Properties

Label 1682.2.a.u.1.1
Level 16821682
Weight 22
Character 1682.1
Self dual yes
Analytic conductor 13.43113.431
Analytic rank 00
Dimension 88
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1682,2,Mod(1,1682)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1682, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1682.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1682=2292 1682 = 2 \cdot 29^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1682.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 13.430837620013.4308376200
Analytic rank: 00
Dimension: 88
Coefficient field: 8.8.32836640625.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8x718x6+17x5+95x477x3128x2+51x+31 x^{8} - x^{7} - 18x^{6} + 17x^{5} + 95x^{4} - 77x^{3} - 128x^{2} + 51x + 31 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.1
Root 2.889722.88972 of defining polynomial
Character χ\chi == 1682.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q1.00000q22.88972q3+1.00000q42.81297q5+2.88972q6+3.85101q71.00000q8+5.35050q9+2.81297q102.90591q112.88972q120.364636q133.85101q14+8.12870q15+1.00000q16+0.925336q175.35050q18+5.15058q192.81297q2011.1284q21+2.90591q222.53872q23+2.88972q24+2.91279q25+0.364636q266.79231q27+3.85101q288.12870q308.03616q311.00000q32+8.39729q330.925336q3410.8328q35+5.35050q36+3.62923q375.15058q38+1.05370q39+2.81297q404.99001q41+11.1284q428.55107q432.90591q4415.0508q45+2.53872q46+7.50775q472.88972q48+7.83031q492.91279q502.67397q510.364636q529.16362q53+6.79231q54+8.17425q553.85101q5614.8838q574.66605q59+8.12870q606.85219q61+8.03616q62+20.6049q63+1.00000q64+1.02571q658.39729q661.40270q67+0.925336q68+7.33619q69+10.8328q704.31712q715.35050q72+12.5974q733.62923q748.41716q75+5.15058q7611.1907q771.05370q78+12.0164q792.81297q80+3.57638q81+4.99001q82+14.5760q8311.1284q842.60294q85+8.55107q86+2.90591q88+11.4600q89+15.0508q901.40422q912.53872q92+23.2223q937.50775q9414.4884q95+2.88972q9612.4026q977.83031q9815.5481q99+O(q100)q-1.00000 q^{2} -2.88972 q^{3} +1.00000 q^{4} -2.81297 q^{5} +2.88972 q^{6} +3.85101 q^{7} -1.00000 q^{8} +5.35050 q^{9} +2.81297 q^{10} -2.90591 q^{11} -2.88972 q^{12} -0.364636 q^{13} -3.85101 q^{14} +8.12870 q^{15} +1.00000 q^{16} +0.925336 q^{17} -5.35050 q^{18} +5.15058 q^{19} -2.81297 q^{20} -11.1284 q^{21} +2.90591 q^{22} -2.53872 q^{23} +2.88972 q^{24} +2.91279 q^{25} +0.364636 q^{26} -6.79231 q^{27} +3.85101 q^{28} -8.12870 q^{30} -8.03616 q^{31} -1.00000 q^{32} +8.39729 q^{33} -0.925336 q^{34} -10.8328 q^{35} +5.35050 q^{36} +3.62923 q^{37} -5.15058 q^{38} +1.05370 q^{39} +2.81297 q^{40} -4.99001 q^{41} +11.1284 q^{42} -8.55107 q^{43} -2.90591 q^{44} -15.0508 q^{45} +2.53872 q^{46} +7.50775 q^{47} -2.88972 q^{48} +7.83031 q^{49} -2.91279 q^{50} -2.67397 q^{51} -0.364636 q^{52} -9.16362 q^{53} +6.79231 q^{54} +8.17425 q^{55} -3.85101 q^{56} -14.8838 q^{57} -4.66605 q^{59} +8.12870 q^{60} -6.85219 q^{61} +8.03616 q^{62} +20.6049 q^{63} +1.00000 q^{64} +1.02571 q^{65} -8.39729 q^{66} -1.40270 q^{67} +0.925336 q^{68} +7.33619 q^{69} +10.8328 q^{70} -4.31712 q^{71} -5.35050 q^{72} +12.5974 q^{73} -3.62923 q^{74} -8.41716 q^{75} +5.15058 q^{76} -11.1907 q^{77} -1.05370 q^{78} +12.0164 q^{79} -2.81297 q^{80} +3.57638 q^{81} +4.99001 q^{82} +14.5760 q^{83} -11.1284 q^{84} -2.60294 q^{85} +8.55107 q^{86} +2.90591 q^{88} +11.4600 q^{89} +15.0508 q^{90} -1.40422 q^{91} -2.53872 q^{92} +23.2223 q^{93} -7.50775 q^{94} -14.4884 q^{95} +2.88972 q^{96} -12.4026 q^{97} -7.83031 q^{98} -15.5481 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q8q2q3+8q4+5q5+q6+7q78q8+13q95q10+7q11q12+13q137q14+20q15+8q169q1713q18+13q19+5q20++2q99+O(q100) 8 q - 8 q^{2} - q^{3} + 8 q^{4} + 5 q^{5} + q^{6} + 7 q^{7} - 8 q^{8} + 13 q^{9} - 5 q^{10} + 7 q^{11} - q^{12} + 13 q^{13} - 7 q^{14} + 20 q^{15} + 8 q^{16} - 9 q^{17} - 13 q^{18} + 13 q^{19} + 5 q^{20}+ \cdots + 2 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −1.00000 −0.707107
33 −2.88972 −1.66838 −0.834191 0.551475i 0.814065π-0.814065\pi
−0.834191 + 0.551475i 0.814065π0.814065\pi
44 1.00000 0.500000
55 −2.81297 −1.25800 −0.628999 0.777406i 0.716535π-0.716535\pi
−0.628999 + 0.777406i 0.716535π0.716535\pi
66 2.88972 1.17972
77 3.85101 1.45555 0.727773 0.685818i 0.240555π-0.240555\pi
0.727773 + 0.685818i 0.240555π0.240555\pi
88 −1.00000 −0.353553
99 5.35050 1.78350
1010 2.81297 0.889539
1111 −2.90591 −0.876166 −0.438083 0.898934i 0.644342π-0.644342\pi
−0.438083 + 0.898934i 0.644342π0.644342\pi
1212 −2.88972 −0.834191
1313 −0.364636 −0.101132 −0.0505660 0.998721i 0.516103π-0.516103\pi
−0.0505660 + 0.998721i 0.516103π0.516103\pi
1414 −3.85101 −1.02923
1515 8.12870 2.09882
1616 1.00000 0.250000
1717 0.925336 0.224427 0.112214 0.993684i 0.464206π-0.464206\pi
0.112214 + 0.993684i 0.464206π0.464206\pi
1818 −5.35050 −1.26113
1919 5.15058 1.18162 0.590812 0.806809i 0.298807π-0.298807\pi
0.590812 + 0.806809i 0.298807π0.298807\pi
2020 −2.81297 −0.628999
2121 −11.1284 −2.42841
2222 2.90591 0.619543
2323 −2.53872 −0.529359 −0.264680 0.964336i 0.585266π-0.585266\pi
−0.264680 + 0.964336i 0.585266π0.585266\pi
2424 2.88972 0.589862
2525 2.91279 0.582558
2626 0.364636 0.0715111
2727 −6.79231 −1.30718
2828 3.85101 0.727773
2929 0 0
3030 −8.12870 −1.48409
3131 −8.03616 −1.44334 −0.721669 0.692239i 0.756625π-0.756625\pi
−0.721669 + 0.692239i 0.756625π0.756625\pi
3232 −1.00000 −0.176777
3333 8.39729 1.46178
3434 −0.925336 −0.158694
3535 −10.8328 −1.83107
3636 5.35050 0.891751
3737 3.62923 0.596642 0.298321 0.954466i 0.403573π-0.403573\pi
0.298321 + 0.954466i 0.403573π0.403573\pi
3838 −5.15058 −0.835535
3939 1.05370 0.168727
4040 2.81297 0.444769
4141 −4.99001 −0.779308 −0.389654 0.920961i 0.627405π-0.627405\pi
−0.389654 + 0.920961i 0.627405π0.627405\pi
4242 11.1284 1.71714
4343 −8.55107 −1.30403 −0.652013 0.758208i 0.726075π-0.726075\pi
−0.652013 + 0.758208i 0.726075π0.726075\pi
4444 −2.90591 −0.438083
4545 −15.0508 −2.24364
4646 2.53872 0.374313
4747 7.50775 1.09512 0.547559 0.836767i 0.315557π-0.315557\pi
0.547559 + 0.836767i 0.315557π0.315557\pi
4848 −2.88972 −0.417096
4949 7.83031 1.11862
5050 −2.91279 −0.411931
5151 −2.67397 −0.374430
5252 −0.364636 −0.0505660
5353 −9.16362 −1.25872 −0.629360 0.777114i 0.716683π-0.716683\pi
−0.629360 + 0.777114i 0.716683π0.716683\pi
5454 6.79231 0.924316
5555 8.17425 1.10222
5656 −3.85101 −0.514613
5757 −14.8838 −1.97140
5858 0 0
5959 −4.66605 −0.607468 −0.303734 0.952757i 0.598233π-0.598233\pi
−0.303734 + 0.952757i 0.598233π0.598233\pi
6060 8.12870 1.04941
6161 −6.85219 −0.877334 −0.438667 0.898650i 0.644549π-0.644549\pi
−0.438667 + 0.898650i 0.644549π0.644549\pi
6262 8.03616 1.02059
6363 20.6049 2.59597
6464 1.00000 0.125000
6565 1.02571 0.127224
6666 −8.39729 −1.03364
6767 −1.40270 −0.171367 −0.0856834 0.996322i 0.527307π-0.527307\pi
−0.0856834 + 0.996322i 0.527307π0.527307\pi
6868 0.925336 0.112214
6969 7.33619 0.883174
7070 10.8328 1.29477
7171 −4.31712 −0.512348 −0.256174 0.966631i 0.582462π-0.582462\pi
−0.256174 + 0.966631i 0.582462π0.582462\pi
7272 −5.35050 −0.630563
7373 12.5974 1.47442 0.737208 0.675666i 0.236144π-0.236144\pi
0.737208 + 0.675666i 0.236144π0.236144\pi
7474 −3.62923 −0.421889
7575 −8.41716 −0.971930
7676 5.15058 0.590812
7777 −11.1907 −1.27530
7878 −1.05370 −0.119308
7979 12.0164 1.35195 0.675976 0.736923i 0.263722π-0.263722\pi
0.675976 + 0.736923i 0.263722π0.263722\pi
8080 −2.81297 −0.314499
8181 3.57638 0.397376
8282 4.99001 0.551054
8383 14.5760 1.59992 0.799960 0.600053i 0.204854π-0.204854\pi
0.799960 + 0.600053i 0.204854π0.204854\pi
8484 −11.1284 −1.21420
8585 −2.60294 −0.282329
8686 8.55107 0.922085
8787 0 0
8888 2.90591 0.309772
8989 11.4600 1.21475 0.607376 0.794414i 0.292222π-0.292222\pi
0.607376 + 0.794414i 0.292222π0.292222\pi
9090 15.0508 1.58649
9191 −1.40422 −0.147202
9292 −2.53872 −0.264680
9393 23.2223 2.40804
9494 −7.50775 −0.774365
9595 −14.4884 −1.48648
9696 2.88972 0.294931
9797 −12.4026 −1.25930 −0.629648 0.776880i 0.716801π-0.716801\pi
−0.629648 + 0.776880i 0.716801π0.716801\pi
9898 −7.83031 −0.790981
9999 −15.5481 −1.56264
100100 2.91279 0.291279
101101 7.17961 0.714397 0.357199 0.934028i 0.383732π-0.383732\pi
0.357199 + 0.934028i 0.383732π0.383732\pi
102102 2.67397 0.264762
103103 16.0746 1.58387 0.791937 0.610603i 0.209073π-0.209073\pi
0.791937 + 0.610603i 0.209073π0.209073\pi
104104 0.364636 0.0357555
105105 31.3037 3.05493
106106 9.16362 0.890049
107107 11.7282 1.13381 0.566906 0.823783i 0.308140π-0.308140\pi
0.566906 + 0.823783i 0.308140π0.308140\pi
108108 −6.79231 −0.653590
109109 0.0291942 0.00279630 0.00139815 0.999999i 0.499555π-0.499555\pi
0.00139815 + 0.999999i 0.499555π0.499555\pi
110110 −8.17425 −0.779384
111111 −10.4875 −0.995427
112112 3.85101 0.363887
113113 1.64135 0.154405 0.0772026 0.997015i 0.475401π-0.475401\pi
0.0772026 + 0.997015i 0.475401π0.475401\pi
114114 14.8838 1.39399
115115 7.14133 0.665932
116116 0 0
117117 −1.95099 −0.180369
118118 4.66605 0.429544
119119 3.56348 0.326664
120120 −8.12870 −0.742046
121121 −2.55566 −0.232333
122122 6.85219 0.620368
123123 14.4197 1.30018
124124 −8.03616 −0.721669
125125 5.87126 0.525141
126126 −20.6049 −1.83563
127127 16.2246 1.43970 0.719849 0.694130i 0.244211π-0.244211\pi
0.719849 + 0.694130i 0.244211π0.244211\pi
128128 −1.00000 −0.0883883
129129 24.7102 2.17561
130130 −1.02571 −0.0899608
131131 −13.3119 −1.16306 −0.581532 0.813524i 0.697546π-0.697546\pi
−0.581532 + 0.813524i 0.697546π0.697546\pi
132132 8.39729 0.730890
133133 19.8350 1.71991
134134 1.40270 0.121175
135135 19.1065 1.64443
136136 −0.925336 −0.0793469
137137 19.6985 1.68296 0.841479 0.540290i 0.181685π-0.181685\pi
0.841479 + 0.540290i 0.181685π0.181685\pi
138138 −7.33619 −0.624498
139139 7.91712 0.671522 0.335761 0.941947i 0.391007π-0.391007\pi
0.335761 + 0.941947i 0.391007π0.391007\pi
140140 −10.8328 −0.915537
141141 −21.6953 −1.82707
142142 4.31712 0.362285
143143 1.05960 0.0886084
144144 5.35050 0.445875
145145 0 0
146146 −12.5974 −1.04257
147147 −22.6274 −1.86628
148148 3.62923 0.298321
149149 −6.66087 −0.545680 −0.272840 0.962059i 0.587963π-0.587963\pi
−0.272840 + 0.962059i 0.587963π0.587963\pi
150150 8.41716 0.687258
151151 10.8305 0.881376 0.440688 0.897660i 0.354734π-0.354734\pi
0.440688 + 0.897660i 0.354734π0.354734\pi
152152 −5.15058 −0.417768
153153 4.95102 0.400266
154154 11.1907 0.901774
155155 22.6055 1.81572
156156 1.05370 0.0843634
157157 14.8837 1.18785 0.593924 0.804521i 0.297578π-0.297578\pi
0.593924 + 0.804521i 0.297578π0.297578\pi
158158 −12.0164 −0.955975
159159 26.4803 2.10003
160160 2.81297 0.222385
161161 −9.77664 −0.770507
162162 −3.57638 −0.280987
163163 −12.4608 −0.976006 −0.488003 0.872842i 0.662274π-0.662274\pi
−0.488003 + 0.872842i 0.662274π0.662274\pi
164164 −4.99001 −0.389654
165165 −23.6213 −1.83892
166166 −14.5760 −1.13131
167167 −4.31880 −0.334199 −0.167099 0.985940i 0.553440π-0.553440\pi
−0.167099 + 0.985940i 0.553440π0.553440\pi
168168 11.1284 0.858572
169169 −12.8670 −0.989772
170170 2.60294 0.199636
171171 27.5582 2.10743
172172 −8.55107 −0.652013
173173 −21.3247 −1.62129 −0.810644 0.585540i 0.800883π-0.800883\pi
−0.810644 + 0.585540i 0.800883π0.800883\pi
174174 0 0
175175 11.2172 0.847940
176176 −2.90591 −0.219042
177177 13.4836 1.01349
178178 −11.4600 −0.858960
179179 3.51602 0.262799 0.131400 0.991329i 0.458053π-0.458053\pi
0.131400 + 0.991329i 0.458053π0.458053\pi
180180 −15.0508 −1.12182
181181 −4.81159 −0.357643 −0.178821 0.983882i 0.557228π-0.557228\pi
−0.178821 + 0.983882i 0.557228π0.557228\pi
182182 1.40422 0.104088
183183 19.8009 1.46373
184184 2.53872 0.187157
185185 −10.2089 −0.750574
186186 −23.2223 −1.70274
187187 −2.68895 −0.196635
188188 7.50775 0.547559
189189 −26.1573 −1.90266
190190 14.4884 1.05110
191191 16.5999 1.20113 0.600563 0.799577i 0.294943π-0.294943\pi
0.600563 + 0.799577i 0.294943π0.294943\pi
192192 −2.88972 −0.208548
193193 −7.73601 −0.556850 −0.278425 0.960458i 0.589812π-0.589812\pi
−0.278425 + 0.960458i 0.589812π0.589812\pi
194194 12.4026 0.890457
195195 −2.96402 −0.212258
196196 7.83031 0.559308
197197 −7.22310 −0.514624 −0.257312 0.966328i 0.582837π-0.582837\pi
−0.257312 + 0.966328i 0.582837π0.582837\pi
198198 15.5481 1.10496
199199 11.3438 0.804142 0.402071 0.915609i 0.368291π-0.368291\pi
0.402071 + 0.915609i 0.368291π0.368291\pi
200200 −2.91279 −0.205965
201201 4.05341 0.285906
202202 −7.17961 −0.505155
203203 0 0
204204 −2.67397 −0.187215
205205 14.0367 0.980368
206206 −16.0746 −1.11997
207207 −13.5834 −0.944113
208208 −0.364636 −0.0252830
209209 −14.9672 −1.03530
210210 −31.3037 −2.16016
211211 −0.202325 −0.0139286 −0.00696431 0.999976i 0.502217π-0.502217\pi
−0.00696431 + 0.999976i 0.502217π0.502217\pi
212212 −9.16362 −0.629360
213213 12.4753 0.854793
214214 −11.7282 −0.801725
215215 24.0539 1.64046
216216 6.79231 0.462158
217217 −30.9474 −2.10085
218218 −0.0291942 −0.00197728
219219 −36.4031 −2.45989
220220 8.17425 0.551108
221221 −0.337411 −0.0226967
222222 10.4875 0.703873
223223 −6.99226 −0.468236 −0.234118 0.972208i 0.575220π-0.575220\pi
−0.234118 + 0.972208i 0.575220π0.575220\pi
224224 −3.85101 −0.257307
225225 15.5849 1.03899
226226 −1.64135 −0.109181
227227 25.5874 1.69830 0.849148 0.528155i 0.177116π-0.177116\pi
0.849148 + 0.528155i 0.177116π0.177116\pi
228228 −14.8838 −0.985701
229229 −8.03460 −0.530941 −0.265471 0.964119i 0.585527π-0.585527\pi
−0.265471 + 0.964119i 0.585527π0.585527\pi
230230 −7.14133 −0.470885
231231 32.3381 2.12769
232232 0 0
233233 −12.3568 −0.809520 −0.404760 0.914423i 0.632645π-0.632645\pi
−0.404760 + 0.914423i 0.632645π0.632645\pi
234234 1.95099 0.127540
235235 −21.1190 −1.37765
236236 −4.66605 −0.303734
237237 −34.7241 −2.25557
238238 −3.56348 −0.230986
239239 0.451586 0.0292107 0.0146053 0.999893i 0.495351π-0.495351\pi
0.0146053 + 0.999893i 0.495351π0.495351\pi
240240 8.12870 0.524705
241241 −15.7861 −1.01688 −0.508438 0.861099i 0.669777π-0.669777\pi
−0.508438 + 0.861099i 0.669777π0.669777\pi
242242 2.55566 0.164284
243243 10.0422 0.644205
244244 −6.85219 −0.438667
245245 −22.0264 −1.40722
246246 −14.4197 −0.919370
247247 −1.87809 −0.119500
248248 8.03616 0.510297
249249 −42.1205 −2.66928
250250 −5.87126 −0.371331
251251 7.80780 0.492824 0.246412 0.969165i 0.420748π-0.420748\pi
0.246412 + 0.969165i 0.420748π0.420748\pi
252252 20.6049 1.29798
253253 7.37729 0.463807
254254 −16.2246 −1.01802
255255 7.52178 0.471032
256256 1.00000 0.0625000
257257 7.42710 0.463290 0.231645 0.972800i 0.425589π-0.425589\pi
0.231645 + 0.972800i 0.425589π0.425589\pi
258258 −24.7102 −1.53839
259259 13.9762 0.868440
260260 1.02571 0.0636119
261261 0 0
262262 13.3119 0.822410
263263 15.8103 0.974907 0.487454 0.873149i 0.337926π-0.337926\pi
0.487454 + 0.873149i 0.337926π0.337926\pi
264264 −8.39729 −0.516818
265265 25.7770 1.58347
266266 −19.8350 −1.21616
267267 −33.1161 −2.02667
268268 −1.40270 −0.0856834
269269 15.7747 0.961798 0.480899 0.876776i 0.340310π-0.340310\pi
0.480899 + 0.876776i 0.340310π0.340310\pi
270270 −19.1065 −1.16279
271271 5.72904 0.348014 0.174007 0.984744i 0.444328π-0.444328\pi
0.174007 + 0.984744i 0.444328π0.444328\pi
272272 0.925336 0.0561068
273273 4.05781 0.245590
274274 −19.6985 −1.19003
275275 −8.46432 −0.510418
276276 7.33619 0.441587
277277 12.1246 0.728500 0.364250 0.931301i 0.381325π-0.381325\pi
0.364250 + 0.931301i 0.381325π0.381325\pi
278278 −7.91712 −0.474838
279279 −42.9975 −2.57419
280280 10.8328 0.647383
281281 −3.65322 −0.217933 −0.108967 0.994045i 0.534754π-0.534754\pi
−0.108967 + 0.994045i 0.534754π0.534754\pi
282282 21.6953 1.29194
283283 28.3178 1.68332 0.841658 0.540011i 0.181580π-0.181580\pi
0.841658 + 0.540011i 0.181580π0.181580\pi
284284 −4.31712 −0.256174
285285 41.8676 2.48002
286286 −1.05960 −0.0626556
287287 −19.2166 −1.13432
288288 −5.35050 −0.315281
289289 −16.1438 −0.949633
290290 0 0
291291 35.8402 2.10099
292292 12.5974 0.737208
293293 0.660825 0.0386058 0.0193029 0.999814i 0.493855π-0.493855\pi
0.0193029 + 0.999814i 0.493855π0.493855\pi
294294 22.6274 1.31966
295295 13.1254 0.764193
296296 −3.62923 −0.210945
297297 19.7379 1.14531
298298 6.66087 0.385854
299299 0.925709 0.0535351
300300 −8.41716 −0.485965
301301 −32.9303 −1.89807
302302 −10.8305 −0.623227
303303 −20.7471 −1.19189
304304 5.15058 0.295406
305305 19.2750 1.10368
306306 −4.95102 −0.283031
307307 14.1116 0.805390 0.402695 0.915334i 0.368074π-0.368074\pi
0.402695 + 0.915334i 0.368074π0.368074\pi
308308 −11.1907 −0.637650
309309 −46.4510 −2.64251
310310 −22.6055 −1.28390
311311 15.8616 0.899429 0.449714 0.893172i 0.351526π-0.351526\pi
0.449714 + 0.893172i 0.351526π0.351526\pi
312312 −1.05370 −0.0596539
313313 23.2523 1.31430 0.657149 0.753761i 0.271762π-0.271762\pi
0.657149 + 0.753761i 0.271762π0.271762\pi
314314 −14.8837 −0.839935
315315 −57.9608 −3.26572
316316 12.0164 0.675976
317317 15.7881 0.886748 0.443374 0.896337i 0.353781π-0.353781\pi
0.443374 + 0.896337i 0.353781π0.353781\pi
318318 −26.4803 −1.48494
319319 0 0
320320 −2.81297 −0.157250
321321 −33.8914 −1.89163
322322 9.77664 0.544831
323323 4.76602 0.265189
324324 3.57638 0.198688
325325 −1.06211 −0.0589152
326326 12.4608 0.690140
327327 −0.0843632 −0.00466530
328328 4.99001 0.275527
329329 28.9124 1.59399
330330 23.6213 1.30031
331331 3.87620 0.213055 0.106528 0.994310i 0.466027π-0.466027\pi
0.106528 + 0.994310i 0.466027π0.466027\pi
332332 14.5760 0.799960
333333 19.4182 1.06411
334334 4.31880 0.236314
335335 3.94575 0.215579
336336 −11.1284 −0.607102
337337 13.8500 0.754459 0.377230 0.926120i 0.376877π-0.376877\pi
0.377230 + 0.926120i 0.376877π0.376877\pi
338338 12.8670 0.699875
339339 −4.74305 −0.257607
340340 −2.60294 −0.141164
341341 23.3524 1.26460
342342 −27.5582 −1.49018
343343 3.19755 0.172651
344344 8.55107 0.461043
345345 −20.6365 −1.11103
346346 21.3247 1.14642
347347 24.8212 1.33247 0.666235 0.745742i 0.267905π-0.267905\pi
0.666235 + 0.745742i 0.267905π0.267905\pi
348348 0 0
349349 19.3592 1.03627 0.518136 0.855298i 0.326626π-0.326626\pi
0.518136 + 0.855298i 0.326626π0.326626\pi
350350 −11.2172 −0.599584
351351 2.47672 0.132198
352352 2.90591 0.154886
353353 34.2123 1.82094 0.910468 0.413579i 0.135722π-0.135722\pi
0.910468 + 0.413579i 0.135722π0.135722\pi
354354 −13.4836 −0.716644
355355 12.1439 0.644533
356356 11.4600 0.607376
357357 −10.2975 −0.545001
358358 −3.51602 −0.185827
359359 5.64481 0.297922 0.148961 0.988843i 0.452407π-0.452407\pi
0.148961 + 0.988843i 0.452407π0.452407\pi
360360 15.0508 0.793247
361361 7.52852 0.396238
362362 4.81159 0.252892
363363 7.38515 0.387620
364364 −1.40422 −0.0736011
365365 −35.4361 −1.85481
366366 −19.8009 −1.03501
367367 −28.8967 −1.50840 −0.754199 0.656646i 0.771974π-0.771974\pi
−0.754199 + 0.656646i 0.771974π0.771974\pi
368368 −2.53872 −0.132340
369369 −26.6991 −1.38990
370370 10.2089 0.530736
371371 −35.2892 −1.83213
372372 23.2223 1.20402
373373 −14.9847 −0.775877 −0.387939 0.921685i 0.626813π-0.626813\pi
−0.387939 + 0.921685i 0.626813π0.626813\pi
374374 2.68895 0.139042
375375 −16.9663 −0.876136
376376 −7.50775 −0.387182
377377 0 0
378378 26.1573 1.34539
379379 −22.4281 −1.15206 −0.576028 0.817430i 0.695398π-0.695398\pi
−0.576028 + 0.817430i 0.695398π0.695398\pi
380380 −14.4884 −0.743241
381381 −46.8846 −2.40197
382382 −16.5999 −0.849325
383383 −3.74411 −0.191315 −0.0956574 0.995414i 0.530495π-0.530495\pi
−0.0956574 + 0.995414i 0.530495π0.530495\pi
384384 2.88972 0.147466
385385 31.4791 1.60433
386386 7.73601 0.393752
387387 −45.7525 −2.32573
388388 −12.4026 −0.629648
389389 −4.62048 −0.234268 −0.117134 0.993116i 0.537371π-0.537371\pi
−0.117134 + 0.993116i 0.537371π0.537371\pi
390390 2.96402 0.150089
391391 −2.34917 −0.118802
392392 −7.83031 −0.395491
393393 38.4676 1.94044
394394 7.22310 0.363894
395395 −33.8018 −1.70075
396396 −15.5481 −0.781322
397397 17.0364 0.855035 0.427517 0.904007i 0.359388π-0.359388\pi
0.427517 + 0.904007i 0.359388π0.359388\pi
398398 −11.3438 −0.568614
399399 −57.3176 −2.86947
400400 2.91279 0.145640
401401 −35.9180 −1.79366 −0.896830 0.442374i 0.854136π-0.854136\pi
−0.896830 + 0.442374i 0.854136π0.854136\pi
402402 −4.05341 −0.202166
403403 2.93028 0.145968
404404 7.17961 0.357199
405405 −10.0602 −0.499898
406406 0 0
407407 −10.5462 −0.522757
408408 2.67397 0.132381
409409 9.10554 0.450240 0.225120 0.974331i 0.427723π-0.427723\pi
0.225120 + 0.974331i 0.427723π0.427723\pi
410410 −14.0367 −0.693225
411411 −56.9233 −2.80782
412412 16.0746 0.791937
413413 −17.9690 −0.884197
414414 13.5834 0.667588
415415 −41.0017 −2.01270
416416 0.364636 0.0178778
417417 −22.8783 −1.12036
418418 14.9672 0.732068
419419 1.84770 0.0902661 0.0451331 0.998981i 0.485629π-0.485629\pi
0.0451331 + 0.998981i 0.485629π0.485629\pi
420420 31.3037 1.52747
421421 −35.2513 −1.71805 −0.859023 0.511938i 0.828928π-0.828928\pi
−0.859023 + 0.511938i 0.828928π0.828928\pi
422422 0.202325 0.00984902
423423 40.1702 1.95314
424424 9.16362 0.445025
425425 2.69531 0.130742
426426 −12.4753 −0.604430
427427 −26.3879 −1.27700
428428 11.7282 0.566906
429429 −3.06196 −0.147833
430430 −24.0539 −1.15998
431431 6.75999 0.325617 0.162809 0.986658i 0.447945π-0.447945\pi
0.162809 + 0.986658i 0.447945π0.447945\pi
432432 −6.79231 −0.326795
433433 2.34317 0.112606 0.0563029 0.998414i 0.482069π-0.482069\pi
0.0563029 + 0.998414i 0.482069π0.482069\pi
434434 30.9474 1.48552
435435 0 0
436436 0.0291942 0.00139815
437437 −13.0759 −0.625504
438438 36.4031 1.73941
439439 27.2219 1.29923 0.649616 0.760263i 0.274930π-0.274930\pi
0.649616 + 0.760263i 0.274930π0.274930\pi
440440 −8.17425 −0.389692
441441 41.8961 1.99505
442442 0.337411 0.0160490
443443 −3.70498 −0.176029 −0.0880145 0.996119i 0.528052π-0.528052\pi
−0.0880145 + 0.996119i 0.528052π0.528052\pi
444444 −10.4875 −0.497713
445445 −32.2365 −1.52816
446446 6.99226 0.331093
447447 19.2481 0.910403
448448 3.85101 0.181943
449449 20.6490 0.974485 0.487243 0.873267i 0.338003π-0.338003\pi
0.487243 + 0.873267i 0.338003π0.338003\pi
450450 −15.5849 −0.734679
451451 14.5005 0.682804
452452 1.64135 0.0772026
453453 −31.2973 −1.47047
454454 −25.5874 −1.20088
455455 3.95003 0.185180
456456 14.8838 0.696996
457457 0.0396615 0.00185529 0.000927644 1.00000i 0.499705π-0.499705\pi
0.000927644 1.00000i 0.499705π0.499705\pi
458458 8.03460 0.375432
459459 −6.28517 −0.293367
460460 7.14133 0.332966
461461 −29.6008 −1.37864 −0.689322 0.724455i 0.742092π-0.742092\pi
−0.689322 + 0.724455i 0.742092π0.742092\pi
462462 −32.3381 −1.50450
463463 −22.9957 −1.06870 −0.534351 0.845263i 0.679444π-0.679444\pi
−0.534351 + 0.845263i 0.679444π0.679444\pi
464464 0 0
465465 −65.3236 −3.02931
466466 12.3568 0.572417
467467 14.4157 0.667080 0.333540 0.942736i 0.391757π-0.391757\pi
0.333540 + 0.942736i 0.391757π0.391757\pi
468468 −1.95099 −0.0901845
469469 −5.40181 −0.249432
470470 21.1190 0.974149
471471 −43.0098 −1.98179
472472 4.66605 0.214772
473473 24.8487 1.14254
474474 34.7241 1.59493
475475 15.0026 0.688365
476476 3.56348 0.163332
477477 −49.0300 −2.24493
478478 −0.451586 −0.0206551
479479 3.99470 0.182522 0.0912612 0.995827i 0.470910π-0.470910\pi
0.0912612 + 0.995827i 0.470910π0.470910\pi
480480 −8.12870 −0.371023
481481 −1.32335 −0.0603395
482482 15.7861 0.719039
483483 28.2518 1.28550
484484 −2.55566 −0.116166
485485 34.8882 1.58419
486486 −10.0422 −0.455522
487487 18.6434 0.844815 0.422407 0.906406i 0.361185π-0.361185\pi
0.422407 + 0.906406i 0.361185π0.361185\pi
488488 6.85219 0.310184
489489 36.0083 1.62835
490490 22.0264 0.995052
491491 3.44975 0.155685 0.0778426 0.996966i 0.475197π-0.475197\pi
0.0778426 + 0.996966i 0.475197π0.475197\pi
492492 14.4197 0.650092
493493 0 0
494494 1.87809 0.0844993
495495 43.7363 1.96580
496496 −8.03616 −0.360834
497497 −16.6253 −0.745747
498498 42.1205 1.88747
499499 6.02903 0.269896 0.134948 0.990853i 0.456913π-0.456913\pi
0.134948 + 0.990853i 0.456913π0.456913\pi
500500 5.87126 0.262571
501501 12.4801 0.557571
502502 −7.80780 −0.348479
503503 −5.96356 −0.265902 −0.132951 0.991123i 0.542445π-0.542445\pi
−0.132951 + 0.991123i 0.542445π0.542445\pi
504504 −20.6049 −0.917814
505505 −20.1960 −0.898710
506506 −7.37729 −0.327961
507507 37.1822 1.65132
508508 16.2246 0.719849
509509 4.71837 0.209138 0.104569 0.994518i 0.466654π-0.466654\pi
0.104569 + 0.994518i 0.466654π0.466654\pi
510510 −7.52178 −0.333070
511511 48.5128 2.14608
512512 −1.00000 −0.0441942
513513 −34.9844 −1.54460
514514 −7.42710 −0.327596
515515 −45.2172 −1.99251
516516 24.7102 1.08781
517517 −21.8169 −0.959505
518518 −13.9762 −0.614080
519519 61.6225 2.70493
520520 −1.02571 −0.0449804
521521 27.8336 1.21941 0.609707 0.792627i 0.291287π-0.291287\pi
0.609707 + 0.792627i 0.291287π0.291287\pi
522522 0 0
523523 29.4055 1.28581 0.642906 0.765945i 0.277728π-0.277728\pi
0.642906 + 0.765945i 0.277728π0.277728\pi
524524 −13.3119 −0.581532
525525 −32.4146 −1.41469
526526 −15.8103 −0.689364
527527 −7.43615 −0.323924
528528 8.39729 0.365445
529529 −16.5549 −0.719779
530530 −25.7770 −1.11968
531531 −24.9657 −1.08342
532532 19.8350 0.859955
533533 1.81954 0.0788130
534534 33.1161 1.43307
535535 −32.9911 −1.42633
536536 1.40270 0.0605873
537537 −10.1603 −0.438450
538538 −15.7747 −0.680094
539539 −22.7542 −0.980094
540540 19.1065 0.822215
541541 27.5775 1.18565 0.592825 0.805331i 0.298013π-0.298013\pi
0.592825 + 0.805331i 0.298013π0.298013\pi
542542 −5.72904 −0.246083
543543 13.9042 0.596685
544544 −0.925336 −0.0396735
545545 −0.0821224 −0.00351774
546546 −4.05781 −0.173658
547547 −3.86399 −0.165212 −0.0826061 0.996582i 0.526324π-0.526324\pi
−0.0826061 + 0.996582i 0.526324π0.526324\pi
548548 19.6985 0.841479
549549 −36.6627 −1.56473
550550 8.46432 0.360920
551551 0 0
552552 −7.33619 −0.312249
553553 46.2754 1.96783
554554 −12.1246 −0.515127
555555 29.5009 1.25224
556556 7.91712 0.335761
557557 18.0890 0.766454 0.383227 0.923654i 0.374813π-0.374813\pi
0.383227 + 0.923654i 0.374813π0.374813\pi
558558 42.9975 1.82023
559559 3.11803 0.131879
560560 −10.8328 −0.457769
561561 7.77032 0.328063
562562 3.65322 0.154102
563563 −10.0817 −0.424893 −0.212447 0.977173i 0.568143π-0.568143\pi
−0.212447 + 0.977173i 0.568143π0.568143\pi
564564 −21.6953 −0.913537
565565 −4.61707 −0.194241
566566 −28.3178 −1.19028
567567 13.7727 0.578399
568568 4.31712 0.181142
569569 8.42654 0.353259 0.176630 0.984277i 0.443481π-0.443481\pi
0.176630 + 0.984277i 0.443481π0.443481\pi
570570 −41.8676 −1.75364
571571 25.6175 1.07206 0.536029 0.844199i 0.319924π-0.319924\pi
0.536029 + 0.844199i 0.319924π0.319924\pi
572572 1.05960 0.0443042
573573 −47.9691 −2.00394
574574 19.2166 0.802085
575575 −7.39475 −0.308382
576576 5.35050 0.222938
577577 14.2757 0.594307 0.297154 0.954830i 0.403963π-0.403963\pi
0.297154 + 0.954830i 0.403963π0.403963\pi
578578 16.1438 0.671492
579579 22.3549 0.929039
580580 0 0
581581 56.1323 2.32876
582582 −35.8402 −1.48562
583583 26.6287 1.10285
584584 −12.5974 −0.521285
585585 5.48807 0.226904
586586 −0.660825 −0.0272984
587587 3.16614 0.130681 0.0653403 0.997863i 0.479187π-0.479187\pi
0.0653403 + 0.997863i 0.479187π0.479187\pi
588588 −22.6274 −0.933140
589589 −41.3909 −1.70548
590590 −13.1254 −0.540366
591591 20.8728 0.858591
592592 3.62923 0.149160
593593 32.1045 1.31837 0.659186 0.751980i 0.270901π-0.270901\pi
0.659186 + 0.751980i 0.270901π0.270901\pi
594594 −19.7379 −0.809854
595595 −10.0240 −0.410943
596596 −6.66087 −0.272840
597597 −32.7805 −1.34162
598598 −0.925709 −0.0378550
599599 3.87056 0.158147 0.0790735 0.996869i 0.474804π-0.474804\pi
0.0790735 + 0.996869i 0.474804π0.474804\pi
600600 8.41716 0.343629
601601 −27.7877 −1.13349 −0.566743 0.823895i 0.691797π-0.691797\pi
−0.566743 + 0.823895i 0.691797π0.691797\pi
602602 32.9303 1.34214
603603 −7.50514 −0.305633
604604 10.8305 0.440688
605605 7.18899 0.292274
606606 20.7471 0.842792
607607 25.3730 1.02986 0.514929 0.857233i 0.327818π-0.327818\pi
0.514929 + 0.857233i 0.327818π0.327818\pi
608608 −5.15058 −0.208884
609609 0 0
610610 −19.2750 −0.780422
611611 −2.73760 −0.110751
612612 4.95102 0.200133
613613 −31.3639 −1.26678 −0.633388 0.773835i 0.718336π-0.718336\pi
−0.633388 + 0.773835i 0.718336π0.718336\pi
614614 −14.1116 −0.569497
615615 −40.5623 −1.63563
616616 11.1907 0.450887
617617 −42.0303 −1.69208 −0.846039 0.533121i 0.821019π-0.821019\pi
−0.846039 + 0.533121i 0.821019π0.821019\pi
618618 46.4510 1.86853
619619 −30.2687 −1.21660 −0.608300 0.793707i 0.708148π-0.708148\pi
−0.608300 + 0.793707i 0.708148π0.708148\pi
620620 22.6055 0.907858
621621 17.2437 0.691968
622622 −15.8616 −0.635992
623623 44.1324 1.76813
624624 1.05370 0.0421817
625625 −31.0796 −1.24318
626626 −23.2523 −0.929349
627627 43.2510 1.72728
628628 14.8837 0.593924
629629 3.35826 0.133902
630630 57.9608 2.30922
631631 37.0307 1.47417 0.737085 0.675800i 0.236202π-0.236202\pi
0.737085 + 0.675800i 0.236202π0.236202\pi
632632 −12.0164 −0.477987
633633 0.584663 0.0232383
634634 −15.7881 −0.627025
635635 −45.6392 −1.81114
636636 26.4803 1.05001
637637 −2.85522 −0.113128
638638 0 0
639639 −23.0988 −0.913774
640640 2.81297 0.111192
641641 −28.4320 −1.12300 −0.561499 0.827477i 0.689775π-0.689775\pi
−0.561499 + 0.827477i 0.689775π0.689775\pi
642642 33.8914 1.33759
643643 36.5756 1.44240 0.721201 0.692726i 0.243590π-0.243590\pi
0.721201 + 0.692726i 0.243590π0.243590\pi
644644 −9.77664 −0.385253
645645 −69.5091 −2.73692
646646 −4.76602 −0.187517
647647 12.7395 0.500840 0.250420 0.968137i 0.419431π-0.419431\pi
0.250420 + 0.968137i 0.419431π0.419431\pi
648648 −3.57638 −0.140494
649649 13.5591 0.532243
650650 1.06211 0.0416594
651651 89.4294 3.50501
652652 −12.4608 −0.488003
653653 42.2415 1.65304 0.826518 0.562910i 0.190318π-0.190318\pi
0.826518 + 0.562910i 0.190318π0.190318\pi
654654 0.0843632 0.00329886
655655 37.4459 1.46313
656656 −4.99001 −0.194827
657657 67.4025 2.62962
658658 −28.9124 −1.12712
659659 −29.8537 −1.16293 −0.581467 0.813570i 0.697521π-0.697521\pi
−0.581467 + 0.813570i 0.697521π0.697521\pi
660660 −23.6213 −0.919458
661661 −20.9321 −0.814164 −0.407082 0.913392i 0.633454π-0.633454\pi
−0.407082 + 0.913392i 0.633454π0.633454\pi
662662 −3.87620 −0.150653
663663 0.975025 0.0378668
664664 −14.5760 −0.565657
665665 −55.7952 −2.16364
666666 −19.4182 −0.752440
667667 0 0
668668 −4.31880 −0.167099
669669 20.2057 0.781197
670670 −3.94575 −0.152437
671671 19.9119 0.768690
672672 11.1284 0.429286
673673 8.30904 0.320290 0.160145 0.987094i 0.448804π-0.448804\pi
0.160145 + 0.987094i 0.448804π0.448804\pi
674674 −13.8500 −0.533483
675675 −19.7846 −0.761508
676676 −12.8670 −0.494886
677677 −23.9829 −0.921738 −0.460869 0.887468i 0.652462π-0.652462\pi
−0.460869 + 0.887468i 0.652462π0.652462\pi
678678 4.74305 0.182156
679679 −47.7627 −1.83297
680680 2.60294 0.0998182
681681 −73.9405 −2.83341
682682 −23.3524 −0.894210
683683 36.5532 1.39867 0.699334 0.714795i 0.253480π-0.253480\pi
0.699334 + 0.714795i 0.253480π0.253480\pi
684684 27.5582 1.05371
685685 −55.4113 −2.11716
686686 −3.19755 −0.122083
687687 23.2178 0.885813
688688 −8.55107 −0.326006
689689 3.34139 0.127297
690690 20.6365 0.785617
691691 34.4772 1.31158 0.655788 0.754945i 0.272337π-0.272337\pi
0.655788 + 0.754945i 0.272337π0.272337\pi
692692 −21.3247 −0.810644
693693 −59.8760 −2.27450
694694 −24.8212 −0.942198
695695 −22.2706 −0.844773
696696 0 0
697697 −4.61744 −0.174898
698698 −19.3592 −0.732756
699699 35.7077 1.35059
700700 11.2172 0.423970
701701 36.8109 1.39033 0.695165 0.718850i 0.255331π-0.255331\pi
0.695165 + 0.718850i 0.255331π0.255331\pi
702702 −2.47672 −0.0934779
703703 18.6927 0.705007
704704 −2.90591 −0.109521
705705 61.0282 2.29846
706706 −34.2123 −1.28760
707707 27.6488 1.03984
708708 13.4836 0.506744
709709 20.6501 0.775529 0.387765 0.921758i 0.373247π-0.373247\pi
0.387765 + 0.921758i 0.373247π0.373247\pi
710710 −12.1439 −0.455753
711711 64.2939 2.41121
712712 −11.4600 −0.429480
713713 20.4015 0.764044
714714 10.2975 0.385374
715715 −2.98063 −0.111469
716716 3.51602 0.131400
717717 −1.30496 −0.0487346
718718 −5.64481 −0.210662
719719 −9.39581 −0.350404 −0.175202 0.984532i 0.556058π-0.556058\pi
−0.175202 + 0.984532i 0.556058π0.556058\pi
720720 −15.0508 −0.560910
721721 61.9034 2.30540
722722 −7.52852 −0.280182
723723 45.6176 1.69654
724724 −4.81159 −0.178821
725725 0 0
726726 −7.38515 −0.274089
727727 −0.457584 −0.0169708 −0.00848542 0.999964i 0.502701π-0.502701\pi
−0.00848542 + 0.999964i 0.502701π0.502701\pi
728728 1.40422 0.0520439
729729 −39.7482 −1.47216
730730 35.4361 1.31155
731731 −7.91261 −0.292659
732732 19.8009 0.731864
733733 19.2200 0.709907 0.354953 0.934884i 0.384497π-0.384497\pi
0.354953 + 0.934884i 0.384497π0.384497\pi
734734 28.8967 1.06660
735735 63.6503 2.34778
736736 2.53872 0.0935783
737737 4.07612 0.150146
738738 26.6991 0.982806
739739 −43.7081 −1.60783 −0.803914 0.594746i 0.797253π-0.797253\pi
−0.803914 + 0.594746i 0.797253π0.797253\pi
740740 −10.2089 −0.375287
741741 5.42716 0.199372
742742 35.2892 1.29551
743743 −33.9116 −1.24410 −0.622048 0.782979i 0.713699π-0.713699\pi
−0.622048 + 0.782979i 0.713699π0.713699\pi
744744 −23.2223 −0.851371
745745 18.7368 0.686464
746746 14.9847 0.548628
747747 77.9888 2.85346
748748 −2.68895 −0.0983177
749749 45.1656 1.65031
750750 16.9663 0.619522
751751 −9.81273 −0.358072 −0.179036 0.983843i 0.557298π-0.557298\pi
−0.179036 + 0.983843i 0.557298π0.557298\pi
752752 7.50775 0.273779
753753 −22.5624 −0.822220
754754 0 0
755755 −30.4660 −1.10877
756756 −26.1573 −0.951331
757757 7.61721 0.276852 0.138426 0.990373i 0.455796π-0.455796\pi
0.138426 + 0.990373i 0.455796π0.455796\pi
758758 22.4281 0.814627
759759 −21.3183 −0.773807
760760 14.4884 0.525551
761761 35.5488 1.28864 0.644321 0.764755i 0.277140π-0.277140\pi
0.644321 + 0.764755i 0.277140π0.277140\pi
762762 46.8846 1.69845
763763 0.112427 0.00407014
764764 16.5999 0.600563
765765 −13.9270 −0.503534
766766 3.74411 0.135280
767767 1.70141 0.0614344
768768 −2.88972 −0.104274
769769 −29.8344 −1.07586 −0.537928 0.842991i 0.680793π-0.680793\pi
−0.537928 + 0.842991i 0.680793π0.680793\pi
770770 −31.4791 −1.13443
771771 −21.4623 −0.772945
772772 −7.73601 −0.278425
773773 −33.0140 −1.18743 −0.593715 0.804675i 0.702339π-0.702339\pi
−0.593715 + 0.804675i 0.702339π0.702339\pi
774774 45.7525 1.64454
775775 −23.4077 −0.840828
776776 12.4026 0.445229
777777 −40.3874 −1.44889
778778 4.62048 0.165652
779779 −25.7015 −0.920850
780780 −2.96402 −0.106129
781781 12.5452 0.448902
782782 2.34917 0.0840060
783783 0 0
784784 7.83031 0.279654
785785 −41.8674 −1.49431
786786 −38.4676 −1.37210
787787 −37.9408 −1.35245 −0.676223 0.736697i 0.736384π-0.736384\pi
−0.676223 + 0.736697i 0.736384π0.736384\pi
788788 −7.22310 −0.257312
789789 −45.6875 −1.62652
790790 33.8018 1.20261
791791 6.32086 0.224744
792792 15.5481 0.552478
793793 2.49856 0.0887264
794794 −17.0364 −0.604601
795795 −74.4883 −2.64183
796796 11.3438 0.402071
797797 0.0808665 0.00286444 0.00143222 0.999999i 0.499544π-0.499544\pi
0.00143222 + 0.999999i 0.499544π0.499544\pi
798798 57.3176 2.02902
799799 6.94719 0.245774
800800 −2.91279 −0.102983
801801 61.3165 2.16651
802802 35.9180 1.26831
803803 −36.6070 −1.29183
804804 4.05341 0.142953
805805 27.5014 0.969296
806806 −2.93028 −0.103215
807807 −45.5844 −1.60465
808808 −7.17961 −0.252578
809809 43.1159 1.51587 0.757936 0.652328i 0.226208π-0.226208\pi
0.757936 + 0.652328i 0.226208π0.226208\pi
810810 10.0602 0.353481
811811 −5.32713 −0.187061 −0.0935305 0.995616i 0.529815π-0.529815\pi
−0.0935305 + 0.995616i 0.529815π0.529815\pi
812812 0 0
813813 −16.5553 −0.580621
814814 10.5462 0.369645
815815 35.0519 1.22781
816816 −2.67397 −0.0936075
817817 −44.0430 −1.54087
818818 −9.10554 −0.318368
819819 −7.51329 −0.262535
820820 14.0367 0.490184
821821 39.3983 1.37501 0.687506 0.726179i 0.258706π-0.258706\pi
0.687506 + 0.726179i 0.258706π0.258706\pi
822822 56.9233 1.98543
823823 −52.6721 −1.83603 −0.918017 0.396541i 0.870210π-0.870210\pi
−0.918017 + 0.396541i 0.870210π0.870210\pi
824824 −16.0746 −0.559984
825825 24.4595 0.851572
826826 17.9690 0.625222
827827 44.2163 1.53755 0.768777 0.639517i 0.220866π-0.220866\pi
0.768777 + 0.639517i 0.220866π0.220866\pi
828828 −13.5834 −0.472056
829829 9.10353 0.316179 0.158089 0.987425i 0.449467π-0.449467\pi
0.158089 + 0.987425i 0.449467π0.449467\pi
830830 41.0017 1.42319
831831 −35.0369 −1.21542
832832 −0.364636 −0.0126415
833833 7.24567 0.251048
834834 22.8783 0.792211
835835 12.1486 0.420421
836836 −14.9672 −0.517650
837837 54.5841 1.88670
838838 −1.84770 −0.0638278
839839 46.4865 1.60489 0.802446 0.596725i 0.203532π-0.203532\pi
0.802446 + 0.596725i 0.203532π0.203532\pi
840840 −31.3037 −1.08008
841841 0 0
842842 35.2513 1.21484
843843 10.5568 0.363596
844844 −0.202325 −0.00696431
845845 36.1946 1.24513
846846 −40.1702 −1.38108
847847 −9.84188 −0.338171
848848 −9.16362 −0.314680
849849 −81.8305 −2.80842
850850 −2.69531 −0.0924484
851851 −9.21359 −0.315838
852852 12.4753 0.427396
853853 36.3433 1.24437 0.622185 0.782870i 0.286245π-0.286245\pi
0.622185 + 0.782870i 0.286245π0.286245\pi
854854 26.3879 0.902975
855855 −77.5204 −2.65114
856856 −11.7282 −0.400863
857857 −33.1429 −1.13214 −0.566069 0.824358i 0.691537π-0.691537\pi
−0.566069 + 0.824358i 0.691537π0.691537\pi
858858 3.06196 0.104534
859859 33.6381 1.14772 0.573858 0.818955i 0.305446π-0.305446\pi
0.573858 + 0.818955i 0.305446π0.305446\pi
860860 24.0539 0.820230
861861 55.5307 1.89248
862862 −6.75999 −0.230246
863863 2.79233 0.0950519 0.0475259 0.998870i 0.484866π-0.484866\pi
0.0475259 + 0.998870i 0.484866π0.484866\pi
864864 6.79231 0.231079
865865 59.9857 2.03958
866866 −2.34317 −0.0796243
867867 46.6510 1.58435
868868 −30.9474 −1.05042
869869 −34.9187 −1.18454
870870 0 0
871871 0.511475 0.0173307
872872 −0.0291942 −0.000988641 0
873873 −66.3603 −2.24596
874874 13.0759 0.442298
875875 22.6103 0.764367
876876 −36.4031 −1.22995
877877 35.6070 1.20236 0.601181 0.799113i 0.294697π-0.294697\pi
0.601181 + 0.799113i 0.294697π0.294697\pi
878878 −27.2219 −0.918696
879879 −1.90960 −0.0644093
880880 8.17425 0.275554
881881 −31.0805 −1.04713 −0.523565 0.851986i 0.675398π-0.675398\pi
−0.523565 + 0.851986i 0.675398π0.675398\pi
882882 −41.8961 −1.41072
883883 −27.2833 −0.918156 −0.459078 0.888396i 0.651820π-0.651820\pi
−0.459078 + 0.888396i 0.651820π0.651820\pi
884884 −0.337411 −0.0113484
885885 −37.9289 −1.27497
886886 3.70498 0.124471
887887 4.60352 0.154571 0.0772855 0.997009i 0.475375π-0.475375\pi
0.0772855 + 0.997009i 0.475375π0.475375\pi
888888 10.4875 0.351936
889889 62.4811 2.09555
890890 32.2365 1.08057
891891 −10.3927 −0.348167
892892 −6.99226 −0.234118
893893 38.6693 1.29402
894894 −19.2481 −0.643752
895895 −9.89045 −0.330601
896896 −3.85101 −0.128653
897897 −2.67504 −0.0893171
898898 −20.6490 −0.689065
899899 0 0
900900 15.5849 0.519496
901901 −8.47943 −0.282491
902902 −14.5005 −0.482815
903903 95.1594 3.16671
904904 −1.64135 −0.0545905
905905 13.5348 0.449914
906906 31.2973 1.03978
907907 −17.7136 −0.588169 −0.294085 0.955779i 0.595015π-0.595015\pi
−0.294085 + 0.955779i 0.595015π0.595015\pi
908908 25.5874 0.849148
909909 38.4145 1.27413
910910 −3.95003 −0.130942
911911 −46.6546 −1.54573 −0.772867 0.634567i 0.781178π-0.781178\pi
−0.772867 + 0.634567i 0.781178π0.781178\pi
912912 −14.8838 −0.492851
913913 −42.3565 −1.40180
914914 −0.0396615 −0.00131189
915915 −55.6994 −1.84137
916916 −8.03460 −0.265471
917917 −51.2642 −1.69289
918918 6.28517 0.207441
919919 −37.6676 −1.24254 −0.621270 0.783596i 0.713383π-0.713383\pi
−0.621270 + 0.783596i 0.713383π0.713383\pi
920920 −7.14133 −0.235443
921921 −40.7785 −1.34370
922922 29.6008 0.974849
923923 1.57418 0.0518148
924924 32.3381 1.06385
925925 10.5712 0.347578
926926 22.9957 0.755687
927927 86.0070 2.82484
928928 0 0
929929 −57.6558 −1.89162 −0.945812 0.324714i 0.894732π-0.894732\pi
−0.945812 + 0.324714i 0.894732π0.894732\pi
930930 65.3236 2.14204
931931 40.3307 1.32178
932932 −12.3568 −0.404760
933933 −45.8357 −1.50059
934934 −14.4157 −0.471697
935935 7.56393 0.247367
936936 1.95099 0.0637701
937937 51.6641 1.68779 0.843897 0.536506i 0.180256π-0.180256\pi
0.843897 + 0.536506i 0.180256π0.180256\pi
938938 5.40181 0.176375
939939 −67.1927 −2.19275
940940 −21.1190 −0.688827
941941 21.5672 0.703070 0.351535 0.936175i 0.385660π-0.385660\pi
0.351535 + 0.936175i 0.385660π0.385660\pi
942942 43.0098 1.40133
943943 12.6682 0.412534
944944 −4.66605 −0.151867
945945 73.5796 2.39354
946946 −24.8487 −0.807900
947947 5.74054 0.186543 0.0932713 0.995641i 0.470268π-0.470268\pi
0.0932713 + 0.995641i 0.470268π0.470268\pi
948948 −34.7241 −1.12779
949949 −4.59348 −0.149111
950950 −15.0026 −0.486748
951951 −45.6232 −1.47943
952952 −3.56348 −0.115493
953953 −26.6321 −0.862697 −0.431348 0.902185i 0.641962π-0.641962\pi
−0.431348 + 0.902185i 0.641962π0.641962\pi
954954 49.0300 1.58740
955955 −46.6950 −1.51101
956956 0.451586 0.0146053
957957 0 0
958958 −3.99470 −0.129063
959959 75.8593 2.44962
960960 8.12870 0.262353
961961 33.5799 1.08322
962962 1.32335 0.0426665
963963 62.7520 2.02215
964964 −15.7861 −0.508438
965965 21.7611 0.700516
966966 −28.2518 −0.908986
967967 9.34598 0.300546 0.150273 0.988645i 0.451985π-0.451985\pi
0.150273 + 0.988645i 0.451985π0.451985\pi
968968 2.55566 0.0821420
969969 −13.7725 −0.442436
970970 −34.8882 −1.12019
971971 13.4411 0.431346 0.215673 0.976466i 0.430805π-0.430805\pi
0.215673 + 0.976466i 0.430805π0.430805\pi
972972 10.0422 0.322103
973973 30.4890 0.977431
974974 −18.6434 −0.597374
975975 3.06920 0.0982931
976976 −6.85219 −0.219333
977977 −8.50896 −0.272226 −0.136113 0.990693i 0.543461π-0.543461\pi
−0.136113 + 0.990693i 0.543461π0.543461\pi
978978 −36.0083 −1.15142
979979 −33.3016 −1.06433
980980 −22.0264 −0.703608
981981 0.156204 0.00498720
982982 −3.44975 −0.110086
983983 −41.6581 −1.32869 −0.664343 0.747428i 0.731289π-0.731289\pi
−0.664343 + 0.747428i 0.731289π0.731289\pi
984984 −14.4197 −0.459685
985985 20.3183 0.647396
986986 0 0
987987 −83.5490 −2.65939
988988 −1.87809 −0.0597500
989989 21.7087 0.690298
990990 −43.7363 −1.39003
991991 29.5715 0.939369 0.469684 0.882834i 0.344368π-0.344368\pi
0.469684 + 0.882834i 0.344368π0.344368\pi
992992 8.03616 0.255148
993993 −11.2012 −0.355458
994994 16.6253 0.527323
995995 −31.9098 −1.01161
996996 −42.1205 −1.33464
997997 47.3436 1.49939 0.749694 0.661784i 0.230201π-0.230201\pi
0.749694 + 0.661784i 0.230201π0.230201\pi
998998 −6.02903 −0.190846
999999 −24.6508 −0.779918
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1682.2.a.u.1.1 8
29.12 odd 4 1682.2.b.k.1681.1 16
29.17 odd 4 1682.2.b.k.1681.16 16
29.28 even 2 1682.2.a.v.1.8 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1682.2.a.u.1.1 8 1.1 even 1 trivial
1682.2.a.v.1.8 yes 8 29.28 even 2
1682.2.b.k.1681.1 16 29.12 odd 4
1682.2.b.k.1681.16 16 29.17 odd 4