Properties

Label 1682.2.a.u.1.1
Level $1682$
Weight $2$
Character 1682.1
Self dual yes
Analytic conductor $13.431$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1682,2,Mod(1,1682)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1682, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1682.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1682 = 2 \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1682.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.4308376200\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.8.32836640625.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 18x^{6} + 17x^{5} + 95x^{4} - 77x^{3} - 128x^{2} + 51x + 31 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.88972\) of defining polynomial
Character \(\chi\) \(=\) 1682.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -2.88972 q^{3} +1.00000 q^{4} -2.81297 q^{5} +2.88972 q^{6} +3.85101 q^{7} -1.00000 q^{8} +5.35050 q^{9} +2.81297 q^{10} -2.90591 q^{11} -2.88972 q^{12} -0.364636 q^{13} -3.85101 q^{14} +8.12870 q^{15} +1.00000 q^{16} +0.925336 q^{17} -5.35050 q^{18} +5.15058 q^{19} -2.81297 q^{20} -11.1284 q^{21} +2.90591 q^{22} -2.53872 q^{23} +2.88972 q^{24} +2.91279 q^{25} +0.364636 q^{26} -6.79231 q^{27} +3.85101 q^{28} -8.12870 q^{30} -8.03616 q^{31} -1.00000 q^{32} +8.39729 q^{33} -0.925336 q^{34} -10.8328 q^{35} +5.35050 q^{36} +3.62923 q^{37} -5.15058 q^{38} +1.05370 q^{39} +2.81297 q^{40} -4.99001 q^{41} +11.1284 q^{42} -8.55107 q^{43} -2.90591 q^{44} -15.0508 q^{45} +2.53872 q^{46} +7.50775 q^{47} -2.88972 q^{48} +7.83031 q^{49} -2.91279 q^{50} -2.67397 q^{51} -0.364636 q^{52} -9.16362 q^{53} +6.79231 q^{54} +8.17425 q^{55} -3.85101 q^{56} -14.8838 q^{57} -4.66605 q^{59} +8.12870 q^{60} -6.85219 q^{61} +8.03616 q^{62} +20.6049 q^{63} +1.00000 q^{64} +1.02571 q^{65} -8.39729 q^{66} -1.40270 q^{67} +0.925336 q^{68} +7.33619 q^{69} +10.8328 q^{70} -4.31712 q^{71} -5.35050 q^{72} +12.5974 q^{73} -3.62923 q^{74} -8.41716 q^{75} +5.15058 q^{76} -11.1907 q^{77} -1.05370 q^{78} +12.0164 q^{79} -2.81297 q^{80} +3.57638 q^{81} +4.99001 q^{82} +14.5760 q^{83} -11.1284 q^{84} -2.60294 q^{85} +8.55107 q^{86} +2.90591 q^{88} +11.4600 q^{89} +15.0508 q^{90} -1.40422 q^{91} -2.53872 q^{92} +23.2223 q^{93} -7.50775 q^{94} -14.4884 q^{95} +2.88972 q^{96} -12.4026 q^{97} -7.83031 q^{98} -15.5481 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{2} - q^{3} + 8 q^{4} + 5 q^{5} + q^{6} + 7 q^{7} - 8 q^{8} + 13 q^{9} - 5 q^{10} + 7 q^{11} - q^{12} + 13 q^{13} - 7 q^{14} + 20 q^{15} + 8 q^{16} - 9 q^{17} - 13 q^{18} + 13 q^{19} + 5 q^{20}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −2.88972 −1.66838 −0.834191 0.551475i \(-0.814065\pi\)
−0.834191 + 0.551475i \(0.814065\pi\)
\(4\) 1.00000 0.500000
\(5\) −2.81297 −1.25800 −0.628999 0.777406i \(-0.716535\pi\)
−0.628999 + 0.777406i \(0.716535\pi\)
\(6\) 2.88972 1.17972
\(7\) 3.85101 1.45555 0.727773 0.685818i \(-0.240555\pi\)
0.727773 + 0.685818i \(0.240555\pi\)
\(8\) −1.00000 −0.353553
\(9\) 5.35050 1.78350
\(10\) 2.81297 0.889539
\(11\) −2.90591 −0.876166 −0.438083 0.898934i \(-0.644342\pi\)
−0.438083 + 0.898934i \(0.644342\pi\)
\(12\) −2.88972 −0.834191
\(13\) −0.364636 −0.101132 −0.0505660 0.998721i \(-0.516103\pi\)
−0.0505660 + 0.998721i \(0.516103\pi\)
\(14\) −3.85101 −1.02923
\(15\) 8.12870 2.09882
\(16\) 1.00000 0.250000
\(17\) 0.925336 0.224427 0.112214 0.993684i \(-0.464206\pi\)
0.112214 + 0.993684i \(0.464206\pi\)
\(18\) −5.35050 −1.26113
\(19\) 5.15058 1.18162 0.590812 0.806809i \(-0.298807\pi\)
0.590812 + 0.806809i \(0.298807\pi\)
\(20\) −2.81297 −0.628999
\(21\) −11.1284 −2.42841
\(22\) 2.90591 0.619543
\(23\) −2.53872 −0.529359 −0.264680 0.964336i \(-0.585266\pi\)
−0.264680 + 0.964336i \(0.585266\pi\)
\(24\) 2.88972 0.589862
\(25\) 2.91279 0.582558
\(26\) 0.364636 0.0715111
\(27\) −6.79231 −1.30718
\(28\) 3.85101 0.727773
\(29\) 0 0
\(30\) −8.12870 −1.48409
\(31\) −8.03616 −1.44334 −0.721669 0.692239i \(-0.756625\pi\)
−0.721669 + 0.692239i \(0.756625\pi\)
\(32\) −1.00000 −0.176777
\(33\) 8.39729 1.46178
\(34\) −0.925336 −0.158694
\(35\) −10.8328 −1.83107
\(36\) 5.35050 0.891751
\(37\) 3.62923 0.596642 0.298321 0.954466i \(-0.403573\pi\)
0.298321 + 0.954466i \(0.403573\pi\)
\(38\) −5.15058 −0.835535
\(39\) 1.05370 0.168727
\(40\) 2.81297 0.444769
\(41\) −4.99001 −0.779308 −0.389654 0.920961i \(-0.627405\pi\)
−0.389654 + 0.920961i \(0.627405\pi\)
\(42\) 11.1284 1.71714
\(43\) −8.55107 −1.30403 −0.652013 0.758208i \(-0.726075\pi\)
−0.652013 + 0.758208i \(0.726075\pi\)
\(44\) −2.90591 −0.438083
\(45\) −15.0508 −2.24364
\(46\) 2.53872 0.374313
\(47\) 7.50775 1.09512 0.547559 0.836767i \(-0.315557\pi\)
0.547559 + 0.836767i \(0.315557\pi\)
\(48\) −2.88972 −0.417096
\(49\) 7.83031 1.11862
\(50\) −2.91279 −0.411931
\(51\) −2.67397 −0.374430
\(52\) −0.364636 −0.0505660
\(53\) −9.16362 −1.25872 −0.629360 0.777114i \(-0.716683\pi\)
−0.629360 + 0.777114i \(0.716683\pi\)
\(54\) 6.79231 0.924316
\(55\) 8.17425 1.10222
\(56\) −3.85101 −0.514613
\(57\) −14.8838 −1.97140
\(58\) 0 0
\(59\) −4.66605 −0.607468 −0.303734 0.952757i \(-0.598233\pi\)
−0.303734 + 0.952757i \(0.598233\pi\)
\(60\) 8.12870 1.04941
\(61\) −6.85219 −0.877334 −0.438667 0.898650i \(-0.644549\pi\)
−0.438667 + 0.898650i \(0.644549\pi\)
\(62\) 8.03616 1.02059
\(63\) 20.6049 2.59597
\(64\) 1.00000 0.125000
\(65\) 1.02571 0.127224
\(66\) −8.39729 −1.03364
\(67\) −1.40270 −0.171367 −0.0856834 0.996322i \(-0.527307\pi\)
−0.0856834 + 0.996322i \(0.527307\pi\)
\(68\) 0.925336 0.112214
\(69\) 7.33619 0.883174
\(70\) 10.8328 1.29477
\(71\) −4.31712 −0.512348 −0.256174 0.966631i \(-0.582462\pi\)
−0.256174 + 0.966631i \(0.582462\pi\)
\(72\) −5.35050 −0.630563
\(73\) 12.5974 1.47442 0.737208 0.675666i \(-0.236144\pi\)
0.737208 + 0.675666i \(0.236144\pi\)
\(74\) −3.62923 −0.421889
\(75\) −8.41716 −0.971930
\(76\) 5.15058 0.590812
\(77\) −11.1907 −1.27530
\(78\) −1.05370 −0.119308
\(79\) 12.0164 1.35195 0.675976 0.736923i \(-0.263722\pi\)
0.675976 + 0.736923i \(0.263722\pi\)
\(80\) −2.81297 −0.314499
\(81\) 3.57638 0.397376
\(82\) 4.99001 0.551054
\(83\) 14.5760 1.59992 0.799960 0.600053i \(-0.204854\pi\)
0.799960 + 0.600053i \(0.204854\pi\)
\(84\) −11.1284 −1.21420
\(85\) −2.60294 −0.282329
\(86\) 8.55107 0.922085
\(87\) 0 0
\(88\) 2.90591 0.309772
\(89\) 11.4600 1.21475 0.607376 0.794414i \(-0.292222\pi\)
0.607376 + 0.794414i \(0.292222\pi\)
\(90\) 15.0508 1.58649
\(91\) −1.40422 −0.147202
\(92\) −2.53872 −0.264680
\(93\) 23.2223 2.40804
\(94\) −7.50775 −0.774365
\(95\) −14.4884 −1.48648
\(96\) 2.88972 0.294931
\(97\) −12.4026 −1.25930 −0.629648 0.776880i \(-0.716801\pi\)
−0.629648 + 0.776880i \(0.716801\pi\)
\(98\) −7.83031 −0.790981
\(99\) −15.5481 −1.56264
\(100\) 2.91279 0.291279
\(101\) 7.17961 0.714397 0.357199 0.934028i \(-0.383732\pi\)
0.357199 + 0.934028i \(0.383732\pi\)
\(102\) 2.67397 0.264762
\(103\) 16.0746 1.58387 0.791937 0.610603i \(-0.209073\pi\)
0.791937 + 0.610603i \(0.209073\pi\)
\(104\) 0.364636 0.0357555
\(105\) 31.3037 3.05493
\(106\) 9.16362 0.890049
\(107\) 11.7282 1.13381 0.566906 0.823783i \(-0.308140\pi\)
0.566906 + 0.823783i \(0.308140\pi\)
\(108\) −6.79231 −0.653590
\(109\) 0.0291942 0.00279630 0.00139815 0.999999i \(-0.499555\pi\)
0.00139815 + 0.999999i \(0.499555\pi\)
\(110\) −8.17425 −0.779384
\(111\) −10.4875 −0.995427
\(112\) 3.85101 0.363887
\(113\) 1.64135 0.154405 0.0772026 0.997015i \(-0.475401\pi\)
0.0772026 + 0.997015i \(0.475401\pi\)
\(114\) 14.8838 1.39399
\(115\) 7.14133 0.665932
\(116\) 0 0
\(117\) −1.95099 −0.180369
\(118\) 4.66605 0.429544
\(119\) 3.56348 0.326664
\(120\) −8.12870 −0.742046
\(121\) −2.55566 −0.232333
\(122\) 6.85219 0.620368
\(123\) 14.4197 1.30018
\(124\) −8.03616 −0.721669
\(125\) 5.87126 0.525141
\(126\) −20.6049 −1.83563
\(127\) 16.2246 1.43970 0.719849 0.694130i \(-0.244211\pi\)
0.719849 + 0.694130i \(0.244211\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 24.7102 2.17561
\(130\) −1.02571 −0.0899608
\(131\) −13.3119 −1.16306 −0.581532 0.813524i \(-0.697546\pi\)
−0.581532 + 0.813524i \(0.697546\pi\)
\(132\) 8.39729 0.730890
\(133\) 19.8350 1.71991
\(134\) 1.40270 0.121175
\(135\) 19.1065 1.64443
\(136\) −0.925336 −0.0793469
\(137\) 19.6985 1.68296 0.841479 0.540290i \(-0.181685\pi\)
0.841479 + 0.540290i \(0.181685\pi\)
\(138\) −7.33619 −0.624498
\(139\) 7.91712 0.671522 0.335761 0.941947i \(-0.391007\pi\)
0.335761 + 0.941947i \(0.391007\pi\)
\(140\) −10.8328 −0.915537
\(141\) −21.6953 −1.82707
\(142\) 4.31712 0.362285
\(143\) 1.05960 0.0886084
\(144\) 5.35050 0.445875
\(145\) 0 0
\(146\) −12.5974 −1.04257
\(147\) −22.6274 −1.86628
\(148\) 3.62923 0.298321
\(149\) −6.66087 −0.545680 −0.272840 0.962059i \(-0.587963\pi\)
−0.272840 + 0.962059i \(0.587963\pi\)
\(150\) 8.41716 0.687258
\(151\) 10.8305 0.881376 0.440688 0.897660i \(-0.354734\pi\)
0.440688 + 0.897660i \(0.354734\pi\)
\(152\) −5.15058 −0.417768
\(153\) 4.95102 0.400266
\(154\) 11.1907 0.901774
\(155\) 22.6055 1.81572
\(156\) 1.05370 0.0843634
\(157\) 14.8837 1.18785 0.593924 0.804521i \(-0.297578\pi\)
0.593924 + 0.804521i \(0.297578\pi\)
\(158\) −12.0164 −0.955975
\(159\) 26.4803 2.10003
\(160\) 2.81297 0.222385
\(161\) −9.77664 −0.770507
\(162\) −3.57638 −0.280987
\(163\) −12.4608 −0.976006 −0.488003 0.872842i \(-0.662274\pi\)
−0.488003 + 0.872842i \(0.662274\pi\)
\(164\) −4.99001 −0.389654
\(165\) −23.6213 −1.83892
\(166\) −14.5760 −1.13131
\(167\) −4.31880 −0.334199 −0.167099 0.985940i \(-0.553440\pi\)
−0.167099 + 0.985940i \(0.553440\pi\)
\(168\) 11.1284 0.858572
\(169\) −12.8670 −0.989772
\(170\) 2.60294 0.199636
\(171\) 27.5582 2.10743
\(172\) −8.55107 −0.652013
\(173\) −21.3247 −1.62129 −0.810644 0.585540i \(-0.800883\pi\)
−0.810644 + 0.585540i \(0.800883\pi\)
\(174\) 0 0
\(175\) 11.2172 0.847940
\(176\) −2.90591 −0.219042
\(177\) 13.4836 1.01349
\(178\) −11.4600 −0.858960
\(179\) 3.51602 0.262799 0.131400 0.991329i \(-0.458053\pi\)
0.131400 + 0.991329i \(0.458053\pi\)
\(180\) −15.0508 −1.12182
\(181\) −4.81159 −0.357643 −0.178821 0.983882i \(-0.557228\pi\)
−0.178821 + 0.983882i \(0.557228\pi\)
\(182\) 1.40422 0.104088
\(183\) 19.8009 1.46373
\(184\) 2.53872 0.187157
\(185\) −10.2089 −0.750574
\(186\) −23.2223 −1.70274
\(187\) −2.68895 −0.196635
\(188\) 7.50775 0.547559
\(189\) −26.1573 −1.90266
\(190\) 14.4884 1.05110
\(191\) 16.5999 1.20113 0.600563 0.799577i \(-0.294943\pi\)
0.600563 + 0.799577i \(0.294943\pi\)
\(192\) −2.88972 −0.208548
\(193\) −7.73601 −0.556850 −0.278425 0.960458i \(-0.589812\pi\)
−0.278425 + 0.960458i \(0.589812\pi\)
\(194\) 12.4026 0.890457
\(195\) −2.96402 −0.212258
\(196\) 7.83031 0.559308
\(197\) −7.22310 −0.514624 −0.257312 0.966328i \(-0.582837\pi\)
−0.257312 + 0.966328i \(0.582837\pi\)
\(198\) 15.5481 1.10496
\(199\) 11.3438 0.804142 0.402071 0.915609i \(-0.368291\pi\)
0.402071 + 0.915609i \(0.368291\pi\)
\(200\) −2.91279 −0.205965
\(201\) 4.05341 0.285906
\(202\) −7.17961 −0.505155
\(203\) 0 0
\(204\) −2.67397 −0.187215
\(205\) 14.0367 0.980368
\(206\) −16.0746 −1.11997
\(207\) −13.5834 −0.944113
\(208\) −0.364636 −0.0252830
\(209\) −14.9672 −1.03530
\(210\) −31.3037 −2.16016
\(211\) −0.202325 −0.0139286 −0.00696431 0.999976i \(-0.502217\pi\)
−0.00696431 + 0.999976i \(0.502217\pi\)
\(212\) −9.16362 −0.629360
\(213\) 12.4753 0.854793
\(214\) −11.7282 −0.801725
\(215\) 24.0539 1.64046
\(216\) 6.79231 0.462158
\(217\) −30.9474 −2.10085
\(218\) −0.0291942 −0.00197728
\(219\) −36.4031 −2.45989
\(220\) 8.17425 0.551108
\(221\) −0.337411 −0.0226967
\(222\) 10.4875 0.703873
\(223\) −6.99226 −0.468236 −0.234118 0.972208i \(-0.575220\pi\)
−0.234118 + 0.972208i \(0.575220\pi\)
\(224\) −3.85101 −0.257307
\(225\) 15.5849 1.03899
\(226\) −1.64135 −0.109181
\(227\) 25.5874 1.69830 0.849148 0.528155i \(-0.177116\pi\)
0.849148 + 0.528155i \(0.177116\pi\)
\(228\) −14.8838 −0.985701
\(229\) −8.03460 −0.530941 −0.265471 0.964119i \(-0.585527\pi\)
−0.265471 + 0.964119i \(0.585527\pi\)
\(230\) −7.14133 −0.470885
\(231\) 32.3381 2.12769
\(232\) 0 0
\(233\) −12.3568 −0.809520 −0.404760 0.914423i \(-0.632645\pi\)
−0.404760 + 0.914423i \(0.632645\pi\)
\(234\) 1.95099 0.127540
\(235\) −21.1190 −1.37765
\(236\) −4.66605 −0.303734
\(237\) −34.7241 −2.25557
\(238\) −3.56348 −0.230986
\(239\) 0.451586 0.0292107 0.0146053 0.999893i \(-0.495351\pi\)
0.0146053 + 0.999893i \(0.495351\pi\)
\(240\) 8.12870 0.524705
\(241\) −15.7861 −1.01688 −0.508438 0.861099i \(-0.669777\pi\)
−0.508438 + 0.861099i \(0.669777\pi\)
\(242\) 2.55566 0.164284
\(243\) 10.0422 0.644205
\(244\) −6.85219 −0.438667
\(245\) −22.0264 −1.40722
\(246\) −14.4197 −0.919370
\(247\) −1.87809 −0.119500
\(248\) 8.03616 0.510297
\(249\) −42.1205 −2.66928
\(250\) −5.87126 −0.371331
\(251\) 7.80780 0.492824 0.246412 0.969165i \(-0.420748\pi\)
0.246412 + 0.969165i \(0.420748\pi\)
\(252\) 20.6049 1.29798
\(253\) 7.37729 0.463807
\(254\) −16.2246 −1.01802
\(255\) 7.52178 0.471032
\(256\) 1.00000 0.0625000
\(257\) 7.42710 0.463290 0.231645 0.972800i \(-0.425589\pi\)
0.231645 + 0.972800i \(0.425589\pi\)
\(258\) −24.7102 −1.53839
\(259\) 13.9762 0.868440
\(260\) 1.02571 0.0636119
\(261\) 0 0
\(262\) 13.3119 0.822410
\(263\) 15.8103 0.974907 0.487454 0.873149i \(-0.337926\pi\)
0.487454 + 0.873149i \(0.337926\pi\)
\(264\) −8.39729 −0.516818
\(265\) 25.7770 1.58347
\(266\) −19.8350 −1.21616
\(267\) −33.1161 −2.02667
\(268\) −1.40270 −0.0856834
\(269\) 15.7747 0.961798 0.480899 0.876776i \(-0.340310\pi\)
0.480899 + 0.876776i \(0.340310\pi\)
\(270\) −19.1065 −1.16279
\(271\) 5.72904 0.348014 0.174007 0.984744i \(-0.444328\pi\)
0.174007 + 0.984744i \(0.444328\pi\)
\(272\) 0.925336 0.0561068
\(273\) 4.05781 0.245590
\(274\) −19.6985 −1.19003
\(275\) −8.46432 −0.510418
\(276\) 7.33619 0.441587
\(277\) 12.1246 0.728500 0.364250 0.931301i \(-0.381325\pi\)
0.364250 + 0.931301i \(0.381325\pi\)
\(278\) −7.91712 −0.474838
\(279\) −42.9975 −2.57419
\(280\) 10.8328 0.647383
\(281\) −3.65322 −0.217933 −0.108967 0.994045i \(-0.534754\pi\)
−0.108967 + 0.994045i \(0.534754\pi\)
\(282\) 21.6953 1.29194
\(283\) 28.3178 1.68332 0.841658 0.540011i \(-0.181580\pi\)
0.841658 + 0.540011i \(0.181580\pi\)
\(284\) −4.31712 −0.256174
\(285\) 41.8676 2.48002
\(286\) −1.05960 −0.0626556
\(287\) −19.2166 −1.13432
\(288\) −5.35050 −0.315281
\(289\) −16.1438 −0.949633
\(290\) 0 0
\(291\) 35.8402 2.10099
\(292\) 12.5974 0.737208
\(293\) 0.660825 0.0386058 0.0193029 0.999814i \(-0.493855\pi\)
0.0193029 + 0.999814i \(0.493855\pi\)
\(294\) 22.6274 1.31966
\(295\) 13.1254 0.764193
\(296\) −3.62923 −0.210945
\(297\) 19.7379 1.14531
\(298\) 6.66087 0.385854
\(299\) 0.925709 0.0535351
\(300\) −8.41716 −0.485965
\(301\) −32.9303 −1.89807
\(302\) −10.8305 −0.623227
\(303\) −20.7471 −1.19189
\(304\) 5.15058 0.295406
\(305\) 19.2750 1.10368
\(306\) −4.95102 −0.283031
\(307\) 14.1116 0.805390 0.402695 0.915334i \(-0.368074\pi\)
0.402695 + 0.915334i \(0.368074\pi\)
\(308\) −11.1907 −0.637650
\(309\) −46.4510 −2.64251
\(310\) −22.6055 −1.28390
\(311\) 15.8616 0.899429 0.449714 0.893172i \(-0.351526\pi\)
0.449714 + 0.893172i \(0.351526\pi\)
\(312\) −1.05370 −0.0596539
\(313\) 23.2523 1.31430 0.657149 0.753761i \(-0.271762\pi\)
0.657149 + 0.753761i \(0.271762\pi\)
\(314\) −14.8837 −0.839935
\(315\) −57.9608 −3.26572
\(316\) 12.0164 0.675976
\(317\) 15.7881 0.886748 0.443374 0.896337i \(-0.353781\pi\)
0.443374 + 0.896337i \(0.353781\pi\)
\(318\) −26.4803 −1.48494
\(319\) 0 0
\(320\) −2.81297 −0.157250
\(321\) −33.8914 −1.89163
\(322\) 9.77664 0.544831
\(323\) 4.76602 0.265189
\(324\) 3.57638 0.198688
\(325\) −1.06211 −0.0589152
\(326\) 12.4608 0.690140
\(327\) −0.0843632 −0.00466530
\(328\) 4.99001 0.275527
\(329\) 28.9124 1.59399
\(330\) 23.6213 1.30031
\(331\) 3.87620 0.213055 0.106528 0.994310i \(-0.466027\pi\)
0.106528 + 0.994310i \(0.466027\pi\)
\(332\) 14.5760 0.799960
\(333\) 19.4182 1.06411
\(334\) 4.31880 0.236314
\(335\) 3.94575 0.215579
\(336\) −11.1284 −0.607102
\(337\) 13.8500 0.754459 0.377230 0.926120i \(-0.376877\pi\)
0.377230 + 0.926120i \(0.376877\pi\)
\(338\) 12.8670 0.699875
\(339\) −4.74305 −0.257607
\(340\) −2.60294 −0.141164
\(341\) 23.3524 1.26460
\(342\) −27.5582 −1.49018
\(343\) 3.19755 0.172651
\(344\) 8.55107 0.461043
\(345\) −20.6365 −1.11103
\(346\) 21.3247 1.14642
\(347\) 24.8212 1.33247 0.666235 0.745742i \(-0.267905\pi\)
0.666235 + 0.745742i \(0.267905\pi\)
\(348\) 0 0
\(349\) 19.3592 1.03627 0.518136 0.855298i \(-0.326626\pi\)
0.518136 + 0.855298i \(0.326626\pi\)
\(350\) −11.2172 −0.599584
\(351\) 2.47672 0.132198
\(352\) 2.90591 0.154886
\(353\) 34.2123 1.82094 0.910468 0.413579i \(-0.135722\pi\)
0.910468 + 0.413579i \(0.135722\pi\)
\(354\) −13.4836 −0.716644
\(355\) 12.1439 0.644533
\(356\) 11.4600 0.607376
\(357\) −10.2975 −0.545001
\(358\) −3.51602 −0.185827
\(359\) 5.64481 0.297922 0.148961 0.988843i \(-0.452407\pi\)
0.148961 + 0.988843i \(0.452407\pi\)
\(360\) 15.0508 0.793247
\(361\) 7.52852 0.396238
\(362\) 4.81159 0.252892
\(363\) 7.38515 0.387620
\(364\) −1.40422 −0.0736011
\(365\) −35.4361 −1.85481
\(366\) −19.8009 −1.03501
\(367\) −28.8967 −1.50840 −0.754199 0.656646i \(-0.771974\pi\)
−0.754199 + 0.656646i \(0.771974\pi\)
\(368\) −2.53872 −0.132340
\(369\) −26.6991 −1.38990
\(370\) 10.2089 0.530736
\(371\) −35.2892 −1.83213
\(372\) 23.2223 1.20402
\(373\) −14.9847 −0.775877 −0.387939 0.921685i \(-0.626813\pi\)
−0.387939 + 0.921685i \(0.626813\pi\)
\(374\) 2.68895 0.139042
\(375\) −16.9663 −0.876136
\(376\) −7.50775 −0.387182
\(377\) 0 0
\(378\) 26.1573 1.34539
\(379\) −22.4281 −1.15206 −0.576028 0.817430i \(-0.695398\pi\)
−0.576028 + 0.817430i \(0.695398\pi\)
\(380\) −14.4884 −0.743241
\(381\) −46.8846 −2.40197
\(382\) −16.5999 −0.849325
\(383\) −3.74411 −0.191315 −0.0956574 0.995414i \(-0.530495\pi\)
−0.0956574 + 0.995414i \(0.530495\pi\)
\(384\) 2.88972 0.147466
\(385\) 31.4791 1.60433
\(386\) 7.73601 0.393752
\(387\) −45.7525 −2.32573
\(388\) −12.4026 −0.629648
\(389\) −4.62048 −0.234268 −0.117134 0.993116i \(-0.537371\pi\)
−0.117134 + 0.993116i \(0.537371\pi\)
\(390\) 2.96402 0.150089
\(391\) −2.34917 −0.118802
\(392\) −7.83031 −0.395491
\(393\) 38.4676 1.94044
\(394\) 7.22310 0.363894
\(395\) −33.8018 −1.70075
\(396\) −15.5481 −0.781322
\(397\) 17.0364 0.855035 0.427517 0.904007i \(-0.359388\pi\)
0.427517 + 0.904007i \(0.359388\pi\)
\(398\) −11.3438 −0.568614
\(399\) −57.3176 −2.86947
\(400\) 2.91279 0.145640
\(401\) −35.9180 −1.79366 −0.896830 0.442374i \(-0.854136\pi\)
−0.896830 + 0.442374i \(0.854136\pi\)
\(402\) −4.05341 −0.202166
\(403\) 2.93028 0.145968
\(404\) 7.17961 0.357199
\(405\) −10.0602 −0.499898
\(406\) 0 0
\(407\) −10.5462 −0.522757
\(408\) 2.67397 0.132381
\(409\) 9.10554 0.450240 0.225120 0.974331i \(-0.427723\pi\)
0.225120 + 0.974331i \(0.427723\pi\)
\(410\) −14.0367 −0.693225
\(411\) −56.9233 −2.80782
\(412\) 16.0746 0.791937
\(413\) −17.9690 −0.884197
\(414\) 13.5834 0.667588
\(415\) −41.0017 −2.01270
\(416\) 0.364636 0.0178778
\(417\) −22.8783 −1.12036
\(418\) 14.9672 0.732068
\(419\) 1.84770 0.0902661 0.0451331 0.998981i \(-0.485629\pi\)
0.0451331 + 0.998981i \(0.485629\pi\)
\(420\) 31.3037 1.52747
\(421\) −35.2513 −1.71805 −0.859023 0.511938i \(-0.828928\pi\)
−0.859023 + 0.511938i \(0.828928\pi\)
\(422\) 0.202325 0.00984902
\(423\) 40.1702 1.95314
\(424\) 9.16362 0.445025
\(425\) 2.69531 0.130742
\(426\) −12.4753 −0.604430
\(427\) −26.3879 −1.27700
\(428\) 11.7282 0.566906
\(429\) −3.06196 −0.147833
\(430\) −24.0539 −1.15998
\(431\) 6.75999 0.325617 0.162809 0.986658i \(-0.447945\pi\)
0.162809 + 0.986658i \(0.447945\pi\)
\(432\) −6.79231 −0.326795
\(433\) 2.34317 0.112606 0.0563029 0.998414i \(-0.482069\pi\)
0.0563029 + 0.998414i \(0.482069\pi\)
\(434\) 30.9474 1.48552
\(435\) 0 0
\(436\) 0.0291942 0.00139815
\(437\) −13.0759 −0.625504
\(438\) 36.4031 1.73941
\(439\) 27.2219 1.29923 0.649616 0.760263i \(-0.274930\pi\)
0.649616 + 0.760263i \(0.274930\pi\)
\(440\) −8.17425 −0.389692
\(441\) 41.8961 1.99505
\(442\) 0.337411 0.0160490
\(443\) −3.70498 −0.176029 −0.0880145 0.996119i \(-0.528052\pi\)
−0.0880145 + 0.996119i \(0.528052\pi\)
\(444\) −10.4875 −0.497713
\(445\) −32.2365 −1.52816
\(446\) 6.99226 0.331093
\(447\) 19.2481 0.910403
\(448\) 3.85101 0.181943
\(449\) 20.6490 0.974485 0.487243 0.873267i \(-0.338003\pi\)
0.487243 + 0.873267i \(0.338003\pi\)
\(450\) −15.5849 −0.734679
\(451\) 14.5005 0.682804
\(452\) 1.64135 0.0772026
\(453\) −31.2973 −1.47047
\(454\) −25.5874 −1.20088
\(455\) 3.95003 0.185180
\(456\) 14.8838 0.696996
\(457\) 0.0396615 0.00185529 0.000927644 1.00000i \(-0.499705\pi\)
0.000927644 1.00000i \(0.499705\pi\)
\(458\) 8.03460 0.375432
\(459\) −6.28517 −0.293367
\(460\) 7.14133 0.332966
\(461\) −29.6008 −1.37864 −0.689322 0.724455i \(-0.742092\pi\)
−0.689322 + 0.724455i \(0.742092\pi\)
\(462\) −32.3381 −1.50450
\(463\) −22.9957 −1.06870 −0.534351 0.845263i \(-0.679444\pi\)
−0.534351 + 0.845263i \(0.679444\pi\)
\(464\) 0 0
\(465\) −65.3236 −3.02931
\(466\) 12.3568 0.572417
\(467\) 14.4157 0.667080 0.333540 0.942736i \(-0.391757\pi\)
0.333540 + 0.942736i \(0.391757\pi\)
\(468\) −1.95099 −0.0901845
\(469\) −5.40181 −0.249432
\(470\) 21.1190 0.974149
\(471\) −43.0098 −1.98179
\(472\) 4.66605 0.214772
\(473\) 24.8487 1.14254
\(474\) 34.7241 1.59493
\(475\) 15.0026 0.688365
\(476\) 3.56348 0.163332
\(477\) −49.0300 −2.24493
\(478\) −0.451586 −0.0206551
\(479\) 3.99470 0.182522 0.0912612 0.995827i \(-0.470910\pi\)
0.0912612 + 0.995827i \(0.470910\pi\)
\(480\) −8.12870 −0.371023
\(481\) −1.32335 −0.0603395
\(482\) 15.7861 0.719039
\(483\) 28.2518 1.28550
\(484\) −2.55566 −0.116166
\(485\) 34.8882 1.58419
\(486\) −10.0422 −0.455522
\(487\) 18.6434 0.844815 0.422407 0.906406i \(-0.361185\pi\)
0.422407 + 0.906406i \(0.361185\pi\)
\(488\) 6.85219 0.310184
\(489\) 36.0083 1.62835
\(490\) 22.0264 0.995052
\(491\) 3.44975 0.155685 0.0778426 0.996966i \(-0.475197\pi\)
0.0778426 + 0.996966i \(0.475197\pi\)
\(492\) 14.4197 0.650092
\(493\) 0 0
\(494\) 1.87809 0.0844993
\(495\) 43.7363 1.96580
\(496\) −8.03616 −0.360834
\(497\) −16.6253 −0.745747
\(498\) 42.1205 1.88747
\(499\) 6.02903 0.269896 0.134948 0.990853i \(-0.456913\pi\)
0.134948 + 0.990853i \(0.456913\pi\)
\(500\) 5.87126 0.262571
\(501\) 12.4801 0.557571
\(502\) −7.80780 −0.348479
\(503\) −5.96356 −0.265902 −0.132951 0.991123i \(-0.542445\pi\)
−0.132951 + 0.991123i \(0.542445\pi\)
\(504\) −20.6049 −0.917814
\(505\) −20.1960 −0.898710
\(506\) −7.37729 −0.327961
\(507\) 37.1822 1.65132
\(508\) 16.2246 0.719849
\(509\) 4.71837 0.209138 0.104569 0.994518i \(-0.466654\pi\)
0.104569 + 0.994518i \(0.466654\pi\)
\(510\) −7.52178 −0.333070
\(511\) 48.5128 2.14608
\(512\) −1.00000 −0.0441942
\(513\) −34.9844 −1.54460
\(514\) −7.42710 −0.327596
\(515\) −45.2172 −1.99251
\(516\) 24.7102 1.08781
\(517\) −21.8169 −0.959505
\(518\) −13.9762 −0.614080
\(519\) 61.6225 2.70493
\(520\) −1.02571 −0.0449804
\(521\) 27.8336 1.21941 0.609707 0.792627i \(-0.291287\pi\)
0.609707 + 0.792627i \(0.291287\pi\)
\(522\) 0 0
\(523\) 29.4055 1.28581 0.642906 0.765945i \(-0.277728\pi\)
0.642906 + 0.765945i \(0.277728\pi\)
\(524\) −13.3119 −0.581532
\(525\) −32.4146 −1.41469
\(526\) −15.8103 −0.689364
\(527\) −7.43615 −0.323924
\(528\) 8.39729 0.365445
\(529\) −16.5549 −0.719779
\(530\) −25.7770 −1.11968
\(531\) −24.9657 −1.08342
\(532\) 19.8350 0.859955
\(533\) 1.81954 0.0788130
\(534\) 33.1161 1.43307
\(535\) −32.9911 −1.42633
\(536\) 1.40270 0.0605873
\(537\) −10.1603 −0.438450
\(538\) −15.7747 −0.680094
\(539\) −22.7542 −0.980094
\(540\) 19.1065 0.822215
\(541\) 27.5775 1.18565 0.592825 0.805331i \(-0.298013\pi\)
0.592825 + 0.805331i \(0.298013\pi\)
\(542\) −5.72904 −0.246083
\(543\) 13.9042 0.596685
\(544\) −0.925336 −0.0396735
\(545\) −0.0821224 −0.00351774
\(546\) −4.05781 −0.173658
\(547\) −3.86399 −0.165212 −0.0826061 0.996582i \(-0.526324\pi\)
−0.0826061 + 0.996582i \(0.526324\pi\)
\(548\) 19.6985 0.841479
\(549\) −36.6627 −1.56473
\(550\) 8.46432 0.360920
\(551\) 0 0
\(552\) −7.33619 −0.312249
\(553\) 46.2754 1.96783
\(554\) −12.1246 −0.515127
\(555\) 29.5009 1.25224
\(556\) 7.91712 0.335761
\(557\) 18.0890 0.766454 0.383227 0.923654i \(-0.374813\pi\)
0.383227 + 0.923654i \(0.374813\pi\)
\(558\) 42.9975 1.82023
\(559\) 3.11803 0.131879
\(560\) −10.8328 −0.457769
\(561\) 7.77032 0.328063
\(562\) 3.65322 0.154102
\(563\) −10.0817 −0.424893 −0.212447 0.977173i \(-0.568143\pi\)
−0.212447 + 0.977173i \(0.568143\pi\)
\(564\) −21.6953 −0.913537
\(565\) −4.61707 −0.194241
\(566\) −28.3178 −1.19028
\(567\) 13.7727 0.578399
\(568\) 4.31712 0.181142
\(569\) 8.42654 0.353259 0.176630 0.984277i \(-0.443481\pi\)
0.176630 + 0.984277i \(0.443481\pi\)
\(570\) −41.8676 −1.75364
\(571\) 25.6175 1.07206 0.536029 0.844199i \(-0.319924\pi\)
0.536029 + 0.844199i \(0.319924\pi\)
\(572\) 1.05960 0.0443042
\(573\) −47.9691 −2.00394
\(574\) 19.2166 0.802085
\(575\) −7.39475 −0.308382
\(576\) 5.35050 0.222938
\(577\) 14.2757 0.594307 0.297154 0.954830i \(-0.403963\pi\)
0.297154 + 0.954830i \(0.403963\pi\)
\(578\) 16.1438 0.671492
\(579\) 22.3549 0.929039
\(580\) 0 0
\(581\) 56.1323 2.32876
\(582\) −35.8402 −1.48562
\(583\) 26.6287 1.10285
\(584\) −12.5974 −0.521285
\(585\) 5.48807 0.226904
\(586\) −0.660825 −0.0272984
\(587\) 3.16614 0.130681 0.0653403 0.997863i \(-0.479187\pi\)
0.0653403 + 0.997863i \(0.479187\pi\)
\(588\) −22.6274 −0.933140
\(589\) −41.3909 −1.70548
\(590\) −13.1254 −0.540366
\(591\) 20.8728 0.858591
\(592\) 3.62923 0.149160
\(593\) 32.1045 1.31837 0.659186 0.751980i \(-0.270901\pi\)
0.659186 + 0.751980i \(0.270901\pi\)
\(594\) −19.7379 −0.809854
\(595\) −10.0240 −0.410943
\(596\) −6.66087 −0.272840
\(597\) −32.7805 −1.34162
\(598\) −0.925709 −0.0378550
\(599\) 3.87056 0.158147 0.0790735 0.996869i \(-0.474804\pi\)
0.0790735 + 0.996869i \(0.474804\pi\)
\(600\) 8.41716 0.343629
\(601\) −27.7877 −1.13349 −0.566743 0.823895i \(-0.691797\pi\)
−0.566743 + 0.823895i \(0.691797\pi\)
\(602\) 32.9303 1.34214
\(603\) −7.50514 −0.305633
\(604\) 10.8305 0.440688
\(605\) 7.18899 0.292274
\(606\) 20.7471 0.842792
\(607\) 25.3730 1.02986 0.514929 0.857233i \(-0.327818\pi\)
0.514929 + 0.857233i \(0.327818\pi\)
\(608\) −5.15058 −0.208884
\(609\) 0 0
\(610\) −19.2750 −0.780422
\(611\) −2.73760 −0.110751
\(612\) 4.95102 0.200133
\(613\) −31.3639 −1.26678 −0.633388 0.773835i \(-0.718336\pi\)
−0.633388 + 0.773835i \(0.718336\pi\)
\(614\) −14.1116 −0.569497
\(615\) −40.5623 −1.63563
\(616\) 11.1907 0.450887
\(617\) −42.0303 −1.69208 −0.846039 0.533121i \(-0.821019\pi\)
−0.846039 + 0.533121i \(0.821019\pi\)
\(618\) 46.4510 1.86853
\(619\) −30.2687 −1.21660 −0.608300 0.793707i \(-0.708148\pi\)
−0.608300 + 0.793707i \(0.708148\pi\)
\(620\) 22.6055 0.907858
\(621\) 17.2437 0.691968
\(622\) −15.8616 −0.635992
\(623\) 44.1324 1.76813
\(624\) 1.05370 0.0421817
\(625\) −31.0796 −1.24318
\(626\) −23.2523 −0.929349
\(627\) 43.2510 1.72728
\(628\) 14.8837 0.593924
\(629\) 3.35826 0.133902
\(630\) 57.9608 2.30922
\(631\) 37.0307 1.47417 0.737085 0.675800i \(-0.236202\pi\)
0.737085 + 0.675800i \(0.236202\pi\)
\(632\) −12.0164 −0.477987
\(633\) 0.584663 0.0232383
\(634\) −15.7881 −0.627025
\(635\) −45.6392 −1.81114
\(636\) 26.4803 1.05001
\(637\) −2.85522 −0.113128
\(638\) 0 0
\(639\) −23.0988 −0.913774
\(640\) 2.81297 0.111192
\(641\) −28.4320 −1.12300 −0.561499 0.827477i \(-0.689775\pi\)
−0.561499 + 0.827477i \(0.689775\pi\)
\(642\) 33.8914 1.33759
\(643\) 36.5756 1.44240 0.721201 0.692726i \(-0.243590\pi\)
0.721201 + 0.692726i \(0.243590\pi\)
\(644\) −9.77664 −0.385253
\(645\) −69.5091 −2.73692
\(646\) −4.76602 −0.187517
\(647\) 12.7395 0.500840 0.250420 0.968137i \(-0.419431\pi\)
0.250420 + 0.968137i \(0.419431\pi\)
\(648\) −3.57638 −0.140494
\(649\) 13.5591 0.532243
\(650\) 1.06211 0.0416594
\(651\) 89.4294 3.50501
\(652\) −12.4608 −0.488003
\(653\) 42.2415 1.65304 0.826518 0.562910i \(-0.190318\pi\)
0.826518 + 0.562910i \(0.190318\pi\)
\(654\) 0.0843632 0.00329886
\(655\) 37.4459 1.46313
\(656\) −4.99001 −0.194827
\(657\) 67.4025 2.62962
\(658\) −28.9124 −1.12712
\(659\) −29.8537 −1.16293 −0.581467 0.813570i \(-0.697521\pi\)
−0.581467 + 0.813570i \(0.697521\pi\)
\(660\) −23.6213 −0.919458
\(661\) −20.9321 −0.814164 −0.407082 0.913392i \(-0.633454\pi\)
−0.407082 + 0.913392i \(0.633454\pi\)
\(662\) −3.87620 −0.150653
\(663\) 0.975025 0.0378668
\(664\) −14.5760 −0.565657
\(665\) −55.7952 −2.16364
\(666\) −19.4182 −0.752440
\(667\) 0 0
\(668\) −4.31880 −0.167099
\(669\) 20.2057 0.781197
\(670\) −3.94575 −0.152437
\(671\) 19.9119 0.768690
\(672\) 11.1284 0.429286
\(673\) 8.30904 0.320290 0.160145 0.987094i \(-0.448804\pi\)
0.160145 + 0.987094i \(0.448804\pi\)
\(674\) −13.8500 −0.533483
\(675\) −19.7846 −0.761508
\(676\) −12.8670 −0.494886
\(677\) −23.9829 −0.921738 −0.460869 0.887468i \(-0.652462\pi\)
−0.460869 + 0.887468i \(0.652462\pi\)
\(678\) 4.74305 0.182156
\(679\) −47.7627 −1.83297
\(680\) 2.60294 0.0998182
\(681\) −73.9405 −2.83341
\(682\) −23.3524 −0.894210
\(683\) 36.5532 1.39867 0.699334 0.714795i \(-0.253480\pi\)
0.699334 + 0.714795i \(0.253480\pi\)
\(684\) 27.5582 1.05371
\(685\) −55.4113 −2.11716
\(686\) −3.19755 −0.122083
\(687\) 23.2178 0.885813
\(688\) −8.55107 −0.326006
\(689\) 3.34139 0.127297
\(690\) 20.6365 0.785617
\(691\) 34.4772 1.31158 0.655788 0.754945i \(-0.272337\pi\)
0.655788 + 0.754945i \(0.272337\pi\)
\(692\) −21.3247 −0.810644
\(693\) −59.8760 −2.27450
\(694\) −24.8212 −0.942198
\(695\) −22.2706 −0.844773
\(696\) 0 0
\(697\) −4.61744 −0.174898
\(698\) −19.3592 −0.732756
\(699\) 35.7077 1.35059
\(700\) 11.2172 0.423970
\(701\) 36.8109 1.39033 0.695165 0.718850i \(-0.255331\pi\)
0.695165 + 0.718850i \(0.255331\pi\)
\(702\) −2.47672 −0.0934779
\(703\) 18.6927 0.705007
\(704\) −2.90591 −0.109521
\(705\) 61.0282 2.29846
\(706\) −34.2123 −1.28760
\(707\) 27.6488 1.03984
\(708\) 13.4836 0.506744
\(709\) 20.6501 0.775529 0.387765 0.921758i \(-0.373247\pi\)
0.387765 + 0.921758i \(0.373247\pi\)
\(710\) −12.1439 −0.455753
\(711\) 64.2939 2.41121
\(712\) −11.4600 −0.429480
\(713\) 20.4015 0.764044
\(714\) 10.2975 0.385374
\(715\) −2.98063 −0.111469
\(716\) 3.51602 0.131400
\(717\) −1.30496 −0.0487346
\(718\) −5.64481 −0.210662
\(719\) −9.39581 −0.350404 −0.175202 0.984532i \(-0.556058\pi\)
−0.175202 + 0.984532i \(0.556058\pi\)
\(720\) −15.0508 −0.560910
\(721\) 61.9034 2.30540
\(722\) −7.52852 −0.280182
\(723\) 45.6176 1.69654
\(724\) −4.81159 −0.178821
\(725\) 0 0
\(726\) −7.38515 −0.274089
\(727\) −0.457584 −0.0169708 −0.00848542 0.999964i \(-0.502701\pi\)
−0.00848542 + 0.999964i \(0.502701\pi\)
\(728\) 1.40422 0.0520439
\(729\) −39.7482 −1.47216
\(730\) 35.4361 1.31155
\(731\) −7.91261 −0.292659
\(732\) 19.8009 0.731864
\(733\) 19.2200 0.709907 0.354953 0.934884i \(-0.384497\pi\)
0.354953 + 0.934884i \(0.384497\pi\)
\(734\) 28.8967 1.06660
\(735\) 63.6503 2.34778
\(736\) 2.53872 0.0935783
\(737\) 4.07612 0.150146
\(738\) 26.6991 0.982806
\(739\) −43.7081 −1.60783 −0.803914 0.594746i \(-0.797253\pi\)
−0.803914 + 0.594746i \(0.797253\pi\)
\(740\) −10.2089 −0.375287
\(741\) 5.42716 0.199372
\(742\) 35.2892 1.29551
\(743\) −33.9116 −1.24410 −0.622048 0.782979i \(-0.713699\pi\)
−0.622048 + 0.782979i \(0.713699\pi\)
\(744\) −23.2223 −0.851371
\(745\) 18.7368 0.686464
\(746\) 14.9847 0.548628
\(747\) 77.9888 2.85346
\(748\) −2.68895 −0.0983177
\(749\) 45.1656 1.65031
\(750\) 16.9663 0.619522
\(751\) −9.81273 −0.358072 −0.179036 0.983843i \(-0.557298\pi\)
−0.179036 + 0.983843i \(0.557298\pi\)
\(752\) 7.50775 0.273779
\(753\) −22.5624 −0.822220
\(754\) 0 0
\(755\) −30.4660 −1.10877
\(756\) −26.1573 −0.951331
\(757\) 7.61721 0.276852 0.138426 0.990373i \(-0.455796\pi\)
0.138426 + 0.990373i \(0.455796\pi\)
\(758\) 22.4281 0.814627
\(759\) −21.3183 −0.773807
\(760\) 14.4884 0.525551
\(761\) 35.5488 1.28864 0.644321 0.764755i \(-0.277140\pi\)
0.644321 + 0.764755i \(0.277140\pi\)
\(762\) 46.8846 1.69845
\(763\) 0.112427 0.00407014
\(764\) 16.5999 0.600563
\(765\) −13.9270 −0.503534
\(766\) 3.74411 0.135280
\(767\) 1.70141 0.0614344
\(768\) −2.88972 −0.104274
\(769\) −29.8344 −1.07586 −0.537928 0.842991i \(-0.680793\pi\)
−0.537928 + 0.842991i \(0.680793\pi\)
\(770\) −31.4791 −1.13443
\(771\) −21.4623 −0.772945
\(772\) −7.73601 −0.278425
\(773\) −33.0140 −1.18743 −0.593715 0.804675i \(-0.702339\pi\)
−0.593715 + 0.804675i \(0.702339\pi\)
\(774\) 45.7525 1.64454
\(775\) −23.4077 −0.840828
\(776\) 12.4026 0.445229
\(777\) −40.3874 −1.44889
\(778\) 4.62048 0.165652
\(779\) −25.7015 −0.920850
\(780\) −2.96402 −0.106129
\(781\) 12.5452 0.448902
\(782\) 2.34917 0.0840060
\(783\) 0 0
\(784\) 7.83031 0.279654
\(785\) −41.8674 −1.49431
\(786\) −38.4676 −1.37210
\(787\) −37.9408 −1.35245 −0.676223 0.736697i \(-0.736384\pi\)
−0.676223 + 0.736697i \(0.736384\pi\)
\(788\) −7.22310 −0.257312
\(789\) −45.6875 −1.62652
\(790\) 33.8018 1.20261
\(791\) 6.32086 0.224744
\(792\) 15.5481 0.552478
\(793\) 2.49856 0.0887264
\(794\) −17.0364 −0.604601
\(795\) −74.4883 −2.64183
\(796\) 11.3438 0.402071
\(797\) 0.0808665 0.00286444 0.00143222 0.999999i \(-0.499544\pi\)
0.00143222 + 0.999999i \(0.499544\pi\)
\(798\) 57.3176 2.02902
\(799\) 6.94719 0.245774
\(800\) −2.91279 −0.102983
\(801\) 61.3165 2.16651
\(802\) 35.9180 1.26831
\(803\) −36.6070 −1.29183
\(804\) 4.05341 0.142953
\(805\) 27.5014 0.969296
\(806\) −2.93028 −0.103215
\(807\) −45.5844 −1.60465
\(808\) −7.17961 −0.252578
\(809\) 43.1159 1.51587 0.757936 0.652328i \(-0.226208\pi\)
0.757936 + 0.652328i \(0.226208\pi\)
\(810\) 10.0602 0.353481
\(811\) −5.32713 −0.187061 −0.0935305 0.995616i \(-0.529815\pi\)
−0.0935305 + 0.995616i \(0.529815\pi\)
\(812\) 0 0
\(813\) −16.5553 −0.580621
\(814\) 10.5462 0.369645
\(815\) 35.0519 1.22781
\(816\) −2.67397 −0.0936075
\(817\) −44.0430 −1.54087
\(818\) −9.10554 −0.318368
\(819\) −7.51329 −0.262535
\(820\) 14.0367 0.490184
\(821\) 39.3983 1.37501 0.687506 0.726179i \(-0.258706\pi\)
0.687506 + 0.726179i \(0.258706\pi\)
\(822\) 56.9233 1.98543
\(823\) −52.6721 −1.83603 −0.918017 0.396541i \(-0.870210\pi\)
−0.918017 + 0.396541i \(0.870210\pi\)
\(824\) −16.0746 −0.559984
\(825\) 24.4595 0.851572
\(826\) 17.9690 0.625222
\(827\) 44.2163 1.53755 0.768777 0.639517i \(-0.220866\pi\)
0.768777 + 0.639517i \(0.220866\pi\)
\(828\) −13.5834 −0.472056
\(829\) 9.10353 0.316179 0.158089 0.987425i \(-0.449467\pi\)
0.158089 + 0.987425i \(0.449467\pi\)
\(830\) 41.0017 1.42319
\(831\) −35.0369 −1.21542
\(832\) −0.364636 −0.0126415
\(833\) 7.24567 0.251048
\(834\) 22.8783 0.792211
\(835\) 12.1486 0.420421
\(836\) −14.9672 −0.517650
\(837\) 54.5841 1.88670
\(838\) −1.84770 −0.0638278
\(839\) 46.4865 1.60489 0.802446 0.596725i \(-0.203532\pi\)
0.802446 + 0.596725i \(0.203532\pi\)
\(840\) −31.3037 −1.08008
\(841\) 0 0
\(842\) 35.2513 1.21484
\(843\) 10.5568 0.363596
\(844\) −0.202325 −0.00696431
\(845\) 36.1946 1.24513
\(846\) −40.1702 −1.38108
\(847\) −9.84188 −0.338171
\(848\) −9.16362 −0.314680
\(849\) −81.8305 −2.80842
\(850\) −2.69531 −0.0924484
\(851\) −9.21359 −0.315838
\(852\) 12.4753 0.427396
\(853\) 36.3433 1.24437 0.622185 0.782870i \(-0.286245\pi\)
0.622185 + 0.782870i \(0.286245\pi\)
\(854\) 26.3879 0.902975
\(855\) −77.5204 −2.65114
\(856\) −11.7282 −0.400863
\(857\) −33.1429 −1.13214 −0.566069 0.824358i \(-0.691537\pi\)
−0.566069 + 0.824358i \(0.691537\pi\)
\(858\) 3.06196 0.104534
\(859\) 33.6381 1.14772 0.573858 0.818955i \(-0.305446\pi\)
0.573858 + 0.818955i \(0.305446\pi\)
\(860\) 24.0539 0.820230
\(861\) 55.5307 1.89248
\(862\) −6.75999 −0.230246
\(863\) 2.79233 0.0950519 0.0475259 0.998870i \(-0.484866\pi\)
0.0475259 + 0.998870i \(0.484866\pi\)
\(864\) 6.79231 0.231079
\(865\) 59.9857 2.03958
\(866\) −2.34317 −0.0796243
\(867\) 46.6510 1.58435
\(868\) −30.9474 −1.05042
\(869\) −34.9187 −1.18454
\(870\) 0 0
\(871\) 0.511475 0.0173307
\(872\) −0.0291942 −0.000988641 0
\(873\) −66.3603 −2.24596
\(874\) 13.0759 0.442298
\(875\) 22.6103 0.764367
\(876\) −36.4031 −1.22995
\(877\) 35.6070 1.20236 0.601181 0.799113i \(-0.294697\pi\)
0.601181 + 0.799113i \(0.294697\pi\)
\(878\) −27.2219 −0.918696
\(879\) −1.90960 −0.0644093
\(880\) 8.17425 0.275554
\(881\) −31.0805 −1.04713 −0.523565 0.851986i \(-0.675398\pi\)
−0.523565 + 0.851986i \(0.675398\pi\)
\(882\) −41.8961 −1.41072
\(883\) −27.2833 −0.918156 −0.459078 0.888396i \(-0.651820\pi\)
−0.459078 + 0.888396i \(0.651820\pi\)
\(884\) −0.337411 −0.0113484
\(885\) −37.9289 −1.27497
\(886\) 3.70498 0.124471
\(887\) 4.60352 0.154571 0.0772855 0.997009i \(-0.475375\pi\)
0.0772855 + 0.997009i \(0.475375\pi\)
\(888\) 10.4875 0.351936
\(889\) 62.4811 2.09555
\(890\) 32.2365 1.08057
\(891\) −10.3927 −0.348167
\(892\) −6.99226 −0.234118
\(893\) 38.6693 1.29402
\(894\) −19.2481 −0.643752
\(895\) −9.89045 −0.330601
\(896\) −3.85101 −0.128653
\(897\) −2.67504 −0.0893171
\(898\) −20.6490 −0.689065
\(899\) 0 0
\(900\) 15.5849 0.519496
\(901\) −8.47943 −0.282491
\(902\) −14.5005 −0.482815
\(903\) 95.1594 3.16671
\(904\) −1.64135 −0.0545905
\(905\) 13.5348 0.449914
\(906\) 31.2973 1.03978
\(907\) −17.7136 −0.588169 −0.294085 0.955779i \(-0.595015\pi\)
−0.294085 + 0.955779i \(0.595015\pi\)
\(908\) 25.5874 0.849148
\(909\) 38.4145 1.27413
\(910\) −3.95003 −0.130942
\(911\) −46.6546 −1.54573 −0.772867 0.634567i \(-0.781178\pi\)
−0.772867 + 0.634567i \(0.781178\pi\)
\(912\) −14.8838 −0.492851
\(913\) −42.3565 −1.40180
\(914\) −0.0396615 −0.00131189
\(915\) −55.6994 −1.84137
\(916\) −8.03460 −0.265471
\(917\) −51.2642 −1.69289
\(918\) 6.28517 0.207441
\(919\) −37.6676 −1.24254 −0.621270 0.783596i \(-0.713383\pi\)
−0.621270 + 0.783596i \(0.713383\pi\)
\(920\) −7.14133 −0.235443
\(921\) −40.7785 −1.34370
\(922\) 29.6008 0.974849
\(923\) 1.57418 0.0518148
\(924\) 32.3381 1.06385
\(925\) 10.5712 0.347578
\(926\) 22.9957 0.755687
\(927\) 86.0070 2.82484
\(928\) 0 0
\(929\) −57.6558 −1.89162 −0.945812 0.324714i \(-0.894732\pi\)
−0.945812 + 0.324714i \(0.894732\pi\)
\(930\) 65.3236 2.14204
\(931\) 40.3307 1.32178
\(932\) −12.3568 −0.404760
\(933\) −45.8357 −1.50059
\(934\) −14.4157 −0.471697
\(935\) 7.56393 0.247367
\(936\) 1.95099 0.0637701
\(937\) 51.6641 1.68779 0.843897 0.536506i \(-0.180256\pi\)
0.843897 + 0.536506i \(0.180256\pi\)
\(938\) 5.40181 0.176375
\(939\) −67.1927 −2.19275
\(940\) −21.1190 −0.688827
\(941\) 21.5672 0.703070 0.351535 0.936175i \(-0.385660\pi\)
0.351535 + 0.936175i \(0.385660\pi\)
\(942\) 43.0098 1.40133
\(943\) 12.6682 0.412534
\(944\) −4.66605 −0.151867
\(945\) 73.5796 2.39354
\(946\) −24.8487 −0.807900
\(947\) 5.74054 0.186543 0.0932713 0.995641i \(-0.470268\pi\)
0.0932713 + 0.995641i \(0.470268\pi\)
\(948\) −34.7241 −1.12779
\(949\) −4.59348 −0.149111
\(950\) −15.0026 −0.486748
\(951\) −45.6232 −1.47943
\(952\) −3.56348 −0.115493
\(953\) −26.6321 −0.862697 −0.431348 0.902185i \(-0.641962\pi\)
−0.431348 + 0.902185i \(0.641962\pi\)
\(954\) 49.0300 1.58740
\(955\) −46.6950 −1.51101
\(956\) 0.451586 0.0146053
\(957\) 0 0
\(958\) −3.99470 −0.129063
\(959\) 75.8593 2.44962
\(960\) 8.12870 0.262353
\(961\) 33.5799 1.08322
\(962\) 1.32335 0.0426665
\(963\) 62.7520 2.02215
\(964\) −15.7861 −0.508438
\(965\) 21.7611 0.700516
\(966\) −28.2518 −0.908986
\(967\) 9.34598 0.300546 0.150273 0.988645i \(-0.451985\pi\)
0.150273 + 0.988645i \(0.451985\pi\)
\(968\) 2.55566 0.0821420
\(969\) −13.7725 −0.442436
\(970\) −34.8882 −1.12019
\(971\) 13.4411 0.431346 0.215673 0.976466i \(-0.430805\pi\)
0.215673 + 0.976466i \(0.430805\pi\)
\(972\) 10.0422 0.322103
\(973\) 30.4890 0.977431
\(974\) −18.6434 −0.597374
\(975\) 3.06920 0.0982931
\(976\) −6.85219 −0.219333
\(977\) −8.50896 −0.272226 −0.136113 0.990693i \(-0.543461\pi\)
−0.136113 + 0.990693i \(0.543461\pi\)
\(978\) −36.0083 −1.15142
\(979\) −33.3016 −1.06433
\(980\) −22.0264 −0.703608
\(981\) 0.156204 0.00498720
\(982\) −3.44975 −0.110086
\(983\) −41.6581 −1.32869 −0.664343 0.747428i \(-0.731289\pi\)
−0.664343 + 0.747428i \(0.731289\pi\)
\(984\) −14.4197 −0.459685
\(985\) 20.3183 0.647396
\(986\) 0 0
\(987\) −83.5490 −2.65939
\(988\) −1.87809 −0.0597500
\(989\) 21.7087 0.690298
\(990\) −43.7363 −1.39003
\(991\) 29.5715 0.939369 0.469684 0.882834i \(-0.344368\pi\)
0.469684 + 0.882834i \(0.344368\pi\)
\(992\) 8.03616 0.255148
\(993\) −11.2012 −0.355458
\(994\) 16.6253 0.527323
\(995\) −31.9098 −1.01161
\(996\) −42.1205 −1.33464
\(997\) 47.3436 1.49939 0.749694 0.661784i \(-0.230201\pi\)
0.749694 + 0.661784i \(0.230201\pi\)
\(998\) −6.02903 −0.190846
\(999\) −24.6508 −0.779918
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1682.2.a.u.1.1 8
29.12 odd 4 1682.2.b.k.1681.1 16
29.17 odd 4 1682.2.b.k.1681.16 16
29.28 even 2 1682.2.a.v.1.8 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1682.2.a.u.1.1 8 1.1 even 1 trivial
1682.2.a.v.1.8 yes 8 29.28 even 2
1682.2.b.k.1681.1 16 29.12 odd 4
1682.2.b.k.1681.16 16 29.17 odd 4