Properties

Label 169.10.a.g.1.24
Level 169169
Weight 1010
Character 169.1
Self dual yes
Analytic conductor 87.04187.041
Analytic rank 11
Dimension 2727
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,10,Mod(1,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: N N == 169=132 169 = 13^{2}
Weight: k k == 10 10
Character orbit: [χ][\chi] == 169.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 87.041056311787.0410563117
Analytic rank: 11
Dimension: 2727
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.24
Character χ\chi == 169.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+35.7320q2157.443q3+764.774q4+2363.03q55625.74q6+3406.89q7+9032.12q8+5105.19q9+84435.6q1085358.9q11120408.q12+121735.q14372041.q1568828.8q16173806.q17+182419.q18918491.q19+1.80718e6q20536389.q213.05004e6q221.02043e6q231.42204e6q24+3.63077e6q25+2.29517e6q27+2.60550e6q28+4.16258e6q291.32938e7q301.75360e6q317.08384e6q32+1.34391e7q336.21045e6q34+8.05056e6q35+3.90432e6q36+8.56572e6q373.28195e7q38+2.13431e7q401.45701e7q411.91663e7q423.74371e7q436.52803e7q44+1.20637e7q453.64620e7q46+2.97614e6q47+1.08366e7q482.87467e7q49+1.29734e8q50+2.73645e7q51+1.44169e7q53+8.20109e7q542.01705e8q55+3.07714e7q56+1.44610e8q57+1.48737e8q58+1.24760e8q592.84527e8q603.77625e7q616.26594e7q62+1.73928e7q632.17879e8q64+4.80207e8q662.21634e8q671.32923e8q68+1.60659e8q69+2.87663e8q70+3.19651e7q71+4.61107e7q72+8.39854e7q73+3.06070e8q745.71638e8q757.02438e8q762.90808e8q771.56307e8q791.62644e8q804.61843e8q815.20618e8q822.71578e8q834.10217e8q844.10709e8q851.33770e9q866.55367e8q877.70972e8q882.91190e8q89+4.31060e8q907.80398e8q92+2.76091e8q93+1.06343e8q942.17042e9q95+1.11530e9q96+1.32475e9q971.02718e9q984.35774e8q99+O(q100)q+35.7320 q^{2} -157.443 q^{3} +764.774 q^{4} +2363.03 q^{5} -5625.74 q^{6} +3406.89 q^{7} +9032.12 q^{8} +5105.19 q^{9} +84435.6 q^{10} -85358.9 q^{11} -120408. q^{12} +121735. q^{14} -372041. q^{15} -68828.8 q^{16} -173806. q^{17} +182419. q^{18} -918491. q^{19} +1.80718e6 q^{20} -536389. q^{21} -3.05004e6 q^{22} -1.02043e6 q^{23} -1.42204e6 q^{24} +3.63077e6 q^{25} +2.29517e6 q^{27} +2.60550e6 q^{28} +4.16258e6 q^{29} -1.32938e7 q^{30} -1.75360e6 q^{31} -7.08384e6 q^{32} +1.34391e7 q^{33} -6.21045e6 q^{34} +8.05056e6 q^{35} +3.90432e6 q^{36} +8.56572e6 q^{37} -3.28195e7 q^{38} +2.13431e7 q^{40} -1.45701e7 q^{41} -1.91663e7 q^{42} -3.74371e7 q^{43} -6.52803e7 q^{44} +1.20637e7 q^{45} -3.64620e7 q^{46} +2.97614e6 q^{47} +1.08366e7 q^{48} -2.87467e7 q^{49} +1.29734e8 q^{50} +2.73645e7 q^{51} +1.44169e7 q^{53} +8.20109e7 q^{54} -2.01705e8 q^{55} +3.07714e7 q^{56} +1.44610e8 q^{57} +1.48737e8 q^{58} +1.24760e8 q^{59} -2.84527e8 q^{60} -3.77625e7 q^{61} -6.26594e7 q^{62} +1.73928e7 q^{63} -2.17879e8 q^{64} +4.80207e8 q^{66} -2.21634e8 q^{67} -1.32923e8 q^{68} +1.60659e8 q^{69} +2.87663e8 q^{70} +3.19651e7 q^{71} +4.61107e7 q^{72} +8.39854e7 q^{73} +3.06070e8 q^{74} -5.71638e8 q^{75} -7.02438e8 q^{76} -2.90808e8 q^{77} -1.56307e8 q^{79} -1.62644e8 q^{80} -4.61843e8 q^{81} -5.20618e8 q^{82} -2.71578e8 q^{83} -4.10217e8 q^{84} -4.10709e8 q^{85} -1.33770e9 q^{86} -6.55367e8 q^{87} -7.70972e8 q^{88} -2.91190e8 q^{89} +4.31060e8 q^{90} -7.80398e8 q^{92} +2.76091e8 q^{93} +1.06343e8 q^{94} -2.17042e9 q^{95} +1.11530e9 q^{96} +1.32475e9 q^{97} -1.02718e9 q^{98} -4.35774e8 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 27q65q2+q3+7169q43238q58490q617378q754204q8+191118q9+11697q10164171q11181941q1277651q14614110q15+3012565q16+5866875443q99+O(q100) 27 q - 65 q^{2} + q^{3} + 7169 q^{4} - 3238 q^{5} - 8490 q^{6} - 17378 q^{7} - 54204 q^{8} + 191118 q^{9} + 11697 q^{10} - 164171 q^{11} - 181941 q^{12} - 77651 q^{14} - 614110 q^{15} + 3012565 q^{16}+ \cdots - 5866875443 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 35.7320 1.57915 0.789573 0.613657i 0.210302π-0.210302\pi
0.789573 + 0.613657i 0.210302π0.210302\pi
33 −157.443 −1.12222 −0.561108 0.827742i 0.689625π-0.689625\pi
−0.561108 + 0.827742i 0.689625π0.689625\pi
44 764.774 1.49370
55 2363.03 1.69084 0.845422 0.534099i 0.179349π-0.179349\pi
0.845422 + 0.534099i 0.179349π0.179349\pi
66 −5625.74 −1.77214
77 3406.89 0.536311 0.268155 0.963376i 0.413586π-0.413586\pi
0.268155 + 0.963376i 0.413586π0.413586\pi
88 9032.12 0.779623
99 5105.19 0.259371
1010 84435.6 2.67009
1111 −85358.9 −1.75785 −0.878925 0.476959i 0.841739π-0.841739\pi
−0.878925 + 0.476959i 0.841739π0.841739\pi
1212 −120408. −1.67625
1313 0 0
1414 121735. 0.846913
1515 −372041. −1.89749
1616 −68828.8 −0.262561
1717 −173806. −0.504714 −0.252357 0.967634i 0.581206π-0.581206\pi
−0.252357 + 0.967634i 0.581206π0.581206\pi
1818 182419. 0.409584
1919 −918491. −1.61690 −0.808451 0.588564i 0.799693π-0.799693\pi
−0.808451 + 0.588564i 0.799693π0.799693\pi
2020 1.80718e6 2.52561
2121 −536389. −0.601857
2222 −3.05004e6 −2.77590
2323 −1.02043e6 −0.760340 −0.380170 0.924917i 0.624135π-0.624135\pi
−0.380170 + 0.924917i 0.624135π0.624135\pi
2424 −1.42204e6 −0.874907
2525 3.63077e6 1.85895
2626 0 0
2727 2.29517e6 0.831147
2828 2.60550e6 0.801087
2929 4.16258e6 1.09288 0.546438 0.837499i 0.315983π-0.315983\pi
0.546438 + 0.837499i 0.315983π0.315983\pi
3030 −1.32938e7 −2.99642
3131 −1.75360e6 −0.341037 −0.170519 0.985354i 0.554544π-0.554544\pi
−0.170519 + 0.985354i 0.554544π0.554544\pi
3232 −7.08384e6 −1.19425
3333 1.34391e7 1.97269
3434 −6.21045e6 −0.797017
3535 8.05056e6 0.906818
3636 3.90432e6 0.387422
3737 8.56572e6 0.751374 0.375687 0.926747i 0.377407π-0.377407\pi
0.375687 + 0.926747i 0.377407π0.377407\pi
3838 −3.28195e7 −2.55332
3939 0 0
4040 2.13431e7 1.31822
4141 −1.45701e7 −0.805258 −0.402629 0.915363i 0.631903π-0.631903\pi
−0.402629 + 0.915363i 0.631903π0.631903\pi
4242 −1.91663e7 −0.950420
4343 −3.74371e7 −1.66992 −0.834958 0.550314i 0.814508π-0.814508\pi
−0.834958 + 0.550314i 0.814508π0.814508\pi
4444 −6.52803e7 −2.62570
4545 1.20637e7 0.438555
4646 −3.64620e7 −1.20069
4747 2.97614e6 0.0889638 0.0444819 0.999010i 0.485836π-0.485836\pi
0.0444819 + 0.999010i 0.485836π0.485836\pi
4848 1.08366e7 0.294650
4949 −2.87467e7 −0.712371
5050 1.29734e8 2.93556
5151 2.73645e7 0.566399
5252 0 0
5353 1.44169e7 0.250974 0.125487 0.992095i 0.459951π-0.459951\pi
0.125487 + 0.992095i 0.459951π0.459951\pi
5454 8.20109e7 1.31250
5555 −2.01705e8 −2.97225
5656 3.07714e7 0.418121
5757 1.44610e8 1.81451
5858 1.48737e8 1.72581
5959 1.24760e8 1.34042 0.670212 0.742170i 0.266203π-0.266203\pi
0.670212 + 0.742170i 0.266203π0.266203\pi
6060 −2.84527e8 −2.83428
6161 −3.77625e7 −0.349201 −0.174601 0.984639i 0.555863π-0.555863\pi
−0.174601 + 0.984639i 0.555863π0.555863\pi
6262 −6.26594e7 −0.538547
6363 1.73928e7 0.139103
6464 −2.17879e8 −1.62333
6565 0 0
6666 4.80207e8 3.11516
6767 −2.21634e8 −1.34369 −0.671847 0.740690i 0.734499π-0.734499\pi
−0.671847 + 0.740690i 0.734499π0.734499\pi
6868 −1.32923e8 −0.753892
6969 1.60659e8 0.853266
7070 2.87663e8 1.43200
7171 3.19651e7 0.149284 0.0746419 0.997210i 0.476219π-0.476219\pi
0.0746419 + 0.997210i 0.476219π0.476219\pi
7272 4.61107e7 0.202211
7373 8.39854e7 0.346139 0.173070 0.984910i 0.444631π-0.444631\pi
0.173070 + 0.984910i 0.444631π0.444631\pi
7474 3.06070e8 1.18653
7575 −5.71638e8 −2.08615
7676 −7.02438e8 −2.41516
7777 −2.90808e8 −0.942755
7878 0 0
7979 −1.56307e8 −0.451498 −0.225749 0.974186i 0.572483π-0.572483\pi
−0.225749 + 0.974186i 0.572483π0.572483\pi
8080 −1.62644e8 −0.443950
8181 −4.61843e8 −1.19210
8282 −5.20618e8 −1.27162
8383 −2.71578e8 −0.628121 −0.314061 0.949403i 0.601690π-0.601690\pi
−0.314061 + 0.949403i 0.601690π0.601690\pi
8484 −4.10217e8 −0.898994
8585 −4.10709e8 −0.853393
8686 −1.33770e9 −2.63704
8787 −6.55367e8 −1.22644
8888 −7.70972e8 −1.37046
8989 −2.91190e8 −0.491950 −0.245975 0.969276i 0.579108π-0.579108\pi
−0.245975 + 0.969276i 0.579108π0.579108\pi
9090 4.31060e8 0.692542
9191 0 0
9292 −7.80398e8 −1.13572
9393 2.76091e8 0.382718
9494 1.06343e8 0.140487
9595 −2.17042e9 −2.73393
9696 1.11530e9 1.34020
9797 1.32475e9 1.51937 0.759683 0.650293i 0.225354π-0.225354\pi
0.759683 + 0.650293i 0.225354π0.225354\pi
9898 −1.02718e9 −1.12494
9999 −4.35774e8 −0.455935
100100 2.77672e9 2.77672
101101 1.28960e9 1.23313 0.616564 0.787305i 0.288524π-0.288524\pi
0.616564 + 0.787305i 0.288524π0.288524\pi
102102 9.77789e8 0.894426
103103 5.51028e8 0.482399 0.241199 0.970476i 0.422459π-0.422459\pi
0.241199 + 0.970476i 0.422459π0.422459\pi
104104 0 0
105105 −1.26750e9 −1.01765
106106 5.15143e8 0.396325
107107 −4.61092e8 −0.340064 −0.170032 0.985439i 0.554387π-0.554387\pi
−0.170032 + 0.985439i 0.554387π0.554387\pi
108108 1.75529e9 1.24148
109109 −2.72950e9 −1.85209 −0.926047 0.377407i 0.876816π-0.876816\pi
−0.926047 + 0.377407i 0.876816π0.876816\pi
110110 −7.20733e9 −4.69362
111111 −1.34861e9 −0.843204
112112 −2.34492e8 −0.140814
113113 −9.31113e8 −0.537217 −0.268608 0.963249i 0.586564π-0.586564\pi
−0.268608 + 0.963249i 0.586564π0.586564\pi
114114 5.16719e9 2.86538
115115 −2.41130e9 −1.28562
116116 3.18343e9 1.63243
117117 0 0
118118 4.45793e9 2.11672
119119 −5.92139e8 −0.270684
120120 −3.36032e9 −1.47933
121121 4.92820e9 2.09004
122122 −1.34933e9 −0.551440
123123 2.29395e9 0.903674
124124 −1.34110e9 −0.509407
125125 3.96431e9 1.45235
126126 6.21479e8 0.219664
127127 −1.60685e9 −0.548097 −0.274048 0.961716i 0.588363π-0.588363\pi
−0.274048 + 0.961716i 0.588363π0.588363\pi
128128 −4.15833e9 −1.36922
129129 5.89420e9 1.87401
130130 0 0
131131 1.85853e9 0.551376 0.275688 0.961247i 0.411094π-0.411094\pi
0.275688 + 0.961247i 0.411094π0.411094\pi
132132 1.02779e10 2.94661
133133 −3.12919e9 −0.867162
134134 −7.91943e9 −2.12189
135135 5.42354e9 1.40534
136136 −1.56984e9 −0.393487
137137 −5.67025e8 −0.137518 −0.0687590 0.997633i 0.521904π-0.521904\pi
−0.0687590 + 0.997633i 0.521904π0.521904\pi
138138 5.74067e9 1.34743
139139 −3.79337e9 −0.861903 −0.430951 0.902375i 0.641822π-0.641822\pi
−0.430951 + 0.902375i 0.641822π0.641822\pi
140140 6.15686e9 1.35451
141141 −4.68572e8 −0.0998367
142142 1.14217e9 0.235741
143143 0 0
144144 −3.51384e8 −0.0681006
145145 9.83627e9 1.84788
146146 3.00097e9 0.546604
147147 4.52596e9 0.799434
148148 6.55084e9 1.12233
149149 −6.01571e9 −0.999881 −0.499941 0.866060i 0.666645π-0.666645\pi
−0.499941 + 0.866060i 0.666645π0.666645\pi
150150 −2.04257e10 −3.29433
151151 1.04382e10 1.63391 0.816956 0.576700i 0.195660π-0.195660\pi
0.816956 + 0.576700i 0.195660π0.195660\pi
152152 −8.29592e9 −1.26057
153153 −8.87315e8 −0.130908
154154 −1.03912e10 −1.48875
155155 −4.14379e9 −0.576641
156156 0 0
157157 6.51978e9 0.856416 0.428208 0.903680i 0.359145π-0.359145\pi
0.428208 + 0.903680i 0.359145π0.359145\pi
158158 −5.58515e9 −0.712980
159159 −2.26983e9 −0.281648
160160 −1.67393e10 −2.01928
161161 −3.47649e9 −0.407779
162162 −1.65026e10 −1.88250
163163 2.51750e9 0.279335 0.139667 0.990198i 0.455397π-0.455397\pi
0.139667 + 0.990198i 0.455397π0.455397\pi
164164 −1.11428e10 −1.20281
165165 3.17570e10 3.33551
166166 −9.70403e9 −0.991895
167167 −5.52083e9 −0.549263 −0.274632 0.961550i 0.588556π-0.588556\pi
−0.274632 + 0.961550i 0.588556π0.588556\pi
168168 −4.84474e9 −0.469222
169169 0 0
170170 −1.46755e10 −1.34763
171171 −4.68907e9 −0.419377
172172 −2.86309e10 −2.49435
173173 1.00712e10 0.854815 0.427408 0.904059i 0.359427π-0.359427\pi
0.427408 + 0.904059i 0.359427π0.359427\pi
174174 −2.34176e10 −1.93673
175175 1.23696e10 0.996977
176176 5.87515e9 0.461543
177177 −1.96426e10 −1.50425
178178 −1.04048e10 −0.776861
179179 −6.12641e9 −0.446033 −0.223017 0.974815i 0.571590π-0.571590\pi
−0.223017 + 0.974815i 0.571590π0.571590\pi
180180 9.22600e9 0.655069
181181 2.48881e8 0.0172361 0.00861804 0.999963i 0.497257π-0.497257\pi
0.00861804 + 0.999963i 0.497257π0.497257\pi
182182 0 0
183183 5.94542e9 0.391880
184184 −9.21665e9 −0.592779
185185 2.02410e10 1.27046
186186 9.86527e9 0.604367
187187 1.48359e10 0.887213
188188 2.27608e9 0.132885
189189 7.81938e9 0.445753
190190 −7.75533e10 −4.31727
191191 4.45138e9 0.242016 0.121008 0.992652i 0.461387π-0.461387\pi
0.121008 + 0.992652i 0.461387π0.461387\pi
192192 3.43035e10 1.82172
193193 7.15989e9 0.371449 0.185724 0.982602i 0.440537π-0.440537\pi
0.185724 + 0.982602i 0.440537π0.440537\pi
194194 4.73361e10 2.39930
195195 0 0
196196 −2.19848e10 −1.06407
197197 −1.83537e10 −0.868212 −0.434106 0.900862i 0.642936π-0.642936\pi
−0.434106 + 0.900862i 0.642936π0.642936\pi
198198 −1.55711e10 −0.719987
199199 −3.64234e10 −1.64642 −0.823211 0.567735i 0.807820π-0.807820\pi
−0.823211 + 0.567735i 0.807820π0.807820\pi
200200 3.27935e10 1.44928
201201 3.48947e10 1.50792
202202 4.60799e10 1.94729
203203 1.41814e10 0.586122
204204 2.09277e10 0.846030
205205 −3.44295e10 −1.36156
206206 1.96893e10 0.761778
207207 −5.20949e9 −0.197210
208208 0 0
209209 7.84014e10 2.84227
210210 −4.52904e10 −1.60701
211211 −6.89867e8 −0.0239604 −0.0119802 0.999928i 0.503814π-0.503814\pi
−0.0119802 + 0.999928i 0.503814π0.503814\pi
212212 1.10256e10 0.374880
213213 −5.03266e9 −0.167529
214214 −1.64757e10 −0.537011
215215 −8.84649e10 −2.82357
216216 2.07302e10 0.647982
217217 −5.97430e9 −0.182902
218218 −9.75303e10 −2.92473
219219 −1.32229e10 −0.388443
220220 −1.54259e11 −4.43965
221221 0 0
222222 −4.81885e10 −1.33154
223223 −1.07609e9 −0.0291393 −0.0145696 0.999894i 0.504638π-0.504638\pi
−0.0145696 + 0.999894i 0.504638π0.504638\pi
224224 −2.41338e10 −0.640487
225225 1.85358e10 0.482157
226226 −3.32705e10 −0.848343
227227 3.29551e10 0.823770 0.411885 0.911236i 0.364871π-0.364871\pi
0.411885 + 0.911236i 0.364871π0.364871\pi
228228 1.10594e11 2.71034
229229 7.20168e9 0.173051 0.0865255 0.996250i 0.472424π-0.472424\pi
0.0865255 + 0.996250i 0.472424π0.472424\pi
230230 −8.61606e10 −2.03017
231231 4.57856e10 1.05797
232232 3.75969e10 0.852032
233233 −5.53301e10 −1.22987 −0.614935 0.788577i 0.710818π-0.710818\pi
−0.614935 + 0.788577i 0.710818π0.710818\pi
234234 0 0
235235 7.03270e9 0.150424
236236 9.54134e10 2.00219
237237 2.46093e10 0.506678
238238 −2.11583e10 −0.427449
239239 1.00013e10 0.198274 0.0991371 0.995074i 0.468392π-0.468392\pi
0.0991371 + 0.995074i 0.468392π0.468392\pi
240240 2.56071e10 0.498208
241241 3.13793e10 0.599193 0.299597 0.954066i 0.403148π-0.403148\pi
0.299597 + 0.954066i 0.403148π0.403148\pi
242242 1.76094e11 3.30047
243243 2.75380e10 0.506645
244244 −2.88798e10 −0.521602
245245 −6.79292e10 −1.20451
246246 8.19675e10 1.42703
247247 0 0
248248 −1.58387e10 −0.265881
249249 4.27580e10 0.704888
250250 1.41653e11 2.29348
251251 1.93052e10 0.307003 0.153501 0.988148i 0.450945π-0.450945\pi
0.153501 + 0.988148i 0.450945π0.450945\pi
252252 1.33016e10 0.207778
253253 8.71028e10 1.33656
254254 −5.74157e10 −0.865524
255255 6.46631e10 0.957692
256256 −3.70312e10 −0.538874
257257 1.58735e10 0.226973 0.113487 0.993540i 0.463798π-0.463798\pi
0.113487 + 0.993540i 0.463798π0.463798\pi
258258 2.10611e11 2.95933
259259 2.91824e10 0.402970
260260 0 0
261261 2.12507e10 0.283460
262262 6.64088e10 0.870703
263263 5.70447e10 0.735215 0.367608 0.929981i 0.380177π-0.380177\pi
0.367608 + 0.929981i 0.380177π0.380177\pi
264264 1.21384e11 1.53795
265265 3.40674e10 0.424359
266266 −1.11812e11 −1.36937
267267 4.58457e10 0.552075
268268 −1.69500e11 −2.00707
269269 −9.29049e10 −1.08182 −0.540908 0.841082i 0.681919π-0.681919\pi
−0.540908 + 0.841082i 0.681919π0.681919\pi
270270 1.93794e11 2.21923
271271 3.88666e10 0.437738 0.218869 0.975754i 0.429763π-0.429763\pi
0.218869 + 0.975754i 0.429763π0.429763\pi
272272 1.19629e10 0.132518
273273 0 0
274274 −2.02609e10 −0.217161
275275 −3.09918e11 −3.26776
276276 1.22868e11 1.27452
277277 −6.61138e10 −0.674735 −0.337367 0.941373i 0.609536π-0.609536\pi
−0.337367 + 0.941373i 0.609536π0.609536\pi
278278 −1.35545e11 −1.36107
279279 −8.95244e9 −0.0884550
280280 7.27137e10 0.706977
281281 1.76046e11 1.68441 0.842205 0.539158i 0.181257π-0.181257\pi
0.842205 + 0.539158i 0.181257π0.181257\pi
282282 −1.67430e10 −0.157657
283283 1.29727e11 1.20224 0.601122 0.799158i 0.294721π-0.294721\pi
0.601122 + 0.799158i 0.294721π0.294721\pi
284284 2.44461e10 0.222985
285285 3.41716e11 3.06806
286286 0 0
287287 −4.96387e10 −0.431868
288288 −3.61643e10 −0.309752
289289 −8.83792e10 −0.745263
290290 3.51470e11 2.91808
291291 −2.08573e11 −1.70506
292292 6.42299e10 0.517028
293293 1.66120e11 1.31679 0.658396 0.752672i 0.271235π-0.271235\pi
0.658396 + 0.752672i 0.271235π0.271235\pi
294294 1.61722e11 1.26242
295295 2.94812e11 2.26645
296296 7.73666e10 0.585788
297297 −1.95913e11 −1.46103
298298 −2.14953e11 −1.57896
299299 0 0
300300 −4.37174e11 −3.11608
301301 −1.27544e11 −0.895594
302302 3.72977e11 2.58018
303303 −2.03038e11 −1.38384
304304 6.32186e10 0.424535
305305 −8.92337e10 −0.590445
306306 −3.17055e10 −0.206723
307307 6.66942e10 0.428515 0.214257 0.976777i 0.431267π-0.431267\pi
0.214257 + 0.976777i 0.431267π0.431267\pi
308308 −2.22403e11 −1.40819
309309 −8.67553e10 −0.541356
310310 −1.48066e11 −0.910599
311311 7.80144e10 0.472882 0.236441 0.971646i 0.424019π-0.424019\pi
0.236441 + 0.971646i 0.424019π0.424019\pi
312312 0 0
313313 −9.04014e10 −0.532385 −0.266193 0.963920i 0.585766π-0.585766\pi
−0.266193 + 0.963920i 0.585766π0.585766\pi
314314 2.32965e11 1.35240
315315 4.10997e10 0.235202
316316 −1.19539e11 −0.674402
317317 −2.62451e11 −1.45976 −0.729880 0.683576i 0.760424π-0.760424\pi
−0.729880 + 0.683576i 0.760424π0.760424\pi
318318 −8.11055e10 −0.444763
319319 −3.55313e11 −1.92111
320320 −5.14854e11 −2.74479
321321 7.25956e10 0.381626
322322 −1.24222e11 −0.643942
323323 1.59640e11 0.816073
324324 −3.53206e11 −1.78064
325325 0 0
326326 8.99551e10 0.441110
327327 4.29739e11 2.07845
328328 −1.31599e11 −0.627798
329329 1.01394e10 0.0477123
330330 1.13474e12 5.26725
331331 3.78043e11 1.73107 0.865537 0.500846i 0.166978π-0.166978\pi
0.865537 + 0.500846i 0.166978π0.166978\pi
332332 −2.07696e11 −0.938225
333333 4.37296e10 0.194884
334334 −1.97270e11 −0.867366
335335 −5.23727e11 −2.27198
336336 3.69190e10 0.158024
337337 −1.39921e11 −0.590947 −0.295473 0.955351i 0.595477π-0.595477\pi
−0.295473 + 0.955351i 0.595477π0.595477\pi
338338 0 0
339339 1.46597e11 0.602874
340340 −3.14100e11 −1.27471
341341 1.49685e11 0.599492
342342 −1.67550e11 −0.662256
343343 −2.35417e11 −0.918363
344344 −3.38137e11 −1.30190
345345 3.79642e11 1.44274
346346 3.59863e11 1.34988
347347 1.54612e11 0.572479 0.286240 0.958158i 0.407595π-0.407595\pi
0.286240 + 0.958158i 0.407595π0.407595\pi
348348 −5.01208e11 −1.83194
349349 −2.27503e11 −0.820866 −0.410433 0.911891i 0.634622π-0.634622\pi
−0.410433 + 0.911891i 0.634622π0.634622\pi
350350 4.41991e11 1.57437
351351 0 0
352352 6.04669e11 2.09930
353353 −4.58333e11 −1.57107 −0.785533 0.618819i 0.787611π-0.787611\pi
−0.785533 + 0.618819i 0.787611π0.787611\pi
354354 −7.01868e11 −2.37542
355355 7.55343e10 0.252416
356356 −2.22694e11 −0.734826
357357 9.32280e10 0.303766
358358 −2.18909e11 −0.704351
359359 −4.60131e11 −1.46203 −0.731016 0.682360i 0.760953π-0.760953\pi
−0.731016 + 0.682360i 0.760953π0.760953\pi
360360 1.08961e11 0.341908
361361 5.20937e11 1.61437
362362 8.89301e9 0.0272183
363363 −7.75909e11 −2.34548
364364 0 0
365365 1.98460e11 0.585268
366366 2.12442e11 0.618835
367367 −3.17602e11 −0.913874 −0.456937 0.889499i 0.651054π-0.651054\pi
−0.456937 + 0.889499i 0.651054π0.651054\pi
368368 7.02349e10 0.199636
369369 −7.43831e10 −0.208860
370370 7.23251e11 2.00623
371371 4.91166e10 0.134600
372372 2.11147e11 0.571665
373373 −1.31409e11 −0.351507 −0.175754 0.984434i 0.556236π-0.556236\pi
−0.175754 + 0.984434i 0.556236π0.556236\pi
374374 5.30117e11 1.40104
375375 −6.24152e11 −1.62986
376376 2.68809e10 0.0693583
377377 0 0
378378 2.79402e11 0.703909
379379 5.87179e11 1.46182 0.730910 0.682474i 0.239096π-0.239096\pi
0.730910 + 0.682474i 0.239096π0.239096\pi
380380 −1.65988e12 −4.08367
381381 2.52986e11 0.615083
382382 1.59057e11 0.382179
383383 −4.78147e11 −1.13545 −0.567723 0.823220i 0.692176π-0.692176\pi
−0.567723 + 0.823220i 0.692176π0.692176\pi
384384 6.54698e11 1.53656
385385 −6.87188e11 −1.59405
386386 2.55837e11 0.586571
387387 −1.91124e11 −0.433127
388388 1.01314e12 2.26948
389389 4.44374e11 0.983955 0.491977 0.870608i 0.336274π-0.336274\pi
0.491977 + 0.870608i 0.336274π0.336274\pi
390390 0 0
391391 1.77357e11 0.383755
392392 −2.59644e11 −0.555381
393393 −2.92611e11 −0.618764
394394 −6.55815e11 −1.37103
395395 −3.69357e11 −0.763412
396396 −3.33268e11 −0.681029
397397 −4.54781e10 −0.0918850 −0.0459425 0.998944i 0.514629π-0.514629\pi
−0.0459425 + 0.998944i 0.514629π0.514629\pi
398398 −1.30148e12 −2.59994
399399 4.92669e11 0.973144
400400 −2.49901e11 −0.488088
401401 7.41103e11 1.43129 0.715647 0.698462i 0.246132π-0.246132\pi
0.715647 + 0.698462i 0.246132π0.246132\pi
402402 1.24686e12 2.38122
403403 0 0
404404 9.86252e11 1.84192
405405 −1.09135e12 −2.01565
406406 5.06730e11 0.925571
407407 −7.31161e11 −1.32080
408408 2.47160e11 0.441578
409409 −5.89252e11 −1.04123 −0.520614 0.853792i 0.674297π-0.674297\pi
−0.520614 + 0.853792i 0.674297π0.674297\pi
410410 −1.23023e12 −2.15011
411411 8.92739e10 0.154325
412412 4.21412e11 0.720559
413413 4.25044e11 0.718884
414414 −1.86145e11 −0.311423
415415 −6.41746e11 −1.06205
416416 0 0
417417 5.97238e11 0.967242
418418 2.80144e12 4.48836
419419 1.19505e12 1.89419 0.947093 0.320961i 0.104006π-0.104006\pi
0.947093 + 0.320961i 0.104006π0.104006\pi
420420 −9.69353e11 −1.52006
421421 −6.30842e11 −0.978704 −0.489352 0.872086i 0.662767π-0.662767\pi
−0.489352 + 0.872086i 0.662767π0.662767\pi
422422 −2.46503e10 −0.0378370
423423 1.51938e10 0.0230746
424424 1.30215e11 0.195666
425425 −6.31051e11 −0.938240
426426 −1.79827e11 −0.264552
427427 −1.28652e11 −0.187281
428428 −3.52632e11 −0.507954
429429 0 0
430430 −3.16103e12 −4.45882
431431 −1.16016e11 −0.161946 −0.0809730 0.996716i 0.525803π-0.525803\pi
−0.0809730 + 0.996716i 0.525803π0.525803\pi
432432 −1.57974e11 −0.218227
433433 5.34527e11 0.730759 0.365380 0.930859i 0.380939π-0.380939\pi
0.365380 + 0.930859i 0.380939π0.380939\pi
434434 −2.13474e11 −0.288829
435435 −1.54865e12 −2.07373
436436 −2.08745e12 −2.76647
437437 9.37255e11 1.22939
438438 −4.72480e11 −0.613409
439439 6.73196e11 0.865070 0.432535 0.901617i 0.357619π-0.357619\pi
0.432535 + 0.901617i 0.357619π0.357619\pi
440440 −1.82183e12 −2.31724
441441 −1.46757e11 −0.184768
442442 0 0
443443 −6.93075e11 −0.854995 −0.427498 0.904017i 0.640605π-0.640605\pi
−0.427498 + 0.904017i 0.640605π0.640605\pi
444444 −1.03138e12 −1.25949
445445 −6.88089e11 −0.831811
446446 −3.84510e10 −0.0460151
447447 9.47129e11 1.12208
448448 −7.42290e11 −0.870607
449449 1.51844e12 1.76314 0.881572 0.472050i 0.156486π-0.156486\pi
0.881572 + 0.472050i 0.156486π0.156486\pi
450450 6.62319e11 0.761397
451451 1.24369e12 1.41552
452452 −7.12091e11 −0.802440
453453 −1.64342e12 −1.83360
454454 1.17755e12 1.30085
455455 0 0
456456 1.30613e12 1.41464
457457 −4.85641e11 −0.520825 −0.260413 0.965497i 0.583859π-0.583859\pi
−0.260413 + 0.965497i 0.583859π0.583859\pi
458458 2.57330e11 0.273273
459459 −3.98915e11 −0.419492
460460 −1.84410e12 −1.92032
461461 1.60851e12 1.65871 0.829353 0.558725i 0.188709π-0.188709\pi
0.829353 + 0.558725i 0.188709π0.188709\pi
462462 1.63601e12 1.67070
463463 1.76369e12 1.78364 0.891819 0.452392i 0.149429π-0.149429\pi
0.891819 + 0.452392i 0.149429π0.149429\pi
464464 −2.86505e11 −0.286947
465465 6.52410e11 0.647116
466466 −1.97705e12 −1.94214
467467 −7.75997e11 −0.754978 −0.377489 0.926014i 0.623212π-0.623212\pi
−0.377489 + 0.926014i 0.623212π0.623212\pi
468468 0 0
469469 −7.55083e11 −0.720638
470470 2.51292e11 0.237541
471471 −1.02649e12 −0.961084
472472 1.12685e12 1.04503
473473 3.19559e12 2.93546
474474 8.79340e11 0.800119
475475 −3.33482e12 −3.00574
476476 −4.52853e11 −0.404320
477477 7.36008e10 0.0650954
478478 3.57366e11 0.313104
479479 −1.07610e11 −0.0933991 −0.0466996 0.998909i 0.514870π-0.514870\pi
−0.0466996 + 0.998909i 0.514870π0.514870\pi
480480 2.63548e12 2.26607
481481 0 0
482482 1.12125e12 0.946213
483483 5.47348e11 0.457616
484484 3.76896e12 3.12189
485485 3.13043e12 2.56901
486486 9.83986e11 0.800066
487487 −2.15606e12 −1.73692 −0.868460 0.495760i 0.834890π-0.834890\pi
−0.868460 + 0.495760i 0.834890π0.834890\pi
488488 −3.41075e11 −0.272246
489489 −3.96361e11 −0.313474
490490 −2.42725e12 −1.90209
491491 5.77446e11 0.448378 0.224189 0.974546i 0.428027π-0.428027\pi
0.224189 + 0.974546i 0.428027π0.428027\pi
492492 1.75436e12 1.34982
493493 −7.23482e11 −0.551591
494494 0 0
495495 −1.02974e12 −0.770914
496496 1.20698e11 0.0895431
497497 1.08901e11 0.0800626
498498 1.52783e12 1.11312
499499 −5.68605e11 −0.410543 −0.205271 0.978705i 0.565808π-0.565808\pi
−0.205271 + 0.978705i 0.565808π0.565808\pi
500500 3.03180e12 2.16938
501501 8.69214e11 0.616392
502502 6.89812e11 0.484802
503503 −1.59855e12 −1.11345 −0.556724 0.830697i 0.687942π-0.687942\pi
−0.556724 + 0.830697i 0.687942π0.687942\pi
504504 1.57094e11 0.108448
505505 3.04736e12 2.08503
506506 3.11236e12 2.11063
507507 0 0
508508 −1.22887e12 −0.818692
509509 −2.43617e11 −0.160871 −0.0804354 0.996760i 0.525631π-0.525631\pi
−0.0804354 + 0.996760i 0.525631π0.525631\pi
510510 2.31054e12 1.51234
511511 2.86129e11 0.185638
512512 8.05867e11 0.518261
513513 −2.10809e12 −1.34388
514514 5.67193e11 0.358423
515515 1.30209e12 0.815661
516516 4.50773e12 2.79920
517517 −2.54040e11 −0.156385
518518 1.04275e12 0.636348
519519 −1.58563e12 −0.959288
520520 0 0
521521 7.24903e11 0.431033 0.215516 0.976500i 0.430857π-0.430857\pi
0.215516 + 0.976500i 0.430857π0.430857\pi
522522 7.59331e11 0.447624
523523 −2.96967e12 −1.73561 −0.867803 0.496908i 0.834469π-0.834469\pi
−0.867803 + 0.496908i 0.834469π0.834469\pi
524524 1.42135e12 0.823590
525525 −1.94750e12 −1.11882
526526 2.03832e12 1.16101
527527 3.04786e11 0.172126
528528 −9.25000e11 −0.517951
529529 −7.59876e11 −0.421883
530530 1.21730e12 0.670124
531531 6.36924e11 0.347666
532532 −2.39313e12 −1.29528
533533 0 0
534534 1.63816e12 0.871806
535535 −1.08957e12 −0.574996
536536 −2.00183e12 −1.04757
537537 9.64558e11 0.500546
538538 −3.31967e12 −1.70834
539539 2.45379e12 1.25224
540540 4.14779e12 2.09915
541541 5.44604e11 0.273333 0.136667 0.990617i 0.456361π-0.456361\pi
0.136667 + 0.990617i 0.456361π0.456361\pi
542542 1.38878e12 0.691252
543543 −3.91845e10 −0.0193426
544544 1.23122e12 0.602753
545545 −6.44987e12 −3.13160
546546 0 0
547547 −2.44853e12 −1.16940 −0.584699 0.811250i 0.698788π-0.698788\pi
−0.584699 + 0.811250i 0.698788π0.698788\pi
548548 −4.33646e11 −0.205410
549549 −1.92785e11 −0.0905726
550550 −1.10740e13 −5.16027
551551 −3.82329e12 −1.76707
552552 1.45109e12 0.665226
553553 −5.32519e11 −0.242143
554554 −2.36238e12 −1.06550
555555 −3.18680e12 −1.42573
556556 −2.90107e12 −1.28742
557557 −2.99460e12 −1.31823 −0.659113 0.752044i 0.729068π-0.729068\pi
−0.659113 + 0.752044i 0.729068π0.729068\pi
558558 −3.19888e11 −0.139683
559559 0 0
560560 −5.54111e11 −0.238095
561561 −2.33581e12 −0.995645
562562 6.29047e12 2.65993
563563 9.35795e8 0.000392548 0 0.000196274 1.00000i 0.499938π-0.499938\pi
0.000196274 1.00000i 0.499938π0.499938\pi
564564 −3.58352e11 −0.149126
565565 −2.20024e12 −0.908349
566566 4.63541e12 1.89852
567567 −1.57345e12 −0.639335
568568 2.88712e11 0.116385
569569 5.21435e11 0.208543 0.104271 0.994549i 0.466749π-0.466749\pi
0.104271 + 0.994549i 0.466749π0.466749\pi
570570 1.22102e13 4.84491
571571 −2.60236e12 −1.02448 −0.512241 0.858842i 0.671185π-0.671185\pi
−0.512241 + 0.858842i 0.671185π0.671185\pi
572572 0 0
573573 −7.00838e11 −0.271595
574574 −1.77369e12 −0.681983
575575 −3.70494e12 −1.41344
576576 −1.11231e12 −0.421043
577577 4.76628e11 0.179015 0.0895073 0.995986i 0.471471π-0.471471\pi
0.0895073 + 0.995986i 0.471471π0.471471\pi
578578 −3.15796e12 −1.17688
579579 −1.12727e12 −0.416846
580580 7.52253e12 2.76018
581581 −9.25237e11 −0.336868
582582 −7.45272e12 −2.69253
583583 −1.23061e12 −0.441176
584584 7.58567e11 0.269858
585585 0 0
586586 5.93579e12 2.07941
587587 1.40719e11 0.0489194 0.0244597 0.999701i 0.492213π-0.492213\pi
0.0244597 + 0.999701i 0.492213π0.492213\pi
588588 3.46134e12 1.19411
589589 1.61066e12 0.551424
590590 1.05342e13 3.57905
591591 2.88966e12 0.974322
592592 −5.89568e11 −0.197281
593593 −4.90641e12 −1.62936 −0.814681 0.579909i 0.803088π-0.803088\pi
−0.814681 + 0.579909i 0.803088π0.803088\pi
594594 −7.00037e12 −2.30718
595595 −1.39924e12 −0.457684
596596 −4.60066e12 −1.49352
597597 5.73459e12 1.84764
598598 0 0
599599 3.29390e12 1.04542 0.522708 0.852512i 0.324922π-0.324922\pi
0.522708 + 0.852512i 0.324922π0.324922\pi
600600 −5.16310e12 −1.62641
601601 5.66204e12 1.77026 0.885132 0.465341i 0.154068π-0.154068\pi
0.885132 + 0.465341i 0.154068π0.154068\pi
602602 −4.55740e12 −1.41427
603603 −1.13148e12 −0.348514
604604 7.98285e12 2.44057
605605 1.16455e13 3.53393
606606 −7.25494e12 −2.18528
607607 6.16493e12 1.84323 0.921614 0.388108i 0.126871π-0.126871\pi
0.921614 + 0.388108i 0.126871π0.126871\pi
608608 6.50644e12 1.93098
609609 −2.23276e12 −0.657756
610610 −3.18850e12 −0.932399
611611 0 0
612612 −6.78596e11 −0.195537
613613 6.43646e12 1.84109 0.920544 0.390639i 0.127746π-0.127746\pi
0.920544 + 0.390639i 0.127746π0.127746\pi
614614 2.38312e12 0.676687
615615 5.42067e12 1.52797
616616 −2.62662e12 −0.734994
617617 6.09818e10 0.0169401 0.00847007 0.999964i 0.497304π-0.497304\pi
0.00847007 + 0.999964i 0.497304π0.497304\pi
618618 −3.09994e12 −0.854880
619619 −3.71099e12 −1.01597 −0.507986 0.861365i 0.669610π-0.669610\pi
−0.507986 + 0.861365i 0.669610π0.669610\pi
620620 −3.16906e12 −0.861328
621621 −2.34206e12 −0.631954
622622 2.78761e12 0.746750
623623 −9.92051e11 −0.263838
624624 0 0
625625 2.27643e12 0.596752
626626 −3.23022e12 −0.840713
627627 −1.23437e13 −3.18964
628628 4.98616e12 1.27923
629629 −1.48878e12 −0.379229
630630 1.46857e12 0.371418
631631 −1.69274e12 −0.425068 −0.212534 0.977154i 0.568172π-0.568172\pi
−0.212534 + 0.977154i 0.568172π0.568172\pi
632632 −1.41178e12 −0.351998
633633 1.08614e11 0.0268888
634634 −9.37789e12 −2.30517
635635 −3.79702e12 −0.926746
636636 −1.73591e12 −0.420697
637637 0 0
638638 −1.26960e13 −3.03372
639639 1.63188e11 0.0387198
640640 −9.82624e12 −2.31514
641641 3.87167e12 0.905810 0.452905 0.891559i 0.350388π-0.350388\pi
0.452905 + 0.891559i 0.350388π0.350388\pi
642642 2.59399e12 0.602643
643643 −5.80209e12 −1.33855 −0.669275 0.743015i 0.733395π-0.733395\pi
−0.669275 + 0.743015i 0.733395π0.733395\pi
644644 −2.65873e12 −0.609099
645645 1.39281e13 3.16865
646646 5.70424e12 1.28870
647647 −2.47347e11 −0.0554928 −0.0277464 0.999615i 0.508833π-0.508833\pi
−0.0277464 + 0.999615i 0.508833π0.508833\pi
648648 −4.17142e12 −0.929387
649649 −1.06494e13 −2.35626
650650 0 0
651651 9.40610e11 0.205256
652652 1.92532e12 0.417242
653653 7.76569e12 1.67136 0.835681 0.549215i 0.185073π-0.185073\pi
0.835681 + 0.549215i 0.185073π0.185073\pi
654654 1.53554e13 3.28218
655655 4.39175e12 0.932291
656656 1.00284e12 0.211429
657657 4.28762e11 0.0897784
658658 3.62300e11 0.0753446
659659 4.18896e12 0.865211 0.432605 0.901583i 0.357594π-0.357594\pi
0.432605 + 0.901583i 0.357594π0.357594\pi
660660 2.42870e13 4.98225
661661 5.49347e12 1.11928 0.559642 0.828735i 0.310939π-0.310939\pi
0.559642 + 0.828735i 0.310939π0.310939\pi
662662 1.35082e13 2.73362
663663 0 0
664664 −2.45293e12 −0.489698
665665 −7.39437e12 −1.46624
666666 1.56255e12 0.307750
667667 −4.24762e12 −0.830958
668668 −4.22219e12 −0.820434
669669 1.69423e11 0.0327006
670670 −1.87138e13 −3.58778
671671 3.22336e12 0.613844
672672 3.79969e12 0.718765
673673 −5.85305e12 −1.09980 −0.549901 0.835230i 0.685335π-0.685335\pi
−0.549901 + 0.835230i 0.685335π0.685335\pi
674674 −4.99966e12 −0.933191
675675 8.33322e12 1.54506
676676 0 0
677677 −7.83348e12 −1.43320 −0.716598 0.697486i 0.754302π-0.754302\pi
−0.716598 + 0.697486i 0.754302π0.754302\pi
678678 5.23820e12 0.952025
679679 4.51329e12 0.814853
680680 −3.70958e12 −0.665325
681681 −5.18853e12 −0.924448
682682 5.34854e12 0.946686
683683 −4.96989e12 −0.873884 −0.436942 0.899490i 0.643939π-0.643939\pi
−0.436942 + 0.899490i 0.643939π0.643939\pi
684684 −3.58608e12 −0.626423
685685 −1.33989e12 −0.232521
686686 −8.41192e12 −1.45023
687687 −1.13385e12 −0.194201
688688 2.57675e12 0.438455
689689 0 0
690690 1.35654e13 2.27830
691691 9.71204e11 0.162054 0.0810269 0.996712i 0.474180π-0.474180\pi
0.0810269 + 0.996712i 0.474180π0.474180\pi
692692 7.70217e12 1.27684
693693 −1.48463e12 −0.244523
694694 5.52458e12 0.904028
695695 −8.96383e12 −1.45734
696696 −5.91935e12 −0.956165
697697 2.53238e12 0.406425
698698 −8.12912e12 −1.29627
699699 8.71131e12 1.38018
700700 9.45996e12 1.48918
701701 6.96434e11 0.108930 0.0544651 0.998516i 0.482655π-0.482655\pi
0.0544651 + 0.998516i 0.482655π0.482655\pi
702702 0 0
703703 −7.86753e12 −1.21490
704704 1.85979e13 2.85356
705705 −1.10725e12 −0.168808
706706 −1.63771e13 −2.48094
707707 4.39352e12 0.661340
708708 −1.50221e13 −2.24689
709709 −1.07645e13 −1.59988 −0.799940 0.600080i 0.795135π-0.795135\pi
−0.799940 + 0.600080i 0.795135π0.795135\pi
710710 2.69899e12 0.398601
711711 −7.97975e11 −0.117105
712712 −2.63006e12 −0.383536
713713 1.78942e12 0.259304
714714 3.33122e12 0.479691
715715 0 0
716716 −4.68532e12 −0.666240
717717 −1.57463e12 −0.222507
718718 −1.64414e13 −2.30876
719719 −1.00049e13 −1.39616 −0.698078 0.716021i 0.745961π-0.745961\pi
−0.698078 + 0.716021i 0.745961π0.745961\pi
720720 −8.30330e11 −0.115147
721721 1.87729e12 0.258716
722722 1.86141e13 2.54932
723723 −4.94044e12 −0.672425
724724 1.90338e11 0.0257455
725725 1.51133e13 2.03161
726726 −2.77248e13 −3.70385
727727 3.07406e12 0.408138 0.204069 0.978957i 0.434583π-0.434583\pi
0.204069 + 0.978957i 0.434583π0.434583\pi
728728 0 0
729729 4.75480e12 0.623532
730730 7.09136e12 0.924223
731731 6.50681e12 0.842830
732732 4.54691e12 0.585351
733733 −1.10029e13 −1.40779 −0.703896 0.710303i 0.748558π-0.748558\pi
−0.703896 + 0.710303i 0.748558π0.748558\pi
734734 −1.13486e13 −1.44314
735735 1.06950e13 1.35172
736736 7.22856e12 0.908033
737737 1.89185e13 2.36201
738738 −2.65785e12 −0.329820
739739 −1.39859e13 −1.72501 −0.862505 0.506048i 0.831106π-0.831106\pi
−0.862505 + 0.506048i 0.831106π0.831106\pi
740740 1.54798e13 1.89768
741741 0 0
742742 1.75503e12 0.212553
743743 −4.61053e12 −0.555011 −0.277505 0.960724i 0.589508π-0.589508\pi
−0.277505 + 0.960724i 0.589508π0.589508\pi
744744 2.49369e12 0.298376
745745 −1.42153e13 −1.69064
746746 −4.69549e12 −0.555081
747747 −1.38646e12 −0.162916
748748 1.13461e13 1.32523
749749 −1.57089e12 −0.182380
750750 −2.23022e13 −2.57378
751751 7.70888e12 0.884324 0.442162 0.896935i 0.354212π-0.354212\pi
0.442162 + 0.896935i 0.354212π0.354212\pi
752752 −2.04844e11 −0.0233584
753753 −3.03946e12 −0.344523
754754 0 0
755755 2.46657e13 2.76269
756756 5.98006e12 0.665821
757757 1.68076e12 0.186027 0.0930133 0.995665i 0.470350π-0.470350\pi
0.0930133 + 0.995665i 0.470350π0.470350\pi
758758 2.09811e13 2.30843
759759 −1.37137e13 −1.49991
760760 −1.96035e13 −2.13143
761761 −8.42654e12 −0.910790 −0.455395 0.890289i 0.650502π-0.650502\pi
−0.455395 + 0.890289i 0.650502π0.650502\pi
762762 9.03969e12 0.971306
763763 −9.29909e12 −0.993299
764764 3.40430e12 0.361500
765765 −2.09675e12 −0.221345
766766 −1.70851e13 −1.79303
767767 0 0
768768 5.83029e12 0.604734
769769 −1.33393e13 −1.37552 −0.687758 0.725940i 0.741405π-0.741405\pi
−0.687758 + 0.725940i 0.741405π0.741405\pi
770770 −2.45546e13 −2.51724
771771 −2.49917e12 −0.254713
772772 5.47570e12 0.554833
773773 1.25115e13 1.26038 0.630190 0.776441i 0.282977π-0.282977\pi
0.630190 + 0.776441i 0.282977π0.282977\pi
774774 −6.82922e12 −0.683970
775775 −6.36690e12 −0.633972
776776 1.19653e13 1.18453
777777 −4.59456e12 −0.452220
778778 1.58784e13 1.55381
779779 1.33825e13 1.30202
780780 0 0
781781 −2.72850e12 −0.262419
782782 6.33733e12 0.606004
783783 9.55381e12 0.908341
784784 1.97860e12 0.187041
785785 1.54064e13 1.44807
786786 −1.04556e13 −0.977118
787787 4.69799e12 0.436542 0.218271 0.975888i 0.429958π-0.429958\pi
0.218271 + 0.975888i 0.429958π0.429958\pi
788788 −1.40364e13 −1.29685
789789 −8.98127e12 −0.825071
790790 −1.31978e13 −1.20554
791791 −3.17220e12 −0.288115
792792 −3.93596e12 −0.355457
793793 0 0
794794 −1.62502e12 −0.145100
795795 −5.36367e12 −0.476222
796796 −2.78557e13 −2.45926
797797 2.87905e11 0.0252747 0.0126374 0.999920i 0.495977π-0.495977\pi
0.0126374 + 0.999920i 0.495977π0.495977\pi
798798 1.76040e13 1.53674
799799 −5.17273e11 −0.0449013
800800 −2.57198e13 −2.22005
801801 −1.48658e12 −0.127597
802802 2.64811e13 2.26022
803803 −7.16891e12 −0.608461
804804 2.66866e13 2.25237
805805 −8.21504e12 −0.689490
806806 0 0
807807 1.46272e13 1.21403
808808 1.16478e13 0.961376
809809 −8.27639e12 −0.679317 −0.339658 0.940549i 0.610311π-0.610311\pi
−0.339658 + 0.940549i 0.610311π0.610311\pi
810810 −3.89960e13 −3.18300
811811 5.88340e12 0.477567 0.238784 0.971073i 0.423251π-0.423251\pi
0.238784 + 0.971073i 0.423251π0.423251\pi
812812 1.08456e13 0.875490
813813 −6.11926e12 −0.491237
814814 −2.61258e13 −2.08574
815815 5.94891e12 0.472311
816816 −1.88347e12 −0.148714
817817 3.43856e13 2.70009
818818 −2.10551e13 −1.64425
819819 0 0
820820 −2.63308e13 −2.03377
821821 −1.41774e13 −1.08906 −0.544532 0.838740i 0.683293π-0.683293\pi
−0.544532 + 0.838740i 0.683293π0.683293\pi
822822 3.18993e12 0.243701
823823 8.59469e12 0.653026 0.326513 0.945193i 0.394126π-0.394126\pi
0.326513 + 0.945193i 0.394126π0.394126\pi
824824 4.97695e12 0.376089
825825 4.87944e13 3.66714
826826 1.51877e13 1.13522
827827 −8.90088e11 −0.0661696 −0.0330848 0.999453i 0.510533π-0.510533\pi
−0.0330848 + 0.999453i 0.510533π0.510533\pi
828828 −3.98408e12 −0.294572
829829 4.44031e12 0.326526 0.163263 0.986583i 0.447798π-0.447798\pi
0.163263 + 0.986583i 0.447798π0.447798\pi
830830 −2.29309e13 −1.67714
831831 1.04091e13 0.757199
832832 0 0
833833 4.99637e12 0.359544
834834 2.13405e13 1.52742
835835 −1.30459e13 −0.928718
836836 5.99594e13 4.24550
837837 −4.02480e12 −0.283452
838838 4.27014e13 2.99119
839839 −2.75185e13 −1.91733 −0.958663 0.284545i 0.908158π-0.908158\pi
−0.958663 + 0.284545i 0.908158π0.908158\pi
840840 −1.14482e13 −0.793381
841841 2.81989e12 0.194379
842842 −2.25412e13 −1.54552
843843 −2.77171e13 −1.89027
844844 −5.27592e11 −0.0357896
845845 0 0
846846 5.42904e11 0.0364381
847847 1.67898e13 1.12091
848848 −9.92296e11 −0.0658961
849849 −2.04246e13 −1.34918
850850 −2.25487e13 −1.48162
851851 −8.74071e12 −0.571299
852852 −3.84885e12 −0.250238
853853 1.12438e13 0.727181 0.363591 0.931559i 0.381551π-0.381551\pi
0.363591 + 0.931559i 0.381551π0.381551\pi
854854 −4.59701e12 −0.295743
855855 −1.10804e13 −0.709100
856856 −4.16464e12 −0.265122
857857 1.20421e13 0.762584 0.381292 0.924455i 0.375479π-0.375479\pi
0.381292 + 0.924455i 0.375479π0.375479\pi
858858 0 0
859859 9.60758e12 0.602067 0.301033 0.953614i 0.402668π-0.402668\pi
0.301033 + 0.953614i 0.402668π0.402668\pi
860860 −6.76557e13 −4.21756
861861 7.81524e12 0.484650
862862 −4.14548e12 −0.255736
863863 4.64134e12 0.284836 0.142418 0.989807i 0.454512π-0.454512\pi
0.142418 + 0.989807i 0.454512π0.454512\pi
864864 −1.62586e13 −0.992593
865865 2.37984e13 1.44536
866866 1.90997e13 1.15397
867867 1.39147e13 0.836347
868868 −4.56899e12 −0.273201
869869 1.33422e13 0.793665
870870 −5.53363e13 −3.27471
871871 0 0
872872 −2.46531e13 −1.44394
873873 6.76312e12 0.394079
874874 3.34900e13 1.94139
875875 1.35060e13 0.778914
876876 −1.01125e13 −0.580218
877877 −3.08887e13 −1.76320 −0.881599 0.471999i 0.843533π-0.843533\pi
−0.881599 + 0.471999i 0.843533π0.843533\pi
878878 2.40546e13 1.36607
879879 −2.61543e13 −1.47773
880880 1.38831e13 0.780397
881881 −3.27975e13 −1.83421 −0.917105 0.398645i 0.869480π-0.869480\pi
−0.917105 + 0.398645i 0.869480π0.869480\pi
882882 −5.24393e12 −0.291775
883883 −2.21183e12 −0.122441 −0.0612206 0.998124i 0.519499π-0.519499\pi
−0.0612206 + 0.998124i 0.519499π0.519499\pi
884884 0 0
885885 −4.64159e13 −2.54344
886886 −2.47649e13 −1.35016
887887 −1.15100e13 −0.624336 −0.312168 0.950027i 0.601055π-0.601055\pi
−0.312168 + 0.950027i 0.601055π0.601055\pi
888888 −1.21808e13 −0.657382
889889 −5.47434e12 −0.293950
890890 −2.45868e13 −1.31355
891891 3.94224e13 2.09553
892892 −8.22970e11 −0.0435253
893893 −2.73356e12 −0.143846
894894 3.38428e13 1.77193
895895 −1.44769e13 −0.754172
896896 −1.41670e13 −0.734329
897897 0 0
898898 5.42567e13 2.78426
899899 −7.29947e12 −0.372712
900900 1.41757e13 0.720198
901901 −2.50574e12 −0.126670
902902 4.44394e13 2.23532
903903 2.00809e13 1.00505
904904 −8.40993e12 −0.418827
905905 5.88113e11 0.0291435
906906 −5.87225e13 −2.89553
907907 1.01540e13 0.498201 0.249100 0.968478i 0.419865π-0.419865\pi
0.249100 + 0.968478i 0.419865π0.419865\pi
908908 2.52032e13 1.23046
909909 6.58365e12 0.319837
910910 0 0
911911 1.68956e13 0.812719 0.406360 0.913713i 0.366798π-0.366798\pi
0.406360 + 0.913713i 0.366798π0.366798\pi
912912 −9.95330e12 −0.476421
913913 2.31816e13 1.10414
914914 −1.73529e13 −0.822459
915915 1.40492e13 0.662607
916916 5.50766e12 0.258486
917917 6.33179e12 0.295709
918918 −1.42540e13 −0.662439
919919 −3.90729e11 −0.0180699 −0.00903496 0.999959i 0.502876π-0.502876\pi
−0.00903496 + 0.999959i 0.502876π0.502876\pi
920920 −2.17792e13 −1.00230
921921 −1.05005e13 −0.480886
922922 5.74752e13 2.61934
923923 0 0
924924 3.50157e13 1.58030
925925 3.11001e13 1.39677
926926 6.30200e13 2.81662
927927 2.81310e12 0.125120
928928 −2.94870e13 −1.30516
929929 1.22780e13 0.540827 0.270414 0.962744i 0.412840π-0.412840\pi
0.270414 + 0.962744i 0.412840π0.412840\pi
930930 2.33119e13 1.02189
931931 2.64036e13 1.15183
932932 −4.23150e13 −1.83706
933933 −1.22828e13 −0.530676
934934 −2.77279e13 −1.19222
935935 3.50577e13 1.50014
936936 0 0
937937 −3.14738e13 −1.33389 −0.666946 0.745106i 0.732399π-0.732399\pi
−0.666946 + 0.745106i 0.732399π0.732399\pi
938938 −2.69806e13 −1.13799
939939 1.42330e13 0.597451
940940 5.37843e12 0.224688
941941 −2.45616e13 −1.02118 −0.510592 0.859823i 0.670574π-0.670574\pi
−0.510592 + 0.859823i 0.670574π0.670574\pi
942942 −3.66786e13 −1.51769
943943 1.48678e13 0.612270
944944 −8.58709e12 −0.351943
945945 1.84774e13 0.753699
946946 1.14185e14 4.63552
947947 3.88870e13 1.57119 0.785596 0.618740i 0.212357π-0.212357\pi
0.785596 + 0.618740i 0.212357π0.212357\pi
948948 1.88206e13 0.756825
949949 0 0
950950 −1.19160e14 −4.74650
951951 4.13210e13 1.63817
952952 −5.34827e12 −0.211032
953953 −2.34348e13 −0.920329 −0.460165 0.887834i 0.652210π-0.652210\pi
−0.460165 + 0.887834i 0.652210π0.652210\pi
954954 2.62990e12 0.102795
955955 1.05187e13 0.409212
956956 7.64874e12 0.296162
957957 5.59414e13 2.15591
958958 −3.84512e12 −0.147491
959959 −1.93179e12 −0.0737524
960960 8.10600e13 3.08025
961961 −2.33645e13 −0.883694
962962 0 0
963963 −2.35396e12 −0.0882026
964964 2.39981e13 0.895015
965965 1.69190e13 0.628061
966966 1.95578e13 0.722642
967967 1.35865e13 0.499677 0.249838 0.968288i 0.419623π-0.419623\pi
0.249838 + 0.968288i 0.419623π0.419623\pi
968968 4.45121e13 1.62944
969969 −2.51341e13 −0.915811
970970 1.11856e14 4.05684
971971 −7.53765e12 −0.272113 −0.136057 0.990701i 0.543443π-0.543443\pi
−0.136057 + 0.990701i 0.543443π0.543443\pi
972972 2.10603e13 0.756775
973973 −1.29236e13 −0.462248
974974 −7.70401e13 −2.74285
975975 0 0
976976 2.59914e12 0.0916867
977977 3.43271e13 1.20535 0.602673 0.797988i 0.294102π-0.294102\pi
0.602673 + 0.797988i 0.294102π0.294102\pi
978978 −1.41628e13 −0.495021
979979 2.48556e13 0.864775
980980 −5.19505e13 −1.79917
981981 −1.39346e13 −0.480379
982982 2.06333e13 0.708054
983983 −2.63457e13 −0.899952 −0.449976 0.893041i 0.648567π-0.648567\pi
−0.449976 + 0.893041i 0.648567π0.648567\pi
984984 2.07193e13 0.704525
985985 −4.33703e13 −1.46801
986986 −2.58515e13 −0.871042
987987 −1.59637e12 −0.0535435
988988 0 0
989989 3.82019e13 1.26970
990990 −3.67948e13 −1.21739
991991 −1.18374e13 −0.389876 −0.194938 0.980816i 0.562451π-0.562451\pi
−0.194938 + 0.980816i 0.562451π0.562451\pi
992992 1.24222e13 0.407282
993993 −5.95201e13 −1.94264
994994 3.89126e12 0.126430
995995 −8.60694e13 −2.78384
996996 3.27002e13 1.05289
997997 −3.89835e13 −1.24955 −0.624774 0.780806i 0.714809π-0.714809\pi
−0.624774 + 0.780806i 0.714809π0.714809\pi
998998 −2.03174e13 −0.648306
999999 1.96598e13 0.624502
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.10.a.g.1.24 27
13.12 even 2 169.10.a.h.1.4 yes 27
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
169.10.a.g.1.24 27 1.1 even 1 trivial
169.10.a.h.1.4 yes 27 13.12 even 2