −0.521328
\(905\) 1.41311 0.0469733
\(906\) −5.26875 −0.175042
\(907\) −46.4795 −1.54333 −0.771663 0.636032i \(-0.780575\pi\)
−0.771663 + 0.636032i \(0.780575\pi\)
\(908\) −13.4155 −0.445209
\(909\) −16.0790 −0.533308
\(910\) −0.0857531 −0.00284269
\(911\) 21.1685 0.701344 0.350672 0.936498i \(-0.385953\pi\)
0.350672 + 0.936498i \(0.385953\pi\)
\(912\) −0.719169 −0.0238141
\(913\) 15.5870 0.515855
\(914\) −2.53079 −0.0837113
\(915\) 1.21552 0.0401839
\(916\) 11.5090 0.380269
\(917\) −1.60627 −0.0530437
\(918\) 9.19806 0.303581
\(919\) −20.1605 −0.665033 −0.332517 0.943097i \(-0.607898\pi\)
−0.332517 + 0.943097i \(0.607898\pi\)
\(920\) −1.54288 −0.0508671
\(921\) −16.8495 −0.555211
\(922\) −10.7627 −0.354451
\(923\) 43.1269 1.41954
\(924\) 0.0814412 0.00267922
\(925\) 15.0170 0.493755
\(926\) 6.12392 0.201244
\(927\) 38.7482 1.27266
\(928\) 0 0
\(929\) 19.7952 0.649461 0.324730 0.945807i \(-0.394726\pi\)
0.324730 + 0.945807i \(0.394726\pi\)
\(930\) −1.02715 −0.0336815
\(931\) −9.05562 −0.296786
\(932\) −0.735562 −0.0240941
\(933\) 13.2010 0.432183
\(934\) −34.9638 −1.14405
\(935\) 0.770005 0.0251819
\(936\) 10.6039 0.346599
\(937\) −56.0883 −1.83232 −0.916162 0.400809i \(-0.868729\pi\)
−0.916162 + 0.400809i \(0.868729\pi\)
\(938\) 1.20908 0.0394778
\(939\) 15.9132 0.519307
\(940\) 0.158834 0.00518058
\(941\) −2.40688 −0.0784620 −0.0392310 0.999230i \(-0.512491\pi\)
−0.0392310 + 0.999230i \(0.512491\pi\)
\(942\) 5.21313 0.169853
\(943\) 29.3110 0.954496
\(944\) −5.08815 −0.165605
\(945\) 0.0687686 0.00223704
\(946\) −8.89844 −0.289313
\(947\) 2.39745 0.0779067 0.0389534 0.999241i \(-0.487598\pi\)
0.0389534 + 0.999241i \(0.487598\pi\)
\(948\) −2.71379 −0.0881399
\(949\) 31.3099 1.01636
\(950\) 6.42865 0.208573
\(951\) 4.19434 0.136011
\(952\) 0.320060 0.0103732
\(953\) −33.4789 −1.08449 −0.542244 0.840221i \(-0.682425\pi\)
−0.542244 + 0.840221i \(0.682425\pi\)
\(954\) 22.4383 0.726468
\(955\) 0.633415 0.0204968
\(956\) 0.0881460 0.00285085
\(957\) 0 0
\(958\) 30.8732 0.997468
\(959\) −0.175227 −0.00565838
\(960\) −0.109916 −0.00354753
\(961\) 56.3256 1.81695
\(962\) 11.9239 0.384443
\(963\) 44.3957 1.43063
\(964\) −6.21313 −0.200111
\(965\) −2.98493 −0.0960884
\(966\) 0.475173 0.0152884
\(967\) 35.1739 1.13112 0.565558 0.824708i \(-0.308661\pi\)
0.565558 + 0.824708i \(0.308661\pi\)
\(968\) 9.21744 0.296260
\(969\) 2.09411 0.0672726
\(970\) 2.09783 0.0673574
\(971\) −27.5332 −0.883582 −0.441791 0.897118i \(-0.645657\pi\)
−0.441791 + 0.897118i \(0.645657\pi\)
\(972\) −12.9855 −0.416511
\(973\) 0.141849 0.00454748
\(974\) 0.408206 0.0130798
\(975\) 10.8442 0.347291
\(976\) −11.0586 −0.353977
\(977\) −11.3593 −0.363416 −0.181708 0.983353i \(-0.558163\pi\)
−0.181708 + 0.983353i \(0.558163\pi\)
\(978\) −9.02848 −0.288699
\(979\) 15.3459 0.490456
\(980\) −1.38404 −0.0442116
\(981\) −7.64848 −0.244197
\(982\) −20.1618 −0.643389
\(983\) −32.9189 −1.04995 −0.524975 0.851118i \(-0.675925\pi\)
−0.524975 + 0.851118i \(0.675925\pi\)
\(984\) 2.08815 0.0665677
\(985\) −2.87561 −0.0916245
\(986\) 0 0
\(987\) −0.0489173 −0.00155706
\(988\) 5.10454 0.162397
\(989\) −51.9184 −1.65091
\(990\) −0.711873 −0.0226248
\(991\) 22.4814 0.714145 0.357073 0.934077i \(-0.383775\pi\)
0.357073 + 0.934077i \(0.383775\pi\)
\(992\) 9.34481 0.296698
\(993\) 6.20775 0.196997
\(994\) −1.20344 −0.0381708
\(995\) 5.25428 0.166572
\(996\) 6.47889 0.205292
\(997\) −22.1244 −0.700686 −0.350343 0.936621i \(-0.613935\pi\)
−0.350343 + 0.936621i \(0.613935\pi\)
\(998\) 10.3787 0.328531
\(999\) −9.56225 −0.302536
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1682.2.a.m.1.2 3
29.12 odd 4 1682.2.b.g.1681.2 6
29.17 odd 4 1682.2.b.g.1681.5 6
29.23 even 7 58.2.d.a.7.1 6
29.24 even 7 58.2.d.a.25.1 yes 6
29.28 even 2 1682.2.a.n.1.2 3
87.23 odd 14 522.2.k.c.181.1 6
87.53 odd 14 522.2.k.c.199.1 6
116.23 odd 14 464.2.u.b.65.1 6
116.111 odd 14 464.2.u.b.257.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
58.2.d.a.7.1 6 29.23 even 7
58.2.d.a.25.1 yes 6 29.24 even 7
464.2.u.b.65.1 6 116.23 odd 14
464.2.u.b.257.1 6 116.111 odd 14
522.2.k.c.181.1 6 87.23 odd 14
522.2.k.c.199.1 6 87.53 odd 14
1682.2.a.m.1.2 3 1.1 even 1 trivial
1682.2.a.n.1.2 3 29.28 even 2
1682.2.b.g.1681.2 6 29.12 odd 4
1682.2.b.g.1681.5 6 29.17 odd 4