Properties

Label 1682.2.b.k.1681.6
Level 16821682
Weight 22
Character 1682.1681
Analytic conductor 13.43113.431
Analytic rank 00
Dimension 1616
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1682,2,Mod(1681,1682)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1682, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1682.1681");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1682=2292 1682 = 2 \cdot 29^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1682.b (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 13.430837620013.4308376200
Analytic rank: 00
Dimension: 1616
Coefficient field: Q[x]/(x16+)\mathbb{Q}[x]/(x^{16} + \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x16+37x14+548x12+4119x10+16415x8+33099x6+30128x4+10537x2+961 x^{16} + 37x^{14} + 548x^{12} + 4119x^{10} + 16415x^{8} + 33099x^{6} + 30128x^{4} + 10537x^{2} + 961 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 1681.6
Root 1.06263i1.06263i of defining polynomial
Character χ\chi == 1682.1681
Dual form 1682.2.b.k.1681.11

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q1.00000iq2+1.06263iq31.00000q44.09274q5+1.06263q6+2.34135q7+1.00000iq8+1.87081q9+4.09274iq10+4.82606iq111.06263iq124.41399q132.34135iq144.34908iq15+1.00000q162.51636iq171.87081iq182.07073iq19+4.09274q20+2.48799iq21+4.82606q222.02806q231.06263q24+11.7505q25+4.41399iq26+5.17588iq272.34135q284.34908q300.814848iq311.00000iq325.12833q332.51636q349.58253q351.87081q36+2.59308iq372.07073q384.69045iq394.09274iq40+0.104627iq41+2.48799q423.15502iq434.82606iq447.65675q45+2.02806iq469.52807iq47+1.06263iq481.51809q4911.7505iq50+2.67397q51+4.41399q5210.5005q53+5.17588q5419.7518iq55+2.34135iq56+2.20043q578.95633q59+4.34908iq605.91917iq610.814848q62+4.38022q631.00000q64+18.0653q65+5.12833iq665.20120q67+2.51636iq682.15508iq69+9.58253iq705.54194q71+1.87081iq72+2.52861iq73+2.59308q74+12.4865iq75+2.07073iq76+11.2995iq774.69045q7813.5999iq794.09274q80+0.112368q81+0.104627q8213.9937q832.48799iq84+10.2988iq853.15502q864.82606q888.95536iq89+7.65675iq9010.3347q91+2.02806q92+0.865884q939.52807q94+8.47497iq95+1.06263q962.97302iq97+1.51809iq98+9.02865iq99+O(q100)q-1.00000i q^{2} +1.06263i q^{3} -1.00000 q^{4} -4.09274 q^{5} +1.06263 q^{6} +2.34135 q^{7} +1.00000i q^{8} +1.87081 q^{9} +4.09274i q^{10} +4.82606i q^{11} -1.06263i q^{12} -4.41399 q^{13} -2.34135i q^{14} -4.34908i q^{15} +1.00000 q^{16} -2.51636i q^{17} -1.87081i q^{18} -2.07073i q^{19} +4.09274 q^{20} +2.48799i q^{21} +4.82606 q^{22} -2.02806 q^{23} -1.06263 q^{24} +11.7505 q^{25} +4.41399i q^{26} +5.17588i q^{27} -2.34135 q^{28} -4.34908 q^{30} -0.814848i q^{31} -1.00000i q^{32} -5.12833 q^{33} -2.51636 q^{34} -9.58253 q^{35} -1.87081 q^{36} +2.59308i q^{37} -2.07073 q^{38} -4.69045i q^{39} -4.09274i q^{40} +0.104627i q^{41} +2.48799 q^{42} -3.15502i q^{43} -4.82606i q^{44} -7.65675 q^{45} +2.02806i q^{46} -9.52807i q^{47} +1.06263i q^{48} -1.51809 q^{49} -11.7505i q^{50} +2.67397 q^{51} +4.41399 q^{52} -10.5005 q^{53} +5.17588 q^{54} -19.7518i q^{55} +2.34135i q^{56} +2.20043 q^{57} -8.95633 q^{59} +4.34908i q^{60} -5.91917i q^{61} -0.814848 q^{62} +4.38022 q^{63} -1.00000 q^{64} +18.0653 q^{65} +5.12833i q^{66} -5.20120 q^{67} +2.51636i q^{68} -2.15508i q^{69} +9.58253i q^{70} -5.54194 q^{71} +1.87081i q^{72} +2.52861i q^{73} +2.59308 q^{74} +12.4865i q^{75} +2.07073i q^{76} +11.2995i q^{77} -4.69045 q^{78} -13.5999i q^{79} -4.09274 q^{80} +0.112368 q^{81} +0.104627 q^{82} -13.9937 q^{83} -2.48799i q^{84} +10.2988i q^{85} -3.15502 q^{86} -4.82606 q^{88} -8.95536i q^{89} +7.65675i q^{90} -10.3347 q^{91} +2.02806 q^{92} +0.865884 q^{93} -9.52807 q^{94} +8.47497i q^{95} +1.06263 q^{96} -2.97302i q^{97} +1.51809i q^{98} +9.02865i q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q16q410q52q6+14q726q926q13+16q16+10q20+14q22+24q23+2q24+90q2514q2840q30+8q3318q34+26q36+26q38+2q96+O(q100) 16 q - 16 q^{4} - 10 q^{5} - 2 q^{6} + 14 q^{7} - 26 q^{9} - 26 q^{13} + 16 q^{16} + 10 q^{20} + 14 q^{22} + 24 q^{23} + 2 q^{24} + 90 q^{25} - 14 q^{28} - 40 q^{30} + 8 q^{33} - 18 q^{34} + 26 q^{36} + 26 q^{38}+ \cdots - 2 q^{96}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1682Z)×\left(\mathbb{Z}/1682\mathbb{Z}\right)^\times.

nn 843843
χ(n)\chi(n) 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 − 1.00000i − 0.707107i
33 1.06263i 0.613511i 0.951788 + 0.306756i 0.0992435π0.0992435\pi
−0.951788 + 0.306756i 0.900757π0.900757\pi
44 −1.00000 −0.500000
55 −4.09274 −1.83033 −0.915165 0.403080i 0.867940π-0.867940\pi
−0.915165 + 0.403080i 0.867940π0.867940\pi
66 1.06263 0.433818
77 2.34135 0.884947 0.442473 0.896782i 0.354101π-0.354101\pi
0.442473 + 0.896782i 0.354101π0.354101\pi
88 1.00000i 0.353553i
99 1.87081 0.623604
1010 4.09274i 1.29424i
1111 4.82606i 1.45511i 0.686048 + 0.727556i 0.259344π0.259344\pi
−0.686048 + 0.727556i 0.740656π0.740656\pi
1212 − 1.06263i − 0.306756i
1313 −4.41399 −1.22422 −0.612110 0.790773i 0.709679π-0.709679\pi
−0.612110 + 0.790773i 0.709679π0.709679\pi
1414 − 2.34135i − 0.625752i
1515 − 4.34908i − 1.12293i
1616 1.00000 0.250000
1717 − 2.51636i − 0.610307i −0.952303 0.305153i 0.901292π-0.901292\pi
0.952303 0.305153i 0.0987077π-0.0987077\pi
1818 − 1.87081i − 0.440954i
1919 − 2.07073i − 0.475058i −0.971380 0.237529i 0.923662π-0.923662\pi
0.971380 0.237529i 0.0763375π-0.0763375\pi
2020 4.09274 0.915165
2121 2.48799i 0.542925i
2222 4.82606 1.02892
2323 −2.02806 −0.422879 −0.211439 0.977391i 0.567815π-0.567815\pi
−0.211439 + 0.977391i 0.567815π0.567815\pi
2424 −1.06263 −0.216909
2525 11.7505 2.35011
2626 4.41399i 0.865654i
2727 5.17588i 0.996099i
2828 −2.34135 −0.442473
2929 0 0
3030 −4.34908 −0.794030
3131 − 0.814848i − 0.146351i −0.997319 0.0731755i 0.976687π-0.976687\pi
0.997319 0.0731755i 0.0233133π-0.0233133\pi
3232 − 1.00000i − 0.176777i
3333 −5.12833 −0.892728
3434 −2.51636 −0.431552
3535 −9.58253 −1.61974
3636 −1.87081 −0.311802
3737 2.59308i 0.426300i 0.977019 + 0.213150i 0.0683723π0.0683723\pi
−0.977019 + 0.213150i 0.931628π0.931628\pi
3838 −2.07073 −0.335917
3939 − 4.69045i − 0.751073i
4040 − 4.09274i − 0.647119i
4141 0.104627i 0.0163400i 0.999967 + 0.00817002i 0.00260063π0.00260063\pi
−0.999967 + 0.00817002i 0.997399π0.997399\pi
4242 2.48799 0.383906
4343 − 3.15502i − 0.481137i −0.970632 0.240568i 0.922666π-0.922666\pi
0.970632 0.240568i 0.0773338π-0.0773338\pi
4444 − 4.82606i − 0.727556i
4545 −7.65675 −1.14140
4646 2.02806i 0.299020i
4747 − 9.52807i − 1.38981i −0.719100 0.694906i 0.755446π-0.755446\pi
0.719100 0.694906i 0.244554π-0.244554\pi
4848 1.06263i 0.153378i
4949 −1.51809 −0.216870
5050 − 11.7505i − 1.66178i
5151 2.67397 0.374430
5252 4.41399 0.612110
5353 −10.5005 −1.44236 −0.721181 0.692747i 0.756400π-0.756400\pi
−0.721181 + 0.692747i 0.756400π0.756400\pi
5454 5.17588 0.704349
5555 − 19.7518i − 2.66334i
5656 2.34135i 0.312876i
5757 2.20043 0.291454
5858 0 0
5959 −8.95633 −1.16601 −0.583007 0.812467i 0.698124π-0.698124\pi
−0.583007 + 0.812467i 0.698124π0.698124\pi
6060 4.34908i 0.561464i
6161 − 5.91917i − 0.757872i −0.925423 0.378936i 0.876290π-0.876290\pi
0.925423 0.378936i 0.123710π-0.123710\pi
6262 −0.814848 −0.103486
6363 4.38022 0.551856
6464 −1.00000 −0.125000
6565 18.0653 2.24073
6666 5.12833i 0.631254i
6767 −5.20120 −0.635428 −0.317714 0.948187i 0.602915π-0.602915\pi
−0.317714 + 0.948187i 0.602915π0.602915\pi
6868 2.51636i 0.305153i
6969 − 2.15508i − 0.259441i
7070 9.58253i 1.14533i
7171 −5.54194 −0.657707 −0.328854 0.944381i 0.606662π-0.606662\pi
−0.328854 + 0.944381i 0.606662π0.606662\pi
7272 1.87081i 0.220477i
7373 2.52861i 0.295952i 0.988991 + 0.147976i 0.0472758π0.0472758\pi
−0.988991 + 0.147976i 0.952724π0.952724\pi
7474 2.59308 0.301440
7575 12.4865i 1.44182i
7676 2.07073i 0.237529i
7777 11.2995i 1.28770i
7878 −4.69045 −0.531089
7979 − 13.5999i − 1.53011i −0.643967 0.765053i 0.722713π-0.722713\pi
0.643967 0.765053i 0.277287π-0.277287\pi
8080 −4.09274 −0.457582
8181 0.112368 0.0124853
8282 0.104627 0.0115541
8383 −13.9937 −1.53601 −0.768003 0.640446i 0.778750π-0.778750\pi
−0.768003 + 0.640446i 0.778750π0.778750\pi
8484 − 2.48799i − 0.271462i
8585 10.2988i 1.11706i
8686 −3.15502 −0.340215
8787 0 0
8888 −4.82606 −0.514460
8989 − 8.95536i − 0.949267i −0.880184 0.474633i 0.842581π-0.842581\pi
0.880184 0.474633i 0.157419π-0.157419\pi
9090 7.65675i 0.807092i
9191 −10.3347 −1.08337
9292 2.02806 0.211439
9393 0.865884 0.0897880
9494 −9.52807 −0.982746
9595 8.47497i 0.869513i
9696 1.06263 0.108455
9797 − 2.97302i − 0.301865i −0.988544 0.150932i 0.951772π-0.951772\pi
0.988544 0.150932i 0.0482276π-0.0482276\pi
9898 1.51809i 0.153350i
9999 9.02865i 0.907414i
100100 −11.7505 −1.17505
101101 − 1.34253i − 0.133586i −0.997767 0.0667932i 0.978723π-0.978723\pi
0.997767 0.0667932i 0.0212768π-0.0212768\pi
102102 − 2.67397i − 0.264762i
103103 −12.1572 −1.19788 −0.598941 0.800793i 0.704412π-0.704412\pi
−0.598941 + 0.800793i 0.704412π0.704412\pi
104104 − 4.41399i − 0.432827i
105105 − 10.1827i − 0.993731i
106106 10.5005i 1.01990i
107107 −0.164950 −0.0159463 −0.00797316 0.999968i 0.502538π-0.502538\pi
−0.00797316 + 0.999968i 0.502538π0.502538\pi
108108 − 5.17588i − 0.498050i
109109 −9.09810 −0.871440 −0.435720 0.900082i 0.643506π-0.643506\pi
−0.435720 + 0.900082i 0.643506π0.643506\pi
110110 −19.7518 −1.88326
111111 −2.75549 −0.261540
112112 2.34135 0.221237
113113 17.8409i 1.67833i 0.543873 + 0.839167i 0.316957π0.316957\pi
−0.543873 + 0.839167i 0.683043π0.683043\pi
114114 − 2.20043i − 0.206089i
115115 8.30031 0.774007
116116 0 0
117117 −8.25774 −0.763428
118118 8.95633i 0.824497i
119119 − 5.89167i − 0.540089i
120120 4.34908 0.397015
121121 −12.2909 −1.11735
122122 −5.91917 −0.535896
123123 −0.111180 −0.0100248
124124 0.814848i 0.0731755i
125125 −27.6282 −2.47114
126126 − 4.38022i − 0.390221i
127127 4.78987i 0.425033i 0.977158 + 0.212516i 0.0681658π0.0681658\pi
−0.977158 + 0.212516i 0.931834π0.931834\pi
128128 1.00000i 0.0883883i
129129 3.35263 0.295183
130130 − 18.0653i − 1.58443i
131131 − 17.1054i − 1.49450i −0.664541 0.747252i 0.731373π-0.731373\pi
0.664541 0.747252i 0.268627π-0.268627\pi
132132 5.12833 0.446364
133133 − 4.84830i − 0.420401i
134134 5.20120i 0.449315i
135135 − 21.1836i − 1.82319i
136136 2.51636 0.215776
137137 17.8870i 1.52819i 0.645102 + 0.764097i 0.276815π0.276815\pi
−0.645102 + 0.764097i 0.723185π0.723185\pi
138138 −2.15508 −0.183452
139139 19.7082 1.67163 0.835814 0.549012i 0.184996π-0.184996\pi
0.835814 + 0.549012i 0.184996π0.184996\pi
140140 9.58253 0.809872
141141 10.1248 0.852666
142142 5.54194i 0.465069i
143143 − 21.3022i − 1.78138i
144144 1.87081 0.155901
145145 0 0
146146 2.52861 0.209269
147147 − 1.61317i − 0.133052i
148148 − 2.59308i − 0.213150i
149149 8.42016 0.689807 0.344903 0.938638i 0.387912π-0.387912\pi
0.344903 + 0.938638i 0.387912π0.387912\pi
150150 12.4865 1.01952
151151 17.5963 1.43196 0.715981 0.698119i 0.245980π-0.245980\pi
0.715981 + 0.698119i 0.245980π0.245980\pi
152152 2.07073 0.167958
153153 − 4.70763i − 0.380590i
154154 11.2995 0.910539
155155 3.33496i 0.267871i
156156 4.69045i 0.375536i
157157 − 14.1234i − 1.12717i −0.826058 0.563585i 0.809422π-0.809422\pi
0.826058 0.563585i 0.190578π-0.190578\pi
158158 −13.5999 −1.08195
159159 − 11.1582i − 0.884905i
160160 4.09274i 0.323560i
161161 −4.74838 −0.374225
162162 − 0.112368i − 0.00882847i
163163 − 11.5253i − 0.902729i −0.892340 0.451365i 0.850937π-0.850937\pi
0.892340 0.451365i 0.149063π-0.149063\pi
164164 − 0.104627i − 0.00817002i
165165 20.9889 1.63399
166166 13.9937i 1.08612i
167167 −11.0161 −0.852450 −0.426225 0.904617i 0.640157π-0.640157\pi
−0.426225 + 0.904617i 0.640157π0.640157\pi
168168 −2.48799 −0.191953
169169 6.48329 0.498715
170170 10.2988 0.789882
171171 − 3.87395i − 0.296248i
172172 3.15502i 0.240568i
173173 11.3228 0.860854 0.430427 0.902625i 0.358363π-0.358363\pi
0.430427 + 0.902625i 0.358363π0.358363\pi
174174 0 0
175175 27.5121 2.07972
176176 4.82606i 0.363778i
177177 − 9.51729i − 0.715363i
178178 −8.95536 −0.671233
179179 −22.9508 −1.71542 −0.857711 0.514132i 0.828114π-0.828114\pi
−0.857711 + 0.514132i 0.828114π0.828114\pi
180180 7.65675 0.570700
181181 0.584454 0.0434421 0.0217211 0.999764i 0.493085π-0.493085\pi
0.0217211 + 0.999764i 0.493085π0.493085\pi
182182 10.3347i 0.766058i
183183 6.28990 0.464963
184184 − 2.02806i − 0.149510i
185185 − 10.6128i − 0.780269i
186186 − 0.865884i − 0.0634897i
187187 12.1441 0.888065
188188 9.52807i 0.694906i
189189 12.1185i 0.881495i
190190 8.47497 0.614839
191191 2.17573i 0.157430i 0.996897 + 0.0787150i 0.0250817π0.0250817\pi
−0.996897 + 0.0787150i 0.974918π0.974918\pi
192192 − 1.06263i − 0.0766889i
193193 10.9969i 0.791574i 0.918342 + 0.395787i 0.129528π0.129528\pi
−0.918342 + 0.395787i 0.870472π0.870472\pi
194194 −2.97302 −0.213451
195195 19.1968i 1.37471i
196196 1.51809 0.108435
197197 −2.58734 −0.184341 −0.0921703 0.995743i 0.529380π-0.529380\pi
−0.0921703 + 0.995743i 0.529380π0.529380\pi
198198 9.02865 0.641638
199199 −5.42095 −0.384281 −0.192141 0.981367i 0.561543π-0.561543\pi
−0.192141 + 0.981367i 0.561543π0.561543\pi
200200 11.7505i 0.830888i
201201 − 5.52696i − 0.389842i
202202 −1.34253 −0.0944599
203203 0 0
204204 −2.67397 −0.187215
205205 − 0.428212i − 0.0299076i
206206 12.1572i 0.847030i
207207 −3.79411 −0.263709
208208 −4.41399 −0.306055
209209 9.99348 0.691263
210210 −10.1827 −0.702674
211211 − 9.80716i − 0.675152i −0.941298 0.337576i 0.890393π-0.890393\pi
0.941298 0.337576i 0.109607π-0.109607\pi
212212 10.5005 0.721181
213213 − 5.88905i − 0.403511i
214214 0.164950i 0.0112758i
215215 12.9127i 0.880638i
216216 −5.17588 −0.352174
217217 − 1.90784i − 0.129513i
218218 9.09810i 0.616201i
219219 −2.68699 −0.181570
220220 19.7518i 1.33167i
221221 11.1072i 0.747150i
222222 2.75549i 0.184937i
223223 7.81817 0.523543 0.261772 0.965130i 0.415693π-0.415693\pi
0.261772 + 0.965130i 0.415693π0.415693\pi
224224 − 2.34135i − 0.156438i
225225 21.9830 1.46553
226226 17.8409 1.18676
227227 6.97891 0.463206 0.231603 0.972810i 0.425603π-0.425603\pi
0.231603 + 0.972810i 0.425603π0.425603\pi
228228 −2.20043 −0.145727
229229 − 23.7679i − 1.57063i −0.619098 0.785314i 0.712502π-0.712502\pi
0.619098 0.785314i 0.287498π-0.287498\pi
230230 − 8.30031i − 0.547306i
231231 −12.0072 −0.790017
232232 0 0
233233 4.73738 0.310356 0.155178 0.987887i 0.450405π-0.450405\pi
0.155178 + 0.987887i 0.450405π0.450405\pi
234234 8.25774i 0.539825i
235235 38.9959i 2.54381i
236236 8.95633 0.583007
237237 14.4517 0.938738
238238 −5.89167 −0.381901
239239 −6.83571 −0.442165 −0.221083 0.975255i 0.570959π-0.570959\pi
−0.221083 + 0.975255i 0.570959π0.570959\pi
240240 − 4.34908i − 0.280732i
241241 4.12413 0.265659 0.132829 0.991139i 0.457594π-0.457594\pi
0.132829 + 0.991139i 0.457594π0.457594\pi
242242 12.2909i 0.790087i
243243 15.6471i 1.00376i
244244 5.91917i 0.378936i
245245 6.21314 0.396943
246246 0.111180i 0.00708860i
247247 9.14018i 0.581576i
248248 0.814848 0.0517429
249249 − 14.8702i − 0.942358i
250250 27.6282i 1.74736i
251251 7.01765i 0.442950i 0.975166 + 0.221475i 0.0710871π0.0710871\pi
−0.975166 + 0.221475i 0.928913π0.928913\pi
252252 −4.38022 −0.275928
253253 − 9.78752i − 0.615336i
254254 4.78987 0.300543
255255 −10.9439 −0.685331
256256 1.00000 0.0625000
257257 −8.92910 −0.556982 −0.278491 0.960439i 0.589834π-0.589834\pi
−0.278491 + 0.960439i 0.589834π0.589834\pi
258258 − 3.35263i − 0.208726i
259259 6.07131i 0.377253i
260260 −18.0653 −1.12036
261261 0 0
262262 −17.1054 −1.05677
263263 − 10.6660i − 0.657691i −0.944384 0.328845i 0.893340π-0.893340\pi
0.944384 0.328845i 0.106660π-0.106660\pi
264264 − 5.12833i − 0.315627i
265265 42.9760 2.64000
266266 −4.84830 −0.297269
267267 9.51626 0.582386
268268 5.20120 0.317714
269269 − 1.83883i − 0.112115i −0.998428 0.0560577i 0.982147π-0.982147\pi
0.998428 0.0560577i 0.0178531π-0.0178531\pi
270270 −21.1836 −1.28919
271271 10.4981i 0.637713i 0.947803 + 0.318857i 0.103299π0.103299\pi
−0.947803 + 0.318857i 0.896701π0.896701\pi
272272 − 2.51636i − 0.152577i
273273 − 10.9820i − 0.664659i
274274 17.8870 1.08060
275275 56.7088i 3.41967i
276276 2.15508i 0.129720i
277277 12.2091 0.733573 0.366787 0.930305i 0.380458π-0.380458\pi
0.366787 + 0.930305i 0.380458π0.380458\pi
278278 − 19.7082i − 1.18202i
279279 − 1.52443i − 0.0912650i
280280 − 9.58253i − 0.572666i
281281 −32.3410 −1.92931 −0.964653 0.263525i 0.915115π-0.915115\pi
−0.964653 + 0.263525i 0.915115π0.915115\pi
282282 − 10.1248i − 0.602926i
283283 −7.69360 −0.457337 −0.228669 0.973504i 0.573437π-0.573437\pi
−0.228669 + 0.973504i 0.573437π0.573437\pi
284284 5.54194 0.328854
285285 −9.00578 −0.533456
286286 −21.3022 −1.25962
287287 0.244969i 0.0144601i
288288 − 1.87081i − 0.110239i
289289 10.6679 0.627526
290290 0 0
291291 3.15923 0.185197
292292 − 2.52861i − 0.147976i
293293 − 28.4855i − 1.66414i −0.554671 0.832069i 0.687156π-0.687156\pi
0.554671 0.832069i 0.312844π-0.312844\pi
294294 −1.61317 −0.0940819
295295 36.6559 2.13419
296296 −2.59308 −0.150720
297297 −24.9791 −1.44944
298298 − 8.42016i − 0.487767i
299299 8.95181 0.517697
300300 − 12.4865i − 0.720908i
301301 − 7.38701i − 0.425780i
302302 − 17.5963i − 1.01255i
303303 1.42661 0.0819568
304304 − 2.07073i − 0.118765i
305305 24.2256i 1.38716i
306306 −4.70763 −0.269117
307307 15.3241i 0.874592i 0.899318 + 0.437296i 0.144064π0.144064\pi
−0.899318 + 0.437296i 0.855936π0.855936\pi
308308 − 11.2995i − 0.643848i
309309 − 12.9186i − 0.734914i
310310 3.33496 0.189413
311311 14.2888i 0.810246i 0.914262 + 0.405123i 0.132771π0.132771\pi
−0.914262 + 0.405123i 0.867229π0.867229\pi
312312 4.69045 0.265544
313313 3.74014 0.211405 0.105703 0.994398i 0.466291π-0.466291\pi
0.105703 + 0.994398i 0.466291π0.466291\pi
314314 −14.1234 −0.797030
315315 −17.9271 −1.01008
316316 13.5999i 0.765053i
317317 33.7075i 1.89320i 0.322405 + 0.946602i 0.395509π0.395509\pi
−0.322405 + 0.946602i 0.604491π0.604491\pi
318318 −11.1582 −0.625722
319319 0 0
320320 4.09274 0.228791
321321 − 0.175281i − 0.00978325i
322322 4.74838i 0.264617i
323323 −5.21070 −0.289931
324324 −0.112368 −0.00624267
325325 −51.8667 −2.87705
326326 −11.5253 −0.638326
327327 − 9.66794i − 0.534638i
328328 −0.104627 −0.00577707
329329 − 22.3085i − 1.22991i
330330 − 20.9889i − 1.15540i
331331 − 18.1622i − 0.998283i −0.866520 0.499142i 0.833649π-0.833649\pi
0.866520 0.499142i 0.166351π-0.166351\pi
332332 13.9937 0.768003
333333 4.85117i 0.265842i
334334 11.0161i 0.602773i
335335 21.2872 1.16304
336336 2.48799i 0.135731i
337337 − 0.304315i − 0.0165771i −0.999966 0.00828855i 0.997362π-0.997362\pi
0.999966 0.00828855i 0.00263836π-0.00263836\pi
338338 − 6.48329i − 0.352645i
339339 −18.9584 −1.02968
340340 − 10.2988i − 0.558531i
341341 3.93251 0.212957
342342 −3.87395 −0.209479
343343 −19.9438 −1.07686
344344 3.15502 0.170107
345345 8.82018i 0.474862i
346346 − 11.3228i − 0.608716i
347347 3.49887 0.187829 0.0939146 0.995580i 0.470062π-0.470062\pi
0.0939146 + 0.995580i 0.470062π0.470062\pi
348348 0 0
349349 26.3670 1.41139 0.705696 0.708515i 0.250634π-0.250634\pi
0.705696 + 0.708515i 0.250634π0.250634\pi
350350 − 27.5121i − 1.47058i
351351 − 22.8463i − 1.21944i
352352 4.82606 0.257230
353353 17.8689 0.951066 0.475533 0.879698i 0.342255π-0.342255\pi
0.475533 + 0.879698i 0.342255π0.342255\pi
354354 −9.51729 −0.505838
355355 22.6817 1.20382
356356 8.95536i 0.474633i
357357 6.26069 0.331351
358358 22.9508i 1.21299i
359359 − 2.89578i − 0.152834i −0.997076 0.0764168i 0.975652π-0.975652\pi
0.997076 0.0764168i 0.0243480π-0.0243480\pi
360360 − 7.65675i − 0.403546i
361361 14.7121 0.774320
362362 − 0.584454i − 0.0307182i
363363 − 13.0607i − 0.685508i
364364 10.3347 0.541685
365365 − 10.3490i − 0.541689i
366366 − 6.28990i − 0.328779i
367367 16.6465i 0.868942i 0.900686 + 0.434471i 0.143065π0.143065\pi
−0.900686 + 0.434471i 0.856935π0.856935\pi
368368 −2.02806 −0.105720
369369 0.195738i 0.0101897i
370370 −10.6128 −0.551734
371371 −24.5854 −1.27641
372372 −0.865884 −0.0448940
373373 −9.06657 −0.469449 −0.234725 0.972062i 0.575419π-0.575419\pi
−0.234725 + 0.972062i 0.575419π0.575419\pi
374374 − 12.1441i − 0.627957i
375375 − 29.3586i − 1.51607i
376376 9.52807 0.491373
377377 0 0
378378 12.1185 0.623311
379379 36.9042i 1.89564i 0.318801 + 0.947822i 0.396720π0.396720\pi
−0.318801 + 0.947822i 0.603280π0.603280\pi
380380 − 8.47497i − 0.434757i
381381 −5.08988 −0.260762
382382 2.17573 0.111320
383383 5.74597 0.293606 0.146803 0.989166i 0.453102π-0.453102\pi
0.146803 + 0.989166i 0.453102π0.453102\pi
384384 −1.06263 −0.0542273
385385 − 46.2459i − 2.35691i
386386 10.9969 0.559728
387387 − 5.90245i − 0.300039i
388388 2.97302i 0.150932i
389389 1.82846i 0.0927066i 0.998925 + 0.0463533i 0.0147600π0.0147600\pi
−0.998925 + 0.0463533i 0.985240π0.985240\pi
390390 19.1968 0.972067
391391 5.10332i 0.258086i
392392 − 1.51809i − 0.0766750i
393393 18.1767 0.916895
394394 2.58734i 0.130348i
395395 55.6608i 2.80060i
396396 − 9.02865i − 0.453707i
397397 −19.5808 −0.982732 −0.491366 0.870953i 0.663502π-0.663502\pi
−0.491366 + 0.870953i 0.663502π0.663502\pi
398398 5.42095i 0.271728i
399399 5.15197 0.257921
400400 11.7505 0.587526
401401 12.0020 0.599349 0.299674 0.954042i 0.403122π-0.403122\pi
0.299674 + 0.954042i 0.403122π0.403122\pi
402402 −5.52696 −0.275660
403403 3.59673i 0.179166i
404404 1.34253i 0.0667932i
405405 −0.459893 −0.0228523
406406 0 0
407407 −12.5144 −0.620314
408408 2.67397i 0.132381i
409409 5.79580i 0.286584i 0.989680 + 0.143292i 0.0457688π0.0457688\pi
−0.989680 + 0.143292i 0.954231π0.954231\pi
410410 −0.428212 −0.0211479
411411 −19.0074 −0.937564
412412 12.1572 0.598941
413413 −20.9699 −1.03186
414414 3.79411i 0.186470i
415415 57.2725 2.81140
416416 4.41399i 0.216414i
417417 20.9426i 1.02556i
418418 − 9.99348i − 0.488797i
419419 18.9577 0.926145 0.463073 0.886320i 0.346747π-0.346747\pi
0.463073 + 0.886320i 0.346747π0.346747\pi
420420 10.1827i 0.496866i
421421 − 23.3207i − 1.13658i −0.822827 0.568292i 0.807604π-0.807604\pi
0.822827 0.568292i 0.192396π-0.192396\pi
422422 −9.80716 −0.477405
423423 − 17.8252i − 0.866692i
424424 − 10.5005i − 0.509952i
425425 − 29.5686i − 1.43429i
426426 −5.88905 −0.285325
427427 − 13.8588i − 0.670676i
428428 0.164950 0.00797316
429429 22.6364 1.09290
430430 12.9127 0.622705
431431 −5.71450 −0.275258 −0.137629 0.990484i 0.543948π-0.543948\pi
−0.137629 + 0.990484i 0.543948π0.543948\pi
432432 5.17588i 0.249025i
433433 − 16.0811i − 0.772807i −0.922330 0.386403i 0.873717π-0.873717\pi
0.922330 0.386403i 0.126283π-0.126283\pi
434434 −1.90784 −0.0915794
435435 0 0
436436 9.09810 0.435720
437437 4.19956i 0.200892i
438438 2.68699i 0.128389i
439439 −31.7509 −1.51539 −0.757695 0.652609i 0.773674π-0.773674\pi
−0.757695 + 0.652609i 0.773674π0.773674\pi
440440 19.7518 0.941631
441441 −2.84005 −0.135241
442442 11.1072 0.528315
443443 17.9434i 0.852518i 0.904601 + 0.426259i 0.140169π0.140169\pi
−0.904601 + 0.426259i 0.859831π0.859831\pi
444444 2.75549 0.130770
445445 36.6520i 1.73747i
446446 − 7.81817i − 0.370201i
447447 8.94754i 0.423204i
448448 −2.34135 −0.110618
449449 − 3.20804i − 0.151397i −0.997131 0.0756984i 0.975881π-0.975881\pi
0.997131 0.0756984i 0.0241186π-0.0241186\pi
450450 − 21.9830i − 1.03629i
451451 −0.504938 −0.0237766
452452 − 17.8409i − 0.839167i
453453 18.6984i 0.878525i
454454 − 6.97891i − 0.327536i
455455 42.2972 1.98292
456456 2.20043i 0.103044i
457457 −34.3685 −1.60769 −0.803845 0.594839i 0.797216π-0.797216\pi
−0.803845 + 0.594839i 0.797216π0.797216\pi
458458 −23.7679 −1.11060
459459 13.0244 0.607926
460460 −8.30031 −0.387004
461461 29.4802i 1.37303i 0.727115 + 0.686515i 0.240860π0.240860\pi
−0.727115 + 0.686515i 0.759140π0.759140\pi
462462 12.0072i 0.558626i
463463 −32.1086 −1.49222 −0.746108 0.665825i 0.768080π-0.768080\pi
−0.746108 + 0.665825i 0.768080π0.768080\pi
464464 0 0
465465 −3.54384 −0.164342
466466 − 4.73738i − 0.219455i
467467 34.6768i 1.60465i 0.596888 + 0.802324i 0.296404π0.296404\pi
−0.596888 + 0.802324i 0.703596π0.703596\pi
468468 8.25774 0.381714
469469 −12.1778 −0.562319
470470 38.9959 1.79875
471471 15.0080 0.691532
472472 − 8.95633i − 0.412248i
473473 15.2263 0.700108
474474 − 14.4517i − 0.663788i
475475 − 24.3322i − 1.11644i
476476 5.89167i 0.270044i
477477 −19.6445 −0.899462
478478 6.83571i 0.312658i
479479 41.7958i 1.90970i 0.297089 + 0.954850i 0.403984π0.403984\pi
−0.297089 + 0.954850i 0.596016π0.596016\pi
480480 −4.34908 −0.198508
481481 − 11.4458i − 0.521885i
482482 − 4.12413i − 0.187849i
483483 − 5.04579i − 0.229591i
484484 12.2909 0.558676
485485 12.1678i 0.552512i
486486 15.6471 0.709765
487487 −30.9514 −1.40254 −0.701271 0.712895i 0.747384π-0.747384\pi
−0.701271 + 0.712895i 0.747384π0.747384\pi
488488 5.91917 0.267948
489489 12.2471 0.553835
490490 − 6.21314i − 0.280681i
491491 19.6356i 0.886140i 0.896487 + 0.443070i 0.146111π0.146111\pi
−0.896487 + 0.443070i 0.853889π0.853889\pi
492492 0.111180 0.00501240
493493 0 0
494494 9.14018 0.411236
495495 − 36.9519i − 1.66087i
496496 − 0.814848i − 0.0365878i
497497 −12.9756 −0.582036
498498 −14.8702 −0.666347
499499 40.0525 1.79300 0.896498 0.443048i 0.146103π-0.146103\pi
0.896498 + 0.443048i 0.146103π0.146103\pi
500500 27.6282 1.23557
501501 − 11.7061i − 0.522988i
502502 7.01765 0.313213
503503 − 16.3539i − 0.729185i −0.931167 0.364592i 0.881208π-0.881208\pi
0.931167 0.364592i 0.118792π-0.118792\pi
504504 4.38022i 0.195111i
505505 5.49462i 0.244507i
506506 −9.78752 −0.435108
507507 6.88936i 0.305967i
508508 − 4.78987i − 0.212516i
509509 −39.2493 −1.73969 −0.869847 0.493322i 0.835782π-0.835782\pi
−0.869847 + 0.493322i 0.835782π0.835782\pi
510510 10.9439i 0.484602i
511511 5.92036i 0.261901i
512512 − 1.00000i − 0.0441942i
513513 10.7179 0.473205
514514 8.92910i 0.393846i
515515 49.7562 2.19252
516516 −3.35263 −0.147591
517517 45.9831 2.02233
518518 6.07131 0.266758
519519 12.0320i 0.528144i
520520 18.0653i 0.792216i
521521 10.9022 0.477633 0.238817 0.971065i 0.423241π-0.423241\pi
0.238817 + 0.971065i 0.423241π0.423241\pi
522522 0 0
523523 16.6229 0.726871 0.363435 0.931619i 0.381604π-0.381604\pi
0.363435 + 0.931619i 0.381604π0.381604\pi
524524 17.1054i 0.747252i
525525 29.2352i 1.27593i
526526 −10.6660 −0.465058
527527 −2.05045 −0.0893190
528528 −5.12833 −0.223182
529529 −18.8870 −0.821174
530530 − 42.9760i − 1.86676i
531531 −16.7556 −0.727131
532532 4.84830i 0.210201i
533533 − 0.461824i − 0.0200038i
534534 − 9.51626i − 0.411809i
535535 0.675098 0.0291870
536536 − 5.20120i − 0.224658i
537537 − 24.3883i − 1.05243i
538538 −1.83883 −0.0792775
539539 − 7.32638i − 0.315570i
540540 21.1836i 0.911595i
541541 − 42.7235i − 1.83683i −0.395620 0.918414i 0.629470π-0.629470\pi
0.395620 0.918414i 0.370530π-0.370530\pi
542542 10.4981 0.450931
543543 0.621060i 0.0266522i
544544 −2.51636 −0.107888
545545 37.2362 1.59502
546546 −10.9820 −0.469985
547547 −5.64174 −0.241223 −0.120612 0.992700i 0.538486π-0.538486\pi
−0.120612 + 0.992700i 0.538486π0.538486\pi
548548 − 17.8870i − 0.764097i
549549 − 11.0736i − 0.472612i
550550 56.7088 2.41807
551551 0 0
552552 2.15508 0.0917262
553553 − 31.8421i − 1.35406i
554554 − 12.2091i − 0.518714i
555555 11.2775 0.478704
556556 −19.7082 −0.835814
557557 13.7312 0.581809 0.290904 0.956752i 0.406044π-0.406044\pi
0.290904 + 0.956752i 0.406044π0.406044\pi
558558 −1.52443 −0.0645341
559559 13.9262i 0.589017i
560560 −9.58253 −0.404936
561561 12.9047i 0.544838i
562562 32.3410i 1.36422i
563563 − 8.73098i − 0.367967i −0.982929 0.183983i 0.941101π-0.941101\pi
0.982929 0.183983i 0.0588993π-0.0588993\pi
564564 −10.1248 −0.426333
565565 − 73.0183i − 3.07190i
566566 7.69360i 0.323386i
567567 0.263093 0.0110489
568568 − 5.54194i − 0.232535i
569569 4.48796i 0.188145i 0.995565 + 0.0940726i 0.0299886π0.0299886\pi
−0.995565 + 0.0940726i 0.970011π0.970011\pi
570570 9.00578i 0.377211i
571571 −24.5254 −1.02636 −0.513179 0.858282i 0.671532π-0.671532\pi
−0.513179 + 0.858282i 0.671532π0.671532\pi
572572 21.3022i 0.890689i
573573 −2.31200 −0.0965851
574574 0.244969 0.0102248
575575 −23.8307 −0.993810
576576 −1.87081 −0.0779505
577577 17.0299i 0.708963i 0.935063 + 0.354482i 0.115343π0.115343\pi
−0.935063 + 0.354482i 0.884657π0.884657\pi
578578 − 10.6679i − 0.443728i
579579 −11.6857 −0.485640
580580 0 0
581581 −32.7641 −1.35928
582582 − 3.15923i − 0.130954i
583583 − 50.6763i − 2.09880i
584584 −2.52861 −0.104635
585585 33.7968 1.39733
586586 −28.4855 −1.17672
587587 20.5873 0.849730 0.424865 0.905257i 0.360322π-0.360322\pi
0.424865 + 0.905257i 0.360322π0.360322\pi
588588 1.61317i 0.0665260i
589589 −1.68733 −0.0695253
590590 − 36.6559i − 1.50910i
591591 − 2.74940i − 0.113095i
592592 2.59308i 0.106575i
593593 −3.53718 −0.145255 −0.0726273 0.997359i 0.523138π-0.523138\pi
−0.0726273 + 0.997359i 0.523138π0.523138\pi
594594 24.9791i 1.02491i
595595 24.1131i 0.988541i
596596 −8.42016 −0.344903
597597 − 5.76048i − 0.235761i
598598 − 8.95181i − 0.366067i
599599 17.0646i 0.697239i 0.937264 + 0.348620i 0.113349π0.113349\pi
−0.937264 + 0.348620i 0.886651π0.886651\pi
600600 −12.4865 −0.509759
601601 − 29.3558i − 1.19745i −0.800955 0.598725i 0.795674π-0.795674\pi
0.800955 0.598725i 0.204326π-0.204326\pi
602602 −7.38701 −0.301072
603603 −9.73046 −0.396255
604604 −17.5963 −0.715981
605605 50.3034 2.04512
606606 − 1.42661i − 0.0579522i
607607 − 14.2568i − 0.578664i −0.957229 0.289332i 0.906567π-0.906567\pi
0.957229 0.289332i 0.0934332π-0.0934332\pi
608608 −2.07073 −0.0839792
609609 0 0
610610 24.2256 0.980867
611611 42.0568i 1.70144i
612612 4.70763i 0.190295i
613613 18.1200 0.731859 0.365929 0.930643i 0.380751π-0.380751\pi
0.365929 + 0.930643i 0.380751π0.380751\pi
614614 15.3241 0.618430
615615 0.455033 0.0183487
616616 −11.2995 −0.455270
617617 − 10.5215i − 0.423581i −0.977315 0.211791i 0.932071π-0.932071\pi
0.977315 0.211791i 0.0679295π-0.0679295\pi
618618 −12.9186 −0.519663
619619 18.1506i 0.729533i 0.931099 + 0.364766i 0.118851π0.118851\pi
−0.931099 + 0.364766i 0.881149π0.881149\pi
620620 − 3.33496i − 0.133935i
621621 − 10.4970i − 0.421229i
622622 14.2888 0.572930
623623 − 20.9676i − 0.840050i
624624 − 4.69045i − 0.187768i
625625 54.3223 2.17289
626626 − 3.74014i − 0.149486i
627627 10.6194i 0.424098i
628628 14.1234i 0.563585i
629629 6.52512 0.260174
630630 17.9271i 0.714233i
631631 −41.9413 −1.66966 −0.834829 0.550509i 0.814434π-0.814434\pi
−0.834829 + 0.550509i 0.814434π0.814434\pi
632632 13.5999 0.540974
633633 10.4214 0.414214
634634 33.7075 1.33870
635635 − 19.6037i − 0.777950i
636636 11.1582i 0.442453i
637637 6.70082 0.265496
638638 0 0
639639 −10.3679 −0.410149
640640 − 4.09274i − 0.161780i
641641 10.5733i 0.417621i 0.977956 + 0.208810i 0.0669591π0.0669591\pi
−0.977956 + 0.208810i 0.933041π0.933041\pi
642642 −0.175281 −0.00691780
643643 −26.1513 −1.03131 −0.515654 0.856797i 0.672451π-0.672451\pi
−0.515654 + 0.856797i 0.672451π0.672451\pi
644644 4.74838 0.187113
645645 −13.7215 −0.540282
646646 5.21070i 0.205012i
647647 −31.3433 −1.23223 −0.616116 0.787655i 0.711295π-0.711295\pi
−0.616116 + 0.787655i 0.711295π0.711295\pi
648648 0.112368i 0.00441423i
649649 − 43.2238i − 1.69668i
650650 51.8667i 2.03438i
651651 2.02734 0.0794576
652652 11.5253i 0.451365i
653653 − 18.8481i − 0.737582i −0.929512 0.368791i 0.879772π-0.879772\pi
0.929512 0.368791i 0.120228π-0.120228\pi
654654 −9.66794 −0.378046
655655 70.0079i 2.73543i
656656 0.104627i 0.00408501i
657657 4.73055i 0.184557i
658658 −22.3085 −0.869677
659659 − 39.6720i − 1.54540i −0.634772 0.772700i 0.718906π-0.718906\pi
0.634772 0.772700i 0.281094π-0.281094\pi
660660 −20.9889 −0.816993
661661 10.9995 0.427831 0.213915 0.976852i 0.431378π-0.431378\pi
0.213915 + 0.976852i 0.431378π0.431378\pi
662662 −18.1622 −0.705893
663663 −11.8029 −0.458385
664664 − 13.9937i − 0.543060i
665665 19.8429i 0.769473i
666666 4.85117 0.187979
667667 0 0
668668 11.0161 0.426225
669669 8.30784i 0.321200i
670670 − 21.2872i − 0.822395i
671671 28.5663 1.10279
672672 2.48799 0.0959765
673673 −33.1651 −1.27842 −0.639209 0.769033i 0.720738π-0.720738\pi
−0.639209 + 0.769033i 0.720738π0.720738\pi
674674 −0.304315 −0.0117218
675675 60.8194i 2.34094i
676676 −6.48329 −0.249357
677677 − 22.4611i − 0.863252i −0.902053 0.431626i 0.857940π-0.857940\pi
0.902053 0.431626i 0.142060π-0.142060\pi
678678 18.9584i 0.728092i
679679 − 6.96088i − 0.267134i
680680 −10.2988 −0.394941
681681 7.41602i 0.284182i
682682 − 3.93251i − 0.150583i
683683 16.7244 0.639943 0.319971 0.947427i 0.396327π-0.396327\pi
0.319971 + 0.947427i 0.396327π0.396327\pi
684684 3.87395i 0.148124i
685685 − 73.2070i − 2.79710i
686686 19.9438i 0.761458i
687687 25.2566 0.963598
688688 − 3.15502i − 0.120284i
689689 46.3493 1.76577
690690 8.82018 0.335778
691691 1.93289 0.0735304 0.0367652 0.999324i 0.488295π-0.488295\pi
0.0367652 + 0.999324i 0.488295π0.488295\pi
692692 −11.3228 −0.430427
693693 21.1392i 0.803013i
694694 − 3.49887i − 0.132815i
695695 −80.6606 −3.05963
696696 0 0
697697 0.263280 0.00997243
698698 − 26.3670i − 0.998005i
699699 5.03410i 0.190407i
700700 −27.5121 −1.03986
701701 15.0476 0.568340 0.284170 0.958774i 0.408282π-0.408282\pi
0.284170 + 0.958774i 0.408282π0.408282\pi
702702 −22.8463 −0.862278
703703 5.36957 0.202517
704704 − 4.82606i − 0.181889i
705705 −41.4384 −1.56066
706706 − 17.8689i − 0.672505i
707707 − 3.14332i − 0.118217i
708708 9.51729i 0.357682i
709709 −36.7239 −1.37919 −0.689597 0.724193i 0.742212π-0.742212\pi
−0.689597 + 0.724193i 0.742212π0.742212\pi
710710 − 22.6817i − 0.851230i
711711 − 25.4428i − 0.954180i
712712 8.95536 0.335616
713713 1.65256i 0.0618887i
714714 − 6.26069i − 0.234300i
715715 87.1843i 3.26051i
716716 22.9508 0.857711
717717 − 7.26385i − 0.271273i
718718 −2.89578 −0.108070
719719 −21.6653 −0.807980 −0.403990 0.914763i 0.632377π-0.632377\pi
−0.403990 + 0.914763i 0.632377π0.632377\pi
720720 −7.65675 −0.285350
721721 −28.4642 −1.06006
722722 − 14.7121i − 0.547527i
723723 4.38244i 0.162985i
724724 −0.584454 −0.0217211
725725 0 0
726726 −13.0607 −0.484728
727727 1.87449i 0.0695210i 0.999396 + 0.0347605i 0.0110668π0.0110668\pi
−0.999396 + 0.0347605i 0.988933π0.988933\pi
728728 − 10.3347i − 0.383029i
729729 −16.2900 −0.603332
730730 −10.3490 −0.383032
731731 −7.93917 −0.293641
732732 −6.28990 −0.232482
733733 53.2656i 1.96741i 0.179791 + 0.983705i 0.442458π0.442458\pi
−0.179791 + 0.983705i 0.557542π0.557542\pi
734734 16.6465 0.614435
735735 6.60228i 0.243529i
736736 2.02806i 0.0747551i
737737 − 25.1013i − 0.924618i
738738 0.195738 0.00720521
739739 20.1011i 0.739431i 0.929145 + 0.369716i 0.120545π0.120545\pi
−0.929145 + 0.369716i 0.879455π0.879455\pi
740740 10.6128i 0.390135i
741741 −9.71266 −0.356803
742742 24.5854i 0.902560i
743743 − 10.7246i − 0.393449i −0.980459 0.196725i 0.936970π-0.936970\pi
0.980459 0.196725i 0.0630305π-0.0630305\pi
744744 0.865884i 0.0317449i
745745 −34.4615 −1.26257
746746 9.06657i 0.331951i
747747 −26.1795 −0.957859
748748 −12.1441 −0.444032
749749 −0.386206 −0.0141116
750750 −29.3586 −1.07202
751751 − 19.7336i − 0.720090i −0.932935 0.360045i 0.882761π-0.882761\pi
0.932935 0.360045i 0.117239π-0.117239\pi
752752 − 9.52807i − 0.347453i
753753 −7.45719 −0.271755
754754 0 0
755755 −72.0169 −2.62096
756756 − 12.1185i − 0.440747i
757757 − 1.39712i − 0.0507793i −0.999678 0.0253896i 0.991917π-0.991917\pi
0.999678 0.0253896i 0.00808264π-0.00808264\pi
758758 36.9042 1.34042
759759 10.4005 0.377516
760760 −8.47497 −0.307419
761761 −29.3599 −1.06430 −0.532148 0.846651i 0.678615π-0.678615\pi
−0.532148 + 0.846651i 0.678615π0.678615\pi
762762 5.08988i 0.184387i
763763 −21.3018 −0.771178
764764 − 2.17573i − 0.0787150i
765765 19.2671i 0.696604i
766766 − 5.74597i − 0.207610i
767767 39.5331 1.42746
768768 1.06263i 0.0383445i
769769 24.6926i 0.890439i 0.895421 + 0.445220i 0.146874π0.146874\pi
−0.895421 + 0.445220i 0.853126π0.853126\pi
770770 −46.2459 −1.66659
771771 − 9.48835i − 0.341715i
772772 − 10.9969i − 0.395787i
773773 9.23177i 0.332044i 0.986122 + 0.166022i 0.0530922π0.0530922\pi
−0.986122 + 0.166022i 0.946908π0.946908\pi
774774 −5.90245 −0.212159
775775 − 9.57490i − 0.343940i
776776 2.97302 0.106725
777777 −6.45157 −0.231449
778778 1.82846 0.0655535
779779 0.216655 0.00776247
780780 − 19.1968i − 0.687355i
781781 − 26.7457i − 0.957038i
782782 5.10332 0.182494
783783 0 0
784784 −1.51809 −0.0542174
785785 57.8034i 2.06309i
786786 − 18.1767i − 0.648343i
787787 −6.56731 −0.234099 −0.117050 0.993126i 0.537344π-0.537344\pi
−0.117050 + 0.993126i 0.537344π0.537344\pi
788788 2.58734 0.0921703
789789 11.3340 0.403501
790790 55.6608 1.98032
791791 41.7719i 1.48524i
792792 −9.02865 −0.320819
793793 26.1271i 0.927802i
794794 19.5808i 0.694896i
795795 45.6677i 1.61967i
796796 5.42095 0.192141
797797 10.6456i 0.377088i 0.982065 + 0.188544i 0.0603768π0.0603768\pi
−0.982065 + 0.188544i 0.939623π0.939623\pi
798798 − 5.15197i − 0.182378i
799799 −23.9761 −0.848212
800800 − 11.7505i − 0.415444i
801801 − 16.7538i − 0.591966i
802802 − 12.0020i − 0.423804i
803803 −12.2032 −0.430643
804804 5.52696i 0.194921i
805805 19.4339 0.684955
806806 3.59673 0.126689
807807 1.95400 0.0687840
808808 1.34253 0.0472299
809809 − 28.7914i − 1.01225i −0.862460 0.506126i 0.831077π-0.831077\pi
0.862460 0.506126i 0.168923π-0.168923\pi
810810 0.459893i 0.0161590i
811811 34.2025 1.20101 0.600505 0.799621i 0.294966π-0.294966\pi
0.600505 + 0.799621i 0.294966π0.294966\pi
812812 0 0
813813 −11.1556 −0.391244
814814 12.5144i 0.438629i
815815 47.1700i 1.65229i
816816 2.67397 0.0936075
817817 −6.53321 −0.228568
818818 5.79580 0.202645
819819 −19.3342 −0.675593
820820 0.428212i 0.0149538i
821821 −27.5825 −0.962637 −0.481319 0.876546i 0.659842π-0.659842\pi
−0.481319 + 0.876546i 0.659842π0.659842\pi
822822 19.0074i 0.662958i
823823 31.5932i 1.10127i 0.834746 + 0.550635i 0.185614π0.185614\pi
−0.834746 + 0.550635i 0.814386π0.814386\pi
824824 − 12.1572i − 0.423515i
825825 −60.2606 −2.09801
826826 20.9699i 0.729636i
827827 − 33.6269i − 1.16932i −0.811278 0.584660i 0.801228π-0.801228\pi
0.811278 0.584660i 0.198772π-0.198772\pi
828828 3.79411 0.131854
829829 22.4142i 0.778478i 0.921137 + 0.389239i 0.127262π0.127262\pi
−0.921137 + 0.389239i 0.872738π0.872738\pi
830830 − 57.2725i − 1.98796i
831831 12.9738i 0.450055i
832832 4.41399 0.153028
833833 3.82005i 0.132357i
834834 20.9426 0.725183
835835 45.0860 1.56026
836836 −9.99348 −0.345632
837837 4.21756 0.145780
838838 − 18.9577i − 0.654884i
839839 18.7664i 0.647888i 0.946076 + 0.323944i 0.105009π0.105009\pi
−0.946076 + 0.323944i 0.894991π0.894991\pi
840840 10.1827 0.351337
841841 0 0
842842 −23.3207 −0.803686
843843 − 34.3667i − 1.18365i
844844 9.80716i 0.337576i
845845 −26.5344 −0.912812
846846 −17.8252 −0.612844
847847 −28.7772 −0.988797
848848 −10.5005 −0.360590
849849 − 8.17547i − 0.280581i
850850 −29.5686 −1.01419
851851 − 5.25891i − 0.180273i
852852 5.88905i 0.201755i
853853 42.4529i 1.45356i 0.686870 + 0.726781i 0.258984π0.258984\pi
−0.686870 + 0.726781i 0.741016π0.741016\pi
854854 −13.8588 −0.474240
855855 15.8551i 0.542232i
856856 − 0.164950i − 0.00563788i
857857 −42.4913 −1.45147 −0.725737 0.687972i 0.758501π-0.758501\pi
−0.725737 + 0.687972i 0.758501π0.758501\pi
858858 − 22.6364i − 0.772794i
859859 33.4671i 1.14188i 0.820991 + 0.570941i 0.193421π0.193421\pi
−0.820991 + 0.570941i 0.806579π0.806579\pi
860860 − 12.9127i − 0.440319i
861861 −0.260312 −0.00887141
862862 5.71450i 0.194637i
863863 −21.4668 −0.730739 −0.365369 0.930863i 0.619057π-0.619057\pi
−0.365369 + 0.930863i 0.619057π0.619057\pi
864864 5.17588 0.176087
865865 −46.3412 −1.57565
866866 −16.0811 −0.546457
867867 11.3361i 0.384994i
868868 1.90784i 0.0647564i
869869 65.6339 2.22648
870870 0 0
871871 22.9580 0.777903
872872 − 9.09810i − 0.308101i
873873 − 5.56196i − 0.188244i
874874 4.19956 0.142052
875875 −64.6872 −2.18683
876876 2.68699 0.0907848
877877 9.19139 0.310371 0.155186 0.987885i 0.450402π-0.450402\pi
0.155186 + 0.987885i 0.450402π0.450402\pi
878878 31.7509i 1.07154i
879879 30.2696 1.02097
880880 − 19.7518i − 0.665834i
881881 − 15.6573i − 0.527509i −0.964590 0.263755i 0.915039π-0.915039\pi
0.964590 0.263755i 0.0849609π-0.0849609\pi
882882 2.84005i 0.0956296i
883883 −54.7458 −1.84234 −0.921171 0.389159i 0.872766π-0.872766\pi
−0.921171 + 0.389159i 0.872766π0.872766\pi
884884 − 11.1072i − 0.373575i
885885 38.9518i 1.30935i
886886 17.9434 0.602821
887887 6.00643i 0.201676i 0.994903 + 0.100838i 0.0321524π0.0321524\pi
−0.994903 + 0.100838i 0.967848π0.967848\pi
888888 − 2.75549i − 0.0924683i
889889 11.2148i 0.376131i
890890 36.6520 1.22858
891891 0.542295i 0.0181676i
892892 −7.81817 −0.261772
893893 −19.7301 −0.660242
894894 8.94754 0.299251
895895 93.9316 3.13979
896896 2.34135i 0.0782190i
897897 9.51249i 0.317613i
898898 −3.20804 −0.107054
899899 0 0
900900 −21.9830 −0.732767
901901 26.4232i 0.880283i
902902 0.504938i 0.0168126i
903903 7.84968 0.261221
904904 −17.8409 −0.593381
905905 −2.39202 −0.0795134
906906 18.6984 0.621211
907907 − 5.84164i − 0.193968i −0.995286 0.0969842i 0.969080π-0.969080\pi
0.995286 0.0969842i 0.0309196π-0.0309196\pi
908908 −6.97891 −0.231603
909909 − 2.51161i − 0.0833050i
910910 − 42.2972i − 1.40214i
911911 20.9647i 0.694593i 0.937755 + 0.347296i 0.112900π0.112900\pi
−0.937755 + 0.347296i 0.887100π0.887100\pi
912912 2.20043 0.0728634
913913 − 67.5344i − 2.23506i
914914 34.3685i 1.13681i
915915 −25.7429 −0.851036
916916 23.7679i 0.785314i
917917 − 40.0496i − 1.32256i
918918 − 13.0244i − 0.429869i
919919 47.8325 1.57785 0.788924 0.614491i 0.210638π-0.210638\pi
0.788924 + 0.614491i 0.210638π0.210638\pi
920920 8.30031i 0.273653i
921921 −16.2839 −0.536572
922922 29.4802 0.970879
923923 24.4621 0.805178
924924 12.0072 0.395008
925925 30.4701i 1.00185i
926926 32.1086i 1.05516i
927927 −22.7438 −0.747004
928928 0 0
929929 −25.6956 −0.843046 −0.421523 0.906818i 0.638504π-0.638504\pi
−0.421523 + 0.906818i 0.638504π0.638504\pi
930930 3.54384i 0.116207i
931931 3.14355i 0.103026i
932932 −4.73738 −0.155178
933933 −15.1838 −0.497095
934934 34.6768 1.13466
935935 −49.7027 −1.62545
936936 − 8.25774i − 0.269913i
937937 39.4622 1.28917 0.644587 0.764531i 0.277029π-0.277029\pi
0.644587 + 0.764531i 0.277029π0.277029\pi
938938 12.1778i 0.397620i
939939 3.97440i 0.129700i
940940 − 38.9959i − 1.27191i
941941 −30.6390 −0.998802 −0.499401 0.866371i 0.666447π-0.666447\pi
−0.499401 + 0.866371i 0.666447π0.666447\pi
942942 − 15.0080i − 0.488987i
943943 − 0.212190i − 0.00690985i
944944 −8.95633 −0.291504
945945 − 49.5981i − 1.61343i
946946 − 15.2263i − 0.495051i
947947 − 41.6241i − 1.35260i −0.736625 0.676301i 0.763582π-0.763582\pi
0.736625 0.676301i 0.236418π-0.236418\pi
948948 −14.4517 −0.469369
949949 − 11.1613i − 0.362310i
950950 −24.3322 −0.789440
951951 −35.8187 −1.16150
952952 5.89167 0.190950
953953 21.2035 0.686848 0.343424 0.939180i 0.388413π-0.388413\pi
0.343424 + 0.939180i 0.388413π0.388413\pi
954954 19.6445i 0.636016i
955955 − 8.90469i − 0.288149i
956956 6.83571 0.221083
957957 0 0
958958 41.7958 1.35036
959959 41.8798i 1.35237i
960960 4.34908i 0.140366i
961961 30.3360 0.978581
962962 −11.4458 −0.369028
963963 −0.308590 −0.00994419
964964 −4.12413 −0.132829
965965 − 45.0075i − 1.44884i
966966 −5.04579 −0.162346
967967 2.94436i 0.0946844i 0.998879 + 0.0473422i 0.0150751π0.0150751\pi
−0.998879 + 0.0473422i 0.984925π0.984925\pi
968968 − 12.2909i − 0.395044i
969969 − 5.53707i − 0.177876i
970970 12.1678 0.390685
971971 − 40.0139i − 1.28411i −0.766660 0.642054i 0.778083π-0.778083\pi
0.766660 0.642054i 0.221917π-0.221917\pi
972972 − 15.6471i − 0.501880i
973973 46.1438 1.47930
974974 30.9514i 0.991747i
975975 − 55.1153i − 1.76510i
976976 − 5.91917i − 0.189468i
977977 28.3655 0.907491 0.453746 0.891131i 0.350087π-0.350087\pi
0.453746 + 0.891131i 0.350087π0.350087\pi
978978 − 12.2471i − 0.391620i
979979 43.2191 1.38129
980980 −6.21314 −0.198471
981981 −17.0208 −0.543433
982982 19.6356 0.626596
983983 8.30979i 0.265041i 0.991180 + 0.132521i 0.0423071π0.0423071\pi
−0.991180 + 0.132521i 0.957693π0.957693\pi
984984 − 0.111180i − 0.00354430i
985985 10.5893 0.337404
986986 0 0
987987 23.7058 0.754564
988988 − 9.14018i − 0.290788i
989989 6.39856i 0.203462i
990990 −36.9519 −1.17441
991991 3.00560 0.0954762 0.0477381 0.998860i 0.484799π-0.484799\pi
0.0477381 + 0.998860i 0.484799π0.484799\pi
992992 −0.814848 −0.0258715
993993 19.2997 0.612458
994994 12.9756i 0.411561i
995995 22.1866 0.703361
996996 14.8702i 0.471179i
997997 32.3634i 1.02496i 0.858700 + 0.512479i 0.171273π0.171273\pi
−0.858700 + 0.512479i 0.828727π0.828727\pi
998998 − 40.0525i − 1.26784i
999999 −13.4215 −0.424637
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1682.2.b.k.1681.6 16
29.12 odd 4 1682.2.a.v.1.3 yes 8
29.17 odd 4 1682.2.a.u.1.6 8
29.28 even 2 inner 1682.2.b.k.1681.11 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1682.2.a.u.1.6 8 29.17 odd 4
1682.2.a.v.1.3 yes 8 29.12 odd 4
1682.2.b.k.1681.6 16 1.1 even 1 trivial
1682.2.b.k.1681.11 16 29.28 even 2 inner