Properties

Label 1682.2.a.u.1.7
Level $1682$
Weight $2$
Character 1682.1
Self dual yes
Analytic conductor $13.431$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1682,2,Mod(1,1682)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1682, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1682.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1682 = 2 \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1682.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.4308376200\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.8.32836640625.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 18x^{6} + 17x^{5} + 95x^{4} - 77x^{3} - 128x^{2} + 51x + 31 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(-2.66631\) of defining polynomial
Character \(\chi\) \(=\) 1682.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +2.66631 q^{3} +1.00000 q^{4} +1.88957 q^{5} -2.66631 q^{6} -4.43319 q^{7} -1.00000 q^{8} +4.10924 q^{9} -1.88957 q^{10} +3.10473 q^{11} +2.66631 q^{12} +4.26344 q^{13} +4.43319 q^{14} +5.03819 q^{15} +1.00000 q^{16} +0.827423 q^{17} -4.10924 q^{18} +3.05075 q^{19} +1.88957 q^{20} -11.8203 q^{21} -3.10473 q^{22} +6.90272 q^{23} -2.66631 q^{24} -1.42953 q^{25} -4.26344 q^{26} +2.95757 q^{27} -4.43319 q^{28} -5.03819 q^{30} -5.36667 q^{31} -1.00000 q^{32} +8.27819 q^{33} -0.827423 q^{34} -8.37681 q^{35} +4.10924 q^{36} +1.91948 q^{37} -3.05075 q^{38} +11.3677 q^{39} -1.88957 q^{40} -6.95185 q^{41} +11.8203 q^{42} -9.61591 q^{43} +3.10473 q^{44} +7.76469 q^{45} -6.90272 q^{46} +7.58301 q^{47} +2.66631 q^{48} +12.6531 q^{49} +1.42953 q^{50} +2.20617 q^{51} +4.26344 q^{52} +2.69817 q^{53} -2.95757 q^{54} +5.86660 q^{55} +4.43319 q^{56} +8.13425 q^{57} +4.06594 q^{59} +5.03819 q^{60} -2.70091 q^{61} +5.36667 q^{62} -18.2170 q^{63} +1.00000 q^{64} +8.05607 q^{65} -8.27819 q^{66} +4.14583 q^{67} +0.827423 q^{68} +18.4048 q^{69} +8.37681 q^{70} +11.7789 q^{71} -4.10924 q^{72} +2.76905 q^{73} -1.91948 q^{74} -3.81157 q^{75} +3.05075 q^{76} -13.7638 q^{77} -11.3677 q^{78} +10.6224 q^{79} +1.88957 q^{80} -4.44189 q^{81} +6.95185 q^{82} +6.98757 q^{83} -11.8203 q^{84} +1.56347 q^{85} +9.61591 q^{86} -3.10473 q^{88} +4.36203 q^{89} -7.76469 q^{90} -18.9006 q^{91} +6.90272 q^{92} -14.3092 q^{93} -7.58301 q^{94} +5.76460 q^{95} -2.66631 q^{96} -10.5299 q^{97} -12.6531 q^{98} +12.7581 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{2} - q^{3} + 8 q^{4} + 5 q^{5} + q^{6} + 7 q^{7} - 8 q^{8} + 13 q^{9} - 5 q^{10} + 7 q^{11} - q^{12} + 13 q^{13} - 7 q^{14} + 20 q^{15} + 8 q^{16} - 9 q^{17} - 13 q^{18} + 13 q^{19} + 5 q^{20}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 2.66631 1.53940 0.769699 0.638407i \(-0.220406\pi\)
0.769699 + 0.638407i \(0.220406\pi\)
\(4\) 1.00000 0.500000
\(5\) 1.88957 0.845041 0.422521 0.906353i \(-0.361145\pi\)
0.422521 + 0.906353i \(0.361145\pi\)
\(6\) −2.66631 −1.08852
\(7\) −4.43319 −1.67559 −0.837793 0.545988i \(-0.816155\pi\)
−0.837793 + 0.545988i \(0.816155\pi\)
\(8\) −1.00000 −0.353553
\(9\) 4.10924 1.36975
\(10\) −1.88957 −0.597534
\(11\) 3.10473 0.936111 0.468056 0.883699i \(-0.344955\pi\)
0.468056 + 0.883699i \(0.344955\pi\)
\(12\) 2.66631 0.769699
\(13\) 4.26344 1.18247 0.591233 0.806501i \(-0.298641\pi\)
0.591233 + 0.806501i \(0.298641\pi\)
\(14\) 4.43319 1.18482
\(15\) 5.03819 1.30085
\(16\) 1.00000 0.250000
\(17\) 0.827423 0.200680 0.100340 0.994953i \(-0.468007\pi\)
0.100340 + 0.994953i \(0.468007\pi\)
\(18\) −4.10924 −0.968556
\(19\) 3.05075 0.699889 0.349945 0.936770i \(-0.386200\pi\)
0.349945 + 0.936770i \(0.386200\pi\)
\(20\) 1.88957 0.422521
\(21\) −11.8203 −2.57939
\(22\) −3.10473 −0.661931
\(23\) 6.90272 1.43932 0.719658 0.694329i \(-0.244299\pi\)
0.719658 + 0.694329i \(0.244299\pi\)
\(24\) −2.66631 −0.544259
\(25\) −1.42953 −0.285905
\(26\) −4.26344 −0.836130
\(27\) 2.95757 0.569185
\(28\) −4.43319 −0.837793
\(29\) 0 0
\(30\) −5.03819 −0.919843
\(31\) −5.36667 −0.963882 −0.481941 0.876204i \(-0.660068\pi\)
−0.481941 + 0.876204i \(0.660068\pi\)
\(32\) −1.00000 −0.176777
\(33\) 8.27819 1.44105
\(34\) −0.827423 −0.141902
\(35\) −8.37681 −1.41594
\(36\) 4.10924 0.684873
\(37\) 1.91948 0.315560 0.157780 0.987474i \(-0.449566\pi\)
0.157780 + 0.987474i \(0.449566\pi\)
\(38\) −3.05075 −0.494897
\(39\) 11.3677 1.82029
\(40\) −1.88957 −0.298767
\(41\) −6.95185 −1.08570 −0.542849 0.839831i \(-0.682654\pi\)
−0.542849 + 0.839831i \(0.682654\pi\)
\(42\) 11.8203 1.82391
\(43\) −9.61591 −1.46641 −0.733206 0.680006i \(-0.761977\pi\)
−0.733206 + 0.680006i \(0.761977\pi\)
\(44\) 3.10473 0.468056
\(45\) 7.76469 1.15749
\(46\) −6.90272 −1.01775
\(47\) 7.58301 1.10610 0.553048 0.833149i \(-0.313465\pi\)
0.553048 + 0.833149i \(0.313465\pi\)
\(48\) 2.66631 0.384849
\(49\) 12.6531 1.80759
\(50\) 1.42953 0.202166
\(51\) 2.20617 0.308926
\(52\) 4.26344 0.591233
\(53\) 2.69817 0.370622 0.185311 0.982680i \(-0.440671\pi\)
0.185311 + 0.982680i \(0.440671\pi\)
\(54\) −2.95757 −0.402474
\(55\) 5.86660 0.791053
\(56\) 4.43319 0.592409
\(57\) 8.13425 1.07741
\(58\) 0 0
\(59\) 4.06594 0.529340 0.264670 0.964339i \(-0.414737\pi\)
0.264670 + 0.964339i \(0.414737\pi\)
\(60\) 5.03819 0.650427
\(61\) −2.70091 −0.345816 −0.172908 0.984938i \(-0.555316\pi\)
−0.172908 + 0.984938i \(0.555316\pi\)
\(62\) 5.36667 0.681567
\(63\) −18.2170 −2.29513
\(64\) 1.00000 0.125000
\(65\) 8.05607 0.999232
\(66\) −8.27819 −1.01897
\(67\) 4.14583 0.506494 0.253247 0.967402i \(-0.418501\pi\)
0.253247 + 0.967402i \(0.418501\pi\)
\(68\) 0.827423 0.100340
\(69\) 18.4048 2.21568
\(70\) 8.37681 1.00122
\(71\) 11.7789 1.39790 0.698949 0.715171i \(-0.253651\pi\)
0.698949 + 0.715171i \(0.253651\pi\)
\(72\) −4.10924 −0.484278
\(73\) 2.76905 0.324093 0.162046 0.986783i \(-0.448191\pi\)
0.162046 + 0.986783i \(0.448191\pi\)
\(74\) −1.91948 −0.223135
\(75\) −3.81157 −0.440122
\(76\) 3.05075 0.349945
\(77\) −13.7638 −1.56854
\(78\) −11.3677 −1.28714
\(79\) 10.6224 1.19511 0.597554 0.801828i \(-0.296139\pi\)
0.597554 + 0.801828i \(0.296139\pi\)
\(80\) 1.88957 0.211260
\(81\) −4.44189 −0.493543
\(82\) 6.95185 0.767704
\(83\) 6.98757 0.766985 0.383493 0.923544i \(-0.374721\pi\)
0.383493 + 0.923544i \(0.374721\pi\)
\(84\) −11.8203 −1.28970
\(85\) 1.56347 0.169582
\(86\) 9.61591 1.03691
\(87\) 0 0
\(88\) −3.10473 −0.330965
\(89\) 4.36203 0.462374 0.231187 0.972909i \(-0.425739\pi\)
0.231187 + 0.972909i \(0.425739\pi\)
\(90\) −7.76469 −0.818470
\(91\) −18.9006 −1.98132
\(92\) 6.90272 0.719658
\(93\) −14.3092 −1.48380
\(94\) −7.58301 −0.782128
\(95\) 5.76460 0.591435
\(96\) −2.66631 −0.272130
\(97\) −10.5299 −1.06914 −0.534572 0.845123i \(-0.679527\pi\)
−0.534572 + 0.845123i \(0.679527\pi\)
\(98\) −12.6531 −1.27816
\(99\) 12.7581 1.28223
\(100\) −1.42953 −0.142953
\(101\) −11.2561 −1.12003 −0.560013 0.828484i \(-0.689204\pi\)
−0.560013 + 0.828484i \(0.689204\pi\)
\(102\) −2.20617 −0.218443
\(103\) 19.0154 1.87365 0.936823 0.349804i \(-0.113752\pi\)
0.936823 + 0.349804i \(0.113752\pi\)
\(104\) −4.26344 −0.418065
\(105\) −22.3352 −2.17969
\(106\) −2.69817 −0.262069
\(107\) 2.37176 0.229287 0.114643 0.993407i \(-0.463427\pi\)
0.114643 + 0.993407i \(0.463427\pi\)
\(108\) 2.95757 0.284592
\(109\) 5.72813 0.548655 0.274328 0.961636i \(-0.411545\pi\)
0.274328 + 0.961636i \(0.411545\pi\)
\(110\) −5.86660 −0.559359
\(111\) 5.11793 0.485773
\(112\) −4.43319 −0.418897
\(113\) −12.4938 −1.17532 −0.587658 0.809109i \(-0.699950\pi\)
−0.587658 + 0.809109i \(0.699950\pi\)
\(114\) −8.13425 −0.761843
\(115\) 13.0432 1.21628
\(116\) 0 0
\(117\) 17.5195 1.61968
\(118\) −4.06594 −0.374300
\(119\) −3.66812 −0.336256
\(120\) −5.03819 −0.459921
\(121\) −1.36065 −0.123696
\(122\) 2.70091 0.244529
\(123\) −18.5358 −1.67132
\(124\) −5.36667 −0.481941
\(125\) −12.1490 −1.08664
\(126\) 18.2170 1.62290
\(127\) −10.9754 −0.973909 −0.486955 0.873427i \(-0.661892\pi\)
−0.486955 + 0.873427i \(0.661892\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −25.6390 −2.25739
\(130\) −8.05607 −0.706564
\(131\) 3.35552 0.293173 0.146587 0.989198i \(-0.453171\pi\)
0.146587 + 0.989198i \(0.453171\pi\)
\(132\) 8.27819 0.720524
\(133\) −13.5245 −1.17273
\(134\) −4.14583 −0.358145
\(135\) 5.58854 0.480985
\(136\) −0.827423 −0.0709509
\(137\) −13.5265 −1.15564 −0.577822 0.816162i \(-0.696097\pi\)
−0.577822 + 0.816162i \(0.696097\pi\)
\(138\) −18.4048 −1.56672
\(139\) −19.8393 −1.68275 −0.841373 0.540454i \(-0.818252\pi\)
−0.841373 + 0.540454i \(0.818252\pi\)
\(140\) −8.37681 −0.707970
\(141\) 20.2187 1.70272
\(142\) −11.7789 −0.988464
\(143\) 13.2368 1.10692
\(144\) 4.10924 0.342436
\(145\) 0 0
\(146\) −2.76905 −0.229168
\(147\) 33.7372 2.78260
\(148\) 1.91948 0.157780
\(149\) 6.25711 0.512602 0.256301 0.966597i \(-0.417496\pi\)
0.256301 + 0.966597i \(0.417496\pi\)
\(150\) 3.81157 0.311213
\(151\) 7.74673 0.630420 0.315210 0.949022i \(-0.397925\pi\)
0.315210 + 0.949022i \(0.397925\pi\)
\(152\) −3.05075 −0.247448
\(153\) 3.40008 0.274880
\(154\) 13.7638 1.10912
\(155\) −10.1407 −0.814520
\(156\) 11.3677 0.910143
\(157\) 5.26142 0.419907 0.209954 0.977711i \(-0.432669\pi\)
0.209954 + 0.977711i \(0.432669\pi\)
\(158\) −10.6224 −0.845069
\(159\) 7.19417 0.570535
\(160\) −1.88957 −0.149384
\(161\) −30.6010 −2.41170
\(162\) 4.44189 0.348988
\(163\) 12.2657 0.960720 0.480360 0.877071i \(-0.340506\pi\)
0.480360 + 0.877071i \(0.340506\pi\)
\(164\) −6.95185 −0.542849
\(165\) 15.6422 1.21774
\(166\) −6.98757 −0.542341
\(167\) 11.9027 0.921057 0.460529 0.887645i \(-0.347660\pi\)
0.460529 + 0.887645i \(0.347660\pi\)
\(168\) 11.8203 0.911953
\(169\) 5.17693 0.398225
\(170\) −1.56347 −0.119913
\(171\) 12.5362 0.958670
\(172\) −9.61591 −0.733206
\(173\) −5.46319 −0.415359 −0.207679 0.978197i \(-0.566591\pi\)
−0.207679 + 0.978197i \(0.566591\pi\)
\(174\) 0 0
\(175\) 6.33736 0.479059
\(176\) 3.10473 0.234028
\(177\) 10.8411 0.814865
\(178\) −4.36203 −0.326948
\(179\) −15.1536 −1.13263 −0.566317 0.824187i \(-0.691632\pi\)
−0.566317 + 0.824187i \(0.691632\pi\)
\(180\) 7.76469 0.578746
\(181\) 7.37832 0.548426 0.274213 0.961669i \(-0.411583\pi\)
0.274213 + 0.961669i \(0.411583\pi\)
\(182\) 18.9006 1.40101
\(183\) −7.20147 −0.532348
\(184\) −6.90272 −0.508875
\(185\) 3.62699 0.266661
\(186\) 14.3092 1.04920
\(187\) 2.56892 0.187858
\(188\) 7.58301 0.553048
\(189\) −13.1115 −0.953718
\(190\) −5.76460 −0.418208
\(191\) 0.600815 0.0434734 0.0217367 0.999764i \(-0.493080\pi\)
0.0217367 + 0.999764i \(0.493080\pi\)
\(192\) 2.66631 0.192425
\(193\) 10.8017 0.777526 0.388763 0.921338i \(-0.372902\pi\)
0.388763 + 0.921338i \(0.372902\pi\)
\(194\) 10.5299 0.756000
\(195\) 21.4800 1.53822
\(196\) 12.6531 0.903795
\(197\) −6.04928 −0.430994 −0.215497 0.976505i \(-0.569137\pi\)
−0.215497 + 0.976505i \(0.569137\pi\)
\(198\) −12.7581 −0.906676
\(199\) −22.4713 −1.59295 −0.796475 0.604672i \(-0.793304\pi\)
−0.796475 + 0.604672i \(0.793304\pi\)
\(200\) 1.42953 0.101083
\(201\) 11.0541 0.779696
\(202\) 11.2561 0.791978
\(203\) 0 0
\(204\) 2.20617 0.154463
\(205\) −13.1360 −0.917459
\(206\) −19.0154 −1.32487
\(207\) 28.3649 1.97150
\(208\) 4.26344 0.295616
\(209\) 9.47175 0.655174
\(210\) 22.3352 1.54128
\(211\) −1.77802 −0.122404 −0.0612020 0.998125i \(-0.519493\pi\)
−0.0612020 + 0.998125i \(0.519493\pi\)
\(212\) 2.69817 0.185311
\(213\) 31.4063 2.15192
\(214\) −2.37176 −0.162130
\(215\) −18.1699 −1.23918
\(216\) −2.95757 −0.201237
\(217\) 23.7914 1.61507
\(218\) −5.72813 −0.387958
\(219\) 7.38316 0.498907
\(220\) 5.86660 0.395526
\(221\) 3.52767 0.237297
\(222\) −5.11793 −0.343493
\(223\) 7.10522 0.475801 0.237900 0.971290i \(-0.423541\pi\)
0.237900 + 0.971290i \(0.423541\pi\)
\(224\) 4.43319 0.296205
\(225\) −5.87426 −0.391618
\(226\) 12.4938 0.831074
\(227\) 2.49774 0.165781 0.0828903 0.996559i \(-0.473585\pi\)
0.0828903 + 0.996559i \(0.473585\pi\)
\(228\) 8.13425 0.538704
\(229\) −10.1469 −0.670525 −0.335262 0.942125i \(-0.608825\pi\)
−0.335262 + 0.942125i \(0.608825\pi\)
\(230\) −13.0432 −0.860041
\(231\) −36.6987 −2.41460
\(232\) 0 0
\(233\) −18.5754 −1.21691 −0.608457 0.793587i \(-0.708211\pi\)
−0.608457 + 0.793587i \(0.708211\pi\)
\(234\) −17.5195 −1.14528
\(235\) 14.3286 0.934697
\(236\) 4.06594 0.264670
\(237\) 28.3225 1.83975
\(238\) 3.66812 0.237769
\(239\) −13.9983 −0.905472 −0.452736 0.891645i \(-0.649552\pi\)
−0.452736 + 0.891645i \(0.649552\pi\)
\(240\) 5.03819 0.325214
\(241\) −13.2572 −0.853971 −0.426986 0.904258i \(-0.640425\pi\)
−0.426986 + 0.904258i \(0.640425\pi\)
\(242\) 1.36065 0.0874661
\(243\) −20.7162 −1.32894
\(244\) −2.70091 −0.172908
\(245\) 23.9090 1.52749
\(246\) 18.5358 1.18180
\(247\) 13.0067 0.827595
\(248\) 5.36667 0.340784
\(249\) 18.6311 1.18070
\(250\) 12.1490 0.768373
\(251\) −16.6261 −1.04943 −0.524714 0.851278i \(-0.675828\pi\)
−0.524714 + 0.851278i \(0.675828\pi\)
\(252\) −18.2170 −1.14756
\(253\) 21.4311 1.34736
\(254\) 10.9754 0.688658
\(255\) 4.16871 0.261055
\(256\) 1.00000 0.0625000
\(257\) 3.28676 0.205023 0.102511 0.994732i \(-0.467312\pi\)
0.102511 + 0.994732i \(0.467312\pi\)
\(258\) 25.6390 1.59622
\(259\) −8.50940 −0.528749
\(260\) 8.05607 0.499616
\(261\) 0 0
\(262\) −3.35552 −0.207305
\(263\) −25.2066 −1.55431 −0.777153 0.629312i \(-0.783337\pi\)
−0.777153 + 0.629312i \(0.783337\pi\)
\(264\) −8.27819 −0.509487
\(265\) 5.09838 0.313191
\(266\) 13.5245 0.829242
\(267\) 11.6305 0.711777
\(268\) 4.14583 0.253247
\(269\) −15.3554 −0.936237 −0.468119 0.883666i \(-0.655068\pi\)
−0.468119 + 0.883666i \(0.655068\pi\)
\(270\) −5.58854 −0.340107
\(271\) −15.1856 −0.922463 −0.461231 0.887280i \(-0.652592\pi\)
−0.461231 + 0.887280i \(0.652592\pi\)
\(272\) 0.827423 0.0501699
\(273\) −50.3950 −3.05005
\(274\) 13.5265 0.817164
\(275\) −4.43830 −0.267639
\(276\) 18.4048 1.10784
\(277\) −28.6613 −1.72209 −0.861044 0.508531i \(-0.830189\pi\)
−0.861044 + 0.508531i \(0.830189\pi\)
\(278\) 19.8393 1.18988
\(279\) −22.0529 −1.32027
\(280\) 8.37681 0.500610
\(281\) −32.3169 −1.92787 −0.963933 0.266146i \(-0.914250\pi\)
−0.963933 + 0.266146i \(0.914250\pi\)
\(282\) −20.2187 −1.20401
\(283\) 11.2514 0.668828 0.334414 0.942426i \(-0.391462\pi\)
0.334414 + 0.942426i \(0.391462\pi\)
\(284\) 11.7789 0.698949
\(285\) 15.3702 0.910454
\(286\) −13.2368 −0.782710
\(287\) 30.8189 1.81918
\(288\) −4.10924 −0.242139
\(289\) −16.3154 −0.959728
\(290\) 0 0
\(291\) −28.0759 −1.64584
\(292\) 2.76905 0.162046
\(293\) −18.6148 −1.08749 −0.543744 0.839251i \(-0.682994\pi\)
−0.543744 + 0.839251i \(0.682994\pi\)
\(294\) −33.7372 −1.96760
\(295\) 7.68287 0.447314
\(296\) −1.91948 −0.111567
\(297\) 9.18246 0.532820
\(298\) −6.25711 −0.362465
\(299\) 29.4293 1.70194
\(300\) −3.81157 −0.220061
\(301\) 42.6291 2.45710
\(302\) −7.74673 −0.445774
\(303\) −30.0124 −1.72416
\(304\) 3.05075 0.174972
\(305\) −5.10355 −0.292229
\(306\) −3.40008 −0.194369
\(307\) −2.45342 −0.140024 −0.0700119 0.997546i \(-0.522304\pi\)
−0.0700119 + 0.997546i \(0.522304\pi\)
\(308\) −13.7638 −0.784268
\(309\) 50.7011 2.88429
\(310\) 10.1407 0.575953
\(311\) −2.07536 −0.117683 −0.0588414 0.998267i \(-0.518741\pi\)
−0.0588414 + 0.998267i \(0.518741\pi\)
\(312\) −11.3677 −0.643568
\(313\) −12.3137 −0.696010 −0.348005 0.937493i \(-0.613141\pi\)
−0.348005 + 0.937493i \(0.613141\pi\)
\(314\) −5.26142 −0.296919
\(315\) −34.4223 −1.93948
\(316\) 10.6224 0.597554
\(317\) 16.1586 0.907558 0.453779 0.891114i \(-0.350075\pi\)
0.453779 + 0.891114i \(0.350075\pi\)
\(318\) −7.19417 −0.403429
\(319\) 0 0
\(320\) 1.88957 0.105630
\(321\) 6.32386 0.352963
\(322\) 30.6010 1.70533
\(323\) 2.52426 0.140453
\(324\) −4.44189 −0.246772
\(325\) −6.09470 −0.338073
\(326\) −12.2657 −0.679332
\(327\) 15.2730 0.844599
\(328\) 6.95185 0.383852
\(329\) −33.6169 −1.85336
\(330\) −15.6422 −0.861075
\(331\) 17.8639 0.981888 0.490944 0.871191i \(-0.336652\pi\)
0.490944 + 0.871191i \(0.336652\pi\)
\(332\) 6.98757 0.383493
\(333\) 7.88759 0.432237
\(334\) −11.9027 −0.651286
\(335\) 7.83384 0.428008
\(336\) −11.8203 −0.644848
\(337\) 22.2689 1.21307 0.606533 0.795058i \(-0.292560\pi\)
0.606533 + 0.795058i \(0.292560\pi\)
\(338\) −5.17693 −0.281588
\(339\) −33.3124 −1.80928
\(340\) 1.56347 0.0847912
\(341\) −16.6621 −0.902301
\(342\) −12.5362 −0.677882
\(343\) −25.0614 −1.35319
\(344\) 9.61591 0.518455
\(345\) 34.7772 1.87234
\(346\) 5.46319 0.293703
\(347\) −23.5162 −1.26242 −0.631208 0.775613i \(-0.717441\pi\)
−0.631208 + 0.775613i \(0.717441\pi\)
\(348\) 0 0
\(349\) 13.8857 0.743284 0.371642 0.928376i \(-0.378795\pi\)
0.371642 + 0.928376i \(0.378795\pi\)
\(350\) −6.33736 −0.338746
\(351\) 12.6094 0.673042
\(352\) −3.10473 −0.165483
\(353\) 26.4253 1.40648 0.703240 0.710953i \(-0.251736\pi\)
0.703240 + 0.710953i \(0.251736\pi\)
\(354\) −10.8411 −0.576196
\(355\) 22.2571 1.18128
\(356\) 4.36203 0.231187
\(357\) −9.78036 −0.517632
\(358\) 15.1536 0.800894
\(359\) 3.48063 0.183701 0.0918503 0.995773i \(-0.470722\pi\)
0.0918503 + 0.995773i \(0.470722\pi\)
\(360\) −7.76469 −0.409235
\(361\) −9.69294 −0.510155
\(362\) −7.37832 −0.387796
\(363\) −3.62793 −0.190417
\(364\) −18.9006 −0.990662
\(365\) 5.23231 0.273872
\(366\) 7.20147 0.376427
\(367\) 5.89712 0.307827 0.153914 0.988084i \(-0.450812\pi\)
0.153914 + 0.988084i \(0.450812\pi\)
\(368\) 6.90272 0.359829
\(369\) −28.5668 −1.48713
\(370\) −3.62699 −0.188558
\(371\) −11.9615 −0.621009
\(372\) −14.3092 −0.741899
\(373\) 28.0886 1.45437 0.727187 0.686439i \(-0.240827\pi\)
0.727187 + 0.686439i \(0.240827\pi\)
\(374\) −2.56892 −0.132836
\(375\) −32.3932 −1.67278
\(376\) −7.58301 −0.391064
\(377\) 0 0
\(378\) 13.1115 0.674381
\(379\) −32.8894 −1.68942 −0.844708 0.535227i \(-0.820226\pi\)
−0.844708 + 0.535227i \(0.820226\pi\)
\(380\) 5.76460 0.295718
\(381\) −29.2639 −1.49923
\(382\) −0.600815 −0.0307404
\(383\) −18.9516 −0.968382 −0.484191 0.874962i \(-0.660886\pi\)
−0.484191 + 0.874962i \(0.660886\pi\)
\(384\) −2.66631 −0.136065
\(385\) −26.0077 −1.32548
\(386\) −10.8017 −0.549794
\(387\) −39.5140 −2.00861
\(388\) −10.5299 −0.534572
\(389\) 25.7959 1.30790 0.653951 0.756537i \(-0.273110\pi\)
0.653951 + 0.756537i \(0.273110\pi\)
\(390\) −21.4800 −1.08768
\(391\) 5.71147 0.288841
\(392\) −12.6531 −0.639080
\(393\) 8.94688 0.451310
\(394\) 6.04928 0.304759
\(395\) 20.0717 1.00992
\(396\) 12.7581 0.641117
\(397\) 24.2601 1.21758 0.608790 0.793331i \(-0.291655\pi\)
0.608790 + 0.793331i \(0.291655\pi\)
\(398\) 22.4713 1.12639
\(399\) −36.0606 −1.80529
\(400\) −1.42953 −0.0714764
\(401\) −19.8886 −0.993188 −0.496594 0.867983i \(-0.665416\pi\)
−0.496594 + 0.867983i \(0.665416\pi\)
\(402\) −11.0541 −0.551328
\(403\) −22.8805 −1.13976
\(404\) −11.2561 −0.560013
\(405\) −8.39326 −0.417064
\(406\) 0 0
\(407\) 5.95946 0.295400
\(408\) −2.20617 −0.109222
\(409\) 33.3680 1.64994 0.824971 0.565176i \(-0.191192\pi\)
0.824971 + 0.565176i \(0.191192\pi\)
\(410\) 13.1360 0.648741
\(411\) −36.0658 −1.77900
\(412\) 19.0154 0.936823
\(413\) −18.0251 −0.886955
\(414\) −28.3649 −1.39406
\(415\) 13.2035 0.648134
\(416\) −4.26344 −0.209032
\(417\) −52.8978 −2.59042
\(418\) −9.47175 −0.463278
\(419\) −18.1156 −0.885004 −0.442502 0.896767i \(-0.645909\pi\)
−0.442502 + 0.896767i \(0.645909\pi\)
\(420\) −22.3352 −1.08985
\(421\) −13.8875 −0.676834 −0.338417 0.940996i \(-0.609892\pi\)
−0.338417 + 0.940996i \(0.609892\pi\)
\(422\) 1.77802 0.0865527
\(423\) 31.1604 1.51507
\(424\) −2.69817 −0.131035
\(425\) −1.18282 −0.0573754
\(426\) −31.4063 −1.52164
\(427\) 11.9736 0.579444
\(428\) 2.37176 0.114643
\(429\) 35.2936 1.70399
\(430\) 18.1699 0.876232
\(431\) −17.4399 −0.840048 −0.420024 0.907513i \(-0.637978\pi\)
−0.420024 + 0.907513i \(0.637978\pi\)
\(432\) 2.95757 0.142296
\(433\) −27.5286 −1.32294 −0.661471 0.749971i \(-0.730067\pi\)
−0.661471 + 0.749971i \(0.730067\pi\)
\(434\) −23.7914 −1.14203
\(435\) 0 0
\(436\) 5.72813 0.274328
\(437\) 21.0584 1.00736
\(438\) −7.38316 −0.352781
\(439\) −2.15260 −0.102738 −0.0513690 0.998680i \(-0.516358\pi\)
−0.0513690 + 0.998680i \(0.516358\pi\)
\(440\) −5.86660 −0.279679
\(441\) 51.9947 2.47594
\(442\) −3.52767 −0.167794
\(443\) 25.8500 1.22817 0.614086 0.789239i \(-0.289525\pi\)
0.614086 + 0.789239i \(0.289525\pi\)
\(444\) 5.11793 0.242886
\(445\) 8.24235 0.390725
\(446\) −7.10522 −0.336442
\(447\) 16.6834 0.789099
\(448\) −4.43319 −0.209448
\(449\) −18.7693 −0.885777 −0.442888 0.896577i \(-0.646046\pi\)
−0.442888 + 0.896577i \(0.646046\pi\)
\(450\) 5.87426 0.276915
\(451\) −21.5836 −1.01633
\(452\) −12.4938 −0.587658
\(453\) 20.6552 0.970467
\(454\) −2.49774 −0.117225
\(455\) −35.7140 −1.67430
\(456\) −8.13425 −0.380921
\(457\) −13.9278 −0.651514 −0.325757 0.945453i \(-0.605619\pi\)
−0.325757 + 0.945453i \(0.605619\pi\)
\(458\) 10.1469 0.474133
\(459\) 2.44716 0.114224
\(460\) 13.0432 0.608140
\(461\) −15.5360 −0.723583 −0.361792 0.932259i \(-0.617835\pi\)
−0.361792 + 0.932259i \(0.617835\pi\)
\(462\) 36.6987 1.70738
\(463\) 23.6809 1.10054 0.550272 0.834986i \(-0.314524\pi\)
0.550272 + 0.834986i \(0.314524\pi\)
\(464\) 0 0
\(465\) −27.0383 −1.25387
\(466\) 18.5754 0.860488
\(467\) −30.5564 −1.41398 −0.706990 0.707224i \(-0.749947\pi\)
−0.706990 + 0.707224i \(0.749947\pi\)
\(468\) 17.5195 0.809838
\(469\) −18.3792 −0.848675
\(470\) −14.3286 −0.660931
\(471\) 14.0286 0.646404
\(472\) −4.06594 −0.187150
\(473\) −29.8548 −1.37273
\(474\) −28.3225 −1.30090
\(475\) −4.36113 −0.200102
\(476\) −3.66812 −0.168128
\(477\) 11.0874 0.507658
\(478\) 13.9983 0.640265
\(479\) −13.8099 −0.630991 −0.315496 0.948927i \(-0.602171\pi\)
−0.315496 + 0.948927i \(0.602171\pi\)
\(480\) −5.03819 −0.229961
\(481\) 8.18358 0.373139
\(482\) 13.2572 0.603849
\(483\) −81.5919 −3.71256
\(484\) −1.36065 −0.0618479
\(485\) −19.8969 −0.903471
\(486\) 20.7162 0.939706
\(487\) 10.0549 0.455633 0.227817 0.973704i \(-0.426841\pi\)
0.227817 + 0.973704i \(0.426841\pi\)
\(488\) 2.70091 0.122264
\(489\) 32.7041 1.47893
\(490\) −23.9090 −1.08010
\(491\) 33.0650 1.49220 0.746102 0.665832i \(-0.231923\pi\)
0.746102 + 0.665832i \(0.231923\pi\)
\(492\) −18.5358 −0.835660
\(493\) 0 0
\(494\) −13.0067 −0.585198
\(495\) 24.1073 1.08354
\(496\) −5.36667 −0.240970
\(497\) −52.2181 −2.34230
\(498\) −18.6311 −0.834878
\(499\) 26.1139 1.16902 0.584510 0.811387i \(-0.301287\pi\)
0.584510 + 0.811387i \(0.301287\pi\)
\(500\) −12.1490 −0.543322
\(501\) 31.7363 1.41787
\(502\) 16.6261 0.742058
\(503\) 7.95167 0.354547 0.177274 0.984162i \(-0.443272\pi\)
0.177274 + 0.984162i \(0.443272\pi\)
\(504\) 18.2170 0.811450
\(505\) −21.2692 −0.946468
\(506\) −21.4311 −0.952727
\(507\) 13.8033 0.613027
\(508\) −10.9754 −0.486955
\(509\) 18.8623 0.836058 0.418029 0.908434i \(-0.362721\pi\)
0.418029 + 0.908434i \(0.362721\pi\)
\(510\) −4.16871 −0.184594
\(511\) −12.2757 −0.543045
\(512\) −1.00000 −0.0441942
\(513\) 9.02280 0.398366
\(514\) −3.28676 −0.144973
\(515\) 35.9310 1.58331
\(516\) −25.6390 −1.12870
\(517\) 23.5432 1.03543
\(518\) 8.50940 0.373882
\(519\) −14.5666 −0.639402
\(520\) −8.05607 −0.353282
\(521\) 40.9436 1.79377 0.896885 0.442264i \(-0.145824\pi\)
0.896885 + 0.442264i \(0.145824\pi\)
\(522\) 0 0
\(523\) 29.9303 1.30876 0.654380 0.756166i \(-0.272930\pi\)
0.654380 + 0.756166i \(0.272930\pi\)
\(524\) 3.35552 0.146587
\(525\) 16.8974 0.737463
\(526\) 25.2066 1.09906
\(527\) −4.44050 −0.193431
\(528\) 8.27819 0.360262
\(529\) 24.6475 1.07163
\(530\) −5.09838 −0.221459
\(531\) 16.7079 0.725061
\(532\) −13.5245 −0.586363
\(533\) −29.6388 −1.28380
\(534\) −11.6305 −0.503303
\(535\) 4.48161 0.193757
\(536\) −4.14583 −0.179073
\(537\) −40.4043 −1.74358
\(538\) 15.3554 0.662020
\(539\) 39.2845 1.69211
\(540\) 5.58854 0.240492
\(541\) −15.7616 −0.677644 −0.338822 0.940851i \(-0.610028\pi\)
−0.338822 + 0.940851i \(0.610028\pi\)
\(542\) 15.1856 0.652280
\(543\) 19.6729 0.844246
\(544\) −0.827423 −0.0354755
\(545\) 10.8237 0.463636
\(546\) 50.3950 2.15671
\(547\) 34.0781 1.45707 0.728536 0.685007i \(-0.240201\pi\)
0.728536 + 0.685007i \(0.240201\pi\)
\(548\) −13.5265 −0.577822
\(549\) −11.0987 −0.473680
\(550\) 4.43830 0.189250
\(551\) 0 0
\(552\) −18.4048 −0.783361
\(553\) −47.0909 −2.00251
\(554\) 28.6613 1.21770
\(555\) 9.67069 0.410498
\(556\) −19.8393 −0.841373
\(557\) −18.1371 −0.768492 −0.384246 0.923231i \(-0.625539\pi\)
−0.384246 + 0.923231i \(0.625539\pi\)
\(558\) 22.0529 0.933574
\(559\) −40.9969 −1.73398
\(560\) −8.37681 −0.353985
\(561\) 6.84956 0.289189
\(562\) 32.3169 1.36321
\(563\) −27.5452 −1.16089 −0.580446 0.814299i \(-0.697122\pi\)
−0.580446 + 0.814299i \(0.697122\pi\)
\(564\) 20.2187 0.851361
\(565\) −23.6079 −0.993191
\(566\) −11.2514 −0.472933
\(567\) 19.6917 0.826975
\(568\) −11.7789 −0.494232
\(569\) −30.9794 −1.29872 −0.649361 0.760480i \(-0.724964\pi\)
−0.649361 + 0.760480i \(0.724964\pi\)
\(570\) −15.3702 −0.643788
\(571\) 8.54543 0.357615 0.178808 0.983884i \(-0.442776\pi\)
0.178808 + 0.983884i \(0.442776\pi\)
\(572\) 13.2368 0.553460
\(573\) 1.60196 0.0669229
\(574\) −30.8189 −1.28635
\(575\) −9.86762 −0.411508
\(576\) 4.10924 0.171218
\(577\) 30.3618 1.26398 0.631989 0.774977i \(-0.282239\pi\)
0.631989 + 0.774977i \(0.282239\pi\)
\(578\) 16.3154 0.678630
\(579\) 28.8008 1.19692
\(580\) 0 0
\(581\) −30.9772 −1.28515
\(582\) 28.0759 1.16378
\(583\) 8.37708 0.346943
\(584\) −2.76905 −0.114584
\(585\) 33.1043 1.36869
\(586\) 18.6148 0.768970
\(587\) 38.5718 1.59203 0.796015 0.605277i \(-0.206938\pi\)
0.796015 + 0.605277i \(0.206938\pi\)
\(588\) 33.7372 1.39130
\(589\) −16.3723 −0.674611
\(590\) −7.68287 −0.316299
\(591\) −16.1293 −0.663471
\(592\) 1.91948 0.0788901
\(593\) −43.1108 −1.77035 −0.885174 0.465261i \(-0.845961\pi\)
−0.885174 + 0.465261i \(0.845961\pi\)
\(594\) −9.18246 −0.376761
\(595\) −6.93117 −0.284150
\(596\) 6.25711 0.256301
\(597\) −59.9156 −2.45218
\(598\) −29.4293 −1.20345
\(599\) 27.5732 1.12661 0.563305 0.826249i \(-0.309530\pi\)
0.563305 + 0.826249i \(0.309530\pi\)
\(600\) 3.81157 0.155607
\(601\) 7.94225 0.323971 0.161986 0.986793i \(-0.448210\pi\)
0.161986 + 0.986793i \(0.448210\pi\)
\(602\) −42.6291 −1.73743
\(603\) 17.0362 0.693768
\(604\) 7.74673 0.315210
\(605\) −2.57105 −0.104528
\(606\) 30.0124 1.21917
\(607\) −39.1665 −1.58972 −0.794859 0.606794i \(-0.792455\pi\)
−0.794859 + 0.606794i \(0.792455\pi\)
\(608\) −3.05075 −0.123724
\(609\) 0 0
\(610\) 5.10355 0.206637
\(611\) 32.3297 1.30792
\(612\) 3.40008 0.137440
\(613\) 21.8055 0.880715 0.440358 0.897823i \(-0.354852\pi\)
0.440358 + 0.897823i \(0.354852\pi\)
\(614\) 2.45342 0.0990118
\(615\) −35.0247 −1.41233
\(616\) 13.7638 0.554561
\(617\) −23.6828 −0.953432 −0.476716 0.879057i \(-0.658173\pi\)
−0.476716 + 0.879057i \(0.658173\pi\)
\(618\) −50.7011 −2.03950
\(619\) 27.5854 1.10875 0.554375 0.832267i \(-0.312957\pi\)
0.554375 + 0.832267i \(0.312957\pi\)
\(620\) −10.1407 −0.407260
\(621\) 20.4153 0.819237
\(622\) 2.07536 0.0832143
\(623\) −19.3377 −0.774748
\(624\) 11.3677 0.455071
\(625\) −15.8088 −0.632353
\(626\) 12.3137 0.492153
\(627\) 25.2547 1.00857
\(628\) 5.26142 0.209954
\(629\) 1.58822 0.0633265
\(630\) 34.4223 1.37142
\(631\) 10.2968 0.409909 0.204954 0.978772i \(-0.434295\pi\)
0.204954 + 0.978772i \(0.434295\pi\)
\(632\) −10.6224 −0.422535
\(633\) −4.74076 −0.188428
\(634\) −16.1586 −0.641741
\(635\) −20.7388 −0.822993
\(636\) 7.19417 0.285267
\(637\) 53.9459 2.13741
\(638\) 0 0
\(639\) 48.4023 1.91476
\(640\) −1.88957 −0.0746918
\(641\) −32.6454 −1.28941 −0.644707 0.764430i \(-0.723021\pi\)
−0.644707 + 0.764430i \(0.723021\pi\)
\(642\) −6.32386 −0.249583
\(643\) 9.43433 0.372053 0.186027 0.982545i \(-0.440439\pi\)
0.186027 + 0.982545i \(0.440439\pi\)
\(644\) −30.6010 −1.20585
\(645\) −48.4468 −1.90759
\(646\) −2.52426 −0.0993156
\(647\) 25.9592 1.02056 0.510280 0.860008i \(-0.329542\pi\)
0.510280 + 0.860008i \(0.329542\pi\)
\(648\) 4.44189 0.174494
\(649\) 12.6236 0.495521
\(650\) 6.09470 0.239054
\(651\) 63.4354 2.48623
\(652\) 12.2657 0.480360
\(653\) 21.3148 0.834113 0.417057 0.908881i \(-0.363062\pi\)
0.417057 + 0.908881i \(0.363062\pi\)
\(654\) −15.2730 −0.597221
\(655\) 6.34049 0.247744
\(656\) −6.95185 −0.271424
\(657\) 11.3787 0.443924
\(658\) 33.6169 1.31052
\(659\) −17.8815 −0.696563 −0.348281 0.937390i \(-0.613235\pi\)
−0.348281 + 0.937390i \(0.613235\pi\)
\(660\) 15.6422 0.608872
\(661\) 32.7118 1.27234 0.636171 0.771548i \(-0.280517\pi\)
0.636171 + 0.771548i \(0.280517\pi\)
\(662\) −17.8639 −0.694300
\(663\) 9.40588 0.365294
\(664\) −6.98757 −0.271170
\(665\) −25.5555 −0.991001
\(666\) −7.88759 −0.305638
\(667\) 0 0
\(668\) 11.9027 0.460529
\(669\) 18.9448 0.732447
\(670\) −7.83384 −0.302648
\(671\) −8.38559 −0.323722
\(672\) 11.8203 0.455977
\(673\) 33.5616 1.29371 0.646853 0.762615i \(-0.276085\pi\)
0.646853 + 0.762615i \(0.276085\pi\)
\(674\) −22.2689 −0.857767
\(675\) −4.22793 −0.162733
\(676\) 5.17693 0.199113
\(677\) 40.2847 1.54827 0.774133 0.633023i \(-0.218186\pi\)
0.774133 + 0.633023i \(0.218186\pi\)
\(678\) 33.3124 1.27935
\(679\) 46.6808 1.79144
\(680\) −1.56347 −0.0599565
\(681\) 6.65975 0.255202
\(682\) 16.6621 0.638023
\(683\) −37.6295 −1.43985 −0.719927 0.694050i \(-0.755825\pi\)
−0.719927 + 0.694050i \(0.755825\pi\)
\(684\) 12.5362 0.479335
\(685\) −25.5592 −0.976568
\(686\) 25.0614 0.956848
\(687\) −27.0548 −1.03220
\(688\) −9.61591 −0.366603
\(689\) 11.5035 0.438248
\(690\) −34.7772 −1.32394
\(691\) −10.7763 −0.409951 −0.204975 0.978767i \(-0.565711\pi\)
−0.204975 + 0.978767i \(0.565711\pi\)
\(692\) −5.46319 −0.207679
\(693\) −56.5589 −2.14849
\(694\) 23.5162 0.892663
\(695\) −37.4877 −1.42199
\(696\) 0 0
\(697\) −5.75212 −0.217877
\(698\) −13.8857 −0.525581
\(699\) −49.5278 −1.87331
\(700\) 6.33736 0.239530
\(701\) −7.52690 −0.284287 −0.142144 0.989846i \(-0.545399\pi\)
−0.142144 + 0.989846i \(0.545399\pi\)
\(702\) −12.6094 −0.475912
\(703\) 5.85584 0.220857
\(704\) 3.10473 0.117014
\(705\) 38.2047 1.43887
\(706\) −26.4253 −0.994531
\(707\) 49.9005 1.87670
\(708\) 10.8411 0.407432
\(709\) −2.63508 −0.0989625 −0.0494813 0.998775i \(-0.515757\pi\)
−0.0494813 + 0.998775i \(0.515757\pi\)
\(710\) −22.2571 −0.835292
\(711\) 43.6498 1.63699
\(712\) −4.36203 −0.163474
\(713\) −37.0446 −1.38733
\(714\) 9.78036 0.366021
\(715\) 25.0119 0.935393
\(716\) −15.1536 −0.566317
\(717\) −37.3238 −1.39388
\(718\) −3.48063 −0.129896
\(719\) −42.3268 −1.57852 −0.789261 0.614058i \(-0.789536\pi\)
−0.789261 + 0.614058i \(0.789536\pi\)
\(720\) 7.76469 0.289373
\(721\) −84.2989 −3.13946
\(722\) 9.69294 0.360734
\(723\) −35.3479 −1.31460
\(724\) 7.37832 0.274213
\(725\) 0 0
\(726\) 3.62793 0.134645
\(727\) 0.246181 0.00913035 0.00456517 0.999990i \(-0.498547\pi\)
0.00456517 + 0.999990i \(0.498547\pi\)
\(728\) 18.9006 0.700504
\(729\) −41.9102 −1.55223
\(730\) −5.23231 −0.193656
\(731\) −7.95643 −0.294279
\(732\) −7.20147 −0.266174
\(733\) −23.9116 −0.883194 −0.441597 0.897213i \(-0.645588\pi\)
−0.441597 + 0.897213i \(0.645588\pi\)
\(734\) −5.89712 −0.217667
\(735\) 63.7488 2.35141
\(736\) −6.90272 −0.254437
\(737\) 12.8717 0.474135
\(738\) 28.5668 1.05156
\(739\) −7.66404 −0.281926 −0.140963 0.990015i \(-0.545020\pi\)
−0.140963 + 0.990015i \(0.545020\pi\)
\(740\) 3.62699 0.133331
\(741\) 34.6799 1.27400
\(742\) 11.9615 0.439120
\(743\) −18.9783 −0.696247 −0.348124 0.937449i \(-0.613181\pi\)
−0.348124 + 0.937449i \(0.613181\pi\)
\(744\) 14.3092 0.524602
\(745\) 11.8232 0.433170
\(746\) −28.0886 −1.02840
\(747\) 28.7136 1.05057
\(748\) 2.56892 0.0939292
\(749\) −10.5145 −0.384190
\(750\) 32.3932 1.18283
\(751\) −2.12763 −0.0776383 −0.0388191 0.999246i \(-0.512360\pi\)
−0.0388191 + 0.999246i \(0.512360\pi\)
\(752\) 7.58301 0.276524
\(753\) −44.3304 −1.61549
\(754\) 0 0
\(755\) 14.6380 0.532731
\(756\) −13.1115 −0.476859
\(757\) −33.7765 −1.22763 −0.613814 0.789451i \(-0.710365\pi\)
−0.613814 + 0.789451i \(0.710365\pi\)
\(758\) 32.8894 1.19460
\(759\) 57.1420 2.07412
\(760\) −5.76460 −0.209104
\(761\) −0.0142514 −0.000516613 0 −0.000258307 1.00000i \(-0.500082\pi\)
−0.000258307 1.00000i \(0.500082\pi\)
\(762\) 29.2639 1.06012
\(763\) −25.3939 −0.919319
\(764\) 0.600815 0.0217367
\(765\) 6.42468 0.232285
\(766\) 18.9516 0.684749
\(767\) 17.3349 0.625926
\(768\) 2.66631 0.0962124
\(769\) 32.0874 1.15710 0.578550 0.815647i \(-0.303619\pi\)
0.578550 + 0.815647i \(0.303619\pi\)
\(770\) 26.0077 0.937254
\(771\) 8.76355 0.315611
\(772\) 10.8017 0.388763
\(773\) 0.560306 0.0201528 0.0100764 0.999949i \(-0.496793\pi\)
0.0100764 + 0.999949i \(0.496793\pi\)
\(774\) 39.5140 1.42030
\(775\) 7.67180 0.275579
\(776\) 10.5299 0.378000
\(777\) −22.6887 −0.813954
\(778\) −25.7959 −0.924827
\(779\) −21.2083 −0.759868
\(780\) 21.4800 0.769108
\(781\) 36.5703 1.30859
\(782\) −5.71147 −0.204242
\(783\) 0 0
\(784\) 12.6531 0.451897
\(785\) 9.94182 0.354839
\(786\) −8.94688 −0.319125
\(787\) 20.0186 0.713587 0.356794 0.934183i \(-0.383870\pi\)
0.356794 + 0.934183i \(0.383870\pi\)
\(788\) −6.04928 −0.215497
\(789\) −67.2087 −2.39269
\(790\) −20.0717 −0.714118
\(791\) 55.3873 1.96934
\(792\) −12.7581 −0.453338
\(793\) −11.5152 −0.408915
\(794\) −24.2601 −0.860959
\(795\) 13.5939 0.482125
\(796\) −22.4713 −0.796475
\(797\) 45.1359 1.59880 0.799398 0.600801i \(-0.205152\pi\)
0.799398 + 0.600801i \(0.205152\pi\)
\(798\) 36.0606 1.27653
\(799\) 6.27436 0.221971
\(800\) 1.42953 0.0505414
\(801\) 17.9246 0.633335
\(802\) 19.8886 0.702290
\(803\) 8.59715 0.303387
\(804\) 11.0541 0.389848
\(805\) −57.8227 −2.03798
\(806\) 22.8805 0.805930
\(807\) −40.9424 −1.44124
\(808\) 11.2561 0.395989
\(809\) 30.5309 1.07341 0.536705 0.843770i \(-0.319669\pi\)
0.536705 + 0.843770i \(0.319669\pi\)
\(810\) 8.39326 0.294909
\(811\) −7.41012 −0.260204 −0.130102 0.991501i \(-0.541531\pi\)
−0.130102 + 0.991501i \(0.541531\pi\)
\(812\) 0 0
\(813\) −40.4897 −1.42004
\(814\) −5.95946 −0.208879
\(815\) 23.1768 0.811848
\(816\) 2.20617 0.0772314
\(817\) −29.3357 −1.02633
\(818\) −33.3680 −1.16668
\(819\) −77.6671 −2.71391
\(820\) −13.1360 −0.458729
\(821\) 53.2997 1.86017 0.930086 0.367342i \(-0.119732\pi\)
0.930086 + 0.367342i \(0.119732\pi\)
\(822\) 36.0658 1.25794
\(823\) −3.45715 −0.120509 −0.0602544 0.998183i \(-0.519191\pi\)
−0.0602544 + 0.998183i \(0.519191\pi\)
\(824\) −19.0154 −0.662434
\(825\) −11.8339 −0.412003
\(826\) 18.0251 0.627172
\(827\) 54.3681 1.89056 0.945281 0.326257i \(-0.105787\pi\)
0.945281 + 0.326257i \(0.105787\pi\)
\(828\) 28.3649 0.985748
\(829\) −50.9113 −1.76822 −0.884111 0.467277i \(-0.845235\pi\)
−0.884111 + 0.467277i \(0.845235\pi\)
\(830\) −13.2035 −0.458300
\(831\) −76.4199 −2.65098
\(832\) 4.26344 0.147808
\(833\) 10.4695 0.362746
\(834\) 52.8978 1.83170
\(835\) 22.4909 0.778331
\(836\) 9.47175 0.327587
\(837\) −15.8723 −0.548627
\(838\) 18.1156 0.625792
\(839\) 29.2351 1.00931 0.504654 0.863322i \(-0.331620\pi\)
0.504654 + 0.863322i \(0.331620\pi\)
\(840\) 22.3352 0.770638
\(841\) 0 0
\(842\) 13.8875 0.478594
\(843\) −86.1671 −2.96775
\(844\) −1.77802 −0.0612020
\(845\) 9.78217 0.336517
\(846\) −31.1604 −1.07132
\(847\) 6.03203 0.207263
\(848\) 2.69817 0.0926555
\(849\) 29.9998 1.02959
\(850\) 1.18282 0.0405705
\(851\) 13.2496 0.454191
\(852\) 31.4063 1.07596
\(853\) −43.7365 −1.49751 −0.748754 0.662848i \(-0.769348\pi\)
−0.748754 + 0.662848i \(0.769348\pi\)
\(854\) −11.9736 −0.409729
\(855\) 23.6881 0.810116
\(856\) −2.37176 −0.0810651
\(857\) 12.0143 0.410401 0.205200 0.978720i \(-0.434215\pi\)
0.205200 + 0.978720i \(0.434215\pi\)
\(858\) −35.2936 −1.20490
\(859\) −2.06483 −0.0704512 −0.0352256 0.999379i \(-0.511215\pi\)
−0.0352256 + 0.999379i \(0.511215\pi\)
\(860\) −18.1699 −0.619590
\(861\) 82.1728 2.80044
\(862\) 17.4399 0.594004
\(863\) −18.1710 −0.618548 −0.309274 0.950973i \(-0.600086\pi\)
−0.309274 + 0.950973i \(0.600086\pi\)
\(864\) −2.95757 −0.100619
\(865\) −10.3231 −0.350995
\(866\) 27.5286 0.935461
\(867\) −43.5019 −1.47740
\(868\) 23.7914 0.807534
\(869\) 32.9795 1.11875
\(870\) 0 0
\(871\) 17.6755 0.598912
\(872\) −5.72813 −0.193979
\(873\) −43.2697 −1.46446
\(874\) −21.0584 −0.712312
\(875\) 53.8589 1.82076
\(876\) 7.38316 0.249454
\(877\) 7.00172 0.236431 0.118216 0.992988i \(-0.462283\pi\)
0.118216 + 0.992988i \(0.462283\pi\)
\(878\) 2.15260 0.0726468
\(879\) −49.6329 −1.67408
\(880\) 5.86660 0.197763
\(881\) 22.2633 0.750070 0.375035 0.927011i \(-0.377631\pi\)
0.375035 + 0.927011i \(0.377631\pi\)
\(882\) −51.9947 −1.75075
\(883\) 57.9963 1.95173 0.975865 0.218375i \(-0.0700755\pi\)
0.975865 + 0.218375i \(0.0700755\pi\)
\(884\) 3.52767 0.118648
\(885\) 20.4850 0.688594
\(886\) −25.8500 −0.868449
\(887\) −29.1105 −0.977434 −0.488717 0.872442i \(-0.662535\pi\)
−0.488717 + 0.872442i \(0.662535\pi\)
\(888\) −5.11793 −0.171747
\(889\) 48.6560 1.63187
\(890\) −8.24235 −0.276284
\(891\) −13.7909 −0.462011
\(892\) 7.10522 0.237900
\(893\) 23.1339 0.774145
\(894\) −16.6834 −0.557977
\(895\) −28.6338 −0.957123
\(896\) 4.43319 0.148102
\(897\) 78.4678 2.61996
\(898\) 18.7693 0.626339
\(899\) 0 0
\(900\) −5.87426 −0.195809
\(901\) 2.23253 0.0743763
\(902\) 21.5836 0.718656
\(903\) 113.663 3.78246
\(904\) 12.4938 0.415537
\(905\) 13.9418 0.463442
\(906\) −20.6552 −0.686223
\(907\) −35.0625 −1.16423 −0.582116 0.813106i \(-0.697775\pi\)
−0.582116 + 0.813106i \(0.697775\pi\)
\(908\) 2.49774 0.0828903
\(909\) −46.2540 −1.53415
\(910\) 35.7140 1.18391
\(911\) 53.8713 1.78483 0.892417 0.451211i \(-0.149008\pi\)
0.892417 + 0.451211i \(0.149008\pi\)
\(912\) 8.13425 0.269352
\(913\) 21.6945 0.717984
\(914\) 13.9278 0.460690
\(915\) −13.6077 −0.449856
\(916\) −10.1469 −0.335262
\(917\) −14.8757 −0.491237
\(918\) −2.44716 −0.0807684
\(919\) −18.1545 −0.598861 −0.299430 0.954118i \(-0.596797\pi\)
−0.299430 + 0.954118i \(0.596797\pi\)
\(920\) −13.0432 −0.430020
\(921\) −6.54158 −0.215552
\(922\) 15.5360 0.511650
\(923\) 50.2187 1.65297
\(924\) −36.6987 −1.20730
\(925\) −2.74395 −0.0902204
\(926\) −23.6809 −0.778202
\(927\) 78.1389 2.56642
\(928\) 0 0
\(929\) −8.58992 −0.281826 −0.140913 0.990022i \(-0.545004\pi\)
−0.140913 + 0.990022i \(0.545004\pi\)
\(930\) 27.0383 0.886620
\(931\) 38.6015 1.26511
\(932\) −18.5754 −0.608457
\(933\) −5.53356 −0.181161
\(934\) 30.5564 0.999835
\(935\) 4.85416 0.158748
\(936\) −17.5195 −0.572642
\(937\) 28.5141 0.931516 0.465758 0.884912i \(-0.345782\pi\)
0.465758 + 0.884912i \(0.345782\pi\)
\(938\) 18.3792 0.600104
\(939\) −32.8321 −1.07144
\(940\) 14.3286 0.467349
\(941\) 54.2110 1.76723 0.883614 0.468216i \(-0.155103\pi\)
0.883614 + 0.468216i \(0.155103\pi\)
\(942\) −14.0286 −0.457077
\(943\) −47.9867 −1.56266
\(944\) 4.06594 0.132335
\(945\) −24.7750 −0.805931
\(946\) 29.8548 0.970663
\(947\) 5.02058 0.163147 0.0815735 0.996667i \(-0.474005\pi\)
0.0815735 + 0.996667i \(0.474005\pi\)
\(948\) 28.3225 0.919874
\(949\) 11.8057 0.383228
\(950\) 4.36113 0.141494
\(951\) 43.0840 1.39709
\(952\) 3.66812 0.118884
\(953\) 3.02848 0.0981022 0.0490511 0.998796i \(-0.484380\pi\)
0.0490511 + 0.998796i \(0.484380\pi\)
\(954\) −11.0874 −0.358968
\(955\) 1.13528 0.0367368
\(956\) −13.9983 −0.452736
\(957\) 0 0
\(958\) 13.8099 0.446178
\(959\) 59.9654 1.93638
\(960\) 5.03819 0.162607
\(961\) −2.19888 −0.0709316
\(962\) −8.18358 −0.263849
\(963\) 9.74612 0.314064
\(964\) −13.2572 −0.426986
\(965\) 20.4106 0.657042
\(966\) 81.5919 2.62518
\(967\) 37.9484 1.22034 0.610169 0.792271i \(-0.291101\pi\)
0.610169 + 0.792271i \(0.291101\pi\)
\(968\) 1.36065 0.0437330
\(969\) 6.73047 0.216214
\(970\) 19.8969 0.638851
\(971\) 55.6567 1.78611 0.893055 0.449948i \(-0.148557\pi\)
0.893055 + 0.449948i \(0.148557\pi\)
\(972\) −20.7162 −0.664472
\(973\) 87.9513 2.81959
\(974\) −10.0549 −0.322181
\(975\) −16.2504 −0.520429
\(976\) −2.70091 −0.0864540
\(977\) −42.1194 −1.34752 −0.673760 0.738950i \(-0.735322\pi\)
−0.673760 + 0.738950i \(0.735322\pi\)
\(978\) −32.7041 −1.04576
\(979\) 13.5429 0.432834
\(980\) 23.9090 0.763744
\(981\) 23.5382 0.751518
\(982\) −33.0650 −1.05515
\(983\) 12.6576 0.403716 0.201858 0.979415i \(-0.435302\pi\)
0.201858 + 0.979415i \(0.435302\pi\)
\(984\) 18.5358 0.590901
\(985\) −11.4305 −0.364207
\(986\) 0 0
\(987\) −89.6333 −2.85306
\(988\) 13.0067 0.413798
\(989\) −66.3759 −2.11063
\(990\) −24.1073 −0.766179
\(991\) −53.8727 −1.71132 −0.855662 0.517535i \(-0.826850\pi\)
−0.855662 + 0.517535i \(0.826850\pi\)
\(992\) 5.36667 0.170392
\(993\) 47.6308 1.51152
\(994\) 52.2181 1.65626
\(995\) −42.4611 −1.34611
\(996\) 18.6311 0.590348
\(997\) 11.1555 0.353297 0.176649 0.984274i \(-0.443474\pi\)
0.176649 + 0.984274i \(0.443474\pi\)
\(998\) −26.1139 −0.826622
\(999\) 5.67699 0.179612
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1682.2.a.u.1.7 8
29.12 odd 4 1682.2.b.k.1681.7 16
29.17 odd 4 1682.2.b.k.1681.10 16
29.28 even 2 1682.2.a.v.1.2 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1682.2.a.u.1.7 8 1.1 even 1 trivial
1682.2.a.v.1.2 yes 8 29.28 even 2
1682.2.b.k.1681.7 16 29.12 odd 4
1682.2.b.k.1681.10 16 29.17 odd 4