Properties

Label 169.10.a.h.1.4
Level $169$
Weight $10$
Character 169.1
Self dual yes
Analytic conductor $87.041$
Analytic rank $0$
Dimension $27$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,10,Mod(1,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 169.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(87.0410563117\)
Analytic rank: \(0\)
Dimension: \(27\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Character \(\chi\) \(=\) 169.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-35.7320 q^{2} -157.443 q^{3} +764.774 q^{4} -2363.03 q^{5} +5625.74 q^{6} -3406.89 q^{7} -9032.12 q^{8} +5105.19 q^{9} +84435.6 q^{10} +85358.9 q^{11} -120408. q^{12} +121735. q^{14} +372041. q^{15} -68828.8 q^{16} -173806. q^{17} -182419. q^{18} +918491. q^{19} -1.80718e6 q^{20} +536389. q^{21} -3.05004e6 q^{22} -1.02043e6 q^{23} +1.42204e6 q^{24} +3.63077e6 q^{25} +2.29517e6 q^{27} -2.60550e6 q^{28} +4.16258e6 q^{29} -1.32938e7 q^{30} +1.75360e6 q^{31} +7.08384e6 q^{32} -1.34391e7 q^{33} +6.21045e6 q^{34} +8.05056e6 q^{35} +3.90432e6 q^{36} -8.56572e6 q^{37} -3.28195e7 q^{38} +2.13431e7 q^{40} +1.45701e7 q^{41} -1.91663e7 q^{42} -3.74371e7 q^{43} +6.52803e7 q^{44} -1.20637e7 q^{45} +3.64620e7 q^{46} -2.97614e6 q^{47} +1.08366e7 q^{48} -2.87467e7 q^{49} -1.29734e8 q^{50} +2.73645e7 q^{51} +1.44169e7 q^{53} -8.20109e7 q^{54} -2.01705e8 q^{55} +3.07714e7 q^{56} -1.44610e8 q^{57} -1.48737e8 q^{58} -1.24760e8 q^{59} +2.84527e8 q^{60} -3.77625e7 q^{61} -6.26594e7 q^{62} -1.73928e7 q^{63} -2.17879e8 q^{64} +4.80207e8 q^{66} +2.21634e8 q^{67} -1.32923e8 q^{68} +1.60659e8 q^{69} -2.87663e8 q^{70} -3.19651e7 q^{71} -4.61107e7 q^{72} -8.39854e7 q^{73} +3.06070e8 q^{74} -5.71638e8 q^{75} +7.02438e8 q^{76} -2.90808e8 q^{77} -1.56307e8 q^{79} +1.62644e8 q^{80} -4.61843e8 q^{81} -5.20618e8 q^{82} +2.71578e8 q^{83} +4.10217e8 q^{84} +4.10709e8 q^{85} +1.33770e9 q^{86} -6.55367e8 q^{87} -7.70972e8 q^{88} +2.91190e8 q^{89} +4.31060e8 q^{90} -7.80398e8 q^{92} -2.76091e8 q^{93} +1.06343e8 q^{94} -2.17042e9 q^{95} -1.11530e9 q^{96} -1.32475e9 q^{97} +1.02718e9 q^{98} +4.35774e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 27 q + 65 q^{2} + q^{3} + 7169 q^{4} + 3238 q^{5} + 8490 q^{6} + 17378 q^{7} + 54204 q^{8} + 191118 q^{9} + 11697 q^{10} + 164171 q^{11} - 181941 q^{12} - 77651 q^{14} + 614110 q^{15} + 3012565 q^{16}+ \cdots + 5866875443 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −35.7320 −1.57915 −0.789573 0.613657i \(-0.789698\pi\)
−0.789573 + 0.613657i \(0.789698\pi\)
\(3\) −157.443 −1.12222 −0.561108 0.827742i \(-0.689625\pi\)
−0.561108 + 0.827742i \(0.689625\pi\)
\(4\) 764.774 1.49370
\(5\) −2363.03 −1.69084 −0.845422 0.534099i \(-0.820651\pi\)
−0.845422 + 0.534099i \(0.820651\pi\)
\(6\) 5625.74 1.77214
\(7\) −3406.89 −0.536311 −0.268155 0.963376i \(-0.586414\pi\)
−0.268155 + 0.963376i \(0.586414\pi\)
\(8\) −9032.12 −0.779623
\(9\) 5105.19 0.259371
\(10\) 84435.6 2.67009
\(11\) 85358.9 1.75785 0.878925 0.476959i \(-0.158261\pi\)
0.878925 + 0.476959i \(0.158261\pi\)
\(12\) −120408. −1.67625
\(13\) 0 0
\(14\) 121735. 0.846913
\(15\) 372041. 1.89749
\(16\) −68828.8 −0.262561
\(17\) −173806. −0.504714 −0.252357 0.967634i \(-0.581206\pi\)
−0.252357 + 0.967634i \(0.581206\pi\)
\(18\) −182419. −0.409584
\(19\) 918491. 1.61690 0.808451 0.588564i \(-0.200307\pi\)
0.808451 + 0.588564i \(0.200307\pi\)
\(20\) −1.80718e6 −2.52561
\(21\) 536389. 0.601857
\(22\) −3.05004e6 −2.77590
\(23\) −1.02043e6 −0.760340 −0.380170 0.924917i \(-0.624135\pi\)
−0.380170 + 0.924917i \(0.624135\pi\)
\(24\) 1.42204e6 0.874907
\(25\) 3.63077e6 1.85895
\(26\) 0 0
\(27\) 2.29517e6 0.831147
\(28\) −2.60550e6 −0.801087
\(29\) 4.16258e6 1.09288 0.546438 0.837499i \(-0.315983\pi\)
0.546438 + 0.837499i \(0.315983\pi\)
\(30\) −1.32938e7 −2.99642
\(31\) 1.75360e6 0.341037 0.170519 0.985354i \(-0.445456\pi\)
0.170519 + 0.985354i \(0.445456\pi\)
\(32\) 7.08384e6 1.19425
\(33\) −1.34391e7 −1.97269
\(34\) 6.21045e6 0.797017
\(35\) 8.05056e6 0.906818
\(36\) 3.90432e6 0.387422
\(37\) −8.56572e6 −0.751374 −0.375687 0.926747i \(-0.622593\pi\)
−0.375687 + 0.926747i \(0.622593\pi\)
\(38\) −3.28195e7 −2.55332
\(39\) 0 0
\(40\) 2.13431e7 1.31822
\(41\) 1.45701e7 0.805258 0.402629 0.915363i \(-0.368097\pi\)
0.402629 + 0.915363i \(0.368097\pi\)
\(42\) −1.91663e7 −0.950420
\(43\) −3.74371e7 −1.66992 −0.834958 0.550314i \(-0.814508\pi\)
−0.834958 + 0.550314i \(0.814508\pi\)
\(44\) 6.52803e7 2.62570
\(45\) −1.20637e7 −0.438555
\(46\) 3.64620e7 1.20069
\(47\) −2.97614e6 −0.0889638 −0.0444819 0.999010i \(-0.514164\pi\)
−0.0444819 + 0.999010i \(0.514164\pi\)
\(48\) 1.08366e7 0.294650
\(49\) −2.87467e7 −0.712371
\(50\) −1.29734e8 −2.93556
\(51\) 2.73645e7 0.566399
\(52\) 0 0
\(53\) 1.44169e7 0.250974 0.125487 0.992095i \(-0.459951\pi\)
0.125487 + 0.992095i \(0.459951\pi\)
\(54\) −8.20109e7 −1.31250
\(55\) −2.01705e8 −2.97225
\(56\) 3.07714e7 0.418121
\(57\) −1.44610e8 −1.81451
\(58\) −1.48737e8 −1.72581
\(59\) −1.24760e8 −1.34042 −0.670212 0.742170i \(-0.733797\pi\)
−0.670212 + 0.742170i \(0.733797\pi\)
\(60\) 2.84527e8 2.83428
\(61\) −3.77625e7 −0.349201 −0.174601 0.984639i \(-0.555863\pi\)
−0.174601 + 0.984639i \(0.555863\pi\)
\(62\) −6.26594e7 −0.538547
\(63\) −1.73928e7 −0.139103
\(64\) −2.17879e8 −1.62333
\(65\) 0 0
\(66\) 4.80207e8 3.11516
\(67\) 2.21634e8 1.34369 0.671847 0.740690i \(-0.265501\pi\)
0.671847 + 0.740690i \(0.265501\pi\)
\(68\) −1.32923e8 −0.753892
\(69\) 1.60659e8 0.853266
\(70\) −2.87663e8 −1.43200
\(71\) −3.19651e7 −0.149284 −0.0746419 0.997210i \(-0.523781\pi\)
−0.0746419 + 0.997210i \(0.523781\pi\)
\(72\) −4.61107e7 −0.202211
\(73\) −8.39854e7 −0.346139 −0.173070 0.984910i \(-0.555369\pi\)
−0.173070 + 0.984910i \(0.555369\pi\)
\(74\) 3.06070e8 1.18653
\(75\) −5.71638e8 −2.08615
\(76\) 7.02438e8 2.41516
\(77\) −2.90808e8 −0.942755
\(78\) 0 0
\(79\) −1.56307e8 −0.451498 −0.225749 0.974186i \(-0.572483\pi\)
−0.225749 + 0.974186i \(0.572483\pi\)
\(80\) 1.62644e8 0.443950
\(81\) −4.61843e8 −1.19210
\(82\) −5.20618e8 −1.27162
\(83\) 2.71578e8 0.628121 0.314061 0.949403i \(-0.398310\pi\)
0.314061 + 0.949403i \(0.398310\pi\)
\(84\) 4.10217e8 0.898994
\(85\) 4.10709e8 0.853393
\(86\) 1.33770e9 2.63704
\(87\) −6.55367e8 −1.22644
\(88\) −7.70972e8 −1.37046
\(89\) 2.91190e8 0.491950 0.245975 0.969276i \(-0.420892\pi\)
0.245975 + 0.969276i \(0.420892\pi\)
\(90\) 4.31060e8 0.692542
\(91\) 0 0
\(92\) −7.80398e8 −1.13572
\(93\) −2.76091e8 −0.382718
\(94\) 1.06343e8 0.140487
\(95\) −2.17042e9 −2.73393
\(96\) −1.11530e9 −1.34020
\(97\) −1.32475e9 −1.51937 −0.759683 0.650293i \(-0.774646\pi\)
−0.759683 + 0.650293i \(0.774646\pi\)
\(98\) 1.02718e9 1.12494
\(99\) 4.35774e8 0.455935
\(100\) 2.77672e9 2.77672
\(101\) 1.28960e9 1.23313 0.616564 0.787305i \(-0.288524\pi\)
0.616564 + 0.787305i \(0.288524\pi\)
\(102\) −9.77789e8 −0.894426
\(103\) 5.51028e8 0.482399 0.241199 0.970476i \(-0.422459\pi\)
0.241199 + 0.970476i \(0.422459\pi\)
\(104\) 0 0
\(105\) −1.26750e9 −1.01765
\(106\) −5.15143e8 −0.396325
\(107\) −4.61092e8 −0.340064 −0.170032 0.985439i \(-0.554387\pi\)
−0.170032 + 0.985439i \(0.554387\pi\)
\(108\) 1.75529e9 1.24148
\(109\) 2.72950e9 1.85209 0.926047 0.377407i \(-0.123184\pi\)
0.926047 + 0.377407i \(0.123184\pi\)
\(110\) 7.20733e9 4.69362
\(111\) 1.34861e9 0.843204
\(112\) 2.34492e8 0.140814
\(113\) −9.31113e8 −0.537217 −0.268608 0.963249i \(-0.586564\pi\)
−0.268608 + 0.963249i \(0.586564\pi\)
\(114\) 5.16719e9 2.86538
\(115\) 2.41130e9 1.28562
\(116\) 3.18343e9 1.63243
\(117\) 0 0
\(118\) 4.45793e9 2.11672
\(119\) 5.92139e8 0.270684
\(120\) −3.36032e9 −1.47933
\(121\) 4.92820e9 2.09004
\(122\) 1.34933e9 0.551440
\(123\) −2.29395e9 −0.903674
\(124\) 1.34110e9 0.509407
\(125\) −3.96431e9 −1.45235
\(126\) 6.21479e8 0.219664
\(127\) −1.60685e9 −0.548097 −0.274048 0.961716i \(-0.588363\pi\)
−0.274048 + 0.961716i \(0.588363\pi\)
\(128\) 4.15833e9 1.36922
\(129\) 5.89420e9 1.87401
\(130\) 0 0
\(131\) 1.85853e9 0.551376 0.275688 0.961247i \(-0.411094\pi\)
0.275688 + 0.961247i \(0.411094\pi\)
\(132\) −1.02779e10 −2.94661
\(133\) −3.12919e9 −0.867162
\(134\) −7.91943e9 −2.12189
\(135\) −5.42354e9 −1.40534
\(136\) 1.56984e9 0.393487
\(137\) 5.67025e8 0.137518 0.0687590 0.997633i \(-0.478096\pi\)
0.0687590 + 0.997633i \(0.478096\pi\)
\(138\) −5.74067e9 −1.34743
\(139\) −3.79337e9 −0.861903 −0.430951 0.902375i \(-0.641822\pi\)
−0.430951 + 0.902375i \(0.641822\pi\)
\(140\) 6.15686e9 1.35451
\(141\) 4.68572e8 0.0998367
\(142\) 1.14217e9 0.235741
\(143\) 0 0
\(144\) −3.51384e8 −0.0681006
\(145\) −9.83627e9 −1.84788
\(146\) 3.00097e9 0.546604
\(147\) 4.52596e9 0.799434
\(148\) −6.55084e9 −1.12233
\(149\) 6.01571e9 0.999881 0.499941 0.866060i \(-0.333355\pi\)
0.499941 + 0.866060i \(0.333355\pi\)
\(150\) 2.04257e10 3.29433
\(151\) −1.04382e10 −1.63391 −0.816956 0.576700i \(-0.804340\pi\)
−0.816956 + 0.576700i \(0.804340\pi\)
\(152\) −8.29592e9 −1.26057
\(153\) −8.87315e8 −0.130908
\(154\) 1.03912e10 1.48875
\(155\) −4.14379e9 −0.576641
\(156\) 0 0
\(157\) 6.51978e9 0.856416 0.428208 0.903680i \(-0.359145\pi\)
0.428208 + 0.903680i \(0.359145\pi\)
\(158\) 5.58515e9 0.712980
\(159\) −2.26983e9 −0.281648
\(160\) −1.67393e10 −2.01928
\(161\) 3.47649e9 0.407779
\(162\) 1.65026e10 1.88250
\(163\) −2.51750e9 −0.279335 −0.139667 0.990198i \(-0.544603\pi\)
−0.139667 + 0.990198i \(0.544603\pi\)
\(164\) 1.11428e10 1.20281
\(165\) 3.17570e10 3.33551
\(166\) −9.70403e9 −0.991895
\(167\) 5.52083e9 0.549263 0.274632 0.961550i \(-0.411444\pi\)
0.274632 + 0.961550i \(0.411444\pi\)
\(168\) −4.84474e9 −0.469222
\(169\) 0 0
\(170\) −1.46755e10 −1.34763
\(171\) 4.68907e9 0.419377
\(172\) −2.86309e10 −2.49435
\(173\) 1.00712e10 0.854815 0.427408 0.904059i \(-0.359427\pi\)
0.427408 + 0.904059i \(0.359427\pi\)
\(174\) 2.34176e10 1.93673
\(175\) −1.23696e10 −0.996977
\(176\) −5.87515e9 −0.461543
\(177\) 1.96426e10 1.50425
\(178\) −1.04048e10 −0.776861
\(179\) −6.12641e9 −0.446033 −0.223017 0.974815i \(-0.571590\pi\)
−0.223017 + 0.974815i \(0.571590\pi\)
\(180\) −9.22600e9 −0.655069
\(181\) 2.48881e8 0.0172361 0.00861804 0.999963i \(-0.497257\pi\)
0.00861804 + 0.999963i \(0.497257\pi\)
\(182\) 0 0
\(183\) 5.94542e9 0.391880
\(184\) 9.21665e9 0.592779
\(185\) 2.02410e10 1.27046
\(186\) 9.86527e9 0.604367
\(187\) −1.48359e10 −0.887213
\(188\) −2.27608e9 −0.132885
\(189\) −7.81938e9 −0.445753
\(190\) 7.75533e10 4.31727
\(191\) 4.45138e9 0.242016 0.121008 0.992652i \(-0.461387\pi\)
0.121008 + 0.992652i \(0.461387\pi\)
\(192\) 3.43035e10 1.82172
\(193\) −7.15989e9 −0.371449 −0.185724 0.982602i \(-0.559463\pi\)
−0.185724 + 0.982602i \(0.559463\pi\)
\(194\) 4.73361e10 2.39930
\(195\) 0 0
\(196\) −2.19848e10 −1.06407
\(197\) 1.83537e10 0.868212 0.434106 0.900862i \(-0.357064\pi\)
0.434106 + 0.900862i \(0.357064\pi\)
\(198\) −1.55711e10 −0.719987
\(199\) −3.64234e10 −1.64642 −0.823211 0.567735i \(-0.807820\pi\)
−0.823211 + 0.567735i \(0.807820\pi\)
\(200\) −3.27935e10 −1.44928
\(201\) −3.48947e10 −1.50792
\(202\) −4.60799e10 −1.94729
\(203\) −1.41814e10 −0.586122
\(204\) 2.09277e10 0.846030
\(205\) −3.44295e10 −1.36156
\(206\) −1.96893e10 −0.761778
\(207\) −5.20949e9 −0.197210
\(208\) 0 0
\(209\) 7.84014e10 2.84227
\(210\) 4.52904e10 1.60701
\(211\) −6.89867e8 −0.0239604 −0.0119802 0.999928i \(-0.503814\pi\)
−0.0119802 + 0.999928i \(0.503814\pi\)
\(212\) 1.10256e10 0.374880
\(213\) 5.03266e9 0.167529
\(214\) 1.64757e10 0.537011
\(215\) 8.84649e10 2.82357
\(216\) −2.07302e10 −0.647982
\(217\) −5.97430e9 −0.182902
\(218\) −9.75303e10 −2.92473
\(219\) 1.32229e10 0.388443
\(220\) −1.54259e11 −4.43965
\(221\) 0 0
\(222\) −4.81885e10 −1.33154
\(223\) 1.07609e9 0.0291393 0.0145696 0.999894i \(-0.495362\pi\)
0.0145696 + 0.999894i \(0.495362\pi\)
\(224\) −2.41338e10 −0.640487
\(225\) 1.85358e10 0.482157
\(226\) 3.32705e10 0.848343
\(227\) −3.29551e10 −0.823770 −0.411885 0.911236i \(-0.635129\pi\)
−0.411885 + 0.911236i \(0.635129\pi\)
\(228\) −1.10594e11 −2.71034
\(229\) −7.20168e9 −0.173051 −0.0865255 0.996250i \(-0.527576\pi\)
−0.0865255 + 0.996250i \(0.527576\pi\)
\(230\) −8.61606e10 −2.03017
\(231\) 4.57856e10 1.05797
\(232\) −3.75969e10 −0.852032
\(233\) −5.53301e10 −1.22987 −0.614935 0.788577i \(-0.710818\pi\)
−0.614935 + 0.788577i \(0.710818\pi\)
\(234\) 0 0
\(235\) 7.03270e9 0.150424
\(236\) −9.54134e10 −2.00219
\(237\) 2.46093e10 0.506678
\(238\) −2.11583e10 −0.427449
\(239\) −1.00013e10 −0.198274 −0.0991371 0.995074i \(-0.531608\pi\)
−0.0991371 + 0.995074i \(0.531608\pi\)
\(240\) −2.56071e10 −0.498208
\(241\) −3.13793e10 −0.599193 −0.299597 0.954066i \(-0.596852\pi\)
−0.299597 + 0.954066i \(0.596852\pi\)
\(242\) −1.76094e11 −3.30047
\(243\) 2.75380e10 0.506645
\(244\) −2.88798e10 −0.521602
\(245\) 6.79292e10 1.20451
\(246\) 8.19675e10 1.42703
\(247\) 0 0
\(248\) −1.58387e10 −0.265881
\(249\) −4.27580e10 −0.704888
\(250\) 1.41653e11 2.29348
\(251\) 1.93052e10 0.307003 0.153501 0.988148i \(-0.450945\pi\)
0.153501 + 0.988148i \(0.450945\pi\)
\(252\) −1.33016e10 −0.207778
\(253\) −8.71028e10 −1.33656
\(254\) 5.74157e10 0.865524
\(255\) −6.46631e10 −0.957692
\(256\) −3.70312e10 −0.538874
\(257\) 1.58735e10 0.226973 0.113487 0.993540i \(-0.463798\pi\)
0.113487 + 0.993540i \(0.463798\pi\)
\(258\) −2.10611e11 −2.95933
\(259\) 2.91824e10 0.402970
\(260\) 0 0
\(261\) 2.12507e10 0.283460
\(262\) −6.64088e10 −0.870703
\(263\) 5.70447e10 0.735215 0.367608 0.929981i \(-0.380177\pi\)
0.367608 + 0.929981i \(0.380177\pi\)
\(264\) 1.21384e11 1.53795
\(265\) −3.40674e10 −0.424359
\(266\) 1.11812e11 1.36937
\(267\) −4.58457e10 −0.552075
\(268\) 1.69500e11 2.00707
\(269\) −9.29049e10 −1.08182 −0.540908 0.841082i \(-0.681919\pi\)
−0.540908 + 0.841082i \(0.681919\pi\)
\(270\) 1.93794e11 2.21923
\(271\) −3.88666e10 −0.437738 −0.218869 0.975754i \(-0.570237\pi\)
−0.218869 + 0.975754i \(0.570237\pi\)
\(272\) 1.19629e10 0.132518
\(273\) 0 0
\(274\) −2.02609e10 −0.217161
\(275\) 3.09918e11 3.26776
\(276\) 1.22868e11 1.27452
\(277\) −6.61138e10 −0.674735 −0.337367 0.941373i \(-0.609536\pi\)
−0.337367 + 0.941373i \(0.609536\pi\)
\(278\) 1.35545e11 1.36107
\(279\) 8.95244e9 0.0884550
\(280\) −7.27137e10 −0.706977
\(281\) −1.76046e11 −1.68441 −0.842205 0.539158i \(-0.818743\pi\)
−0.842205 + 0.539158i \(0.818743\pi\)
\(282\) −1.67430e10 −0.157657
\(283\) 1.29727e11 1.20224 0.601122 0.799158i \(-0.294721\pi\)
0.601122 + 0.799158i \(0.294721\pi\)
\(284\) −2.44461e10 −0.222985
\(285\) 3.41716e11 3.06806
\(286\) 0 0
\(287\) −4.96387e10 −0.431868
\(288\) 3.61643e10 0.309752
\(289\) −8.83792e10 −0.745263
\(290\) 3.51470e11 2.91808
\(291\) 2.08573e11 1.70506
\(292\) −6.42299e10 −0.517028
\(293\) −1.66120e11 −1.31679 −0.658396 0.752672i \(-0.728765\pi\)
−0.658396 + 0.752672i \(0.728765\pi\)
\(294\) −1.61722e11 −1.26242
\(295\) 2.94812e11 2.26645
\(296\) 7.73666e10 0.585788
\(297\) 1.95913e11 1.46103
\(298\) −2.14953e11 −1.57896
\(299\) 0 0
\(300\) −4.37174e11 −3.11608
\(301\) 1.27544e11 0.895594
\(302\) 3.72977e11 2.58018
\(303\) −2.03038e11 −1.38384
\(304\) −6.32186e10 −0.424535
\(305\) 8.92337e10 0.590445
\(306\) 3.17055e10 0.206723
\(307\) −6.66942e10 −0.428515 −0.214257 0.976777i \(-0.568733\pi\)
−0.214257 + 0.976777i \(0.568733\pi\)
\(308\) −2.22403e11 −1.40819
\(309\) −8.67553e10 −0.541356
\(310\) 1.48066e11 0.910599
\(311\) 7.80144e10 0.472882 0.236441 0.971646i \(-0.424019\pi\)
0.236441 + 0.971646i \(0.424019\pi\)
\(312\) 0 0
\(313\) −9.04014e10 −0.532385 −0.266193 0.963920i \(-0.585766\pi\)
−0.266193 + 0.963920i \(0.585766\pi\)
\(314\) −2.32965e11 −1.35240
\(315\) 4.10997e10 0.235202
\(316\) −1.19539e11 −0.674402
\(317\) 2.62451e11 1.45976 0.729880 0.683576i \(-0.239576\pi\)
0.729880 + 0.683576i \(0.239576\pi\)
\(318\) 8.11055e10 0.444763
\(319\) 3.55313e11 1.92111
\(320\) 5.14854e11 2.74479
\(321\) 7.25956e10 0.381626
\(322\) −1.24222e11 −0.643942
\(323\) −1.59640e11 −0.816073
\(324\) −3.53206e11 −1.78064
\(325\) 0 0
\(326\) 8.99551e10 0.441110
\(327\) −4.29739e11 −2.07845
\(328\) −1.31599e11 −0.627798
\(329\) 1.01394e10 0.0477123
\(330\) −1.13474e12 −5.26725
\(331\) −3.78043e11 −1.73107 −0.865537 0.500846i \(-0.833022\pi\)
−0.865537 + 0.500846i \(0.833022\pi\)
\(332\) 2.07696e11 0.938225
\(333\) −4.37296e10 −0.194884
\(334\) −1.97270e11 −0.867366
\(335\) −5.23727e11 −2.27198
\(336\) −3.69190e10 −0.158024
\(337\) −1.39921e11 −0.590947 −0.295473 0.955351i \(-0.595477\pi\)
−0.295473 + 0.955351i \(0.595477\pi\)
\(338\) 0 0
\(339\) 1.46597e11 0.602874
\(340\) 3.14100e11 1.27471
\(341\) 1.49685e11 0.599492
\(342\) −1.67550e11 −0.662256
\(343\) 2.35417e11 0.918363
\(344\) 3.38137e11 1.30190
\(345\) −3.79642e11 −1.44274
\(346\) −3.59863e11 −1.34988
\(347\) 1.54612e11 0.572479 0.286240 0.958158i \(-0.407595\pi\)
0.286240 + 0.958158i \(0.407595\pi\)
\(348\) −5.01208e11 −1.83194
\(349\) 2.27503e11 0.820866 0.410433 0.911891i \(-0.365378\pi\)
0.410433 + 0.911891i \(0.365378\pi\)
\(350\) 4.41991e11 1.57437
\(351\) 0 0
\(352\) 6.04669e11 2.09930
\(353\) 4.58333e11 1.57107 0.785533 0.618819i \(-0.212389\pi\)
0.785533 + 0.618819i \(0.212389\pi\)
\(354\) −7.01868e11 −2.37542
\(355\) 7.55343e10 0.252416
\(356\) 2.22694e11 0.734826
\(357\) −9.32280e10 −0.303766
\(358\) 2.18909e11 0.704351
\(359\) 4.60131e11 1.46203 0.731016 0.682360i \(-0.239047\pi\)
0.731016 + 0.682360i \(0.239047\pi\)
\(360\) 1.08961e11 0.341908
\(361\) 5.20937e11 1.61437
\(362\) −8.89301e9 −0.0272183
\(363\) −7.75909e11 −2.34548
\(364\) 0 0
\(365\) 1.98460e11 0.585268
\(366\) −2.12442e11 −0.618835
\(367\) −3.17602e11 −0.913874 −0.456937 0.889499i \(-0.651054\pi\)
−0.456937 + 0.889499i \(0.651054\pi\)
\(368\) 7.02349e10 0.199636
\(369\) 7.43831e10 0.208860
\(370\) −7.23251e11 −2.00623
\(371\) −4.91166e10 −0.134600
\(372\) −2.11147e11 −0.571665
\(373\) −1.31409e11 −0.351507 −0.175754 0.984434i \(-0.556236\pi\)
−0.175754 + 0.984434i \(0.556236\pi\)
\(374\) 5.30117e11 1.40104
\(375\) 6.24152e11 1.62986
\(376\) 2.68809e10 0.0693583
\(377\) 0 0
\(378\) 2.79402e11 0.703909
\(379\) −5.87179e11 −1.46182 −0.730910 0.682474i \(-0.760904\pi\)
−0.730910 + 0.682474i \(0.760904\pi\)
\(380\) −1.65988e12 −4.08367
\(381\) 2.52986e11 0.615083
\(382\) −1.59057e11 −0.382179
\(383\) 4.78147e11 1.13545 0.567723 0.823220i \(-0.307824\pi\)
0.567723 + 0.823220i \(0.307824\pi\)
\(384\) −6.54698e11 −1.53656
\(385\) 6.87188e11 1.59405
\(386\) 2.55837e11 0.586571
\(387\) −1.91124e11 −0.433127
\(388\) −1.01314e12 −2.26948
\(389\) 4.44374e11 0.983955 0.491977 0.870608i \(-0.336274\pi\)
0.491977 + 0.870608i \(0.336274\pi\)
\(390\) 0 0
\(391\) 1.77357e11 0.383755
\(392\) 2.59644e11 0.555381
\(393\) −2.92611e11 −0.618764
\(394\) −6.55815e11 −1.37103
\(395\) 3.69357e11 0.763412
\(396\) 3.33268e11 0.681029
\(397\) 4.54781e10 0.0918850 0.0459425 0.998944i \(-0.485371\pi\)
0.0459425 + 0.998944i \(0.485371\pi\)
\(398\) 1.30148e12 2.59994
\(399\) 4.92669e11 0.973144
\(400\) −2.49901e11 −0.488088
\(401\) −7.41103e11 −1.43129 −0.715647 0.698462i \(-0.753868\pi\)
−0.715647 + 0.698462i \(0.753868\pi\)
\(402\) 1.24686e12 2.38122
\(403\) 0 0
\(404\) 9.86252e11 1.84192
\(405\) 1.09135e12 2.01565
\(406\) 5.06730e11 0.925571
\(407\) −7.31161e11 −1.32080
\(408\) −2.47160e11 −0.441578
\(409\) 5.89252e11 1.04123 0.520614 0.853792i \(-0.325703\pi\)
0.520614 + 0.853792i \(0.325703\pi\)
\(410\) 1.23023e12 2.15011
\(411\) −8.92739e10 −0.154325
\(412\) 4.21412e11 0.720559
\(413\) 4.25044e11 0.718884
\(414\) 1.86145e11 0.311423
\(415\) −6.41746e11 −1.06205
\(416\) 0 0
\(417\) 5.97238e11 0.967242
\(418\) −2.80144e12 −4.48836
\(419\) 1.19505e12 1.89419 0.947093 0.320961i \(-0.104006\pi\)
0.947093 + 0.320961i \(0.104006\pi\)
\(420\) −9.69353e11 −1.52006
\(421\) 6.30842e11 0.978704 0.489352 0.872086i \(-0.337233\pi\)
0.489352 + 0.872086i \(0.337233\pi\)
\(422\) 2.46503e10 0.0378370
\(423\) −1.51938e10 −0.0230746
\(424\) −1.30215e11 −0.195666
\(425\) −6.31051e11 −0.938240
\(426\) −1.79827e11 −0.264552
\(427\) 1.28652e11 0.187281
\(428\) −3.52632e11 −0.507954
\(429\) 0 0
\(430\) −3.16103e12 −4.45882
\(431\) 1.16016e11 0.161946 0.0809730 0.996716i \(-0.474197\pi\)
0.0809730 + 0.996716i \(0.474197\pi\)
\(432\) −1.57974e11 −0.218227
\(433\) 5.34527e11 0.730759 0.365380 0.930859i \(-0.380939\pi\)
0.365380 + 0.930859i \(0.380939\pi\)
\(434\) 2.13474e11 0.288829
\(435\) 1.54865e12 2.07373
\(436\) 2.08745e12 2.76647
\(437\) −9.37255e11 −1.22939
\(438\) −4.72480e11 −0.613409
\(439\) 6.73196e11 0.865070 0.432535 0.901617i \(-0.357619\pi\)
0.432535 + 0.901617i \(0.357619\pi\)
\(440\) 1.82183e12 2.31724
\(441\) −1.46757e11 −0.184768
\(442\) 0 0
\(443\) −6.93075e11 −0.854995 −0.427498 0.904017i \(-0.640605\pi\)
−0.427498 + 0.904017i \(0.640605\pi\)
\(444\) 1.03138e12 1.25949
\(445\) −6.88089e11 −0.831811
\(446\) −3.84510e10 −0.0460151
\(447\) −9.47129e11 −1.12208
\(448\) 7.42290e11 0.870607
\(449\) −1.51844e12 −1.76314 −0.881572 0.472050i \(-0.843514\pi\)
−0.881572 + 0.472050i \(0.843514\pi\)
\(450\) −6.62319e11 −0.761397
\(451\) 1.24369e12 1.41552
\(452\) −7.12091e11 −0.802440
\(453\) 1.64342e12 1.83360
\(454\) 1.17755e12 1.30085
\(455\) 0 0
\(456\) 1.30613e12 1.41464
\(457\) 4.85641e11 0.520825 0.260413 0.965497i \(-0.416141\pi\)
0.260413 + 0.965497i \(0.416141\pi\)
\(458\) 2.57330e11 0.273273
\(459\) −3.98915e11 −0.419492
\(460\) 1.84410e12 1.92032
\(461\) −1.60851e12 −1.65871 −0.829353 0.558725i \(-0.811291\pi\)
−0.829353 + 0.558725i \(0.811291\pi\)
\(462\) −1.63601e12 −1.67070
\(463\) −1.76369e12 −1.78364 −0.891819 0.452392i \(-0.850571\pi\)
−0.891819 + 0.452392i \(0.850571\pi\)
\(464\) −2.86505e11 −0.286947
\(465\) 6.52410e11 0.647116
\(466\) 1.97705e12 1.94214
\(467\) −7.75997e11 −0.754978 −0.377489 0.926014i \(-0.623212\pi\)
−0.377489 + 0.926014i \(0.623212\pi\)
\(468\) 0 0
\(469\) −7.55083e11 −0.720638
\(470\) −2.51292e11 −0.237541
\(471\) −1.02649e12 −0.961084
\(472\) 1.12685e12 1.04503
\(473\) −3.19559e12 −2.93546
\(474\) −8.79340e11 −0.800119
\(475\) 3.33482e12 3.00574
\(476\) 4.52853e11 0.404320
\(477\) 7.36008e10 0.0650954
\(478\) 3.57366e11 0.313104
\(479\) 1.07610e11 0.0933991 0.0466996 0.998909i \(-0.485130\pi\)
0.0466996 + 0.998909i \(0.485130\pi\)
\(480\) 2.63548e12 2.26607
\(481\) 0 0
\(482\) 1.12125e12 0.946213
\(483\) −5.47348e11 −0.457616
\(484\) 3.76896e12 3.12189
\(485\) 3.13043e12 2.56901
\(486\) −9.83986e11 −0.800066
\(487\) 2.15606e12 1.73692 0.868460 0.495760i \(-0.165110\pi\)
0.868460 + 0.495760i \(0.165110\pi\)
\(488\) 3.41075e11 0.272246
\(489\) 3.96361e11 0.313474
\(490\) −2.42725e12 −1.90209
\(491\) 5.77446e11 0.448378 0.224189 0.974546i \(-0.428027\pi\)
0.224189 + 0.974546i \(0.428027\pi\)
\(492\) −1.75436e12 −1.34982
\(493\) −7.23482e11 −0.551591
\(494\) 0 0
\(495\) −1.02974e12 −0.770914
\(496\) −1.20698e11 −0.0895431
\(497\) 1.08901e11 0.0800626
\(498\) 1.52783e12 1.11312
\(499\) 5.68605e11 0.410543 0.205271 0.978705i \(-0.434192\pi\)
0.205271 + 0.978705i \(0.434192\pi\)
\(500\) −3.03180e12 −2.16938
\(501\) −8.69214e11 −0.616392
\(502\) −6.89812e11 −0.484802
\(503\) −1.59855e12 −1.11345 −0.556724 0.830697i \(-0.687942\pi\)
−0.556724 + 0.830697i \(0.687942\pi\)
\(504\) 1.57094e11 0.108448
\(505\) −3.04736e12 −2.08503
\(506\) 3.11236e12 2.11063
\(507\) 0 0
\(508\) −1.22887e12 −0.818692
\(509\) 2.43617e11 0.160871 0.0804354 0.996760i \(-0.474369\pi\)
0.0804354 + 0.996760i \(0.474369\pi\)
\(510\) 2.31054e12 1.51234
\(511\) 2.86129e11 0.185638
\(512\) −8.05867e11 −0.518261
\(513\) 2.10809e12 1.34388
\(514\) −5.67193e11 −0.358423
\(515\) −1.30209e12 −0.815661
\(516\) 4.50773e12 2.79920
\(517\) −2.54040e11 −0.156385
\(518\) −1.04275e12 −0.636348
\(519\) −1.58563e12 −0.959288
\(520\) 0 0
\(521\) 7.24903e11 0.431033 0.215516 0.976500i \(-0.430857\pi\)
0.215516 + 0.976500i \(0.430857\pi\)
\(522\) −7.59331e11 −0.447624
\(523\) −2.96967e12 −1.73561 −0.867803 0.496908i \(-0.834469\pi\)
−0.867803 + 0.496908i \(0.834469\pi\)
\(524\) 1.42135e12 0.823590
\(525\) 1.94750e12 1.11882
\(526\) −2.03832e12 −1.16101
\(527\) −3.04786e11 −0.172126
\(528\) 9.25000e11 0.517951
\(529\) −7.59876e11 −0.421883
\(530\) 1.21730e12 0.670124
\(531\) −6.36924e11 −0.347666
\(532\) −2.39313e12 −1.29528
\(533\) 0 0
\(534\) 1.63816e12 0.871806
\(535\) 1.08957e12 0.574996
\(536\) −2.00183e12 −1.04757
\(537\) 9.64558e11 0.500546
\(538\) 3.31967e12 1.70834
\(539\) −2.45379e12 −1.25224
\(540\) −4.14779e12 −2.09915
\(541\) −5.44604e11 −0.273333 −0.136667 0.990617i \(-0.543639\pi\)
−0.136667 + 0.990617i \(0.543639\pi\)
\(542\) 1.38878e12 0.691252
\(543\) −3.91845e10 −0.0193426
\(544\) −1.23122e12 −0.602753
\(545\) −6.44987e12 −3.13160
\(546\) 0 0
\(547\) −2.44853e12 −1.16940 −0.584699 0.811250i \(-0.698788\pi\)
−0.584699 + 0.811250i \(0.698788\pi\)
\(548\) 4.33646e11 0.205410
\(549\) −1.92785e11 −0.0905726
\(550\) −1.10740e13 −5.16027
\(551\) 3.82329e12 1.76707
\(552\) −1.45109e12 −0.665226
\(553\) 5.32519e11 0.242143
\(554\) 2.36238e12 1.06550
\(555\) −3.18680e12 −1.42573
\(556\) −2.90107e12 −1.28742
\(557\) 2.99460e12 1.31823 0.659113 0.752044i \(-0.270932\pi\)
0.659113 + 0.752044i \(0.270932\pi\)
\(558\) −3.19888e11 −0.139683
\(559\) 0 0
\(560\) −5.54111e11 −0.238095
\(561\) 2.33581e12 0.995645
\(562\) 6.29047e12 2.65993
\(563\) 9.35795e8 0.000392548 0 0.000196274 1.00000i \(-0.499938\pi\)
0.000196274 1.00000i \(0.499938\pi\)
\(564\) 3.58352e11 0.149126
\(565\) 2.20024e12 0.908349
\(566\) −4.63541e12 −1.89852
\(567\) 1.57345e12 0.639335
\(568\) 2.88712e11 0.116385
\(569\) 5.21435e11 0.208543 0.104271 0.994549i \(-0.466749\pi\)
0.104271 + 0.994549i \(0.466749\pi\)
\(570\) −1.22102e13 −4.84491
\(571\) −2.60236e12 −1.02448 −0.512241 0.858842i \(-0.671185\pi\)
−0.512241 + 0.858842i \(0.671185\pi\)
\(572\) 0 0
\(573\) −7.00838e11 −0.271595
\(574\) 1.77369e12 0.681983
\(575\) −3.70494e12 −1.41344
\(576\) −1.11231e12 −0.421043
\(577\) −4.76628e11 −0.179015 −0.0895073 0.995986i \(-0.528529\pi\)
−0.0895073 + 0.995986i \(0.528529\pi\)
\(578\) 3.15796e12 1.17688
\(579\) 1.12727e12 0.416846
\(580\) −7.52253e12 −2.76018
\(581\) −9.25237e11 −0.336868
\(582\) −7.45272e12 −2.69253
\(583\) 1.23061e12 0.441176
\(584\) 7.58567e11 0.269858
\(585\) 0 0
\(586\) 5.93579e12 2.07941
\(587\) −1.40719e11 −0.0489194 −0.0244597 0.999701i \(-0.507787\pi\)
−0.0244597 + 0.999701i \(0.507787\pi\)
\(588\) 3.46134e12 1.19411
\(589\) 1.61066e12 0.551424
\(590\) −1.05342e13 −3.57905
\(591\) −2.88966e12 −0.974322
\(592\) 5.89568e11 0.197281
\(593\) 4.90641e12 1.62936 0.814681 0.579909i \(-0.196912\pi\)
0.814681 + 0.579909i \(0.196912\pi\)
\(594\) −7.00037e12 −2.30718
\(595\) −1.39924e12 −0.457684
\(596\) 4.60066e12 1.49352
\(597\) 5.73459e12 1.84764
\(598\) 0 0
\(599\) 3.29390e12 1.04542 0.522708 0.852512i \(-0.324922\pi\)
0.522708 + 0.852512i \(0.324922\pi\)
\(600\) 5.16310e12 1.62641
\(601\) 5.66204e12 1.77026 0.885132 0.465341i \(-0.154068\pi\)
0.885132 + 0.465341i \(0.154068\pi\)
\(602\) −4.55740e12 −1.41427
\(603\) 1.13148e12 0.348514
\(604\) −7.98285e12 −2.44057
\(605\) −1.16455e13 −3.53393
\(606\) 7.25494e12 2.18528
\(607\) 6.16493e12 1.84323 0.921614 0.388108i \(-0.126871\pi\)
0.921614 + 0.388108i \(0.126871\pi\)
\(608\) 6.50644e12 1.93098
\(609\) 2.23276e12 0.657756
\(610\) −3.18850e12 −0.932399
\(611\) 0 0
\(612\) −6.78596e11 −0.195537
\(613\) −6.43646e12 −1.84109 −0.920544 0.390639i \(-0.872254\pi\)
−0.920544 + 0.390639i \(0.872254\pi\)
\(614\) 2.38312e12 0.676687
\(615\) 5.42067e12 1.52797
\(616\) 2.62662e12 0.734994
\(617\) −6.09818e10 −0.0169401 −0.00847007 0.999964i \(-0.502696\pi\)
−0.00847007 + 0.999964i \(0.502696\pi\)
\(618\) 3.09994e12 0.854880
\(619\) 3.71099e12 1.01597 0.507986 0.861365i \(-0.330390\pi\)
0.507986 + 0.861365i \(0.330390\pi\)
\(620\) −3.16906e12 −0.861328
\(621\) −2.34206e12 −0.631954
\(622\) −2.78761e12 −0.746750
\(623\) −9.92051e11 −0.263838
\(624\) 0 0
\(625\) 2.27643e12 0.596752
\(626\) 3.23022e12 0.840713
\(627\) −1.23437e13 −3.18964
\(628\) 4.98616e12 1.27923
\(629\) 1.48878e12 0.379229
\(630\) −1.46857e12 −0.371418
\(631\) 1.69274e12 0.425068 0.212534 0.977154i \(-0.431828\pi\)
0.212534 + 0.977154i \(0.431828\pi\)
\(632\) 1.41178e12 0.351998
\(633\) 1.08614e11 0.0268888
\(634\) −9.37789e12 −2.30517
\(635\) 3.79702e12 0.926746
\(636\) −1.73591e12 −0.420697
\(637\) 0 0
\(638\) −1.26960e13 −3.03372
\(639\) −1.63188e11 −0.0387198
\(640\) −9.82624e12 −2.31514
\(641\) 3.87167e12 0.905810 0.452905 0.891559i \(-0.350388\pi\)
0.452905 + 0.891559i \(0.350388\pi\)
\(642\) −2.59399e12 −0.602643
\(643\) 5.80209e12 1.33855 0.669275 0.743015i \(-0.266605\pi\)
0.669275 + 0.743015i \(0.266605\pi\)
\(644\) 2.65873e12 0.609099
\(645\) −1.39281e13 −3.16865
\(646\) 5.70424e12 1.28870
\(647\) −2.47347e11 −0.0554928 −0.0277464 0.999615i \(-0.508833\pi\)
−0.0277464 + 0.999615i \(0.508833\pi\)
\(648\) 4.17142e12 0.929387
\(649\) −1.06494e13 −2.35626
\(650\) 0 0
\(651\) 9.40610e11 0.205256
\(652\) −1.92532e12 −0.417242
\(653\) 7.76569e12 1.67136 0.835681 0.549215i \(-0.185073\pi\)
0.835681 + 0.549215i \(0.185073\pi\)
\(654\) 1.53554e13 3.28218
\(655\) −4.39175e12 −0.932291
\(656\) −1.00284e12 −0.211429
\(657\) −4.28762e11 −0.0897784
\(658\) −3.62300e11 −0.0753446
\(659\) 4.18896e12 0.865211 0.432605 0.901583i \(-0.357594\pi\)
0.432605 + 0.901583i \(0.357594\pi\)
\(660\) 2.42870e13 4.98225
\(661\) −5.49347e12 −1.11928 −0.559642 0.828735i \(-0.689061\pi\)
−0.559642 + 0.828735i \(0.689061\pi\)
\(662\) 1.35082e13 2.73362
\(663\) 0 0
\(664\) −2.45293e12 −0.489698
\(665\) 7.39437e12 1.46624
\(666\) 1.56255e12 0.307750
\(667\) −4.24762e12 −0.830958
\(668\) 4.22219e12 0.820434
\(669\) −1.69423e11 −0.0327006
\(670\) 1.87138e13 3.58778
\(671\) −3.22336e12 −0.613844
\(672\) 3.79969e12 0.718765
\(673\) −5.85305e12 −1.09980 −0.549901 0.835230i \(-0.685335\pi\)
−0.549901 + 0.835230i \(0.685335\pi\)
\(674\) 4.99966e12 0.933191
\(675\) 8.33322e12 1.54506
\(676\) 0 0
\(677\) −7.83348e12 −1.43320 −0.716598 0.697486i \(-0.754302\pi\)
−0.716598 + 0.697486i \(0.754302\pi\)
\(678\) −5.23820e12 −0.952025
\(679\) 4.51329e12 0.814853
\(680\) −3.70958e12 −0.665325
\(681\) 5.18853e12 0.924448
\(682\) −5.34854e12 −0.946686
\(683\) 4.96989e12 0.873884 0.436942 0.899490i \(-0.356061\pi\)
0.436942 + 0.899490i \(0.356061\pi\)
\(684\) 3.58608e12 0.626423
\(685\) −1.33989e12 −0.232521
\(686\) −8.41192e12 −1.45023
\(687\) 1.13385e12 0.194201
\(688\) 2.57675e12 0.438455
\(689\) 0 0
\(690\) 1.35654e13 2.27830
\(691\) −9.71204e11 −0.162054 −0.0810269 0.996712i \(-0.525820\pi\)
−0.0810269 + 0.996712i \(0.525820\pi\)
\(692\) 7.70217e12 1.27684
\(693\) −1.48463e12 −0.244523
\(694\) −5.52458e12 −0.904028
\(695\) 8.96383e12 1.45734
\(696\) 5.91935e12 0.956165
\(697\) −2.53238e12 −0.406425
\(698\) −8.12912e12 −1.29627
\(699\) 8.71131e12 1.38018
\(700\) −9.45996e12 −1.48918
\(701\) 6.96434e11 0.108930 0.0544651 0.998516i \(-0.482655\pi\)
0.0544651 + 0.998516i \(0.482655\pi\)
\(702\) 0 0
\(703\) −7.86753e12 −1.21490
\(704\) −1.85979e13 −2.85356
\(705\) −1.10725e12 −0.168808
\(706\) −1.63771e13 −2.48094
\(707\) −4.39352e12 −0.661340
\(708\) 1.50221e13 2.24689
\(709\) 1.07645e13 1.59988 0.799940 0.600080i \(-0.204865\pi\)
0.799940 + 0.600080i \(0.204865\pi\)
\(710\) −2.69899e12 −0.398601
\(711\) −7.97975e11 −0.117105
\(712\) −2.63006e12 −0.383536
\(713\) −1.78942e12 −0.259304
\(714\) 3.33122e12 0.479691
\(715\) 0 0
\(716\) −4.68532e12 −0.666240
\(717\) 1.57463e12 0.222507
\(718\) −1.64414e13 −2.30876
\(719\) −1.00049e13 −1.39616 −0.698078 0.716021i \(-0.745961\pi\)
−0.698078 + 0.716021i \(0.745961\pi\)
\(720\) 8.30330e11 0.115147
\(721\) −1.87729e12 −0.258716
\(722\) −1.86141e13 −2.54932
\(723\) 4.94044e12 0.672425
\(724\) 1.90338e11 0.0257455
\(725\) 1.51133e13 2.03161
\(726\) 2.77248e13 3.70385
\(727\) 3.07406e12 0.408138 0.204069 0.978957i \(-0.434583\pi\)
0.204069 + 0.978957i \(0.434583\pi\)
\(728\) 0 0
\(729\) 4.75480e12 0.623532
\(730\) −7.09136e12 −0.924223
\(731\) 6.50681e12 0.842830
\(732\) 4.54691e12 0.585351
\(733\) 1.10029e13 1.40779 0.703896 0.710303i \(-0.251442\pi\)
0.703896 + 0.710303i \(0.251442\pi\)
\(734\) 1.13486e13 1.44314
\(735\) −1.06950e13 −1.35172
\(736\) −7.22856e12 −0.908033
\(737\) 1.89185e13 2.36201
\(738\) −2.65785e12 −0.329820
\(739\) 1.39859e13 1.72501 0.862505 0.506048i \(-0.168894\pi\)
0.862505 + 0.506048i \(0.168894\pi\)
\(740\) 1.54798e13 1.89768
\(741\) 0 0
\(742\) 1.75503e12 0.212553
\(743\) 4.61053e12 0.555011 0.277505 0.960724i \(-0.410492\pi\)
0.277505 + 0.960724i \(0.410492\pi\)
\(744\) 2.49369e12 0.298376
\(745\) −1.42153e13 −1.69064
\(746\) 4.69549e12 0.555081
\(747\) 1.38646e12 0.162916
\(748\) −1.13461e13 −1.32523
\(749\) 1.57089e12 0.182380
\(750\) −2.23022e13 −2.57378
\(751\) 7.70888e12 0.884324 0.442162 0.896935i \(-0.354212\pi\)
0.442162 + 0.896935i \(0.354212\pi\)
\(752\) 2.04844e11 0.0233584
\(753\) −3.03946e12 −0.344523
\(754\) 0 0
\(755\) 2.46657e13 2.76269
\(756\) −5.98006e12 −0.665821
\(757\) 1.68076e12 0.186027 0.0930133 0.995665i \(-0.470350\pi\)
0.0930133 + 0.995665i \(0.470350\pi\)
\(758\) 2.09811e13 2.30843
\(759\) 1.37137e13 1.49991
\(760\) 1.96035e13 2.13143
\(761\) 8.42654e12 0.910790 0.455395 0.890289i \(-0.349498\pi\)
0.455395 + 0.890289i \(0.349498\pi\)
\(762\) −9.03969e12 −0.971306
\(763\) −9.29909e12 −0.993299
\(764\) 3.40430e12 0.361500
\(765\) 2.09675e12 0.221345
\(766\) −1.70851e13 −1.79303
\(767\) 0 0
\(768\) 5.83029e12 0.604734
\(769\) 1.33393e13 1.37552 0.687758 0.725940i \(-0.258595\pi\)
0.687758 + 0.725940i \(0.258595\pi\)
\(770\) −2.45546e13 −2.51724
\(771\) −2.49917e12 −0.254713
\(772\) −5.47570e12 −0.554833
\(773\) −1.25115e13 −1.26038 −0.630190 0.776441i \(-0.717023\pi\)
−0.630190 + 0.776441i \(0.717023\pi\)
\(774\) 6.82922e12 0.683970
\(775\) 6.36690e12 0.633972
\(776\) 1.19653e13 1.18453
\(777\) −4.59456e12 −0.452220
\(778\) −1.58784e13 −1.55381
\(779\) 1.33825e13 1.30202
\(780\) 0 0
\(781\) −2.72850e12 −0.262419
\(782\) −6.33733e12 −0.606004
\(783\) 9.55381e12 0.908341
\(784\) 1.97860e12 0.187041
\(785\) −1.54064e13 −1.44807
\(786\) 1.04556e13 0.977118
\(787\) −4.69799e12 −0.436542 −0.218271 0.975888i \(-0.570042\pi\)
−0.218271 + 0.975888i \(0.570042\pi\)
\(788\) 1.40364e13 1.29685
\(789\) −8.98127e12 −0.825071
\(790\) −1.31978e13 −1.20554
\(791\) 3.17220e12 0.288115
\(792\) −3.93596e12 −0.355457
\(793\) 0 0
\(794\) −1.62502e12 −0.145100
\(795\) 5.36367e12 0.476222
\(796\) −2.78557e13 −2.45926
\(797\) 2.87905e11 0.0252747 0.0126374 0.999920i \(-0.495977\pi\)
0.0126374 + 0.999920i \(0.495977\pi\)
\(798\) −1.76040e13 −1.53674
\(799\) 5.17273e11 0.0449013
\(800\) 2.57198e13 2.22005
\(801\) 1.48658e12 0.127597
\(802\) 2.64811e13 2.26022
\(803\) −7.16891e12 −0.608461
\(804\) −2.66866e13 −2.25237
\(805\) −8.21504e12 −0.689490
\(806\) 0 0
\(807\) 1.46272e13 1.21403
\(808\) −1.16478e13 −0.961376
\(809\) −8.27639e12 −0.679317 −0.339658 0.940549i \(-0.610311\pi\)
−0.339658 + 0.940549i \(0.610311\pi\)
\(810\) −3.89960e13 −3.18300
\(811\) −5.88340e12 −0.477567 −0.238784 0.971073i \(-0.576749\pi\)
−0.238784 + 0.971073i \(0.576749\pi\)
\(812\) −1.08456e13 −0.875490
\(813\) 6.11926e12 0.491237
\(814\) 2.61258e13 2.08574
\(815\) 5.94891e12 0.472311
\(816\) −1.88347e12 −0.148714
\(817\) −3.43856e13 −2.70009
\(818\) −2.10551e13 −1.64425
\(819\) 0 0
\(820\) −2.63308e13 −2.03377
\(821\) 1.41774e13 1.08906 0.544532 0.838740i \(-0.316707\pi\)
0.544532 + 0.838740i \(0.316707\pi\)
\(822\) 3.18993e12 0.243701
\(823\) 8.59469e12 0.653026 0.326513 0.945193i \(-0.394126\pi\)
0.326513 + 0.945193i \(0.394126\pi\)
\(824\) −4.97695e12 −0.376089
\(825\) −4.87944e13 −3.66714
\(826\) −1.51877e13 −1.13522
\(827\) 8.90088e11 0.0661696 0.0330848 0.999453i \(-0.489467\pi\)
0.0330848 + 0.999453i \(0.489467\pi\)
\(828\) −3.98408e12 −0.294572
\(829\) 4.44031e12 0.326526 0.163263 0.986583i \(-0.447798\pi\)
0.163263 + 0.986583i \(0.447798\pi\)
\(830\) 2.29309e13 1.67714
\(831\) 1.04091e13 0.757199
\(832\) 0 0
\(833\) 4.99637e12 0.359544
\(834\) −2.13405e13 −1.52742
\(835\) −1.30459e13 −0.928718
\(836\) 5.99594e13 4.24550
\(837\) 4.02480e12 0.283452
\(838\) −4.27014e13 −2.99119
\(839\) 2.75185e13 1.91733 0.958663 0.284545i \(-0.0918424\pi\)
0.958663 + 0.284545i \(0.0918424\pi\)
\(840\) 1.14482e13 0.793381
\(841\) 2.81989e12 0.194379
\(842\) −2.25412e13 −1.54552
\(843\) 2.77171e13 1.89027
\(844\) −5.27592e11 −0.0357896
\(845\) 0 0
\(846\) 5.42904e11 0.0364381
\(847\) −1.67898e13 −1.12091
\(848\) −9.92296e11 −0.0658961
\(849\) −2.04246e13 −1.34918
\(850\) 2.25487e13 1.48162
\(851\) 8.74071e12 0.571299
\(852\) 3.84885e12 0.250238
\(853\) −1.12438e13 −0.727181 −0.363591 0.931559i \(-0.618449\pi\)
−0.363591 + 0.931559i \(0.618449\pi\)
\(854\) −4.59701e12 −0.295743
\(855\) −1.10804e13 −0.709100
\(856\) 4.16464e12 0.265122
\(857\) 1.20421e13 0.762584 0.381292 0.924455i \(-0.375479\pi\)
0.381292 + 0.924455i \(0.375479\pi\)
\(858\) 0 0
\(859\) 9.60758e12 0.602067 0.301033 0.953614i \(-0.402668\pi\)
0.301033 + 0.953614i \(0.402668\pi\)
\(860\) 6.76557e13 4.21756
\(861\) 7.81524e12 0.484650
\(862\) −4.14548e12 −0.255736
\(863\) −4.64134e12 −0.284836 −0.142418 0.989807i \(-0.545488\pi\)
−0.142418 + 0.989807i \(0.545488\pi\)
\(864\) 1.62586e13 0.992593
\(865\) −2.37984e13 −1.44536
\(866\) −1.90997e13 −1.15397
\(867\) 1.39147e13 0.836347
\(868\) −4.56899e12 −0.273201
\(869\) −1.33422e13 −0.793665
\(870\) −5.53363e13 −3.27471
\(871\) 0 0
\(872\) −2.46531e13 −1.44394
\(873\) −6.76312e12 −0.394079
\(874\) 3.34900e13 1.94139
\(875\) 1.35060e13 0.778914
\(876\) 1.01125e13 0.580218
\(877\) 3.08887e13 1.76320 0.881599 0.471999i \(-0.156467\pi\)
0.881599 + 0.471999i \(0.156467\pi\)
\(878\) −2.40546e13 −1.36607
\(879\) 2.61543e13 1.47773
\(880\) 1.38831e13 0.780397
\(881\) −3.27975e13 −1.83421 −0.917105 0.398645i \(-0.869480\pi\)
−0.917105 + 0.398645i \(0.869480\pi\)
\(882\) 5.24393e12 0.291775
\(883\) −2.21183e12 −0.122441 −0.0612206 0.998124i \(-0.519499\pi\)
−0.0612206 + 0.998124i \(0.519499\pi\)
\(884\) 0 0
\(885\) −4.64159e13 −2.54344
\(886\) 2.47649e13 1.35016
\(887\) −1.15100e13 −0.624336 −0.312168 0.950027i \(-0.601055\pi\)
−0.312168 + 0.950027i \(0.601055\pi\)
\(888\) −1.21808e13 −0.657382
\(889\) 5.47434e12 0.293950
\(890\) 2.45868e13 1.31355
\(891\) −3.94224e13 −2.09553
\(892\) 8.22970e11 0.0435253
\(893\) −2.73356e12 −0.143846
\(894\) 3.38428e13 1.77193
\(895\) 1.44769e13 0.754172
\(896\) −1.41670e13 −0.734329
\(897\) 0 0
\(898\) 5.42567e13 2.78426
\(899\) 7.29947e12 0.372712
\(900\) 1.41757e13 0.720198
\(901\) −2.50574e12 −0.126670
\(902\) −4.44394e13 −2.23532
\(903\) −2.00809e13 −1.00505
\(904\) 8.40993e12 0.418827
\(905\) −5.88113e11 −0.0291435
\(906\) −5.87225e13 −2.89553
\(907\) 1.01540e13 0.498201 0.249100 0.968478i \(-0.419865\pi\)
0.249100 + 0.968478i \(0.419865\pi\)
\(908\) −2.52032e13 −1.23046
\(909\) 6.58365e12 0.319837
\(910\) 0 0
\(911\) 1.68956e13 0.812719 0.406360 0.913713i \(-0.366798\pi\)
0.406360 + 0.913713i \(0.366798\pi\)
\(912\) 9.95330e12 0.476421
\(913\) 2.31816e13 1.10414
\(914\) −1.73529e13 −0.822459
\(915\) −1.40492e13 −0.662607
\(916\) −5.50766e12 −0.258486
\(917\) −6.33179e12 −0.295709
\(918\) 1.42540e13 0.662439
\(919\) −3.90729e11 −0.0180699 −0.00903496 0.999959i \(-0.502876\pi\)
−0.00903496 + 0.999959i \(0.502876\pi\)
\(920\) −2.17792e13 −1.00230
\(921\) 1.05005e13 0.480886
\(922\) 5.74752e13 2.61934
\(923\) 0 0
\(924\) 3.50157e13 1.58030
\(925\) −3.11001e13 −1.39677
\(926\) 6.30200e13 2.81662
\(927\) 2.81310e12 0.125120
\(928\) 2.94870e13 1.30516
\(929\) −1.22780e13 −0.540827 −0.270414 0.962744i \(-0.587160\pi\)
−0.270414 + 0.962744i \(0.587160\pi\)
\(930\) −2.33119e13 −1.02189
\(931\) −2.64036e13 −1.15183
\(932\) −4.23150e13 −1.83706
\(933\) −1.22828e13 −0.530676
\(934\) 2.77279e13 1.19222
\(935\) 3.50577e13 1.50014
\(936\) 0 0
\(937\) −3.14738e13 −1.33389 −0.666946 0.745106i \(-0.732399\pi\)
−0.666946 + 0.745106i \(0.732399\pi\)
\(938\) 2.69806e13 1.13799
\(939\) 1.42330e13 0.597451
\(940\) 5.37843e12 0.224688
\(941\) 2.45616e13 1.02118 0.510592 0.859823i \(-0.329426\pi\)
0.510592 + 0.859823i \(0.329426\pi\)
\(942\) 3.66786e13 1.51769
\(943\) −1.48678e13 −0.612270
\(944\) 8.58709e12 0.351943
\(945\) 1.84774e13 0.753699
\(946\) 1.14185e14 4.63552
\(947\) −3.88870e13 −1.57119 −0.785596 0.618740i \(-0.787643\pi\)
−0.785596 + 0.618740i \(0.787643\pi\)
\(948\) 1.88206e13 0.756825
\(949\) 0 0
\(950\) −1.19160e14 −4.74650
\(951\) −4.13210e13 −1.63817
\(952\) −5.34827e12 −0.211032
\(953\) −2.34348e13 −0.920329 −0.460165 0.887834i \(-0.652210\pi\)
−0.460165 + 0.887834i \(0.652210\pi\)
\(954\) −2.62990e12 −0.102795
\(955\) −1.05187e13 −0.409212
\(956\) −7.64874e12 −0.296162
\(957\) −5.59414e13 −2.15591
\(958\) −3.84512e12 −0.147491
\(959\) −1.93179e12 −0.0737524
\(960\) −8.10600e13 −3.08025
\(961\) −2.33645e13 −0.883694
\(962\) 0 0
\(963\) −2.35396e12 −0.0882026
\(964\) −2.39981e13 −0.895015
\(965\) 1.69190e13 0.628061
\(966\) 1.95578e13 0.722642
\(967\) −1.35865e13 −0.499677 −0.249838 0.968288i \(-0.580377\pi\)
−0.249838 + 0.968288i \(0.580377\pi\)
\(968\) −4.45121e13 −1.62944
\(969\) 2.51341e13 0.915811
\(970\) −1.11856e14 −4.05684
\(971\) −7.53765e12 −0.272113 −0.136057 0.990701i \(-0.543443\pi\)
−0.136057 + 0.990701i \(0.543443\pi\)
\(972\) 2.10603e13 0.756775
\(973\) 1.29236e13 0.462248
\(974\) −7.70401e13 −2.74285
\(975\) 0 0
\(976\) 2.59914e12 0.0916867
\(977\) −3.43271e13 −1.20535 −0.602673 0.797988i \(-0.705898\pi\)
−0.602673 + 0.797988i \(0.705898\pi\)
\(978\) −1.41628e13 −0.495021
\(979\) 2.48556e13 0.864775
\(980\) 5.19505e13 1.79917
\(981\) 1.39346e13 0.480379
\(982\) −2.06333e13 −0.708054
\(983\) 2.63457e13 0.899952 0.449976 0.893041i \(-0.351433\pi\)
0.449976 + 0.893041i \(0.351433\pi\)
\(984\) 2.07193e13 0.704525
\(985\) −4.33703e13 −1.46801
\(986\) 2.58515e13 0.871042
\(987\) −1.59637e12 −0.0535435
\(988\) 0 0
\(989\) 3.82019e13 1.26970
\(990\) 3.67948e13 1.21739
\(991\) −1.18374e13 −0.389876 −0.194938 0.980816i \(-0.562451\pi\)
−0.194938 + 0.980816i \(0.562451\pi\)
\(992\) 1.24222e13 0.407282
\(993\) 5.95201e13 1.94264
\(994\) −3.89126e12 −0.126430
\(995\) 8.60694e13 2.78384
\(996\) −3.27002e13 −1.05289
\(997\) −3.89835e13 −1.24955 −0.624774 0.780806i \(-0.714809\pi\)
−0.624774 + 0.780806i \(0.714809\pi\)
\(998\) −2.03174e13 −0.648306
\(999\) −1.96598e13 −0.624502
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.10.a.h.1.4 yes 27
13.12 even 2 169.10.a.g.1.24 27
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
169.10.a.g.1.24 27 13.12 even 2
169.10.a.h.1.4 yes 27 1.1 even 1 trivial