Properties

Label 169.2.b.b.168.1
Level 169169
Weight 22
Character 169.168
Analytic conductor 1.3491.349
Analytic rank 00
Dimension 66
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,2,Mod(168,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.168");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 169=132 169 = 13^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 169.b (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.349471794161.34947179416
Analytic rank: 00
Dimension: 66
Coefficient field: 6.0.153664.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x6+5x4+6x2+1 x^{6} + 5x^{4} + 6x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 168.1
Root 0.445042i-0.445042i of defining polynomial
Character χ\chi == 169.168
Dual form 169.2.b.b.168.6

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q2.24698iq20.554958q33.04892q41.44504iq5+1.24698iq62.04892iq7+2.35690iq82.69202q93.24698q10+2.55496iq11+1.69202q124.60388q14+0.801938iq150.801938q16+5.29590q17+6.04892iq185.85086iq19+4.40581iq20+1.13706iq21+5.74094q22+1.89008q231.30798iq24+2.91185q25+3.15883q27+6.24698iq28+2.26875q29+1.80194q304.26875iq31+6.51573iq321.41789iq3311.8998iq342.96077q35+8.20775q365.35690iq3713.1468q38+3.40581q40+1.27413iq41+2.55496q426.13706q437.78986iq44+3.89008iq454.24698iq46+2.95108iq47+0.445042q48+2.80194q496.54288iq502.93900q51+5.52111q537.09783iq54+3.69202q55+4.82908q56+3.24698iq575.09783iq58+12.2078iq592.44504iq60+8.56465q619.59179q62+5.51573iq63+13.0368q643.18598q66+0.576728iq6716.1468q681.04892q69+6.65279iq704.59419iq716.34481iq72+10.5526iq7312.0368q741.61596q75+17.8388iq76+5.23490q7715.7778q79+1.15883iq80+6.32304q81+2.86294q82+7.72348iq833.46681iq847.65279iq85+13.7899iq861.25906q876.02177q886.61356iq89+8.74094q905.76271q92+2.36898iq93+6.63102q948.45473q953.61596iq96+11.9269iq976.29590iq986.87800iq99+O(q100)q-2.24698i q^{2} -0.554958 q^{3} -3.04892 q^{4} -1.44504i q^{5} +1.24698i q^{6} -2.04892i q^{7} +2.35690i q^{8} -2.69202 q^{9} -3.24698 q^{10} +2.55496i q^{11} +1.69202 q^{12} -4.60388 q^{14} +0.801938i q^{15} -0.801938 q^{16} +5.29590 q^{17} +6.04892i q^{18} -5.85086i q^{19} +4.40581i q^{20} +1.13706i q^{21} +5.74094 q^{22} +1.89008 q^{23} -1.30798i q^{24} +2.91185 q^{25} +3.15883 q^{27} +6.24698i q^{28} +2.26875 q^{29} +1.80194 q^{30} -4.26875i q^{31} +6.51573i q^{32} -1.41789i q^{33} -11.8998i q^{34} -2.96077 q^{35} +8.20775 q^{36} -5.35690i q^{37} -13.1468 q^{38} +3.40581 q^{40} +1.27413i q^{41} +2.55496 q^{42} -6.13706 q^{43} -7.78986i q^{44} +3.89008i q^{45} -4.24698i q^{46} +2.95108i q^{47} +0.445042 q^{48} +2.80194 q^{49} -6.54288i q^{50} -2.93900 q^{51} +5.52111 q^{53} -7.09783i q^{54} +3.69202 q^{55} +4.82908 q^{56} +3.24698i q^{57} -5.09783i q^{58} +12.2078i q^{59} -2.44504i q^{60} +8.56465 q^{61} -9.59179 q^{62} +5.51573i q^{63} +13.0368 q^{64} -3.18598 q^{66} +0.576728i q^{67} -16.1468 q^{68} -1.04892 q^{69} +6.65279i q^{70} -4.59419i q^{71} -6.34481i q^{72} +10.5526i q^{73} -12.0368 q^{74} -1.61596 q^{75} +17.8388i q^{76} +5.23490 q^{77} -15.7778 q^{79} +1.15883i q^{80} +6.32304 q^{81} +2.86294 q^{82} +7.72348i q^{83} -3.46681i q^{84} -7.65279i q^{85} +13.7899i q^{86} -1.25906 q^{87} -6.02177 q^{88} -6.61356i q^{89} +8.74094 q^{90} -5.76271 q^{92} +2.36898i q^{93} +6.63102 q^{94} -8.45473 q^{95} -3.61596i q^{96} +11.9269i q^{97} -6.29590i q^{98} -6.87800i q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q4q36q910q1010q14+4q16+4q17+6q22+10q23+10q25+2q272q29+2q30+8q35+14q3624q386q40+16q4226q43+6q95+O(q100) 6 q - 4 q^{3} - 6 q^{9} - 10 q^{10} - 10 q^{14} + 4 q^{16} + 4 q^{17} + 6 q^{22} + 10 q^{23} + 10 q^{25} + 2 q^{27} - 2 q^{29} + 2 q^{30} + 8 q^{35} + 14 q^{36} - 24 q^{38} - 6 q^{40} + 16 q^{42} - 26 q^{43}+ \cdots - 6 q^{95}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/169Z)×\left(\mathbb{Z}/169\mathbb{Z}\right)^\times.

nn 22
χ(n)\chi(n) 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 − 2.24698i − 1.58885i −0.607359 0.794427i 0.707771π-0.707771\pi
0.607359 0.794427i 0.292229π-0.292229\pi
33 −0.554958 −0.320405 −0.160203 0.987084i 0.551215π-0.551215\pi
−0.160203 + 0.987084i 0.551215π0.551215\pi
44 −3.04892 −1.52446
55 − 1.44504i − 0.646242i −0.946358 0.323121i 0.895268π-0.895268\pi
0.946358 0.323121i 0.104732π-0.104732\pi
66 1.24698i 0.509077i
77 − 2.04892i − 0.774418i −0.921992 0.387209i 0.873439π-0.873439\pi
0.921992 0.387209i 0.126561π-0.126561\pi
88 2.35690i 0.833289i
99 −2.69202 −0.897340
1010 −3.24698 −1.02679
1111 2.55496i 0.770349i 0.922844 + 0.385174i 0.125859π0.125859\pi
−0.922844 + 0.385174i 0.874141π0.874141\pi
1212 1.69202 0.488445
1313 0 0
1414 −4.60388 −1.23044
1515 0.801938i 0.207059i
1616 −0.801938 −0.200484
1717 5.29590 1.28444 0.642222 0.766519i 0.278013π-0.278013\pi
0.642222 + 0.766519i 0.278013π0.278013\pi
1818 6.04892i 1.42574i
1919 − 5.85086i − 1.34228i −0.741331 0.671139i 0.765805π-0.765805\pi
0.741331 0.671139i 0.234195π-0.234195\pi
2020 4.40581i 0.985170i
2121 1.13706i 0.248128i
2222 5.74094 1.22397
2323 1.89008 0.394110 0.197055 0.980392i 0.436862π-0.436862\pi
0.197055 + 0.980392i 0.436862π0.436862\pi
2424 − 1.30798i − 0.266990i
2525 2.91185 0.582371
2626 0 0
2727 3.15883 0.607918
2828 6.24698i 1.18057i
2929 2.26875 0.421296 0.210648 0.977562i 0.432443π-0.432443\pi
0.210648 + 0.977562i 0.432443π0.432443\pi
3030 1.80194 0.328987
3131 − 4.26875i − 0.766690i −0.923605 0.383345i 0.874772π-0.874772\pi
0.923605 0.383345i 0.125228π-0.125228\pi
3232 6.51573i 1.15183i
3333 − 1.41789i − 0.246824i
3434 − 11.8998i − 2.04079i
3535 −2.96077 −0.500462
3636 8.20775 1.36796
3737 − 5.35690i − 0.880668i −0.897834 0.440334i 0.854860π-0.854860\pi
0.897834 0.440334i 0.145140π-0.145140\pi
3838 −13.1468 −2.13268
3939 0 0
4040 3.40581 0.538506
4141 1.27413i 0.198985i 0.995038 + 0.0994926i 0.0317220π0.0317220\pi
−0.995038 + 0.0994926i 0.968278π0.968278\pi
4242 2.55496 0.394239
4343 −6.13706 −0.935893 −0.467947 0.883757i 0.655006π-0.655006\pi
−0.467947 + 0.883757i 0.655006π0.655006\pi
4444 − 7.78986i − 1.17437i
4545 3.89008i 0.579899i
4646 − 4.24698i − 0.626183i
4747 2.95108i 0.430460i 0.976563 + 0.215230i 0.0690501π0.0690501\pi
−0.976563 + 0.215230i 0.930950π0.930950\pi
4848 0.445042 0.0642363
4949 2.80194 0.400277
5050 − 6.54288i − 0.925302i
5151 −2.93900 −0.411542
5252 0 0
5353 5.52111 0.758382 0.379191 0.925318i 0.376202π-0.376202\pi
0.379191 + 0.925318i 0.376202π0.376202\pi
5454 − 7.09783i − 0.965893i
5555 3.69202 0.497832
5656 4.82908 0.645314
5757 3.24698i 0.430073i
5858 − 5.09783i − 0.669378i
5959 12.2078i 1.58931i 0.607059 + 0.794657i 0.292349π0.292349\pi
−0.607059 + 0.794657i 0.707651π0.707651\pi
6060 − 2.44504i − 0.315654i
6161 8.56465 1.09659 0.548295 0.836285i 0.315277π-0.315277\pi
0.548295 + 0.836285i 0.315277π0.315277\pi
6262 −9.59179 −1.21816
6363 5.51573i 0.694917i
6464 13.0368 1.62960
6565 0 0
6666 −3.18598 −0.392167
6767 0.576728i 0.0704586i 0.999379 + 0.0352293i 0.0112162π0.0112162\pi
−0.999379 + 0.0352293i 0.988784π0.988784\pi
6868 −16.1468 −1.95808
6969 −1.04892 −0.126275
7070 6.65279i 0.795161i
7171 − 4.59419i − 0.545230i −0.962123 0.272615i 0.912112π-0.912112\pi
0.962123 0.272615i 0.0878885π-0.0878885\pi
7272 − 6.34481i − 0.747744i
7373 10.5526i 1.23508i 0.786538 + 0.617542i 0.211872π0.211872\pi
−0.786538 + 0.617542i 0.788128π0.788128\pi
7474 −12.0368 −1.39925
7575 −1.61596 −0.186595
7676 17.8388i 2.04625i
7777 5.23490 0.596572
7878 0 0
7979 −15.7778 −1.77514 −0.887569 0.460674i 0.847608π-0.847608\pi
−0.887569 + 0.460674i 0.847608π0.847608\pi
8080 1.15883i 0.129562i
8181 6.32304 0.702560
8282 2.86294 0.316158
8383 7.72348i 0.847762i 0.905718 + 0.423881i 0.139333π0.139333\pi
−0.905718 + 0.423881i 0.860667π0.860667\pi
8484 − 3.46681i − 0.378260i
8585 − 7.65279i − 0.830062i
8686 13.7899i 1.48700i
8787 −1.25906 −0.134986
8888 −6.02177 −0.641923
8989 − 6.61356i − 0.701036i −0.936556 0.350518i 0.886005π-0.886005\pi
0.936556 0.350518i 0.113995π-0.113995\pi
9090 8.74094 0.921376
9191 0 0
9292 −5.76271 −0.600804
9393 2.36898i 0.245652i
9494 6.63102 0.683938
9595 −8.45473 −0.867437
9696 − 3.61596i − 0.369052i
9797 11.9269i 1.21100i 0.795847 + 0.605498i 0.207026π0.207026\pi
−0.795847 + 0.605498i 0.792974π0.792974\pi
9898 − 6.29590i − 0.635982i
9999 − 6.87800i − 0.691265i
100100 −8.87800 −0.887800
101101 −13.0640 −1.29991 −0.649957 0.759971i 0.725213π-0.725213\pi
−0.649957 + 0.759971i 0.725213π0.725213\pi
102102 6.60388i 0.653881i
103103 −9.16852 −0.903401 −0.451701 0.892170i 0.649182π-0.649182\pi
−0.451701 + 0.892170i 0.649182π0.649182\pi
104104 0 0
105105 1.64310 0.160351
106106 − 12.4058i − 1.20496i
107107 −6.89977 −0.667026 −0.333513 0.942745i 0.608234π-0.608234\pi
−0.333513 + 0.942745i 0.608234π0.608234\pi
108108 −9.63102 −0.926746
109109 0.121998i 0.0116853i 0.999983 + 0.00584264i 0.00185978π0.00185978\pi
−0.999983 + 0.00584264i 0.998140π0.998140\pi
110110 − 8.29590i − 0.790983i
111111 2.97285i 0.282171i
112112 1.64310i 0.155259i
113113 7.30798 0.687477 0.343738 0.939065i 0.388307π-0.388307\pi
0.343738 + 0.939065i 0.388307π0.388307\pi
114114 7.29590 0.683323
115115 − 2.73125i − 0.254690i
116116 −6.91723 −0.642249
117117 0 0
118118 27.4306 2.52519
119119 − 10.8509i − 0.994696i
120120 −1.89008 −0.172540
121121 4.47219 0.406563
122122 − 19.2446i − 1.74232i
123123 − 0.707087i − 0.0637559i
124124 13.0151i 1.16879i
125125 − 11.4330i − 1.02260i
126126 12.3937 1.10412
127127 18.9705 1.68336 0.841678 0.539980i 0.181568π-0.181568\pi
0.841678 + 0.539980i 0.181568π0.181568\pi
128128 − 16.2620i − 1.43738i
129129 3.40581 0.299865
130130 0 0
131131 3.25667 0.284536 0.142268 0.989828i 0.454560π-0.454560\pi
0.142268 + 0.989828i 0.454560π0.454560\pi
132132 4.32304i 0.376273i
133133 −11.9879 −1.03948
134134 1.29590 0.111948
135135 − 4.56465i − 0.392862i
136136 12.4819i 1.07031i
137137 − 0.792249i − 0.0676864i −0.999427 0.0338432i 0.989225π-0.989225\pi
0.999427 0.0338432i 0.0107747π-0.0107747\pi
138138 2.35690i 0.200632i
139139 −11.3394 −0.961799 −0.480899 0.876776i 0.659690π-0.659690\pi
−0.480899 + 0.876776i 0.659690π0.659690\pi
140140 9.02715 0.762933
141141 − 1.63773i − 0.137922i
142142 −10.3230 −0.866291
143143 0 0
144144 2.15883 0.179903
145145 − 3.27844i − 0.272260i
146146 23.7114 1.96237
147147 −1.55496 −0.128251
148148 16.3327i 1.34254i
149149 8.40581i 0.688631i 0.938854 + 0.344316i 0.111889π0.111889\pi
−0.938854 + 0.344316i 0.888111π0.888111\pi
150150 3.63102i 0.296472i
151151 − 14.1293i − 1.14983i −0.818215 0.574913i 0.805036π-0.805036\pi
0.818215 0.574913i 0.194964π-0.194964\pi
152152 13.7899 1.11851
153153 −14.2567 −1.15258
154154 − 11.7627i − 0.947866i
155155 −6.16852 −0.495468
156156 0 0
157157 −9.43296 −0.752832 −0.376416 0.926451i 0.622844π-0.622844\pi
−0.376416 + 0.926451i 0.622844π0.622844\pi
158158 35.4523i 2.82044i
159159 −3.06398 −0.242990
160160 9.41550 0.744361
161161 − 3.87263i − 0.305206i
162162 − 14.2078i − 1.11627i
163163 − 8.70410i − 0.681758i −0.940107 0.340879i 0.889275π-0.889275\pi
0.940107 0.340879i 0.110725π-0.110725\pi
164164 − 3.88471i − 0.303345i
165165 −2.04892 −0.159508
166166 17.3545 1.34697
167167 23.8538i 1.84587i 0.384961 + 0.922933i 0.374215π0.374215\pi
−0.384961 + 0.922933i 0.625785π0.625785\pi
168168 −2.67994 −0.206762
169169 0 0
170170 −17.1957 −1.31885
171171 15.7506i 1.20448i
172172 18.7114 1.42673
173173 18.8552 1.43353 0.716766 0.697314i 0.245622π-0.245622\pi
0.716766 + 0.697314i 0.245622π0.245622\pi
174174 2.82908i 0.214472i
175175 − 5.96615i − 0.450998i
176176 − 2.04892i − 0.154443i
177177 − 6.77479i − 0.509224i
178178 −14.8605 −1.11384
179179 −6.02177 −0.450088 −0.225044 0.974349i 0.572253π-0.572253\pi
−0.225044 + 0.974349i 0.572253π0.572253\pi
180180 − 11.8605i − 0.884033i
181181 4.77777 0.355129 0.177565 0.984109i 0.443178π-0.443178\pi
0.177565 + 0.984109i 0.443178π0.443178\pi
182182 0 0
183183 −4.75302 −0.351353
184184 4.45473i 0.328407i
185185 −7.74094 −0.569125
186186 5.32304 0.390305
187187 13.5308i 0.989470i
188188 − 8.99761i − 0.656218i
189189 − 6.47219i − 0.470782i
190190 18.9976i 1.37823i
191191 18.4306 1.33359 0.666795 0.745242i 0.267666π-0.267666\pi
0.666795 + 0.745242i 0.267666π0.267666\pi
192192 −7.23490 −0.522134
193193 − 6.05429i − 0.435798i −0.975971 0.217899i 0.930080π-0.930080\pi
0.975971 0.217899i 0.0699203π-0.0699203\pi
194194 26.7995 1.92410
195195 0 0
196196 −8.54288 −0.610205
197197 − 11.4155i − 0.813321i −0.913579 0.406660i 0.866693π-0.866693\pi
0.913579 0.406660i 0.133307π-0.133307\pi
198198 −15.4547 −1.09832
199199 13.9051 0.985710 0.492855 0.870111i 0.335953π-0.335953\pi
0.492855 + 0.870111i 0.335953π0.335953\pi
200200 6.86294i 0.485283i
201201 − 0.320060i − 0.0225753i
202202 29.3545i 2.06538i
203203 − 4.64848i − 0.326259i
204204 8.96077 0.627379
205205 1.84117 0.128593
206206 20.6015i 1.43537i
207207 −5.08815 −0.353651
208208 0 0
209209 14.9487 1.03402
210210 − 3.69202i − 0.254774i
211211 −13.2446 −0.911795 −0.455897 0.890032i 0.650682π-0.650682\pi
−0.455897 + 0.890032i 0.650682π0.650682\pi
212212 −16.8334 −1.15612
213213 2.54958i 0.174694i
214214 15.5036i 1.05981i
215215 8.86831i 0.604814i
216216 7.44504i 0.506571i
217217 −8.74632 −0.593739
218218 0.274127 0.0185662
219219 − 5.85623i − 0.395727i
220220 −11.2567 −0.758924
221221 0 0
222222 6.67994 0.448328
223223 − 7.33513i − 0.491196i −0.969372 0.245598i 0.921016π-0.921016\pi
0.969372 0.245598i 0.0789844π-0.0789844\pi
224224 13.3502 0.891997
225225 −7.83877 −0.522585
226226 − 16.4209i − 1.09230i
227227 − 8.67456i − 0.575751i −0.957668 0.287875i 0.907051π-0.907051\pi
0.957668 0.287875i 0.0929489π-0.0929489\pi
228228 − 9.89977i − 0.655628i
229229 13.6866i 0.904439i 0.891907 + 0.452219i 0.149368π0.149368\pi
−0.891907 + 0.452219i 0.850632π0.850632\pi
230230 −6.13706 −0.404666
231231 −2.90515 −0.191145
232232 5.34721i 0.351061i
233233 5.08815 0.333336 0.166668 0.986013i 0.446699π-0.446699\pi
0.166668 + 0.986013i 0.446699π0.446699\pi
234234 0 0
235235 4.26444 0.278181
236236 − 37.2204i − 2.42284i
237237 8.75600 0.568764
238238 −24.3817 −1.58043
239239 − 10.9239i − 0.706611i −0.935508 0.353305i 0.885058π-0.885058\pi
0.935508 0.353305i 0.114942π-0.114942\pi
240240 − 0.643104i − 0.0415122i
241241 − 11.9148i − 0.767502i −0.923437 0.383751i 0.874632π-0.874632\pi
0.923437 0.383751i 0.125368π-0.125368\pi
242242 − 10.0489i − 0.645969i
243243 −12.9855 −0.833022
244244 −26.1129 −1.67171
245245 − 4.04892i − 0.258676i
246246 −1.58881 −0.101299
247247 0 0
248248 10.0610 0.638874
249249 − 4.28621i − 0.271627i
250250 −25.6896 −1.62475
251251 −22.3478 −1.41058 −0.705290 0.708919i 0.749183π-0.749183\pi
−0.705290 + 0.708919i 0.749183π0.749183\pi
252252 − 16.8170i − 1.05937i
253253 4.82908i 0.303602i
254254 − 42.6262i − 2.67461i
255255 4.24698i 0.265956i
256256 −10.4668 −0.654176
257257 18.6601 1.16398 0.581992 0.813194i 0.302273π-0.302273\pi
0.581992 + 0.813194i 0.302273π0.302273\pi
258258 − 7.65279i − 0.476442i
259259 −10.9758 −0.682005
260260 0 0
261261 −6.10752 −0.378046
262262 − 7.31767i − 0.452087i
263263 14.3991 0.887887 0.443944 0.896055i 0.353579π-0.353579\pi
0.443944 + 0.896055i 0.353579π0.353579\pi
264264 3.34183 0.205675
265265 − 7.97823i − 0.490099i
266266 26.9366i 1.65159i
267267 3.67025i 0.224616i
268268 − 1.75840i − 0.107411i
269269 0.652793 0.0398015 0.0199007 0.999802i 0.493665π-0.493665\pi
0.0199007 + 0.999802i 0.493665π0.493665\pi
270270 −10.2567 −0.624201
271271 1.99569i 0.121229i 0.998161 + 0.0606147i 0.0193061π0.0193061\pi
−0.998161 + 0.0606147i 0.980694π0.980694\pi
272272 −4.24698 −0.257511
273273 0 0
274274 −1.78017 −0.107544
275275 7.43967i 0.448629i
276276 3.19806 0.192501
277277 −11.7845 −0.708061 −0.354030 0.935234i 0.615189π-0.615189\pi
−0.354030 + 0.935234i 0.615189π0.615189\pi
278278 25.4795i 1.52816i
279279 11.4916i 0.687982i
280280 − 6.97823i − 0.417029i
281281 6.47219i 0.386098i 0.981189 + 0.193049i 0.0618377π0.0618377\pi
−0.981189 + 0.193049i 0.938162π0.938162\pi
282282 −3.67994 −0.219137
283283 −6.58104 −0.391202 −0.195601 0.980684i 0.562666π-0.562666\pi
−0.195601 + 0.980684i 0.562666π0.562666\pi
284284 14.0073i 0.831180i
285285 4.69202 0.277931
286286 0 0
287287 2.61058 0.154098
288288 − 17.5405i − 1.03358i
289289 11.0465 0.649796
290290 −7.36658 −0.432581
291291 − 6.61894i − 0.388009i
292292 − 32.1739i − 1.88284i
293293 24.3381i 1.42185i 0.703269 + 0.710924i 0.251723π0.251723\pi
−0.703269 + 0.710924i 0.748277π0.748277\pi
294294 3.49396i 0.203772i
295295 17.6407 1.02708
296296 12.6256 0.733851
297297 8.07069i 0.468309i
298298 18.8877 1.09413
299299 0 0
300300 4.92692 0.284456
301301 12.5743i 0.724773i
302302 −31.7482 −1.82691
303303 7.24996 0.416500
304304 4.69202i 0.269106i
305305 − 12.3763i − 0.708663i
306306 32.0344i 1.83129i
307307 14.0737i 0.803227i 0.915809 + 0.401613i 0.131550π0.131550\pi
−0.915809 + 0.401613i 0.868450π0.868450\pi
308308 −15.9608 −0.909449
309309 5.08815 0.289455
310310 13.8605i 0.787226i
311311 29.7700 1.68810 0.844051 0.536263i 0.180164π-0.180164\pi
0.844051 + 0.536263i 0.180164π0.180164\pi
312312 0 0
313313 −7.47889 −0.422732 −0.211366 0.977407i 0.567791π-0.567791\pi
−0.211366 + 0.977407i 0.567791π0.567791\pi
314314 21.1957i 1.19614i
315315 7.97046 0.449085
316316 48.1051 2.70613
317317 30.0301i 1.68666i 0.537396 + 0.843330i 0.319408π0.319408\pi
−0.537396 + 0.843330i 0.680592π0.680592\pi
318318 6.88471i 0.386075i
319319 5.79656i 0.324545i
320320 − 18.8388i − 1.05312i
321321 3.82908 0.213719
322322 −8.70171 −0.484927
323323 − 30.9855i − 1.72408i
324324 −19.2784 −1.07102
325325 0 0
326326 −19.5579 −1.08321
327327 − 0.0677037i − 0.00374402i
328328 −3.00298 −0.165812
329329 6.04652 0.333356
330330 4.60388i 0.253435i
331331 − 15.7168i − 0.863872i −0.901904 0.431936i 0.857831π-0.857831\pi
0.901904 0.431936i 0.142169π-0.142169\pi
332332 − 23.5483i − 1.29238i
333333 14.4209i 0.790259i
334334 53.5991 2.93281
335335 0.833397 0.0455333
336336 − 0.911854i − 0.0497457i
337337 −1.95407 −0.106445 −0.0532224 0.998583i 0.516949π-0.516949\pi
−0.0532224 + 0.998583i 0.516949π0.516949\pi
338338 0 0
339339 −4.05562 −0.220271
340340 23.3327i 1.26540i
341341 10.9065 0.590619
342342 35.3913 1.91374
343343 − 20.0834i − 1.08440i
344344 − 14.4644i − 0.779869i
345345 1.51573i 0.0816041i
346346 − 42.3672i − 2.27767i
347347 −17.1250 −0.919317 −0.459659 0.888096i 0.652028π-0.652028\pi
−0.459659 + 0.888096i 0.652028π0.652028\pi
348348 3.83877 0.205780
349349 10.4668i 0.560276i 0.959960 + 0.280138i 0.0903802π0.0903802\pi
−0.959960 + 0.280138i 0.909620π0.909620\pi
350350 −13.4058 −0.716571
351351 0 0
352352 −16.6474 −0.887310
353353 15.5308i 0.826621i 0.910590 + 0.413310i 0.135628π0.135628\pi
−0.910590 + 0.413310i 0.864372π0.864372\pi
354354 −15.2228 −0.809084
355355 −6.63879 −0.352351
356356 20.1642i 1.06870i
357357 6.02177i 0.318706i
358358 13.5308i 0.715125i
359359 21.4263i 1.13083i 0.824805 + 0.565417i 0.191285π0.191285\pi
−0.824805 + 0.565417i 0.808715π0.808715\pi
360360 −9.16852 −0.483224
361361 −15.2325 −0.801711
362362 − 10.7356i − 0.564249i
363363 −2.48188 −0.130265
364364 0 0
365365 15.2489 0.798164
366366 10.6799i 0.558249i
367367 34.3032 1.79061 0.895306 0.445452i 0.146957π-0.146957\pi
0.895306 + 0.445452i 0.146957π0.146957\pi
368368 −1.51573 −0.0790129
369369 − 3.42998i − 0.178557i
370370 17.3937i 0.904257i
371371 − 11.3123i − 0.587305i
372372 − 7.22282i − 0.374486i
373373 −12.5961 −0.652202 −0.326101 0.945335i 0.605735π-0.605735\pi
−0.326101 + 0.945335i 0.605735π0.605735\pi
374374 30.4034 1.57212
375375 6.34481i 0.327645i
376376 −6.95539 −0.358697
377377 0 0
378378 −14.5429 −0.748005
379379 16.5386i 0.849529i 0.905304 + 0.424765i 0.139643π0.139643\pi
−0.905304 + 0.424765i 0.860357π0.860357\pi
380380 25.7778 1.32237
381381 −10.5278 −0.539356
382382 − 41.4131i − 2.11888i
383383 7.53617i 0.385080i 0.981289 + 0.192540i 0.0616726π0.0616726\pi
−0.981289 + 0.192540i 0.938327π0.938327\pi
384384 9.02475i 0.460543i
385385 − 7.56465i − 0.385530i
386386 −13.6039 −0.692419
387387 16.5211 0.839815
388388 − 36.3642i − 1.84611i
389389 −35.5555 −1.80274 −0.901369 0.433052i 0.857437π-0.857437\pi
−0.901369 + 0.433052i 0.857437π0.857437\pi
390390 0 0
391391 10.0097 0.506212
392392 6.60388i 0.333546i
393393 −1.80731 −0.0911670
394394 −25.6504 −1.29225
395395 22.7995i 1.14717i
396396 20.9705i 1.05381i
397397 − 1.35152i − 0.0678308i −0.999425 0.0339154i 0.989202π-0.989202\pi
0.999425 0.0339154i 0.0107977π-0.0107977\pi
398398 − 31.2446i − 1.56615i
399399 6.65279 0.333056
400400 −2.33513 −0.116756
401401 − 0.579121i − 0.0289199i −0.999895 0.0144600i 0.995397π-0.995397\pi
0.999895 0.0144600i 0.00460291π-0.00460291\pi
402402 −0.719169 −0.0358689
403403 0 0
404404 39.8310 1.98167
405405 − 9.13706i − 0.454024i
406406 −10.4450 −0.518379
407407 13.6866 0.678422
408408 − 6.92692i − 0.342934i
409409 − 15.1575i − 0.749490i −0.927128 0.374745i 0.877730π-0.877730\pi
0.927128 0.374745i 0.122270π-0.122270\pi
410410 − 4.13706i − 0.204315i
411411 0.439665i 0.0216871i
412412 27.9541 1.37720
413413 25.0127 1.23079
414414 11.4330i 0.561899i
415415 11.1608 0.547860
416416 0 0
417417 6.29291 0.308165
418418 − 33.5894i − 1.64291i
419419 −35.7235 −1.74521 −0.872603 0.488430i 0.837570π-0.837570\pi
−0.872603 + 0.488430i 0.837570π0.837570\pi
420420 −5.00969 −0.244448
421421 − 35.0465i − 1.70806i −0.520221 0.854032i 0.674151π-0.674151\pi
0.520221 0.854032i 0.325849π-0.325849\pi
422422 29.7603i 1.44871i
423423 − 7.94438i − 0.386269i
424424 13.0127i 0.631951i
425425 15.4209 0.748022
426426 5.72886 0.277564
427427 − 17.5483i − 0.849220i
428428 21.0368 1.01685
429429 0 0
430430 19.9269 0.960961
431431 − 34.2814i − 1.65128i −0.564199 0.825639i 0.690815π-0.690815\pi
0.564199 0.825639i 0.309185π-0.309185\pi
432432 −2.53319 −0.121878
433433 −13.7385 −0.660232 −0.330116 0.943940i 0.607088π-0.607088\pi
−0.330116 + 0.943940i 0.607088π0.607088\pi
434434 19.6528i 0.943364i
435435 1.81940i 0.0872334i
436436 − 0.371961i − 0.0178137i
437437 − 11.0586i − 0.529005i
438438 −13.1588 −0.628753
439439 −10.2403 −0.488742 −0.244371 0.969682i 0.578581π-0.578581\pi
−0.244371 + 0.969682i 0.578581π0.578581\pi
440440 8.70171i 0.414838i
441441 −7.54288 −0.359185
442442 0 0
443443 12.1763 0.578513 0.289257 0.957252i 0.406592π-0.406592\pi
0.289257 + 0.957252i 0.406592π0.406592\pi
444444 − 9.06398i − 0.430158i
445445 −9.55688 −0.453039
446446 −16.4819 −0.780440
447447 − 4.66487i − 0.220641i
448448 − 26.7114i − 1.26199i
449449 12.9051i 0.609032i 0.952507 + 0.304516i 0.0984947π0.0984947\pi
−0.952507 + 0.304516i 0.901505π0.901505\pi
450450 17.6136i 0.830311i
451451 −3.25534 −0.153288
452452 −22.2814 −1.04803
453453 7.84117i 0.368410i
454454 −19.4916 −0.914785
455455 0 0
456456 −7.65279 −0.358375
457457 4.65710i 0.217850i 0.994050 + 0.108925i 0.0347409π0.0347409\pi
−0.994050 + 0.108925i 0.965259π0.965259\pi
458458 30.7536 1.43702
459459 16.7289 0.780836
460460 8.32736i 0.388265i
461461 − 31.5405i − 1.46899i −0.678616 0.734493i 0.737420π-0.737420\pi
0.678616 0.734493i 0.262580π-0.262580\pi
462462 6.52781i 0.303701i
463463 − 17.6504i − 0.820284i −0.912022 0.410142i 0.865479π-0.865479\pi
0.912022 0.410142i 0.134521π-0.134521\pi
464464 −1.81940 −0.0844633
465465 3.42327 0.158750
466466 − 11.4330i − 0.529622i
467467 32.1726 1.48877 0.744385 0.667751i 0.232743π-0.232743\pi
0.744385 + 0.667751i 0.232743π0.232743\pi
468468 0 0
469469 1.18167 0.0545644
470470 − 9.58211i − 0.441990i
471471 5.23490 0.241211
472472 −28.7724 −1.32436
473473 − 15.6799i − 0.720964i
474474 − 19.6746i − 0.903683i
475475 − 17.0368i − 0.781704i
476476 33.0834i 1.51637i
477477 −14.8629 −0.680527
478478 −24.5459 −1.12270
479479 34.8998i 1.59461i 0.603576 + 0.797306i 0.293742π0.293742\pi
−0.603576 + 0.797306i 0.706258π0.706258\pi
480480 −5.22521 −0.238497
481481 0 0
482482 −26.7724 −1.21945
483483 2.14914i 0.0977895i
484484 −13.6353 −0.619788
485485 17.2349 0.782596
486486 29.1782i 1.32355i
487487 41.8351i 1.89573i 0.318676 + 0.947864i 0.396762π0.396762\pi
−0.318676 + 0.947864i 0.603238π0.603238\pi
488488 20.1860i 0.913776i
489489 4.83041i 0.218439i
490490 −9.09783 −0.410998
491491 −21.8455 −0.985873 −0.492936 0.870065i 0.664076π-0.664076\pi
−0.492936 + 0.870065i 0.664076π0.664076\pi
492492 2.15585i 0.0971932i
493493 12.0151 0.541131
494494 0 0
495495 −9.93900 −0.446725
496496 3.42327i 0.153709i
497497 −9.41311 −0.422236
498498 −9.63102 −0.431576
499499 23.5472i 1.05412i 0.849829 + 0.527058i 0.176705π0.176705\pi
−0.849829 + 0.527058i 0.823295π0.823295\pi
500500 34.8582i 1.55890i
501501 − 13.2379i − 0.591425i
502502 50.2150i 2.24121i
503503 −7.08682 −0.315986 −0.157993 0.987440i 0.550502π-0.550502\pi
−0.157993 + 0.987440i 0.550502π0.550502\pi
504504 −13.0000 −0.579066
505505 18.8780i 0.840060i
506506 10.8509 0.482379
507507 0 0
508508 −57.8394 −2.56621
509509 7.61894i 0.337704i 0.985641 + 0.168852i 0.0540059π0.0540059\pi
−0.985641 + 0.168852i 0.945994π0.945994\pi
510510 9.54288 0.422566
511511 21.6213 0.956471
512512 − 9.00538i − 0.397985i
513513 − 18.4819i − 0.815995i
514514 − 41.9288i − 1.84940i
515515 13.2489i 0.583816i
516516 −10.3840 −0.457132
517517 −7.53989 −0.331604
518518 24.6625i 1.08361i
519519 −10.4638 −0.459311
520520 0 0
521521 −39.5133 −1.73111 −0.865555 0.500813i 0.833034π-0.833034\pi
−0.865555 + 0.500813i 0.833034π0.833034\pi
522522 13.7235i 0.600660i
523523 −15.8194 −0.691734 −0.345867 0.938284i 0.612415π-0.612415\pi
−0.345867 + 0.938284i 0.612415π0.612415\pi
524524 −9.92931 −0.433764
525525 3.31096i 0.144502i
526526 − 32.3545i − 1.41072i
527527 − 22.6069i − 0.984770i
528528 1.13706i 0.0494843i
529529 −19.4276 −0.844678
530530 −17.9269 −0.778696
531531 − 32.8635i − 1.42616i
532532 36.5502 1.58465
533533 0 0
534534 8.24698 0.356882
535535 9.97046i 0.431061i
536536 −1.35929 −0.0587123
537537 3.34183 0.144211
538538 − 1.46681i − 0.0632388i
539539 7.15883i 0.308353i
540540 13.9172i 0.598902i
541541 − 34.4819i − 1.48249i −0.671234 0.741246i 0.734235π-0.734235\pi
0.671234 0.741246i 0.265765π-0.265765\pi
542542 4.48427 0.192616
543543 −2.65146 −0.113785
544544 34.5066i 1.47946i
545545 0.176292 0.00755152
546546 0 0
547547 36.8582 1.57594 0.787970 0.615713i 0.211132π-0.211132\pi
0.787970 + 0.615713i 0.211132π0.211132\pi
548548 2.41550i 0.103185i
549549 −23.0562 −0.984015
550550 16.7168 0.712806
551551 − 13.2741i − 0.565497i
552552 − 2.47219i − 0.105223i
553553 32.3274i 1.37470i
554554 26.4795i 1.12501i
555555 4.29590 0.182351
556556 34.5730 1.46622
557557 − 1.27652i − 0.0540879i −0.999634 0.0270439i 0.991391π-0.991391\pi
0.999634 0.0270439i 0.00860940π-0.00860940\pi
558558 25.8213 1.09310
559559 0 0
560560 2.37435 0.100335
561561 − 7.50902i − 0.317031i
562562 14.5429 0.613454
563563 9.12737 0.384673 0.192336 0.981329i 0.438393π-0.438393\pi
0.192336 + 0.981329i 0.438393π0.438393\pi
564564 4.99330i 0.210256i
565565 − 10.5603i − 0.444277i
566566 14.7875i 0.621563i
567567 − 12.9554i − 0.544075i
568568 10.8280 0.454334
569569 5.72156 0.239860 0.119930 0.992782i 0.461733π-0.461733\pi
0.119930 + 0.992782i 0.461733π0.461733\pi
570570 − 10.5429i − 0.441593i
571571 −7.60148 −0.318112 −0.159056 0.987270i 0.550845π-0.550845\pi
−0.159056 + 0.987270i 0.550845π0.550845\pi
572572 0 0
573573 −10.2282 −0.427289
574574 − 5.86592i − 0.244839i
575575 5.50365 0.229518
576576 −35.0954 −1.46231
577577 45.1564i 1.87989i 0.341330 + 0.939944i 0.389123π0.389123\pi
−0.341330 + 0.939944i 0.610877π0.610877\pi
578578 − 24.8213i − 1.03243i
579579 3.35988i 0.139632i
580580 9.99569i 0.415048i
581581 15.8248 0.656522
582582 −14.8726 −0.616490
583583 14.1062i 0.584219i
584584 −24.8713 −1.02918
585585 0 0
586586 54.6872 2.25911
587587 − 32.4040i − 1.33746i −0.743507 0.668728i 0.766839π-0.766839\pi
0.743507 0.668728i 0.233161π-0.233161\pi
588588 4.74094 0.195513
589589 −24.9758 −1.02911
590590 − 39.6383i − 1.63188i
591591 6.33513i 0.260592i
592592 4.29590i 0.176560i
593593 − 36.6848i − 1.50647i −0.657754 0.753233i 0.728493π-0.728493\pi
0.657754 0.753233i 0.271507π-0.271507\pi
594594 18.1347 0.744075
595595 −15.6799 −0.642815
596596 − 25.6286i − 1.04979i
597597 −7.71678 −0.315827
598598 0 0
599599 −9.99223 −0.408271 −0.204136 0.978943i 0.565438π-0.565438\pi
−0.204136 + 0.978943i 0.565438π0.565438\pi
600600 − 3.80864i − 0.155487i
601601 −1.81163 −0.0738978 −0.0369489 0.999317i 0.511764π-0.511764\pi
−0.0369489 + 0.999317i 0.511764π0.511764\pi
602602 28.2543 1.15156
603603 − 1.55257i − 0.0632253i
604604 43.0790i 1.75286i
605605 − 6.46250i − 0.262738i
606606 − 16.2905i − 0.661757i
607607 11.2161 0.455248 0.227624 0.973749i 0.426904π-0.426904\pi
0.227624 + 0.973749i 0.426904π0.426904\pi
608608 38.1226 1.54608
609609 2.57971i 0.104535i
610610 −27.8092 −1.12596
611611 0 0
612612 43.4674 1.75707
613613 − 20.8944i − 0.843917i −0.906615 0.421958i 0.861343π-0.861343\pi
0.906615 0.421958i 0.138657π-0.138657\pi
614614 31.6233 1.27621
615615 −1.02177 −0.0412018
616616 12.3381i 0.497117i
617617 12.0992i 0.487094i 0.969889 + 0.243547i 0.0783110π0.0783110\pi
−0.969889 + 0.243547i 0.921689π0.921689\pi
618618 − 11.4330i − 0.459901i
619619 10.5526i 0.424143i 0.977254 + 0.212072i 0.0680210π0.0680210\pi
−0.977254 + 0.212072i 0.931979π0.931979\pi
620620 18.8073 0.755320
621621 5.97046 0.239586
622622 − 66.8926i − 2.68215i
623623 −13.5506 −0.542895
624624 0 0
625625 −1.96184 −0.0784735
626626 16.8049i 0.671660i
627627 −8.29590 −0.331306
628628 28.7603 1.14766
629629 − 28.3696i − 1.13117i
630630 − 17.9095i − 0.713530i
631631 13.8514i 0.551417i 0.961241 + 0.275709i 0.0889125π0.0889125\pi
−0.961241 + 0.275709i 0.911087π0.911087\pi
632632 − 37.1866i − 1.47920i
633633 7.35019 0.292144
634634 67.4771 2.67986
635635 − 27.4131i − 1.08786i
636636 9.34183 0.370428
637637 0 0
638638 13.0248 0.515655
639639 12.3676i 0.489257i
640640 −23.4993 −0.928893
641641 −34.9608 −1.38087 −0.690434 0.723396i 0.742580π-0.742580\pi
−0.690434 + 0.723396i 0.742580π0.742580\pi
642642 − 8.60388i − 0.339568i
643643 33.3980i 1.31709i 0.752541 + 0.658545i 0.228828π0.228828\pi
−0.752541 + 0.658545i 0.771172π0.771172\pi
644644 11.8073i 0.465273i
645645 − 4.92154i − 0.193786i
646646 −69.6238 −2.73931
647647 −2.32842 −0.0915397 −0.0457698 0.998952i 0.514574π-0.514574\pi
−0.0457698 + 0.998952i 0.514574π0.514574\pi
648648 14.9028i 0.585436i
649649 −31.1903 −1.22433
650650 0 0
651651 4.85384 0.190237
652652 26.5381i 1.03931i
653653 14.5714 0.570221 0.285111 0.958495i 0.407970π-0.407970\pi
0.285111 + 0.958495i 0.407970π0.407970\pi
654654 −0.152129 −0.00594871
655655 − 4.70602i − 0.183879i
656656 − 1.02177i − 0.0398934i
657657 − 28.4077i − 1.10829i
658658 − 13.5864i − 0.529654i
659659 11.1395 0.433932 0.216966 0.976179i 0.430384π-0.430384\pi
0.216966 + 0.976179i 0.430384π0.430384\pi
660660 6.24698 0.243163
661661 13.8498i 0.538694i 0.963043 + 0.269347i 0.0868079π0.0868079\pi
−0.963043 + 0.269347i 0.913192π0.913192\pi
662662 −35.3153 −1.37257
663663 0 0
664664 −18.2034 −0.706430
665665 17.3230i 0.671759i
666666 32.4034 1.25561
667667 4.28813 0.166037
668668 − 72.7284i − 2.81395i
669669 4.07069i 0.157382i
670670 − 1.87263i − 0.0723458i
671671 21.8823i 0.844757i
672672 −7.40880 −0.285801
673673 6.52973 0.251703 0.125851 0.992049i 0.459834π-0.459834\pi
0.125851 + 0.992049i 0.459834π0.459834\pi
674674 4.39075i 0.169125i
675675 9.19806 0.354034
676676 0 0
677677 −11.3104 −0.434693 −0.217346 0.976095i 0.569740π-0.569740\pi
−0.217346 + 0.976095i 0.569740π0.569740\pi
678678 9.11290i 0.349979i
679679 24.4373 0.937816
680680 18.0368 0.691681
681681 4.81402i 0.184474i
682682 − 24.5066i − 0.938407i
683683 − 14.1793i − 0.542555i −0.962501 0.271277i 0.912554π-0.912554\pi
0.962501 0.271277i 0.0874461π-0.0874461\pi
684684 − 48.0224i − 1.83618i
685685 −1.14483 −0.0437418
686686 −45.1269 −1.72295
687687 − 7.59551i − 0.289787i
688688 4.92154 0.187632
689689 0 0
690690 3.40581 0.129657
691691 30.7952i 1.17151i 0.810490 + 0.585753i 0.199201π0.199201\pi
−0.810490 + 0.585753i 0.800799π0.800799\pi
692692 −57.4878 −2.18536
693693 −14.0925 −0.535328
694694 38.4795i 1.46066i
695695 16.3860i 0.621555i
696696 − 2.96748i − 0.112482i
697697 6.74764i 0.255585i
698698 23.5187 0.890196
699699 −2.82371 −0.106802
700700 18.1903i 0.687528i
701701 −6.73184 −0.254258 −0.127129 0.991886i 0.540576π-0.540576\pi
−0.127129 + 0.991886i 0.540576π0.540576\pi
702702 0 0
703703 −31.3424 −1.18210
704704 33.3086i 1.25536i
705705 −2.36658 −0.0891307
706706 34.8974 1.31338
707707 26.7670i 1.00668i
708708 20.6558i 0.776292i
709709 47.6252i 1.78860i 0.447467 + 0.894300i 0.352326π0.352326\pi
−0.447467 + 0.894300i 0.647674π0.647674\pi
710710 14.9172i 0.559834i
711711 42.4741 1.59290
712712 15.5875 0.584166
713713 − 8.06829i − 0.302160i
714714 13.5308 0.506377
715715 0 0
716716 18.3599 0.686141
717717 6.06233i 0.226402i
718718 48.1444 1.79673
719719 5.99330 0.223512 0.111756 0.993736i 0.464352π-0.464352\pi
0.111756 + 0.993736i 0.464352π0.464352\pi
720720 − 3.11960i − 0.116261i
721721 18.7855i 0.699610i
722722 34.2271i 1.27380i
723723 6.61224i 0.245912i
724724 −14.5670 −0.541380
725725 6.60627 0.245351
726726 5.57673i 0.206972i
727727 24.1226 0.894657 0.447329 0.894370i 0.352375π-0.352375\pi
0.447329 + 0.894370i 0.352375π0.352375\pi
728728 0 0
729729 −11.7627 −0.435656
730730 − 34.2640i − 1.26817i
731731 −32.5013 −1.20210
732732 14.4916 0.535624
733733 36.0646i 1.33208i 0.745918 + 0.666038i 0.232011π0.232011\pi
−0.745918 + 0.666038i 0.767989π0.767989\pi
734734 − 77.0786i − 2.84502i
735735 2.24698i 0.0828811i
736736 12.3153i 0.453947i
737737 −1.47352 −0.0542777
738738 −7.70709 −0.283702
739739 − 27.5254i − 1.01254i −0.862375 0.506269i 0.831024π-0.831024\pi
0.862375 0.506269i 0.168976π-0.168976\pi
740740 23.6015 0.867608
741741 0 0
742742 −25.4185 −0.933142
743743 − 10.4692i − 0.384078i −0.981387 0.192039i 0.938490π-0.938490\pi
0.981387 0.192039i 0.0615100π-0.0615100\pi
744744 −5.58343 −0.204699
745745 12.1468 0.445023
746746 28.3032i 1.03625i
747747 − 20.7918i − 0.760731i
748748 − 41.2543i − 1.50841i
749749 14.1371i 0.516557i
750750 14.2567 0.520580
751751 −4.06770 −0.148433 −0.0742163 0.997242i 0.523646π-0.523646\pi
−0.0742163 + 0.997242i 0.523646π0.523646\pi
752752 − 2.36658i − 0.0863005i
753753 12.4021 0.451957
754754 0 0
755755 −20.4174 −0.743066
756756 19.7332i 0.717688i
757757 20.4336 0.742670 0.371335 0.928499i 0.378900π-0.378900\pi
0.371335 + 0.928499i 0.378900π0.378900\pi
758758 37.1618 1.34978
759759 − 2.67994i − 0.0972757i
760760 − 19.9269i − 0.722825i
761761 27.0237i 0.979608i 0.871833 + 0.489804i 0.162932π0.162932\pi
−0.871833 + 0.489804i 0.837068π0.837068\pi
762762 23.6558i 0.856958i
763763 0.249964 0.00904929
764764 −56.1933 −2.03300
765765 20.6015i 0.744848i
766766 16.9336 0.611837
767767 0 0
768768 5.80864 0.209601
769769 − 37.9407i − 1.36818i −0.729400 0.684088i 0.760201π-0.760201\pi
0.729400 0.684088i 0.239799π-0.239799\pi
770770 −16.9976 −0.612551
771771 −10.3556 −0.372947
772772 18.4590i 0.664355i
773773 − 16.3375i − 0.587620i −0.955864 0.293810i 0.905077π-0.905077\pi
0.955864 0.293810i 0.0949232π-0.0949232\pi
774774 − 37.1226i − 1.33434i
775775 − 12.4300i − 0.446498i
776776 −28.1105 −1.00911
777777 6.09113 0.218518
778778 79.8926i 2.86429i
779779 7.45473 0.267093
780780 0 0
781781 11.7380 0.420017
782782 − 22.4916i − 0.804297i
783783 7.16660 0.256114
784784 −2.24698 −0.0802493
785785 13.6310i 0.486512i
786786 4.06100i 0.144851i
787787 18.6907i 0.666251i 0.942882 + 0.333126i 0.108103π0.108103\pi
−0.942882 + 0.333126i 0.891897π0.891897\pi
788788 34.8049i 1.23987i
789789 −7.99090 −0.284484
790790 51.2301 1.82269
791791 − 14.9734i − 0.532394i
792792 16.2107 0.576023
793793 0 0
794794 −3.03684 −0.107773
795795 4.42758i 0.157030i
796796 −42.3957 −1.50267
797797 −29.2519 −1.03615 −0.518077 0.855334i 0.673352π-0.673352\pi
−0.518077 + 0.855334i 0.673352π0.673352\pi
798798 − 14.9487i − 0.529178i
799799 15.6286i 0.552901i
800800 18.9729i 0.670792i
801801 17.8039i 0.629068i
802802 −1.30127 −0.0459496
803803 −26.9614 −0.951446
804804 0.975837i 0.0344151i
805805 −5.59611 −0.197237
806806 0 0
807807 −0.362273 −0.0127526
808808 − 30.7904i − 1.08320i
809809 −6.65087 −0.233832 −0.116916 0.993142i 0.537301π-0.537301\pi
−0.116916 + 0.993142i 0.537301π0.537301\pi
810810 −20.5308 −0.721379
811811 3.89200i 0.136667i 0.997663 + 0.0683333i 0.0217681π0.0217681\pi
−0.997663 + 0.0683333i 0.978232π0.978232\pi
812812 14.1728i 0.497369i
813813 − 1.10752i − 0.0388425i
814814 − 30.7536i − 1.07791i
815815 −12.5778 −0.440581
816816 2.35690 0.0825079
817817 35.9071i 1.25623i
818818 −34.0586 −1.19083
819819 0 0
820820 −5.61356 −0.196034
821821 45.9982i 1.60535i 0.596418 + 0.802674i 0.296590π0.296590\pi
−0.596418 + 0.802674i 0.703410π0.703410\pi
822822 0.987918 0.0344576
823823 −7.95300 −0.277224 −0.138612 0.990347i 0.544264π-0.544264\pi
−0.138612 + 0.990347i 0.544264π0.544264\pi
824824 − 21.6093i − 0.752794i
825825 − 4.12870i − 0.143743i
826826 − 56.2030i − 1.95555i
827827 − 27.9648i − 0.972432i −0.873839 0.486216i 0.838377π-0.838377\pi
0.873839 0.486216i 0.161623π-0.161623\pi
828828 15.5133 0.539126
829829 −27.6310 −0.959665 −0.479833 0.877360i 0.659303π-0.659303\pi
−0.479833 + 0.877360i 0.659303π0.659303\pi
830830 − 25.0780i − 0.870470i
831831 6.53989 0.226866
832832 0 0
833833 14.8388 0.514133
834834 − 14.1400i − 0.489630i
835835 34.4698 1.19288
836836 −45.5773 −1.57632
837837 − 13.4843i − 0.466085i
838838 80.2699i 2.77288i
839839 − 28.6848i − 0.990311i −0.868804 0.495155i 0.835111π-0.835111\pi
0.868804 0.495155i 0.164889π-0.164889\pi
840840 3.87263i 0.133618i
841841 −23.8528 −0.822509
842842 −78.7488 −2.71386
843843 − 3.59179i − 0.123708i
844844 40.3817 1.38999
845845 0 0
846846 −17.8509 −0.613725
847847 − 9.16315i − 0.314849i
848848 −4.42758 −0.152044
849849 3.65220 0.125343
850850 − 34.6504i − 1.18850i
851851 − 10.1250i − 0.347080i
852852 − 7.77346i − 0.266314i
853853 43.2078i 1.47941i 0.672934 + 0.739703i 0.265034π0.265034\pi
−0.672934 + 0.739703i 0.734966π0.734966\pi
854854 −39.4306 −1.34929
855855 22.7603 0.778386
856856 − 16.2620i − 0.555825i
857857 −35.1685 −1.20133 −0.600667 0.799499i 0.705098π-0.705098\pi
−0.600667 + 0.799499i 0.705098π0.705098\pi
858858 0 0
859859 27.3793 0.934168 0.467084 0.884213i 0.345305π-0.345305\pi
0.467084 + 0.884213i 0.345305π0.345305\pi
860860 − 27.0388i − 0.922014i
861861 −1.44876 −0.0493737
862862 −77.0297 −2.62364
863863 − 41.3913i − 1.40898i −0.709715 0.704489i 0.751176π-0.751176\pi
0.709715 0.704489i 0.248824π-0.248824\pi
864864 20.5821i 0.700217i
865865 − 27.2465i − 0.926409i
866866 30.8702i 1.04901i
867867 −6.13036 −0.208198
868868 26.6668 0.905130
869869 − 40.3116i − 1.36748i
870870 4.08815 0.138601
871871 0 0
872872 −0.287536 −0.00973721
873873 − 32.1075i − 1.08668i
874874 −24.8485 −0.840512
875875 −23.4252 −0.791916
876876 17.8552i 0.603270i
877877 − 24.7472i − 0.835653i −0.908527 0.417826i 0.862792π-0.862792\pi
0.908527 0.417826i 0.137208π-0.137208\pi
878878 23.0097i 0.776539i
879879 − 13.5066i − 0.455567i
880880 −2.96077 −0.0998076
881881 28.5875 0.963137 0.481568 0.876409i 0.340067π-0.340067\pi
0.481568 + 0.876409i 0.340067π0.340067\pi
882882 16.9487i 0.570692i
883883 −9.61702 −0.323639 −0.161819 0.986820i 0.551736π-0.551736\pi
−0.161819 + 0.986820i 0.551736π0.551736\pi
884884 0 0
885885 −9.78986 −0.329082
886886 − 27.3599i − 0.919173i
887887 15.9661 0.536091 0.268045 0.963406i 0.413622π-0.413622\pi
0.268045 + 0.963406i 0.413622π0.413622\pi
888888 −7.00670 −0.235130
889889 − 38.8689i − 1.30362i
890890 21.4741i 0.719814i
891891 16.1551i 0.541217i
892892 22.3642i 0.748809i
893893 17.2664 0.577797
894894 −10.4819 −0.350566
895895 8.70171i 0.290866i
896896 −33.3196 −1.11313
897897 0 0
898898 28.9976 0.967663
899899 − 9.68473i − 0.323004i
900900 23.8998 0.796659
901901 29.2392 0.974099
902902 7.31468i 0.243552i
903903 − 6.97823i − 0.232221i
904904 17.2241i 0.572867i
905905 − 6.90408i − 0.229500i
906906 17.6189 0.585350
907907 28.8364 0.957496 0.478748 0.877952i 0.341091π-0.341091\pi
0.478748 + 0.877952i 0.341091π0.341091\pi
908908 26.4480i 0.877709i
909909 35.1685 1.16647
910910 0 0
911911 38.5633 1.27766 0.638830 0.769348i 0.279419π-0.279419\pi
0.638830 + 0.769348i 0.279419π0.279419\pi
912912 − 2.60388i − 0.0862229i
913913 −19.7332 −0.653073
914914 10.4644 0.346132
915915 6.86831i 0.227059i
916916 − 41.7294i − 1.37878i
917917 − 6.67264i − 0.220350i
918918 − 37.5894i − 1.24064i
919919 8.87502 0.292760 0.146380 0.989228i 0.453238π-0.453238\pi
0.146380 + 0.989228i 0.453238π0.453238\pi
920920 6.43727 0.212231
921921 − 7.81030i − 0.257358i
922922 −70.8708 −2.33401
923923 0 0
924924 8.85756 0.291392
925925 − 15.5985i − 0.512875i
926926 −39.6601 −1.30331
927927 24.6819 0.810659
928928 14.7826i 0.485261i
929929 24.2295i 0.794945i 0.917614 + 0.397472i 0.130113π0.130113\pi
−0.917614 + 0.397472i 0.869887π0.869887\pi
930930 − 7.69202i − 0.252231i
931931 − 16.3937i − 0.537283i
932932 −15.5133 −0.508156
933933 −16.5211 −0.540877
934934 − 72.2911i − 2.36544i
935935 19.5526 0.639437
936936 0 0
937937 17.2644 0.564005 0.282002 0.959414i 0.409001π-0.409001\pi
0.282002 + 0.959414i 0.409001π0.409001\pi
938938 − 2.65519i − 0.0866949i
939939 4.15047 0.135446
940940 −13.0019 −0.424076
941941 4.34050i 0.141496i 0.997494 + 0.0707482i 0.0225387π0.0225387\pi
−0.997494 + 0.0707482i 0.977461π0.977461\pi
942942 − 11.7627i − 0.383250i
943943 2.40821i 0.0784220i
944944 − 9.78986i − 0.318633i
945945 −9.35258 −0.304240
946946 −35.2325 −1.14551
947947 45.0146i 1.46278i 0.681961 + 0.731389i 0.261128π0.261128\pi
−0.681961 + 0.731389i 0.738872π0.738872\pi
948948 −26.6963 −0.867057
949949 0 0
950950 −38.2814 −1.24201
951951 − 16.6655i − 0.540415i
952952 25.5743 0.828869
953953 46.8859 1.51878 0.759391 0.650634i 0.225497π-0.225497\pi
0.759391 + 0.650634i 0.225497π0.225497\pi
954954 33.3967i 1.08126i
955955 − 26.6329i − 0.861822i
956956 33.3062i 1.07720i
957957 − 3.21685i − 0.103986i
958958 78.4191 2.53361
959959 −1.62325 −0.0524176
960960 10.4547i 0.337425i
961961 12.7778 0.412186
962962 0 0
963963 18.5743 0.598550
964964 36.3274i 1.17003i
965965 −8.74871 −0.281631
966966 4.82908 0.155373
967967 6.29457i 0.202420i 0.994865 + 0.101210i 0.0322714π0.0322714\pi
−0.994865 + 0.101210i 0.967729π0.967729\pi
968968 10.5405i 0.338784i
969969 17.1957i 0.552404i
970970 − 38.7265i − 1.24343i
971971 −41.8068 −1.34165 −0.670823 0.741618i 0.734059π-0.734059\pi
−0.670823 + 0.741618i 0.734059π0.734059\pi
972972 39.5918 1.26991
973973 23.2336i 0.744834i
974974 94.0025 3.01203
975975 0 0
976976 −6.86831 −0.219849
977977 23.7530i 0.759926i 0.925002 + 0.379963i 0.124063π0.124063\pi
−0.925002 + 0.379963i 0.875937π0.875937\pi
978978 10.8538 0.347067
979979 16.8974 0.540043
980980 12.3448i 0.394341i
981981 − 0.328421i − 0.0104857i
982982 49.0863i 1.56641i
983983 55.7251i 1.77736i 0.458532 + 0.888678i 0.348375π0.348375\pi
−0.458532 + 0.888678i 0.651625π0.651625\pi
984984 1.66653 0.0531270
985985 −16.4959 −0.525602
986986 − 26.9976i − 0.859779i
987987 −3.35557 −0.106809
988988 0 0
989989 −11.5996 −0.368845
990990 22.3327i 0.709781i
991991 −35.5512 −1.12932 −0.564661 0.825323i 0.690993π-0.690993\pi
−0.564661 + 0.825323i 0.690993π0.690993\pi
992992 27.8140 0.883096
993993 8.72215i 0.276789i
994994 21.1511i 0.670871i
995995 − 20.0935i − 0.637007i
996996 13.0683i 0.414085i
997997 6.61058 0.209359 0.104680 0.994506i 0.466618π-0.466618\pi
0.104680 + 0.994506i 0.466618π0.466618\pi
998998 52.9101 1.67484
999999 − 16.9215i − 0.535374i
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.2.b.b.168.1 6
3.2 odd 2 1521.2.b.l.1351.6 6
4.3 odd 2 2704.2.f.o.337.3 6
13.2 odd 12 169.2.c.c.22.3 6
13.3 even 3 169.2.e.b.147.6 12
13.4 even 6 169.2.e.b.23.6 12
13.5 odd 4 169.2.a.b.1.1 3
13.6 odd 12 169.2.c.c.146.3 6
13.7 odd 12 169.2.c.b.146.1 6
13.8 odd 4 169.2.a.c.1.3 yes 3
13.9 even 3 169.2.e.b.23.1 12
13.10 even 6 169.2.e.b.147.1 12
13.11 odd 12 169.2.c.b.22.1 6
13.12 even 2 inner 169.2.b.b.168.6 6
39.5 even 4 1521.2.a.r.1.3 3
39.8 even 4 1521.2.a.o.1.1 3
39.38 odd 2 1521.2.b.l.1351.1 6
52.31 even 4 2704.2.a.z.1.2 3
52.47 even 4 2704.2.a.ba.1.2 3
52.51 odd 2 2704.2.f.o.337.4 6
65.34 odd 4 4225.2.a.bb.1.1 3
65.44 odd 4 4225.2.a.bg.1.3 3
91.34 even 4 8281.2.a.bj.1.3 3
91.83 even 4 8281.2.a.bf.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
169.2.a.b.1.1 3 13.5 odd 4
169.2.a.c.1.3 yes 3 13.8 odd 4
169.2.b.b.168.1 6 1.1 even 1 trivial
169.2.b.b.168.6 6 13.12 even 2 inner
169.2.c.b.22.1 6 13.11 odd 12
169.2.c.b.146.1 6 13.7 odd 12
169.2.c.c.22.3 6 13.2 odd 12
169.2.c.c.146.3 6 13.6 odd 12
169.2.e.b.23.1 12 13.9 even 3
169.2.e.b.23.6 12 13.4 even 6
169.2.e.b.147.1 12 13.10 even 6
169.2.e.b.147.6 12 13.3 even 3
1521.2.a.o.1.1 3 39.8 even 4
1521.2.a.r.1.3 3 39.5 even 4
1521.2.b.l.1351.1 6 39.38 odd 2
1521.2.b.l.1351.6 6 3.2 odd 2
2704.2.a.z.1.2 3 52.31 even 4
2704.2.a.ba.1.2 3 52.47 even 4
2704.2.f.o.337.3 6 4.3 odd 2
2704.2.f.o.337.4 6 52.51 odd 2
4225.2.a.bb.1.1 3 65.34 odd 4
4225.2.a.bg.1.3 3 65.44 odd 4
8281.2.a.bf.1.1 3 91.83 even 4
8281.2.a.bj.1.3 3 91.34 even 4