Properties

Label 1682.2.b.k.1681.6
Level $1682$
Weight $2$
Character 1682.1681
Analytic conductor $13.431$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1682,2,Mod(1681,1682)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1682, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1682.1681");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1682 = 2 \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1682.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4308376200\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 37x^{14} + 548x^{12} + 4119x^{10} + 16415x^{8} + 33099x^{6} + 30128x^{4} + 10537x^{2} + 961 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1681.6
Root \(1.06263i\) of defining polynomial
Character \(\chi\) \(=\) 1682.1681
Dual form 1682.2.b.k.1681.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} +1.06263i q^{3} -1.00000 q^{4} -4.09274 q^{5} +1.06263 q^{6} +2.34135 q^{7} +1.00000i q^{8} +1.87081 q^{9} +4.09274i q^{10} +4.82606i q^{11} -1.06263i q^{12} -4.41399 q^{13} -2.34135i q^{14} -4.34908i q^{15} +1.00000 q^{16} -2.51636i q^{17} -1.87081i q^{18} -2.07073i q^{19} +4.09274 q^{20} +2.48799i q^{21} +4.82606 q^{22} -2.02806 q^{23} -1.06263 q^{24} +11.7505 q^{25} +4.41399i q^{26} +5.17588i q^{27} -2.34135 q^{28} -4.34908 q^{30} -0.814848i q^{31} -1.00000i q^{32} -5.12833 q^{33} -2.51636 q^{34} -9.58253 q^{35} -1.87081 q^{36} +2.59308i q^{37} -2.07073 q^{38} -4.69045i q^{39} -4.09274i q^{40} +0.104627i q^{41} +2.48799 q^{42} -3.15502i q^{43} -4.82606i q^{44} -7.65675 q^{45} +2.02806i q^{46} -9.52807i q^{47} +1.06263i q^{48} -1.51809 q^{49} -11.7505i q^{50} +2.67397 q^{51} +4.41399 q^{52} -10.5005 q^{53} +5.17588 q^{54} -19.7518i q^{55} +2.34135i q^{56} +2.20043 q^{57} -8.95633 q^{59} +4.34908i q^{60} -5.91917i q^{61} -0.814848 q^{62} +4.38022 q^{63} -1.00000 q^{64} +18.0653 q^{65} +5.12833i q^{66} -5.20120 q^{67} +2.51636i q^{68} -2.15508i q^{69} +9.58253i q^{70} -5.54194 q^{71} +1.87081i q^{72} +2.52861i q^{73} +2.59308 q^{74} +12.4865i q^{75} +2.07073i q^{76} +11.2995i q^{77} -4.69045 q^{78} -13.5999i q^{79} -4.09274 q^{80} +0.112368 q^{81} +0.104627 q^{82} -13.9937 q^{83} -2.48799i q^{84} +10.2988i q^{85} -3.15502 q^{86} -4.82606 q^{88} -8.95536i q^{89} +7.65675i q^{90} -10.3347 q^{91} +2.02806 q^{92} +0.865884 q^{93} -9.52807 q^{94} +8.47497i q^{95} +1.06263 q^{96} -2.97302i q^{97} +1.51809i q^{98} +9.02865i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 16 q^{4} - 10 q^{5} - 2 q^{6} + 14 q^{7} - 26 q^{9} - 26 q^{13} + 16 q^{16} + 10 q^{20} + 14 q^{22} + 24 q^{23} + 2 q^{24} + 90 q^{25} - 14 q^{28} - 40 q^{30} + 8 q^{33} - 18 q^{34} + 26 q^{36} + 26 q^{38}+ \cdots - 2 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1682\mathbb{Z}\right)^\times\).

\(n\) \(843\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.00000i − 0.707107i
\(3\) 1.06263i 0.613511i 0.951788 + 0.306756i \(0.0992435\pi\)
−0.951788 + 0.306756i \(0.900757\pi\)
\(4\) −1.00000 −0.500000
\(5\) −4.09274 −1.83033 −0.915165 0.403080i \(-0.867940\pi\)
−0.915165 + 0.403080i \(0.867940\pi\)
\(6\) 1.06263 0.433818
\(7\) 2.34135 0.884947 0.442473 0.896782i \(-0.354101\pi\)
0.442473 + 0.896782i \(0.354101\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 1.87081 0.623604
\(10\) 4.09274i 1.29424i
\(11\) 4.82606i 1.45511i 0.686048 + 0.727556i \(0.259344\pi\)
−0.686048 + 0.727556i \(0.740656\pi\)
\(12\) − 1.06263i − 0.306756i
\(13\) −4.41399 −1.22422 −0.612110 0.790773i \(-0.709679\pi\)
−0.612110 + 0.790773i \(0.709679\pi\)
\(14\) − 2.34135i − 0.625752i
\(15\) − 4.34908i − 1.12293i
\(16\) 1.00000 0.250000
\(17\) − 2.51636i − 0.610307i −0.952303 0.305153i \(-0.901292\pi\)
0.952303 0.305153i \(-0.0987077\pi\)
\(18\) − 1.87081i − 0.440954i
\(19\) − 2.07073i − 0.475058i −0.971380 0.237529i \(-0.923662\pi\)
0.971380 0.237529i \(-0.0763375\pi\)
\(20\) 4.09274 0.915165
\(21\) 2.48799i 0.542925i
\(22\) 4.82606 1.02892
\(23\) −2.02806 −0.422879 −0.211439 0.977391i \(-0.567815\pi\)
−0.211439 + 0.977391i \(0.567815\pi\)
\(24\) −1.06263 −0.216909
\(25\) 11.7505 2.35011
\(26\) 4.41399i 0.865654i
\(27\) 5.17588i 0.996099i
\(28\) −2.34135 −0.442473
\(29\) 0 0
\(30\) −4.34908 −0.794030
\(31\) − 0.814848i − 0.146351i −0.997319 0.0731755i \(-0.976687\pi\)
0.997319 0.0731755i \(-0.0233133\pi\)
\(32\) − 1.00000i − 0.176777i
\(33\) −5.12833 −0.892728
\(34\) −2.51636 −0.431552
\(35\) −9.58253 −1.61974
\(36\) −1.87081 −0.311802
\(37\) 2.59308i 0.426300i 0.977019 + 0.213150i \(0.0683723\pi\)
−0.977019 + 0.213150i \(0.931628\pi\)
\(38\) −2.07073 −0.335917
\(39\) − 4.69045i − 0.751073i
\(40\) − 4.09274i − 0.647119i
\(41\) 0.104627i 0.0163400i 0.999967 + 0.00817002i \(0.00260063\pi\)
−0.999967 + 0.00817002i \(0.997399\pi\)
\(42\) 2.48799 0.383906
\(43\) − 3.15502i − 0.481137i −0.970632 0.240568i \(-0.922666\pi\)
0.970632 0.240568i \(-0.0773338\pi\)
\(44\) − 4.82606i − 0.727556i
\(45\) −7.65675 −1.14140
\(46\) 2.02806i 0.299020i
\(47\) − 9.52807i − 1.38981i −0.719100 0.694906i \(-0.755446\pi\)
0.719100 0.694906i \(-0.244554\pi\)
\(48\) 1.06263i 0.153378i
\(49\) −1.51809 −0.216870
\(50\) − 11.7505i − 1.66178i
\(51\) 2.67397 0.374430
\(52\) 4.41399 0.612110
\(53\) −10.5005 −1.44236 −0.721181 0.692747i \(-0.756400\pi\)
−0.721181 + 0.692747i \(0.756400\pi\)
\(54\) 5.17588 0.704349
\(55\) − 19.7518i − 2.66334i
\(56\) 2.34135i 0.312876i
\(57\) 2.20043 0.291454
\(58\) 0 0
\(59\) −8.95633 −1.16601 −0.583007 0.812467i \(-0.698124\pi\)
−0.583007 + 0.812467i \(0.698124\pi\)
\(60\) 4.34908i 0.561464i
\(61\) − 5.91917i − 0.757872i −0.925423 0.378936i \(-0.876290\pi\)
0.925423 0.378936i \(-0.123710\pi\)
\(62\) −0.814848 −0.103486
\(63\) 4.38022 0.551856
\(64\) −1.00000 −0.125000
\(65\) 18.0653 2.24073
\(66\) 5.12833i 0.631254i
\(67\) −5.20120 −0.635428 −0.317714 0.948187i \(-0.602915\pi\)
−0.317714 + 0.948187i \(0.602915\pi\)
\(68\) 2.51636i 0.305153i
\(69\) − 2.15508i − 0.259441i
\(70\) 9.58253i 1.14533i
\(71\) −5.54194 −0.657707 −0.328854 0.944381i \(-0.606662\pi\)
−0.328854 + 0.944381i \(0.606662\pi\)
\(72\) 1.87081i 0.220477i
\(73\) 2.52861i 0.295952i 0.988991 + 0.147976i \(0.0472758\pi\)
−0.988991 + 0.147976i \(0.952724\pi\)
\(74\) 2.59308 0.301440
\(75\) 12.4865i 1.44182i
\(76\) 2.07073i 0.237529i
\(77\) 11.2995i 1.28770i
\(78\) −4.69045 −0.531089
\(79\) − 13.5999i − 1.53011i −0.643967 0.765053i \(-0.722713\pi\)
0.643967 0.765053i \(-0.277287\pi\)
\(80\) −4.09274 −0.457582
\(81\) 0.112368 0.0124853
\(82\) 0.104627 0.0115541
\(83\) −13.9937 −1.53601 −0.768003 0.640446i \(-0.778750\pi\)
−0.768003 + 0.640446i \(0.778750\pi\)
\(84\) − 2.48799i − 0.271462i
\(85\) 10.2988i 1.11706i
\(86\) −3.15502 −0.340215
\(87\) 0 0
\(88\) −4.82606 −0.514460
\(89\) − 8.95536i − 0.949267i −0.880184 0.474633i \(-0.842581\pi\)
0.880184 0.474633i \(-0.157419\pi\)
\(90\) 7.65675i 0.807092i
\(91\) −10.3347 −1.08337
\(92\) 2.02806 0.211439
\(93\) 0.865884 0.0897880
\(94\) −9.52807 −0.982746
\(95\) 8.47497i 0.869513i
\(96\) 1.06263 0.108455
\(97\) − 2.97302i − 0.301865i −0.988544 0.150932i \(-0.951772\pi\)
0.988544 0.150932i \(-0.0482276\pi\)
\(98\) 1.51809i 0.153350i
\(99\) 9.02865i 0.907414i
\(100\) −11.7505 −1.17505
\(101\) − 1.34253i − 0.133586i −0.997767 0.0667932i \(-0.978723\pi\)
0.997767 0.0667932i \(-0.0212768\pi\)
\(102\) − 2.67397i − 0.264762i
\(103\) −12.1572 −1.19788 −0.598941 0.800793i \(-0.704412\pi\)
−0.598941 + 0.800793i \(0.704412\pi\)
\(104\) − 4.41399i − 0.432827i
\(105\) − 10.1827i − 0.993731i
\(106\) 10.5005i 1.01990i
\(107\) −0.164950 −0.0159463 −0.00797316 0.999968i \(-0.502538\pi\)
−0.00797316 + 0.999968i \(0.502538\pi\)
\(108\) − 5.17588i − 0.498050i
\(109\) −9.09810 −0.871440 −0.435720 0.900082i \(-0.643506\pi\)
−0.435720 + 0.900082i \(0.643506\pi\)
\(110\) −19.7518 −1.88326
\(111\) −2.75549 −0.261540
\(112\) 2.34135 0.221237
\(113\) 17.8409i 1.67833i 0.543873 + 0.839167i \(0.316957\pi\)
−0.543873 + 0.839167i \(0.683043\pi\)
\(114\) − 2.20043i − 0.206089i
\(115\) 8.30031 0.774007
\(116\) 0 0
\(117\) −8.25774 −0.763428
\(118\) 8.95633i 0.824497i
\(119\) − 5.89167i − 0.540089i
\(120\) 4.34908 0.397015
\(121\) −12.2909 −1.11735
\(122\) −5.91917 −0.535896
\(123\) −0.111180 −0.0100248
\(124\) 0.814848i 0.0731755i
\(125\) −27.6282 −2.47114
\(126\) − 4.38022i − 0.390221i
\(127\) 4.78987i 0.425033i 0.977158 + 0.212516i \(0.0681658\pi\)
−0.977158 + 0.212516i \(0.931834\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 3.35263 0.295183
\(130\) − 18.0653i − 1.58443i
\(131\) − 17.1054i − 1.49450i −0.664541 0.747252i \(-0.731373\pi\)
0.664541 0.747252i \(-0.268627\pi\)
\(132\) 5.12833 0.446364
\(133\) − 4.84830i − 0.420401i
\(134\) 5.20120i 0.449315i
\(135\) − 21.1836i − 1.82319i
\(136\) 2.51636 0.215776
\(137\) 17.8870i 1.52819i 0.645102 + 0.764097i \(0.276815\pi\)
−0.645102 + 0.764097i \(0.723185\pi\)
\(138\) −2.15508 −0.183452
\(139\) 19.7082 1.67163 0.835814 0.549012i \(-0.184996\pi\)
0.835814 + 0.549012i \(0.184996\pi\)
\(140\) 9.58253 0.809872
\(141\) 10.1248 0.852666
\(142\) 5.54194i 0.465069i
\(143\) − 21.3022i − 1.78138i
\(144\) 1.87081 0.155901
\(145\) 0 0
\(146\) 2.52861 0.209269
\(147\) − 1.61317i − 0.133052i
\(148\) − 2.59308i − 0.213150i
\(149\) 8.42016 0.689807 0.344903 0.938638i \(-0.387912\pi\)
0.344903 + 0.938638i \(0.387912\pi\)
\(150\) 12.4865 1.01952
\(151\) 17.5963 1.43196 0.715981 0.698119i \(-0.245980\pi\)
0.715981 + 0.698119i \(0.245980\pi\)
\(152\) 2.07073 0.167958
\(153\) − 4.70763i − 0.380590i
\(154\) 11.2995 0.910539
\(155\) 3.33496i 0.267871i
\(156\) 4.69045i 0.375536i
\(157\) − 14.1234i − 1.12717i −0.826058 0.563585i \(-0.809422\pi\)
0.826058 0.563585i \(-0.190578\pi\)
\(158\) −13.5999 −1.08195
\(159\) − 11.1582i − 0.884905i
\(160\) 4.09274i 0.323560i
\(161\) −4.74838 −0.374225
\(162\) − 0.112368i − 0.00882847i
\(163\) − 11.5253i − 0.902729i −0.892340 0.451365i \(-0.850937\pi\)
0.892340 0.451365i \(-0.149063\pi\)
\(164\) − 0.104627i − 0.00817002i
\(165\) 20.9889 1.63399
\(166\) 13.9937i 1.08612i
\(167\) −11.0161 −0.852450 −0.426225 0.904617i \(-0.640157\pi\)
−0.426225 + 0.904617i \(0.640157\pi\)
\(168\) −2.48799 −0.191953
\(169\) 6.48329 0.498715
\(170\) 10.2988 0.789882
\(171\) − 3.87395i − 0.296248i
\(172\) 3.15502i 0.240568i
\(173\) 11.3228 0.860854 0.430427 0.902625i \(-0.358363\pi\)
0.430427 + 0.902625i \(0.358363\pi\)
\(174\) 0 0
\(175\) 27.5121 2.07972
\(176\) 4.82606i 0.363778i
\(177\) − 9.51729i − 0.715363i
\(178\) −8.95536 −0.671233
\(179\) −22.9508 −1.71542 −0.857711 0.514132i \(-0.828114\pi\)
−0.857711 + 0.514132i \(0.828114\pi\)
\(180\) 7.65675 0.570700
\(181\) 0.584454 0.0434421 0.0217211 0.999764i \(-0.493085\pi\)
0.0217211 + 0.999764i \(0.493085\pi\)
\(182\) 10.3347i 0.766058i
\(183\) 6.28990 0.464963
\(184\) − 2.02806i − 0.149510i
\(185\) − 10.6128i − 0.780269i
\(186\) − 0.865884i − 0.0634897i
\(187\) 12.1441 0.888065
\(188\) 9.52807i 0.694906i
\(189\) 12.1185i 0.881495i
\(190\) 8.47497 0.614839
\(191\) 2.17573i 0.157430i 0.996897 + 0.0787150i \(0.0250817\pi\)
−0.996897 + 0.0787150i \(0.974918\pi\)
\(192\) − 1.06263i − 0.0766889i
\(193\) 10.9969i 0.791574i 0.918342 + 0.395787i \(0.129528\pi\)
−0.918342 + 0.395787i \(0.870472\pi\)
\(194\) −2.97302 −0.213451
\(195\) 19.1968i 1.37471i
\(196\) 1.51809 0.108435
\(197\) −2.58734 −0.184341 −0.0921703 0.995743i \(-0.529380\pi\)
−0.0921703 + 0.995743i \(0.529380\pi\)
\(198\) 9.02865 0.641638
\(199\) −5.42095 −0.384281 −0.192141 0.981367i \(-0.561543\pi\)
−0.192141 + 0.981367i \(0.561543\pi\)
\(200\) 11.7505i 0.830888i
\(201\) − 5.52696i − 0.389842i
\(202\) −1.34253 −0.0944599
\(203\) 0 0
\(204\) −2.67397 −0.187215
\(205\) − 0.428212i − 0.0299076i
\(206\) 12.1572i 0.847030i
\(207\) −3.79411 −0.263709
\(208\) −4.41399 −0.306055
\(209\) 9.99348 0.691263
\(210\) −10.1827 −0.702674
\(211\) − 9.80716i − 0.675152i −0.941298 0.337576i \(-0.890393\pi\)
0.941298 0.337576i \(-0.109607\pi\)
\(212\) 10.5005 0.721181
\(213\) − 5.88905i − 0.403511i
\(214\) 0.164950i 0.0112758i
\(215\) 12.9127i 0.880638i
\(216\) −5.17588 −0.352174
\(217\) − 1.90784i − 0.129513i
\(218\) 9.09810i 0.616201i
\(219\) −2.68699 −0.181570
\(220\) 19.7518i 1.33167i
\(221\) 11.1072i 0.747150i
\(222\) 2.75549i 0.184937i
\(223\) 7.81817 0.523543 0.261772 0.965130i \(-0.415693\pi\)
0.261772 + 0.965130i \(0.415693\pi\)
\(224\) − 2.34135i − 0.156438i
\(225\) 21.9830 1.46553
\(226\) 17.8409 1.18676
\(227\) 6.97891 0.463206 0.231603 0.972810i \(-0.425603\pi\)
0.231603 + 0.972810i \(0.425603\pi\)
\(228\) −2.20043 −0.145727
\(229\) − 23.7679i − 1.57063i −0.619098 0.785314i \(-0.712502\pi\)
0.619098 0.785314i \(-0.287498\pi\)
\(230\) − 8.30031i − 0.547306i
\(231\) −12.0072 −0.790017
\(232\) 0 0
\(233\) 4.73738 0.310356 0.155178 0.987887i \(-0.450405\pi\)
0.155178 + 0.987887i \(0.450405\pi\)
\(234\) 8.25774i 0.539825i
\(235\) 38.9959i 2.54381i
\(236\) 8.95633 0.583007
\(237\) 14.4517 0.938738
\(238\) −5.89167 −0.381901
\(239\) −6.83571 −0.442165 −0.221083 0.975255i \(-0.570959\pi\)
−0.221083 + 0.975255i \(0.570959\pi\)
\(240\) − 4.34908i − 0.280732i
\(241\) 4.12413 0.265659 0.132829 0.991139i \(-0.457594\pi\)
0.132829 + 0.991139i \(0.457594\pi\)
\(242\) 12.2909i 0.790087i
\(243\) 15.6471i 1.00376i
\(244\) 5.91917i 0.378936i
\(245\) 6.21314 0.396943
\(246\) 0.111180i 0.00708860i
\(247\) 9.14018i 0.581576i
\(248\) 0.814848 0.0517429
\(249\) − 14.8702i − 0.942358i
\(250\) 27.6282i 1.74736i
\(251\) 7.01765i 0.442950i 0.975166 + 0.221475i \(0.0710871\pi\)
−0.975166 + 0.221475i \(0.928913\pi\)
\(252\) −4.38022 −0.275928
\(253\) − 9.78752i − 0.615336i
\(254\) 4.78987 0.300543
\(255\) −10.9439 −0.685331
\(256\) 1.00000 0.0625000
\(257\) −8.92910 −0.556982 −0.278491 0.960439i \(-0.589834\pi\)
−0.278491 + 0.960439i \(0.589834\pi\)
\(258\) − 3.35263i − 0.208726i
\(259\) 6.07131i 0.377253i
\(260\) −18.0653 −1.12036
\(261\) 0 0
\(262\) −17.1054 −1.05677
\(263\) − 10.6660i − 0.657691i −0.944384 0.328845i \(-0.893340\pi\)
0.944384 0.328845i \(-0.106660\pi\)
\(264\) − 5.12833i − 0.315627i
\(265\) 42.9760 2.64000
\(266\) −4.84830 −0.297269
\(267\) 9.51626 0.582386
\(268\) 5.20120 0.317714
\(269\) − 1.83883i − 0.112115i −0.998428 0.0560577i \(-0.982147\pi\)
0.998428 0.0560577i \(-0.0178531\pi\)
\(270\) −21.1836 −1.28919
\(271\) 10.4981i 0.637713i 0.947803 + 0.318857i \(0.103299\pi\)
−0.947803 + 0.318857i \(0.896701\pi\)
\(272\) − 2.51636i − 0.152577i
\(273\) − 10.9820i − 0.664659i
\(274\) 17.8870 1.08060
\(275\) 56.7088i 3.41967i
\(276\) 2.15508i 0.129720i
\(277\) 12.2091 0.733573 0.366787 0.930305i \(-0.380458\pi\)
0.366787 + 0.930305i \(0.380458\pi\)
\(278\) − 19.7082i − 1.18202i
\(279\) − 1.52443i − 0.0912650i
\(280\) − 9.58253i − 0.572666i
\(281\) −32.3410 −1.92931 −0.964653 0.263525i \(-0.915115\pi\)
−0.964653 + 0.263525i \(0.915115\pi\)
\(282\) − 10.1248i − 0.602926i
\(283\) −7.69360 −0.457337 −0.228669 0.973504i \(-0.573437\pi\)
−0.228669 + 0.973504i \(0.573437\pi\)
\(284\) 5.54194 0.328854
\(285\) −9.00578 −0.533456
\(286\) −21.3022 −1.25962
\(287\) 0.244969i 0.0144601i
\(288\) − 1.87081i − 0.110239i
\(289\) 10.6679 0.627526
\(290\) 0 0
\(291\) 3.15923 0.185197
\(292\) − 2.52861i − 0.147976i
\(293\) − 28.4855i − 1.66414i −0.554671 0.832069i \(-0.687156\pi\)
0.554671 0.832069i \(-0.312844\pi\)
\(294\) −1.61317 −0.0940819
\(295\) 36.6559 2.13419
\(296\) −2.59308 −0.150720
\(297\) −24.9791 −1.44944
\(298\) − 8.42016i − 0.487767i
\(299\) 8.95181 0.517697
\(300\) − 12.4865i − 0.720908i
\(301\) − 7.38701i − 0.425780i
\(302\) − 17.5963i − 1.01255i
\(303\) 1.42661 0.0819568
\(304\) − 2.07073i − 0.118765i
\(305\) 24.2256i 1.38716i
\(306\) −4.70763 −0.269117
\(307\) 15.3241i 0.874592i 0.899318 + 0.437296i \(0.144064\pi\)
−0.899318 + 0.437296i \(0.855936\pi\)
\(308\) − 11.2995i − 0.643848i
\(309\) − 12.9186i − 0.734914i
\(310\) 3.33496 0.189413
\(311\) 14.2888i 0.810246i 0.914262 + 0.405123i \(0.132771\pi\)
−0.914262 + 0.405123i \(0.867229\pi\)
\(312\) 4.69045 0.265544
\(313\) 3.74014 0.211405 0.105703 0.994398i \(-0.466291\pi\)
0.105703 + 0.994398i \(0.466291\pi\)
\(314\) −14.1234 −0.797030
\(315\) −17.9271 −1.01008
\(316\) 13.5999i 0.765053i
\(317\) 33.7075i 1.89320i 0.322405 + 0.946602i \(0.395509\pi\)
−0.322405 + 0.946602i \(0.604491\pi\)
\(318\) −11.1582 −0.625722
\(319\) 0 0
\(320\) 4.09274 0.228791
\(321\) − 0.175281i − 0.00978325i
\(322\) 4.74838i 0.264617i
\(323\) −5.21070 −0.289931
\(324\) −0.112368 −0.00624267
\(325\) −51.8667 −2.87705
\(326\) −11.5253 −0.638326
\(327\) − 9.66794i − 0.534638i
\(328\) −0.104627 −0.00577707
\(329\) − 22.3085i − 1.22991i
\(330\) − 20.9889i − 1.15540i
\(331\) − 18.1622i − 0.998283i −0.866520 0.499142i \(-0.833649\pi\)
0.866520 0.499142i \(-0.166351\pi\)
\(332\) 13.9937 0.768003
\(333\) 4.85117i 0.265842i
\(334\) 11.0161i 0.602773i
\(335\) 21.2872 1.16304
\(336\) 2.48799i 0.135731i
\(337\) − 0.304315i − 0.0165771i −0.999966 0.00828855i \(-0.997362\pi\)
0.999966 0.00828855i \(-0.00263836\pi\)
\(338\) − 6.48329i − 0.352645i
\(339\) −18.9584 −1.02968
\(340\) − 10.2988i − 0.558531i
\(341\) 3.93251 0.212957
\(342\) −3.87395 −0.209479
\(343\) −19.9438 −1.07686
\(344\) 3.15502 0.170107
\(345\) 8.82018i 0.474862i
\(346\) − 11.3228i − 0.608716i
\(347\) 3.49887 0.187829 0.0939146 0.995580i \(-0.470062\pi\)
0.0939146 + 0.995580i \(0.470062\pi\)
\(348\) 0 0
\(349\) 26.3670 1.41139 0.705696 0.708515i \(-0.250634\pi\)
0.705696 + 0.708515i \(0.250634\pi\)
\(350\) − 27.5121i − 1.47058i
\(351\) − 22.8463i − 1.21944i
\(352\) 4.82606 0.257230
\(353\) 17.8689 0.951066 0.475533 0.879698i \(-0.342255\pi\)
0.475533 + 0.879698i \(0.342255\pi\)
\(354\) −9.51729 −0.505838
\(355\) 22.6817 1.20382
\(356\) 8.95536i 0.474633i
\(357\) 6.26069 0.331351
\(358\) 22.9508i 1.21299i
\(359\) − 2.89578i − 0.152834i −0.997076 0.0764168i \(-0.975652\pi\)
0.997076 0.0764168i \(-0.0243480\pi\)
\(360\) − 7.65675i − 0.403546i
\(361\) 14.7121 0.774320
\(362\) − 0.584454i − 0.0307182i
\(363\) − 13.0607i − 0.685508i
\(364\) 10.3347 0.541685
\(365\) − 10.3490i − 0.541689i
\(366\) − 6.28990i − 0.328779i
\(367\) 16.6465i 0.868942i 0.900686 + 0.434471i \(0.143065\pi\)
−0.900686 + 0.434471i \(0.856935\pi\)
\(368\) −2.02806 −0.105720
\(369\) 0.195738i 0.0101897i
\(370\) −10.6128 −0.551734
\(371\) −24.5854 −1.27641
\(372\) −0.865884 −0.0448940
\(373\) −9.06657 −0.469449 −0.234725 0.972062i \(-0.575419\pi\)
−0.234725 + 0.972062i \(0.575419\pi\)
\(374\) − 12.1441i − 0.627957i
\(375\) − 29.3586i − 1.51607i
\(376\) 9.52807 0.491373
\(377\) 0 0
\(378\) 12.1185 0.623311
\(379\) 36.9042i 1.89564i 0.318801 + 0.947822i \(0.396720\pi\)
−0.318801 + 0.947822i \(0.603280\pi\)
\(380\) − 8.47497i − 0.434757i
\(381\) −5.08988 −0.260762
\(382\) 2.17573 0.111320
\(383\) 5.74597 0.293606 0.146803 0.989166i \(-0.453102\pi\)
0.146803 + 0.989166i \(0.453102\pi\)
\(384\) −1.06263 −0.0542273
\(385\) − 46.2459i − 2.35691i
\(386\) 10.9969 0.559728
\(387\) − 5.90245i − 0.300039i
\(388\) 2.97302i 0.150932i
\(389\) 1.82846i 0.0927066i 0.998925 + 0.0463533i \(0.0147600\pi\)
−0.998925 + 0.0463533i \(0.985240\pi\)
\(390\) 19.1968 0.972067
\(391\) 5.10332i 0.258086i
\(392\) − 1.51809i − 0.0766750i
\(393\) 18.1767 0.916895
\(394\) 2.58734i 0.130348i
\(395\) 55.6608i 2.80060i
\(396\) − 9.02865i − 0.453707i
\(397\) −19.5808 −0.982732 −0.491366 0.870953i \(-0.663502\pi\)
−0.491366 + 0.870953i \(0.663502\pi\)
\(398\) 5.42095i 0.271728i
\(399\) 5.15197 0.257921
\(400\) 11.7505 0.587526
\(401\) 12.0020 0.599349 0.299674 0.954042i \(-0.403122\pi\)
0.299674 + 0.954042i \(0.403122\pi\)
\(402\) −5.52696 −0.275660
\(403\) 3.59673i 0.179166i
\(404\) 1.34253i 0.0667932i
\(405\) −0.459893 −0.0228523
\(406\) 0 0
\(407\) −12.5144 −0.620314
\(408\) 2.67397i 0.132381i
\(409\) 5.79580i 0.286584i 0.989680 + 0.143292i \(0.0457688\pi\)
−0.989680 + 0.143292i \(0.954231\pi\)
\(410\) −0.428212 −0.0211479
\(411\) −19.0074 −0.937564
\(412\) 12.1572 0.598941
\(413\) −20.9699 −1.03186
\(414\) 3.79411i 0.186470i
\(415\) 57.2725 2.81140
\(416\) 4.41399i 0.216414i
\(417\) 20.9426i 1.02556i
\(418\) − 9.99348i − 0.488797i
\(419\) 18.9577 0.926145 0.463073 0.886320i \(-0.346747\pi\)
0.463073 + 0.886320i \(0.346747\pi\)
\(420\) 10.1827i 0.496866i
\(421\) − 23.3207i − 1.13658i −0.822827 0.568292i \(-0.807604\pi\)
0.822827 0.568292i \(-0.192396\pi\)
\(422\) −9.80716 −0.477405
\(423\) − 17.8252i − 0.866692i
\(424\) − 10.5005i − 0.509952i
\(425\) − 29.5686i − 1.43429i
\(426\) −5.88905 −0.285325
\(427\) − 13.8588i − 0.670676i
\(428\) 0.164950 0.00797316
\(429\) 22.6364 1.09290
\(430\) 12.9127 0.622705
\(431\) −5.71450 −0.275258 −0.137629 0.990484i \(-0.543948\pi\)
−0.137629 + 0.990484i \(0.543948\pi\)
\(432\) 5.17588i 0.249025i
\(433\) − 16.0811i − 0.772807i −0.922330 0.386403i \(-0.873717\pi\)
0.922330 0.386403i \(-0.126283\pi\)
\(434\) −1.90784 −0.0915794
\(435\) 0 0
\(436\) 9.09810 0.435720
\(437\) 4.19956i 0.200892i
\(438\) 2.68699i 0.128389i
\(439\) −31.7509 −1.51539 −0.757695 0.652609i \(-0.773674\pi\)
−0.757695 + 0.652609i \(0.773674\pi\)
\(440\) 19.7518 0.941631
\(441\) −2.84005 −0.135241
\(442\) 11.1072 0.528315
\(443\) 17.9434i 0.852518i 0.904601 + 0.426259i \(0.140169\pi\)
−0.904601 + 0.426259i \(0.859831\pi\)
\(444\) 2.75549 0.130770
\(445\) 36.6520i 1.73747i
\(446\) − 7.81817i − 0.370201i
\(447\) 8.94754i 0.423204i
\(448\) −2.34135 −0.110618
\(449\) − 3.20804i − 0.151397i −0.997131 0.0756984i \(-0.975881\pi\)
0.997131 0.0756984i \(-0.0241186\pi\)
\(450\) − 21.9830i − 1.03629i
\(451\) −0.504938 −0.0237766
\(452\) − 17.8409i − 0.839167i
\(453\) 18.6984i 0.878525i
\(454\) − 6.97891i − 0.327536i
\(455\) 42.2972 1.98292
\(456\) 2.20043i 0.103044i
\(457\) −34.3685 −1.60769 −0.803845 0.594839i \(-0.797216\pi\)
−0.803845 + 0.594839i \(0.797216\pi\)
\(458\) −23.7679 −1.11060
\(459\) 13.0244 0.607926
\(460\) −8.30031 −0.387004
\(461\) 29.4802i 1.37303i 0.727115 + 0.686515i \(0.240860\pi\)
−0.727115 + 0.686515i \(0.759140\pi\)
\(462\) 12.0072i 0.558626i
\(463\) −32.1086 −1.49222 −0.746108 0.665825i \(-0.768080\pi\)
−0.746108 + 0.665825i \(0.768080\pi\)
\(464\) 0 0
\(465\) −3.54384 −0.164342
\(466\) − 4.73738i − 0.219455i
\(467\) 34.6768i 1.60465i 0.596888 + 0.802324i \(0.296404\pi\)
−0.596888 + 0.802324i \(0.703596\pi\)
\(468\) 8.25774 0.381714
\(469\) −12.1778 −0.562319
\(470\) 38.9959 1.79875
\(471\) 15.0080 0.691532
\(472\) − 8.95633i − 0.412248i
\(473\) 15.2263 0.700108
\(474\) − 14.4517i − 0.663788i
\(475\) − 24.3322i − 1.11644i
\(476\) 5.89167i 0.270044i
\(477\) −19.6445 −0.899462
\(478\) 6.83571i 0.312658i
\(479\) 41.7958i 1.90970i 0.297089 + 0.954850i \(0.403984\pi\)
−0.297089 + 0.954850i \(0.596016\pi\)
\(480\) −4.34908 −0.198508
\(481\) − 11.4458i − 0.521885i
\(482\) − 4.12413i − 0.187849i
\(483\) − 5.04579i − 0.229591i
\(484\) 12.2909 0.558676
\(485\) 12.1678i 0.552512i
\(486\) 15.6471 0.709765
\(487\) −30.9514 −1.40254 −0.701271 0.712895i \(-0.747384\pi\)
−0.701271 + 0.712895i \(0.747384\pi\)
\(488\) 5.91917 0.267948
\(489\) 12.2471 0.553835
\(490\) − 6.21314i − 0.280681i
\(491\) 19.6356i 0.886140i 0.896487 + 0.443070i \(0.146111\pi\)
−0.896487 + 0.443070i \(0.853889\pi\)
\(492\) 0.111180 0.00501240
\(493\) 0 0
\(494\) 9.14018 0.411236
\(495\) − 36.9519i − 1.66087i
\(496\) − 0.814848i − 0.0365878i
\(497\) −12.9756 −0.582036
\(498\) −14.8702 −0.666347
\(499\) 40.0525 1.79300 0.896498 0.443048i \(-0.146103\pi\)
0.896498 + 0.443048i \(0.146103\pi\)
\(500\) 27.6282 1.23557
\(501\) − 11.7061i − 0.522988i
\(502\) 7.01765 0.313213
\(503\) − 16.3539i − 0.729185i −0.931167 0.364592i \(-0.881208\pi\)
0.931167 0.364592i \(-0.118792\pi\)
\(504\) 4.38022i 0.195111i
\(505\) 5.49462i 0.244507i
\(506\) −9.78752 −0.435108
\(507\) 6.88936i 0.305967i
\(508\) − 4.78987i − 0.212516i
\(509\) −39.2493 −1.73969 −0.869847 0.493322i \(-0.835782\pi\)
−0.869847 + 0.493322i \(0.835782\pi\)
\(510\) 10.9439i 0.484602i
\(511\) 5.92036i 0.261901i
\(512\) − 1.00000i − 0.0441942i
\(513\) 10.7179 0.473205
\(514\) 8.92910i 0.393846i
\(515\) 49.7562 2.19252
\(516\) −3.35263 −0.147591
\(517\) 45.9831 2.02233
\(518\) 6.07131 0.266758
\(519\) 12.0320i 0.528144i
\(520\) 18.0653i 0.792216i
\(521\) 10.9022 0.477633 0.238817 0.971065i \(-0.423241\pi\)
0.238817 + 0.971065i \(0.423241\pi\)
\(522\) 0 0
\(523\) 16.6229 0.726871 0.363435 0.931619i \(-0.381604\pi\)
0.363435 + 0.931619i \(0.381604\pi\)
\(524\) 17.1054i 0.747252i
\(525\) 29.2352i 1.27593i
\(526\) −10.6660 −0.465058
\(527\) −2.05045 −0.0893190
\(528\) −5.12833 −0.223182
\(529\) −18.8870 −0.821174
\(530\) − 42.9760i − 1.86676i
\(531\) −16.7556 −0.727131
\(532\) 4.84830i 0.210201i
\(533\) − 0.461824i − 0.0200038i
\(534\) − 9.51626i − 0.411809i
\(535\) 0.675098 0.0291870
\(536\) − 5.20120i − 0.224658i
\(537\) − 24.3883i − 1.05243i
\(538\) −1.83883 −0.0792775
\(539\) − 7.32638i − 0.315570i
\(540\) 21.1836i 0.911595i
\(541\) − 42.7235i − 1.83683i −0.395620 0.918414i \(-0.629470\pi\)
0.395620 0.918414i \(-0.370530\pi\)
\(542\) 10.4981 0.450931
\(543\) 0.621060i 0.0266522i
\(544\) −2.51636 −0.107888
\(545\) 37.2362 1.59502
\(546\) −10.9820 −0.469985
\(547\) −5.64174 −0.241223 −0.120612 0.992700i \(-0.538486\pi\)
−0.120612 + 0.992700i \(0.538486\pi\)
\(548\) − 17.8870i − 0.764097i
\(549\) − 11.0736i − 0.472612i
\(550\) 56.7088 2.41807
\(551\) 0 0
\(552\) 2.15508 0.0917262
\(553\) − 31.8421i − 1.35406i
\(554\) − 12.2091i − 0.518714i
\(555\) 11.2775 0.478704
\(556\) −19.7082 −0.835814
\(557\) 13.7312 0.581809 0.290904 0.956752i \(-0.406044\pi\)
0.290904 + 0.956752i \(0.406044\pi\)
\(558\) −1.52443 −0.0645341
\(559\) 13.9262i 0.589017i
\(560\) −9.58253 −0.404936
\(561\) 12.9047i 0.544838i
\(562\) 32.3410i 1.36422i
\(563\) − 8.73098i − 0.367967i −0.982929 0.183983i \(-0.941101\pi\)
0.982929 0.183983i \(-0.0588993\pi\)
\(564\) −10.1248 −0.426333
\(565\) − 73.0183i − 3.07190i
\(566\) 7.69360i 0.323386i
\(567\) 0.263093 0.0110489
\(568\) − 5.54194i − 0.232535i
\(569\) 4.48796i 0.188145i 0.995565 + 0.0940726i \(0.0299886\pi\)
−0.995565 + 0.0940726i \(0.970011\pi\)
\(570\) 9.00578i 0.377211i
\(571\) −24.5254 −1.02636 −0.513179 0.858282i \(-0.671532\pi\)
−0.513179 + 0.858282i \(0.671532\pi\)
\(572\) 21.3022i 0.890689i
\(573\) −2.31200 −0.0965851
\(574\) 0.244969 0.0102248
\(575\) −23.8307 −0.993810
\(576\) −1.87081 −0.0779505
\(577\) 17.0299i 0.708963i 0.935063 + 0.354482i \(0.115343\pi\)
−0.935063 + 0.354482i \(0.884657\pi\)
\(578\) − 10.6679i − 0.443728i
\(579\) −11.6857 −0.485640
\(580\) 0 0
\(581\) −32.7641 −1.35928
\(582\) − 3.15923i − 0.130954i
\(583\) − 50.6763i − 2.09880i
\(584\) −2.52861 −0.104635
\(585\) 33.7968 1.39733
\(586\) −28.4855 −1.17672
\(587\) 20.5873 0.849730 0.424865 0.905257i \(-0.360322\pi\)
0.424865 + 0.905257i \(0.360322\pi\)
\(588\) 1.61317i 0.0665260i
\(589\) −1.68733 −0.0695253
\(590\) − 36.6559i − 1.50910i
\(591\) − 2.74940i − 0.113095i
\(592\) 2.59308i 0.106575i
\(593\) −3.53718 −0.145255 −0.0726273 0.997359i \(-0.523138\pi\)
−0.0726273 + 0.997359i \(0.523138\pi\)
\(594\) 24.9791i 1.02491i
\(595\) 24.1131i 0.988541i
\(596\) −8.42016 −0.344903
\(597\) − 5.76048i − 0.235761i
\(598\) − 8.95181i − 0.366067i
\(599\) 17.0646i 0.697239i 0.937264 + 0.348620i \(0.113349\pi\)
−0.937264 + 0.348620i \(0.886651\pi\)
\(600\) −12.4865 −0.509759
\(601\) − 29.3558i − 1.19745i −0.800955 0.598725i \(-0.795674\pi\)
0.800955 0.598725i \(-0.204326\pi\)
\(602\) −7.38701 −0.301072
\(603\) −9.73046 −0.396255
\(604\) −17.5963 −0.715981
\(605\) 50.3034 2.04512
\(606\) − 1.42661i − 0.0579522i
\(607\) − 14.2568i − 0.578664i −0.957229 0.289332i \(-0.906567\pi\)
0.957229 0.289332i \(-0.0934332\pi\)
\(608\) −2.07073 −0.0839792
\(609\) 0 0
\(610\) 24.2256 0.980867
\(611\) 42.0568i 1.70144i
\(612\) 4.70763i 0.190295i
\(613\) 18.1200 0.731859 0.365929 0.930643i \(-0.380751\pi\)
0.365929 + 0.930643i \(0.380751\pi\)
\(614\) 15.3241 0.618430
\(615\) 0.455033 0.0183487
\(616\) −11.2995 −0.455270
\(617\) − 10.5215i − 0.423581i −0.977315 0.211791i \(-0.932071\pi\)
0.977315 0.211791i \(-0.0679295\pi\)
\(618\) −12.9186 −0.519663
\(619\) 18.1506i 0.729533i 0.931099 + 0.364766i \(0.118851\pi\)
−0.931099 + 0.364766i \(0.881149\pi\)
\(620\) − 3.33496i − 0.133935i
\(621\) − 10.4970i − 0.421229i
\(622\) 14.2888 0.572930
\(623\) − 20.9676i − 0.840050i
\(624\) − 4.69045i − 0.187768i
\(625\) 54.3223 2.17289
\(626\) − 3.74014i − 0.149486i
\(627\) 10.6194i 0.424098i
\(628\) 14.1234i 0.563585i
\(629\) 6.52512 0.260174
\(630\) 17.9271i 0.714233i
\(631\) −41.9413 −1.66966 −0.834829 0.550509i \(-0.814434\pi\)
−0.834829 + 0.550509i \(0.814434\pi\)
\(632\) 13.5999 0.540974
\(633\) 10.4214 0.414214
\(634\) 33.7075 1.33870
\(635\) − 19.6037i − 0.777950i
\(636\) 11.1582i 0.442453i
\(637\) 6.70082 0.265496
\(638\) 0 0
\(639\) −10.3679 −0.410149
\(640\) − 4.09274i − 0.161780i
\(641\) 10.5733i 0.417621i 0.977956 + 0.208810i \(0.0669591\pi\)
−0.977956 + 0.208810i \(0.933041\pi\)
\(642\) −0.175281 −0.00691780
\(643\) −26.1513 −1.03131 −0.515654 0.856797i \(-0.672451\pi\)
−0.515654 + 0.856797i \(0.672451\pi\)
\(644\) 4.74838 0.187113
\(645\) −13.7215 −0.540282
\(646\) 5.21070i 0.205012i
\(647\) −31.3433 −1.23223 −0.616116 0.787655i \(-0.711295\pi\)
−0.616116 + 0.787655i \(0.711295\pi\)
\(648\) 0.112368i 0.00441423i
\(649\) − 43.2238i − 1.69668i
\(650\) 51.8667i 2.03438i
\(651\) 2.02734 0.0794576
\(652\) 11.5253i 0.451365i
\(653\) − 18.8481i − 0.737582i −0.929512 0.368791i \(-0.879772\pi\)
0.929512 0.368791i \(-0.120228\pi\)
\(654\) −9.66794 −0.378046
\(655\) 70.0079i 2.73543i
\(656\) 0.104627i 0.00408501i
\(657\) 4.73055i 0.184557i
\(658\) −22.3085 −0.869677
\(659\) − 39.6720i − 1.54540i −0.634772 0.772700i \(-0.718906\pi\)
0.634772 0.772700i \(-0.281094\pi\)
\(660\) −20.9889 −0.816993
\(661\) 10.9995 0.427831 0.213915 0.976852i \(-0.431378\pi\)
0.213915 + 0.976852i \(0.431378\pi\)
\(662\) −18.1622 −0.705893
\(663\) −11.8029 −0.458385
\(664\) − 13.9937i − 0.543060i
\(665\) 19.8429i 0.769473i
\(666\) 4.85117 0.187979
\(667\) 0 0
\(668\) 11.0161 0.426225
\(669\) 8.30784i 0.321200i
\(670\) − 21.2872i − 0.822395i
\(671\) 28.5663 1.10279
\(672\) 2.48799 0.0959765
\(673\) −33.1651 −1.27842 −0.639209 0.769033i \(-0.720738\pi\)
−0.639209 + 0.769033i \(0.720738\pi\)
\(674\) −0.304315 −0.0117218
\(675\) 60.8194i 2.34094i
\(676\) −6.48329 −0.249357
\(677\) − 22.4611i − 0.863252i −0.902053 0.431626i \(-0.857940\pi\)
0.902053 0.431626i \(-0.142060\pi\)
\(678\) 18.9584i 0.728092i
\(679\) − 6.96088i − 0.267134i
\(680\) −10.2988 −0.394941
\(681\) 7.41602i 0.284182i
\(682\) − 3.93251i − 0.150583i
\(683\) 16.7244 0.639943 0.319971 0.947427i \(-0.396327\pi\)
0.319971 + 0.947427i \(0.396327\pi\)
\(684\) 3.87395i 0.148124i
\(685\) − 73.2070i − 2.79710i
\(686\) 19.9438i 0.761458i
\(687\) 25.2566 0.963598
\(688\) − 3.15502i − 0.120284i
\(689\) 46.3493 1.76577
\(690\) 8.82018 0.335778
\(691\) 1.93289 0.0735304 0.0367652 0.999324i \(-0.488295\pi\)
0.0367652 + 0.999324i \(0.488295\pi\)
\(692\) −11.3228 −0.430427
\(693\) 21.1392i 0.803013i
\(694\) − 3.49887i − 0.132815i
\(695\) −80.6606 −3.05963
\(696\) 0 0
\(697\) 0.263280 0.00997243
\(698\) − 26.3670i − 0.998005i
\(699\) 5.03410i 0.190407i
\(700\) −27.5121 −1.03986
\(701\) 15.0476 0.568340 0.284170 0.958774i \(-0.408282\pi\)
0.284170 + 0.958774i \(0.408282\pi\)
\(702\) −22.8463 −0.862278
\(703\) 5.36957 0.202517
\(704\) − 4.82606i − 0.181889i
\(705\) −41.4384 −1.56066
\(706\) − 17.8689i − 0.672505i
\(707\) − 3.14332i − 0.118217i
\(708\) 9.51729i 0.357682i
\(709\) −36.7239 −1.37919 −0.689597 0.724193i \(-0.742212\pi\)
−0.689597 + 0.724193i \(0.742212\pi\)
\(710\) − 22.6817i − 0.851230i
\(711\) − 25.4428i − 0.954180i
\(712\) 8.95536 0.335616
\(713\) 1.65256i 0.0618887i
\(714\) − 6.26069i − 0.234300i
\(715\) 87.1843i 3.26051i
\(716\) 22.9508 0.857711
\(717\) − 7.26385i − 0.271273i
\(718\) −2.89578 −0.108070
\(719\) −21.6653 −0.807980 −0.403990 0.914763i \(-0.632377\pi\)
−0.403990 + 0.914763i \(0.632377\pi\)
\(720\) −7.65675 −0.285350
\(721\) −28.4642 −1.06006
\(722\) − 14.7121i − 0.547527i
\(723\) 4.38244i 0.162985i
\(724\) −0.584454 −0.0217211
\(725\) 0 0
\(726\) −13.0607 −0.484728
\(727\) 1.87449i 0.0695210i 0.999396 + 0.0347605i \(0.0110668\pi\)
−0.999396 + 0.0347605i \(0.988933\pi\)
\(728\) − 10.3347i − 0.383029i
\(729\) −16.2900 −0.603332
\(730\) −10.3490 −0.383032
\(731\) −7.93917 −0.293641
\(732\) −6.28990 −0.232482
\(733\) 53.2656i 1.96741i 0.179791 + 0.983705i \(0.442458\pi\)
−0.179791 + 0.983705i \(0.557542\pi\)
\(734\) 16.6465 0.614435
\(735\) 6.60228i 0.243529i
\(736\) 2.02806i 0.0747551i
\(737\) − 25.1013i − 0.924618i
\(738\) 0.195738 0.00720521
\(739\) 20.1011i 0.739431i 0.929145 + 0.369716i \(0.120545\pi\)
−0.929145 + 0.369716i \(0.879455\pi\)
\(740\) 10.6128i 0.390135i
\(741\) −9.71266 −0.356803
\(742\) 24.5854i 0.902560i
\(743\) − 10.7246i − 0.393449i −0.980459 0.196725i \(-0.936970\pi\)
0.980459 0.196725i \(-0.0630305\pi\)
\(744\) 0.865884i 0.0317449i
\(745\) −34.4615 −1.26257
\(746\) 9.06657i 0.331951i
\(747\) −26.1795 −0.957859
\(748\) −12.1441 −0.444032
\(749\) −0.386206 −0.0141116
\(750\) −29.3586 −1.07202
\(751\) − 19.7336i − 0.720090i −0.932935 0.360045i \(-0.882761\pi\)
0.932935 0.360045i \(-0.117239\pi\)
\(752\) − 9.52807i − 0.347453i
\(753\) −7.45719 −0.271755
\(754\) 0 0
\(755\) −72.0169 −2.62096
\(756\) − 12.1185i − 0.440747i
\(757\) − 1.39712i − 0.0507793i −0.999678 0.0253896i \(-0.991917\pi\)
0.999678 0.0253896i \(-0.00808264\pi\)
\(758\) 36.9042 1.34042
\(759\) 10.4005 0.377516
\(760\) −8.47497 −0.307419
\(761\) −29.3599 −1.06430 −0.532148 0.846651i \(-0.678615\pi\)
−0.532148 + 0.846651i \(0.678615\pi\)
\(762\) 5.08988i 0.184387i
\(763\) −21.3018 −0.771178
\(764\) − 2.17573i − 0.0787150i
\(765\) 19.2671i 0.696604i
\(766\) − 5.74597i − 0.207610i
\(767\) 39.5331 1.42746
\(768\) 1.06263i 0.0383445i
\(769\) 24.6926i 0.890439i 0.895421 + 0.445220i \(0.146874\pi\)
−0.895421 + 0.445220i \(0.853126\pi\)
\(770\) −46.2459 −1.66659
\(771\) − 9.48835i − 0.341715i
\(772\) − 10.9969i − 0.395787i
\(773\) 9.23177i 0.332044i 0.986122 + 0.166022i \(0.0530922\pi\)
−0.986122 + 0.166022i \(0.946908\pi\)
\(774\) −5.90245 −0.212159
\(775\) − 9.57490i − 0.343940i
\(776\) 2.97302 0.106725
\(777\) −6.45157 −0.231449
\(778\) 1.82846 0.0655535
\(779\) 0.216655 0.00776247
\(780\) − 19.1968i − 0.687355i
\(781\) − 26.7457i − 0.957038i
\(782\) 5.10332 0.182494
\(783\) 0 0
\(784\) −1.51809 −0.0542174
\(785\) 57.8034i 2.06309i
\(786\) − 18.1767i − 0.648343i
\(787\) −6.56731 −0.234099 −0.117050 0.993126i \(-0.537344\pi\)
−0.117050 + 0.993126i \(0.537344\pi\)
\(788\) 2.58734 0.0921703
\(789\) 11.3340 0.403501
\(790\) 55.6608 1.98032
\(791\) 41.7719i 1.48524i
\(792\) −9.02865 −0.320819
\(793\) 26.1271i 0.927802i
\(794\) 19.5808i 0.694896i
\(795\) 45.6677i 1.61967i
\(796\) 5.42095 0.192141
\(797\) 10.6456i 0.377088i 0.982065 + 0.188544i \(0.0603768\pi\)
−0.982065 + 0.188544i \(0.939623\pi\)
\(798\) − 5.15197i − 0.182378i
\(799\) −23.9761 −0.848212
\(800\) − 11.7505i − 0.415444i
\(801\) − 16.7538i − 0.591966i
\(802\) − 12.0020i − 0.423804i
\(803\) −12.2032 −0.430643
\(804\) 5.52696i 0.194921i
\(805\) 19.4339 0.684955
\(806\) 3.59673 0.126689
\(807\) 1.95400 0.0687840
\(808\) 1.34253 0.0472299
\(809\) − 28.7914i − 1.01225i −0.862460 0.506126i \(-0.831077\pi\)
0.862460 0.506126i \(-0.168923\pi\)
\(810\) 0.459893i 0.0161590i
\(811\) 34.2025 1.20101 0.600505 0.799621i \(-0.294966\pi\)
0.600505 + 0.799621i \(0.294966\pi\)
\(812\) 0 0
\(813\) −11.1556 −0.391244
\(814\) 12.5144i 0.438629i
\(815\) 47.1700i 1.65229i
\(816\) 2.67397 0.0936075
\(817\) −6.53321 −0.228568
\(818\) 5.79580 0.202645
\(819\) −19.3342 −0.675593
\(820\) 0.428212i 0.0149538i
\(821\) −27.5825 −0.962637 −0.481319 0.876546i \(-0.659842\pi\)
−0.481319 + 0.876546i \(0.659842\pi\)
\(822\) 19.0074i 0.662958i
\(823\) 31.5932i 1.10127i 0.834746 + 0.550635i \(0.185614\pi\)
−0.834746 + 0.550635i \(0.814386\pi\)
\(824\) − 12.1572i − 0.423515i
\(825\) −60.2606 −2.09801
\(826\) 20.9699i 0.729636i
\(827\) − 33.6269i − 1.16932i −0.811278 0.584660i \(-0.801228\pi\)
0.811278 0.584660i \(-0.198772\pi\)
\(828\) 3.79411 0.131854
\(829\) 22.4142i 0.778478i 0.921137 + 0.389239i \(0.127262\pi\)
−0.921137 + 0.389239i \(0.872738\pi\)
\(830\) − 57.2725i − 1.98796i
\(831\) 12.9738i 0.450055i
\(832\) 4.41399 0.153028
\(833\) 3.82005i 0.132357i
\(834\) 20.9426 0.725183
\(835\) 45.0860 1.56026
\(836\) −9.99348 −0.345632
\(837\) 4.21756 0.145780
\(838\) − 18.9577i − 0.654884i
\(839\) 18.7664i 0.647888i 0.946076 + 0.323944i \(0.105009\pi\)
−0.946076 + 0.323944i \(0.894991\pi\)
\(840\) 10.1827 0.351337
\(841\) 0 0
\(842\) −23.3207 −0.803686
\(843\) − 34.3667i − 1.18365i
\(844\) 9.80716i 0.337576i
\(845\) −26.5344 −0.912812
\(846\) −17.8252 −0.612844
\(847\) −28.7772 −0.988797
\(848\) −10.5005 −0.360590
\(849\) − 8.17547i − 0.280581i
\(850\) −29.5686 −1.01419
\(851\) − 5.25891i − 0.180273i
\(852\) 5.88905i 0.201755i
\(853\) 42.4529i 1.45356i 0.686870 + 0.726781i \(0.258984\pi\)
−0.686870 + 0.726781i \(0.741016\pi\)
\(854\) −13.8588 −0.474240
\(855\) 15.8551i 0.542232i
\(856\) − 0.164950i − 0.00563788i
\(857\) −42.4913 −1.45147 −0.725737 0.687972i \(-0.758501\pi\)
−0.725737 + 0.687972i \(0.758501\pi\)
\(858\) − 22.6364i − 0.772794i
\(859\) 33.4671i 1.14188i 0.820991 + 0.570941i \(0.193421\pi\)
−0.820991 + 0.570941i \(0.806579\pi\)
\(860\) − 12.9127i − 0.440319i
\(861\) −0.260312 −0.00887141
\(862\) 5.71450i 0.194637i
\(863\) −21.4668 −0.730739 −0.365369 0.930863i \(-0.619057\pi\)
−0.365369 + 0.930863i \(0.619057\pi\)
\(864\) 5.17588 0.176087
\(865\) −46.3412 −1.57565
\(866\) −16.0811 −0.546457
\(867\) 11.3361i 0.384994i
\(868\) 1.90784i 0.0647564i
\(869\) 65.6339 2.22648
\(870\) 0 0
\(871\) 22.9580 0.777903
\(872\) − 9.09810i − 0.308101i
\(873\) − 5.56196i − 0.188244i
\(874\) 4.19956 0.142052
\(875\) −64.6872 −2.18683
\(876\) 2.68699 0.0907848
\(877\) 9.19139 0.310371 0.155186 0.987885i \(-0.450402\pi\)
0.155186 + 0.987885i \(0.450402\pi\)
\(878\) 31.7509i 1.07154i
\(879\) 30.2696 1.02097
\(880\) − 19.7518i − 0.665834i
\(881\) − 15.6573i − 0.527509i −0.964590 0.263755i \(-0.915039\pi\)
0.964590 0.263755i \(-0.0849609\pi\)
\(882\) 2.84005i 0.0956296i
\(883\) −54.7458 −1.84234 −0.921171 0.389159i \(-0.872766\pi\)
−0.921171 + 0.389159i \(0.872766\pi\)
\(884\) − 11.1072i − 0.373575i
\(885\) 38.9518i 1.30935i
\(886\) 17.9434 0.602821
\(887\) 6.00643i 0.201676i 0.994903 + 0.100838i \(0.0321524\pi\)
−0.994903 + 0.100838i \(0.967848\pi\)
\(888\) − 2.75549i − 0.0924683i
\(889\) 11.2148i 0.376131i
\(890\) 36.6520 1.22858
\(891\) 0.542295i 0.0181676i
\(892\) −7.81817 −0.261772
\(893\) −19.7301 −0.660242
\(894\) 8.94754 0.299251
\(895\) 93.9316 3.13979
\(896\) 2.34135i 0.0782190i
\(897\) 9.51249i 0.317613i
\(898\) −3.20804 −0.107054
\(899\) 0 0
\(900\) −21.9830 −0.732767
\(901\) 26.4232i 0.880283i
\(902\) 0.504938i 0.0168126i
\(903\) 7.84968 0.261221
\(904\) −17.8409 −0.593381
\(905\) −2.39202 −0.0795134
\(906\) 18.6984 0.621211
\(907\) − 5.84164i − 0.193968i −0.995286 0.0969842i \(-0.969080\pi\)
0.995286 0.0969842i \(-0.0309196\pi\)
\(908\) −6.97891 −0.231603
\(909\) − 2.51161i − 0.0833050i
\(910\) − 42.2972i − 1.40214i
\(911\) 20.9647i 0.694593i 0.937755 + 0.347296i \(0.112900\pi\)
−0.937755 + 0.347296i \(0.887100\pi\)
\(912\) 2.20043 0.0728634
\(913\) − 67.5344i − 2.23506i
\(914\) 34.3685i 1.13681i
\(915\) −25.7429 −0.851036
\(916\) 23.7679i 0.785314i
\(917\) − 40.0496i − 1.32256i
\(918\) − 13.0244i − 0.429869i
\(919\) 47.8325 1.57785 0.788924 0.614491i \(-0.210638\pi\)
0.788924 + 0.614491i \(0.210638\pi\)
\(920\) 8.30031i 0.273653i
\(921\) −16.2839 −0.536572
\(922\) 29.4802 0.970879
\(923\) 24.4621 0.805178
\(924\) 12.0072 0.395008
\(925\) 30.4701i 1.00185i
\(926\) 32.1086i 1.05516i
\(927\) −22.7438 −0.747004
\(928\) 0 0
\(929\) −25.6956 −0.843046 −0.421523 0.906818i \(-0.638504\pi\)
−0.421523 + 0.906818i \(0.638504\pi\)
\(930\) 3.54384i 0.116207i
\(931\) 3.14355i 0.103026i
\(932\) −4.73738 −0.155178
\(933\) −15.1838 −0.497095
\(934\) 34.6768 1.13466
\(935\) −49.7027 −1.62545
\(936\) − 8.25774i − 0.269913i
\(937\) 39.4622 1.28917 0.644587 0.764531i \(-0.277029\pi\)
0.644587 + 0.764531i \(0.277029\pi\)
\(938\) 12.1778i 0.397620i
\(939\) 3.97440i 0.129700i
\(940\) − 38.9959i − 1.27191i
\(941\) −30.6390 −0.998802 −0.499401 0.866371i \(-0.666447\pi\)
−0.499401 + 0.866371i \(0.666447\pi\)
\(942\) − 15.0080i − 0.488987i
\(943\) − 0.212190i − 0.00690985i
\(944\) −8.95633 −0.291504
\(945\) − 49.5981i − 1.61343i
\(946\) − 15.2263i − 0.495051i
\(947\) − 41.6241i − 1.35260i −0.736625 0.676301i \(-0.763582\pi\)
0.736625 0.676301i \(-0.236418\pi\)
\(948\) −14.4517 −0.469369
\(949\) − 11.1613i − 0.362310i
\(950\) −24.3322 −0.789440
\(951\) −35.8187 −1.16150
\(952\) 5.89167 0.190950
\(953\) 21.2035 0.686848 0.343424 0.939180i \(-0.388413\pi\)
0.343424 + 0.939180i \(0.388413\pi\)
\(954\) 19.6445i 0.636016i
\(955\) − 8.90469i − 0.288149i
\(956\) 6.83571 0.221083
\(957\) 0 0
\(958\) 41.7958 1.35036
\(959\) 41.8798i 1.35237i
\(960\) 4.34908i 0.140366i
\(961\) 30.3360 0.978581
\(962\) −11.4458 −0.369028
\(963\) −0.308590 −0.00994419
\(964\) −4.12413 −0.132829
\(965\) − 45.0075i − 1.44884i
\(966\) −5.04579 −0.162346
\(967\) 2.94436i 0.0946844i 0.998879 + 0.0473422i \(0.0150751\pi\)
−0.998879 + 0.0473422i \(0.984925\pi\)
\(968\) − 12.2909i − 0.395044i
\(969\) − 5.53707i − 0.177876i
\(970\) 12.1678 0.390685
\(971\) − 40.0139i − 1.28411i −0.766660 0.642054i \(-0.778083\pi\)
0.766660 0.642054i \(-0.221917\pi\)
\(972\) − 15.6471i − 0.501880i
\(973\) 46.1438 1.47930
\(974\) 30.9514i 0.991747i
\(975\) − 55.1153i − 1.76510i
\(976\) − 5.91917i − 0.189468i
\(977\) 28.3655 0.907491 0.453746 0.891131i \(-0.350087\pi\)
0.453746 + 0.891131i \(0.350087\pi\)
\(978\) − 12.2471i − 0.391620i
\(979\) 43.2191 1.38129
\(980\) −6.21314 −0.198471
\(981\) −17.0208 −0.543433
\(982\) 19.6356 0.626596
\(983\) 8.30979i 0.265041i 0.991180 + 0.132521i \(0.0423071\pi\)
−0.991180 + 0.132521i \(0.957693\pi\)
\(984\) − 0.111180i − 0.00354430i
\(985\) 10.5893 0.337404
\(986\) 0 0
\(987\) 23.7058 0.754564
\(988\) − 9.14018i − 0.290788i
\(989\) 6.39856i 0.203462i
\(990\) −36.9519 −1.17441
\(991\) 3.00560 0.0954762 0.0477381 0.998860i \(-0.484799\pi\)
0.0477381 + 0.998860i \(0.484799\pi\)
\(992\) −0.814848 −0.0258715
\(993\) 19.2997 0.612458
\(994\) 12.9756i 0.411561i
\(995\) 22.1866 0.703361
\(996\) 14.8702i 0.471179i
\(997\) 32.3634i 1.02496i 0.858700 + 0.512479i \(0.171273\pi\)
−0.858700 + 0.512479i \(0.828727\pi\)
\(998\) − 40.0525i − 1.26784i
\(999\) −13.4215 −0.424637
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1682.2.b.k.1681.6 16
29.12 odd 4 1682.2.a.v.1.3 yes 8
29.17 odd 4 1682.2.a.u.1.6 8
29.28 even 2 inner 1682.2.b.k.1681.11 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1682.2.a.u.1.6 8 29.17 odd 4
1682.2.a.v.1.3 yes 8 29.12 odd 4
1682.2.b.k.1681.6 16 1.1 even 1 trivial
1682.2.b.k.1681.11 16 29.28 even 2 inner