Properties

Label 169.3.f.g.80.5
Level $169$
Weight $3$
Character 169.80
Analytic conductor $4.605$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,3,Mod(19,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.19");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 169.f (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.60491646769\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 80.5
Character \(\chi\) \(=\) 169.80
Dual form 169.3.f.g.150.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.60455 - 0.429937i) q^{2} +(-0.677024 - 1.17264i) q^{3} +(-1.07438 - 0.620291i) q^{4} +(1.57408 - 1.57408i) q^{5} +(0.582156 + 2.17264i) q^{6} +(-12.1635 + 3.25921i) q^{7} +(6.15564 + 6.15564i) q^{8} +(3.58328 - 6.20642i) q^{9} +(-3.20245 + 1.84893i) q^{10} +(-1.97950 + 7.38758i) q^{11} +1.67981i q^{12} +20.9182 q^{14} +(-2.91152 - 0.780141i) q^{15} +(-4.74931 - 8.22605i) q^{16} +(12.9801 + 7.49406i) q^{17} +(-8.41790 + 8.41790i) q^{18} +(5.75221 + 21.4675i) q^{19} +(-2.66754 + 0.714766i) q^{20} +(12.0569 + 12.0569i) q^{21} +(6.35239 - 11.0027i) q^{22} +(-21.0979 + 12.1809i) q^{23} +(3.05084 - 11.3859i) q^{24} +20.0445i q^{25} -21.8903 q^{27} +(15.0899 + 4.04332i) q^{28} +(16.0668 + 27.8285i) q^{29} +(4.33627 + 2.50354i) q^{30} +(-1.13095 + 1.13095i) q^{31} +(-4.92867 - 18.3941i) q^{32} +(10.0031 - 2.68033i) q^{33} +(-17.6052 - 17.6052i) q^{34} +(-14.0161 + 24.2767i) q^{35} +(-7.69957 + 4.44535i) q^{36} +(-0.295912 + 1.10436i) q^{37} -36.9188i q^{38} +19.3790 q^{40} +(-25.8863 - 6.93622i) q^{41} +(-14.1622 - 24.5296i) q^{42} +(-2.53837 - 1.46553i) q^{43} +(6.70917 - 6.70917i) q^{44} +(-4.12904 - 15.4098i) q^{45} +(39.0895 - 10.4740i) q^{46} +(-28.5191 - 28.5191i) q^{47} +(-6.43080 + 11.1385i) q^{48} +(94.8941 - 54.7871i) q^{49} +(8.61789 - 32.1624i) q^{50} -20.2946i q^{51} -80.4313 q^{53} +(35.1240 + 9.41145i) q^{54} +(8.51276 + 14.7445i) q^{55} +(-94.9370 - 54.8119i) q^{56} +(21.2793 - 21.2793i) q^{57} +(-13.8154 - 51.5599i) q^{58} +(-16.2551 + 4.35554i) q^{59} +(2.64416 + 2.64416i) q^{60} +(-10.8503 + 18.7932i) q^{61} +(2.30090 - 1.32843i) q^{62} +(-23.3573 + 87.1707i) q^{63} +69.6277i q^{64} -17.2029 q^{66} +(-13.8651 - 3.71513i) q^{67} +(-9.29699 - 16.1029i) q^{68} +(28.5676 + 16.4935i) q^{69} +(32.9270 - 32.9270i) q^{70} +(1.12218 + 4.18802i) q^{71} +(60.2618 - 16.1471i) q^{72} +(-26.0918 - 26.0918i) q^{73} +(0.949610 - 1.64477i) q^{74} +(23.5050 - 13.5706i) q^{75} +(7.13609 - 26.6323i) q^{76} -96.3107i q^{77} +36.3029 q^{79} +(-20.4243 - 5.47267i) q^{80} +(-17.4292 - 30.1883i) q^{81} +(38.5537 + 22.2590i) q^{82} +(-56.7270 + 56.7270i) q^{83} +(-5.47485 - 20.4324i) q^{84} +(32.2280 - 8.63546i) q^{85} +(3.44285 + 3.44285i) q^{86} +(21.7553 - 37.6812i) q^{87} +(-57.6603 + 33.2902i) q^{88} +(25.7887 - 96.2446i) q^{89} +26.5009i q^{90} +30.2227 q^{92} +(2.09188 + 0.560517i) q^{93} +(33.4989 + 58.0217i) q^{94} +(42.8461 + 24.7372i) q^{95} +(-18.2328 + 18.2328i) q^{96} +(41.3528 + 154.331i) q^{97} +(-175.817 + 47.1101i) q^{98} +(38.7573 + 38.7573i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 12 q^{3} - 84 q^{9} + 376 q^{14} - 188 q^{16} + 136 q^{22} + 120 q^{27} - 84 q^{29} - 176 q^{35} - 1048 q^{40} + 368 q^{42} + 368 q^{48} - 88 q^{53} + 704 q^{55} + 8 q^{61} - 1480 q^{66} + 168 q^{68}+ \cdots - 1132 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.60455 0.429937i −0.802274 0.214969i −0.165692 0.986178i \(-0.552986\pi\)
−0.636582 + 0.771209i \(0.719652\pi\)
\(3\) −0.677024 1.17264i −0.225675 0.390880i 0.730847 0.682541i \(-0.239125\pi\)
−0.956522 + 0.291661i \(0.905792\pi\)
\(4\) −1.07438 0.620291i −0.268594 0.155073i
\(5\) 1.57408 1.57408i 0.314816 0.314816i −0.531956 0.846772i \(-0.678543\pi\)
0.846772 + 0.531956i \(0.178543\pi\)
\(6\) 0.582156 + 2.17264i 0.0970260 + 0.362106i
\(7\) −12.1635 + 3.25921i −1.73765 + 0.465602i −0.981922 0.189285i \(-0.939383\pi\)
−0.755727 + 0.654887i \(0.772716\pi\)
\(8\) 6.15564 + 6.15564i 0.769455 + 0.769455i
\(9\) 3.58328 6.20642i 0.398142 0.689602i
\(10\) −3.20245 + 1.84893i −0.320245 + 0.184893i
\(11\) −1.97950 + 7.38758i −0.179954 + 0.671598i 0.815700 + 0.578474i \(0.196352\pi\)
−0.995655 + 0.0931234i \(0.970315\pi\)
\(12\) 1.67981i 0.139984i
\(13\) 0 0
\(14\) 20.9182 1.49416
\(15\) −2.91152 0.780141i −0.194102 0.0520094i
\(16\) −4.74931 8.22605i −0.296832 0.514128i
\(17\) 12.9801 + 7.49406i 0.763535 + 0.440827i 0.830563 0.556924i \(-0.188019\pi\)
−0.0670287 + 0.997751i \(0.521352\pi\)
\(18\) −8.41790 + 8.41790i −0.467661 + 0.467661i
\(19\) 5.75221 + 21.4675i 0.302748 + 1.12987i 0.934867 + 0.354999i \(0.115519\pi\)
−0.632119 + 0.774872i \(0.717814\pi\)
\(20\) −2.66754 + 0.714766i −0.133377 + 0.0357383i
\(21\) 12.0569 + 12.0569i 0.574138 + 0.574138i
\(22\) 6.35239 11.0027i 0.288745 0.500121i
\(23\) −21.0979 + 12.1809i −0.917299 + 0.529603i −0.882772 0.469801i \(-0.844326\pi\)
−0.0345267 + 0.999404i \(0.510992\pi\)
\(24\) 3.05084 11.3859i 0.127118 0.474411i
\(25\) 20.0445i 0.801781i
\(26\) 0 0
\(27\) −21.8903 −0.810752
\(28\) 15.0899 + 4.04332i 0.538924 + 0.144404i
\(29\) 16.0668 + 27.8285i 0.554028 + 0.959605i 0.997978 + 0.0635536i \(0.0202434\pi\)
−0.443950 + 0.896051i \(0.646423\pi\)
\(30\) 4.33627 + 2.50354i 0.144542 + 0.0834515i
\(31\) −1.13095 + 1.13095i −0.0364823 + 0.0364823i −0.725113 0.688630i \(-0.758212\pi\)
0.688630 + 0.725113i \(0.258212\pi\)
\(32\) −4.92867 18.3941i −0.154021 0.574814i
\(33\) 10.0031 2.68033i 0.303125 0.0812222i
\(34\) −17.6052 17.6052i −0.517800 0.517800i
\(35\) −14.0161 + 24.2767i −0.400461 + 0.693620i
\(36\) −7.69957 + 4.44535i −0.213877 + 0.123482i
\(37\) −0.295912 + 1.10436i −0.00799762 + 0.0298475i −0.969809 0.243864i \(-0.921585\pi\)
0.961812 + 0.273712i \(0.0882515\pi\)
\(38\) 36.9188i 0.971547i
\(39\) 0 0
\(40\) 19.3790 0.484474
\(41\) −25.8863 6.93622i −0.631374 0.169176i −0.0710809 0.997471i \(-0.522645\pi\)
−0.560293 + 0.828294i \(0.689312\pi\)
\(42\) −14.1622 24.5296i −0.337194 0.584038i
\(43\) −2.53837 1.46553i −0.0590319 0.0340821i 0.470194 0.882563i \(-0.344184\pi\)
−0.529225 + 0.848481i \(0.677517\pi\)
\(44\) 6.70917 6.70917i 0.152481 0.152481i
\(45\) −4.12904 15.4098i −0.0917564 0.342439i
\(46\) 39.0895 10.4740i 0.849773 0.227696i
\(47\) −28.5191 28.5191i −0.606790 0.606790i 0.335316 0.942106i \(-0.391157\pi\)
−0.942106 + 0.335316i \(0.891157\pi\)
\(48\) −6.43080 + 11.1385i −0.133975 + 0.232052i
\(49\) 94.8941 54.7871i 1.93661 1.11810i
\(50\) 8.61789 32.1624i 0.172358 0.643248i
\(51\) 20.2946i 0.397934i
\(52\) 0 0
\(53\) −80.4313 −1.51757 −0.758786 0.651340i \(-0.774207\pi\)
−0.758786 + 0.651340i \(0.774207\pi\)
\(54\) 35.1240 + 9.41145i 0.650445 + 0.174286i
\(55\) 8.51276 + 14.7445i 0.154778 + 0.268083i
\(56\) −94.9370 54.8119i −1.69530 0.978783i
\(57\) 21.2793 21.2793i 0.373322 0.373322i
\(58\) −13.8154 51.5599i −0.238197 0.888964i
\(59\) −16.2551 + 4.35554i −0.275510 + 0.0738228i −0.393929 0.919141i \(-0.628884\pi\)
0.118418 + 0.992964i \(0.462218\pi\)
\(60\) 2.64416 + 2.64416i 0.0440693 + 0.0440693i
\(61\) −10.8503 + 18.7932i −0.177873 + 0.308086i −0.941152 0.337984i \(-0.890255\pi\)
0.763279 + 0.646069i \(0.223588\pi\)
\(62\) 2.30090 1.32843i 0.0371113 0.0214262i
\(63\) −23.3573 + 87.1707i −0.370751 + 1.38366i
\(64\) 69.6277i 1.08793i
\(65\) 0 0
\(66\) −17.2029 −0.260650
\(67\) −13.8651 3.71513i −0.206941 0.0554498i 0.153859 0.988093i \(-0.450830\pi\)
−0.360800 + 0.932643i \(0.617496\pi\)
\(68\) −9.29699 16.1029i −0.136721 0.236807i
\(69\) 28.5676 + 16.4935i 0.414023 + 0.239036i
\(70\) 32.9270 32.9270i 0.470386 0.470386i
\(71\) 1.12218 + 4.18802i 0.0158053 + 0.0589862i 0.973378 0.229205i \(-0.0736127\pi\)
−0.957573 + 0.288191i \(0.906946\pi\)
\(72\) 60.2618 16.1471i 0.836970 0.224265i
\(73\) −26.0918 26.0918i −0.357422 0.357422i 0.505440 0.862862i \(-0.331330\pi\)
−0.862862 + 0.505440i \(0.831330\pi\)
\(74\) 0.949610 1.64477i 0.0128326 0.0222267i
\(75\) 23.5050 13.5706i 0.313400 0.180942i
\(76\) 7.13609 26.6323i 0.0938959 0.350424i
\(77\) 96.3107i 1.25079i
\(78\) 0 0
\(79\) 36.3029 0.459530 0.229765 0.973246i \(-0.426204\pi\)
0.229765 + 0.973246i \(0.426204\pi\)
\(80\) −20.4243 5.47267i −0.255304 0.0684084i
\(81\) −17.4292 30.1883i −0.215176 0.372695i
\(82\) 38.5537 + 22.2590i 0.470167 + 0.271451i
\(83\) −56.7270 + 56.7270i −0.683457 + 0.683457i −0.960778 0.277320i \(-0.910554\pi\)
0.277320 + 0.960778i \(0.410554\pi\)
\(84\) −5.47485 20.4324i −0.0651768 0.243243i
\(85\) 32.2280 8.63546i 0.379153 0.101594i
\(86\) 3.44285 + 3.44285i 0.0400332 + 0.0400332i
\(87\) 21.7553 37.6812i 0.250060 0.433117i
\(88\) −57.6603 + 33.2902i −0.655231 + 0.378298i
\(89\) 25.7887 96.2446i 0.289760 1.08140i −0.655530 0.755169i \(-0.727555\pi\)
0.945290 0.326231i \(-0.105779\pi\)
\(90\) 26.5009i 0.294455i
\(91\) 0 0
\(92\) 30.2227 0.328508
\(93\) 2.09188 + 0.560517i 0.0224933 + 0.00602707i
\(94\) 33.4989 + 58.0217i 0.356371 + 0.617252i
\(95\) 42.8461 + 24.7372i 0.451012 + 0.260392i
\(96\) −18.2328 + 18.2328i −0.189925 + 0.189925i
\(97\) 41.3528 + 154.331i 0.426318 + 1.59104i 0.761029 + 0.648718i \(0.224695\pi\)
−0.334711 + 0.942321i \(0.608639\pi\)
\(98\) −175.817 + 47.1101i −1.79405 + 0.480715i
\(99\) 38.7573 + 38.7573i 0.391488 + 0.391488i
\(100\) 12.4334 21.5354i 0.124334 0.215354i
\(101\) −129.158 + 74.5696i −1.27879 + 0.738312i −0.976627 0.214942i \(-0.931044\pi\)
−0.302168 + 0.953255i \(0.597710\pi\)
\(102\) −8.72542 + 32.5637i −0.0855433 + 0.319252i
\(103\) 105.545i 1.02471i 0.858774 + 0.512354i \(0.171227\pi\)
−0.858774 + 0.512354i \(0.828773\pi\)
\(104\) 0 0
\(105\) 37.9571 0.361496
\(106\) 129.056 + 34.5804i 1.21751 + 0.326230i
\(107\) 46.2189 + 80.0535i 0.431952 + 0.748164i 0.997041 0.0768664i \(-0.0244915\pi\)
−0.565089 + 0.825030i \(0.691158\pi\)
\(108\) 23.5184 + 13.5784i 0.217763 + 0.125726i
\(109\) −30.2071 + 30.2071i −0.277129 + 0.277129i −0.831962 0.554833i \(-0.812782\pi\)
0.554833 + 0.831962i \(0.312782\pi\)
\(110\) −7.31991 27.3183i −0.0665446 0.248348i
\(111\) 1.49536 0.400679i 0.0134717 0.00360972i
\(112\) 84.5789 + 84.5789i 0.755169 + 0.755169i
\(113\) −55.5647 + 96.2408i −0.491723 + 0.851689i −0.999955 0.00953164i \(-0.996966\pi\)
0.508232 + 0.861220i \(0.330299\pi\)
\(114\) −43.2925 + 24.9949i −0.379758 + 0.219254i
\(115\) −14.0361 + 52.3835i −0.122053 + 0.455508i
\(116\) 39.8644i 0.343659i
\(117\) 0 0
\(118\) 27.9547 0.236904
\(119\) −182.309 48.8494i −1.53201 0.410500i
\(120\) −13.1200 22.7246i −0.109334 0.189371i
\(121\) 54.1312 + 31.2527i 0.447365 + 0.258286i
\(122\) 25.4897 25.4897i 0.208932 0.208932i
\(123\) 9.39198 + 35.0514i 0.0763576 + 0.284970i
\(124\) 1.91658 0.513547i 0.0154563 0.00414151i
\(125\) 70.9038 + 70.9038i 0.567230 + 0.567230i
\(126\) 74.9558 129.827i 0.594887 1.03038i
\(127\) 0.501697 0.289655i 0.00395037 0.00228075i −0.498024 0.867164i \(-0.665941\pi\)
0.501974 + 0.864883i \(0.332607\pi\)
\(128\) 10.2208 38.1447i 0.0798502 0.298005i
\(129\) 3.96880i 0.0307659i
\(130\) 0 0
\(131\) 190.994 1.45797 0.728983 0.684532i \(-0.239993\pi\)
0.728983 + 0.684532i \(0.239993\pi\)
\(132\) −12.4097 3.32517i −0.0940130 0.0251907i
\(133\) −139.935 242.374i −1.05214 1.82236i
\(134\) 20.6499 + 11.9222i 0.154104 + 0.0889717i
\(135\) −34.4571 + 34.4571i −0.255238 + 0.255238i
\(136\) 33.7700 + 126.031i 0.248309 + 0.926702i
\(137\) −100.047 + 26.8075i −0.730270 + 0.195675i −0.604750 0.796416i \(-0.706727\pi\)
−0.125521 + 0.992091i \(0.540060\pi\)
\(138\) −38.7468 38.7468i −0.280774 0.280774i
\(139\) 115.864 200.682i 0.833554 1.44376i −0.0616482 0.998098i \(-0.519636\pi\)
0.895202 0.445660i \(-0.147031\pi\)
\(140\) 30.1172 17.3882i 0.215123 0.124201i
\(141\) −14.1345 + 52.7508i −0.100245 + 0.374119i
\(142\) 7.20235i 0.0507207i
\(143\) 0 0
\(144\) −68.0724 −0.472725
\(145\) 69.0949 + 18.5139i 0.476517 + 0.127682i
\(146\) 30.6477 + 53.0834i 0.209916 + 0.363585i
\(147\) −128.491 74.1845i −0.874090 0.504656i
\(148\) 1.00294 1.00294i 0.00677665 0.00677665i
\(149\) −42.2214 157.572i −0.283365 1.05753i −0.950026 0.312171i \(-0.898944\pi\)
0.666661 0.745361i \(-0.267723\pi\)
\(150\) −43.5495 + 11.6690i −0.290330 + 0.0777936i
\(151\) −67.8221 67.8221i −0.449153 0.449153i 0.445920 0.895073i \(-0.352877\pi\)
−0.895073 + 0.445920i \(0.852877\pi\)
\(152\) −96.7380 + 167.555i −0.636434 + 1.10234i
\(153\) 93.0225 53.7066i 0.607990 0.351023i
\(154\) −41.4076 + 154.535i −0.268880 + 1.00347i
\(155\) 3.56042i 0.0229704i
\(156\) 0 0
\(157\) −124.176 −0.790928 −0.395464 0.918482i \(-0.629416\pi\)
−0.395464 + 0.918482i \(0.629416\pi\)
\(158\) −58.2497 15.6079i −0.368669 0.0987845i
\(159\) 54.4540 + 94.3170i 0.342478 + 0.593189i
\(160\) −36.7119 21.1956i −0.229449 0.132473i
\(161\) 216.925 216.925i 1.34736 1.34736i
\(162\) 14.9869 + 55.9320i 0.0925120 + 0.345259i
\(163\) −5.68411 + 1.52305i −0.0348718 + 0.00934388i −0.276213 0.961097i \(-0.589079\pi\)
0.241341 + 0.970440i \(0.422413\pi\)
\(164\) 23.5092 + 23.5092i 0.143349 + 0.143349i
\(165\) 11.5267 19.9648i 0.0698588 0.120999i
\(166\) 115.410 66.6321i 0.695242 0.401398i
\(167\) 26.8945 100.372i 0.161045 0.601028i −0.837467 0.546488i \(-0.815964\pi\)
0.998512 0.0545395i \(-0.0173691\pi\)
\(168\) 148.436i 0.883547i
\(169\) 0 0
\(170\) −55.4240 −0.326024
\(171\) 153.848 + 41.2235i 0.899698 + 0.241073i
\(172\) 1.81811 + 3.14906i 0.0105704 + 0.0183085i
\(173\) 5.10185 + 2.94555i 0.0294904 + 0.0170263i 0.514673 0.857387i \(-0.327913\pi\)
−0.485182 + 0.874413i \(0.661247\pi\)
\(174\) −51.1079 + 51.1079i −0.293723 + 0.293723i
\(175\) −65.3294 243.813i −0.373311 1.39321i
\(176\) 70.1718 18.8025i 0.398704 0.106832i
\(177\) 16.1126 + 16.1126i 0.0910316 + 0.0910316i
\(178\) −82.7582 + 143.341i −0.464934 + 0.805289i
\(179\) −41.2206 + 23.7987i −0.230283 + 0.132954i −0.610702 0.791860i \(-0.709113\pi\)
0.380420 + 0.924814i \(0.375780\pi\)
\(180\) −5.12241 + 19.1171i −0.0284578 + 0.106206i
\(181\) 201.671i 1.11420i −0.830444 0.557102i \(-0.811913\pi\)
0.830444 0.557102i \(-0.188087\pi\)
\(182\) 0 0
\(183\) 29.3836 0.160566
\(184\) −204.852 54.8899i −1.11333 0.298315i
\(185\) 1.27256 + 2.20414i 0.00687871 + 0.0119143i
\(186\) −3.11553 1.79875i −0.0167502 0.00967072i
\(187\) −81.0569 + 81.0569i −0.433460 + 0.433460i
\(188\) 12.9501 + 48.3304i 0.0688835 + 0.257077i
\(189\) 266.264 71.3451i 1.40880 0.377487i
\(190\) −58.1132 58.1132i −0.305859 0.305859i
\(191\) −82.2122 + 142.396i −0.430430 + 0.745527i −0.996910 0.0785485i \(-0.974971\pi\)
0.566480 + 0.824075i \(0.308305\pi\)
\(192\) 81.6482 47.1396i 0.425251 0.245519i
\(193\) 50.9404 190.112i 0.263940 0.985038i −0.698956 0.715165i \(-0.746352\pi\)
0.962896 0.269873i \(-0.0869818\pi\)
\(194\) 265.410i 1.36809i
\(195\) 0 0
\(196\) −135.936 −0.693551
\(197\) 115.484 + 30.9438i 0.586213 + 0.157075i 0.539722 0.841843i \(-0.318529\pi\)
0.0464911 + 0.998919i \(0.485196\pi\)
\(198\) −45.5247 78.8511i −0.229923 0.398238i
\(199\) −179.903 103.867i −0.904035 0.521945i −0.0255280 0.999674i \(-0.508127\pi\)
−0.878507 + 0.477729i \(0.841460\pi\)
\(200\) −123.387 + 123.387i −0.616935 + 0.616935i
\(201\) 5.03047 + 18.7740i 0.0250272 + 0.0934029i
\(202\) 239.301 64.1204i 1.18466 0.317428i
\(203\) −286.129 286.129i −1.40950 1.40950i
\(204\) −12.5886 + 21.8041i −0.0617087 + 0.106883i
\(205\) −51.6654 + 29.8290i −0.252026 + 0.145507i
\(206\) 45.3777 169.352i 0.220280 0.822097i
\(207\) 174.590i 0.843428i
\(208\) 0 0
\(209\) −169.980 −0.813300
\(210\) −60.9040 16.3192i −0.290019 0.0777103i
\(211\) 109.944 + 190.428i 0.521060 + 0.902503i 0.999700 + 0.0244913i \(0.00779661\pi\)
−0.478640 + 0.878011i \(0.658870\pi\)
\(212\) 86.4135 + 49.8908i 0.407611 + 0.235334i
\(213\) 4.15130 4.15130i 0.0194897 0.0194897i
\(214\) −39.7425 148.321i −0.185712 0.693088i
\(215\) −6.30247 + 1.68874i −0.0293138 + 0.00785461i
\(216\) −134.749 134.749i −0.623837 0.623837i
\(217\) 10.0704 17.4424i 0.0464072 0.0803796i
\(218\) 61.4558 35.4815i 0.281908 0.162759i
\(219\) −12.9315 + 48.2611i −0.0590480 + 0.220370i
\(220\) 21.1216i 0.0960071i
\(221\) 0 0
\(222\) −2.57164 −0.0115839
\(223\) 258.058 + 69.1464i 1.15721 + 0.310074i 0.785851 0.618415i \(-0.212225\pi\)
0.371360 + 0.928489i \(0.378892\pi\)
\(224\) 119.900 + 207.673i 0.535269 + 0.927113i
\(225\) 124.405 + 71.8251i 0.552910 + 0.319223i
\(226\) 130.534 130.534i 0.577582 0.577582i
\(227\) 4.37307 + 16.3205i 0.0192646 + 0.0718966i 0.974889 0.222691i \(-0.0714842\pi\)
−0.955624 + 0.294588i \(0.904818\pi\)
\(228\) −36.0614 + 9.66262i −0.158164 + 0.0423799i
\(229\) 305.425 + 305.425i 1.33373 + 1.33373i 0.902001 + 0.431733i \(0.142098\pi\)
0.431733 + 0.902001i \(0.357902\pi\)
\(230\) 45.0432 78.0171i 0.195840 0.339205i
\(231\) −112.938 + 65.2047i −0.488908 + 0.282271i
\(232\) −72.4010 + 270.204i −0.312073 + 1.16467i
\(233\) 247.342i 1.06156i 0.847511 + 0.530778i \(0.178100\pi\)
−0.847511 + 0.530778i \(0.821900\pi\)
\(234\) 0 0
\(235\) −89.7829 −0.382055
\(236\) 20.1658 + 5.40341i 0.0854483 + 0.0228958i
\(237\) −24.5779 42.5702i −0.103704 0.179621i
\(238\) 271.521 + 156.762i 1.14084 + 0.658666i
\(239\) 26.3028 26.3028i 0.110053 0.110053i −0.649936 0.759989i \(-0.725204\pi\)
0.759989 + 0.649936i \(0.225204\pi\)
\(240\) 7.41026 + 27.6555i 0.0308761 + 0.115231i
\(241\) 74.8033 20.0435i 0.310387 0.0831680i −0.100263 0.994961i \(-0.531968\pi\)
0.410650 + 0.911793i \(0.365302\pi\)
\(242\) −73.4194 73.4194i −0.303386 0.303386i
\(243\) −122.106 + 211.494i −0.502495 + 0.870347i
\(244\) 23.3145 13.4606i 0.0955513 0.0551666i
\(245\) 63.1317 235.611i 0.257680 0.961676i
\(246\) 60.2795i 0.245039i
\(247\) 0 0
\(248\) −13.9234 −0.0561429
\(249\) 104.926 + 28.1148i 0.421389 + 0.112911i
\(250\) −83.2843 144.253i −0.333137 0.577011i
\(251\) −369.027 213.058i −1.47023 0.848837i −0.470786 0.882247i \(-0.656030\pi\)
−0.999442 + 0.0334107i \(0.989363\pi\)
\(252\) 79.1657 79.1657i 0.314150 0.314150i
\(253\) −48.2239 179.974i −0.190608 0.711360i
\(254\) −0.929530 + 0.249067i −0.00365957 + 0.000980578i
\(255\) −31.9454 31.9454i −0.125276 0.125276i
\(256\) 106.456 184.387i 0.415843 0.720260i
\(257\) 29.3689 16.9562i 0.114276 0.0659773i −0.441773 0.897127i \(-0.645650\pi\)
0.556049 + 0.831150i \(0.312317\pi\)
\(258\) 1.70633 6.36812i 0.00661369 0.0246826i
\(259\) 14.3974i 0.0555882i
\(260\) 0 0
\(261\) 230.287 0.882327
\(262\) −306.458 82.1152i −1.16969 0.313417i
\(263\) −155.488 269.313i −0.591208 1.02400i −0.994070 0.108741i \(-0.965318\pi\)
0.402862 0.915261i \(-0.368015\pi\)
\(264\) 78.0749 + 45.0766i 0.295738 + 0.170745i
\(265\) −126.606 + 126.606i −0.477757 + 0.477757i
\(266\) 120.326 + 449.063i 0.452354 + 1.68821i
\(267\) −130.320 + 34.9191i −0.488089 + 0.130783i
\(268\) 12.5918 + 12.5918i 0.0469844 + 0.0469844i
\(269\) 143.628 248.770i 0.533932 0.924797i −0.465283 0.885162i \(-0.654047\pi\)
0.999214 0.0396345i \(-0.0126194\pi\)
\(270\) 70.1025 40.4737i 0.259639 0.149903i
\(271\) −106.680 + 398.135i −0.393653 + 1.46913i 0.430411 + 0.902633i \(0.358369\pi\)
−0.824063 + 0.566498i \(0.808298\pi\)
\(272\) 142.367i 0.523406i
\(273\) 0 0
\(274\) 172.056 0.627941
\(275\) −148.081 39.6781i −0.538475 0.144284i
\(276\) −20.4615 35.4404i −0.0741360 0.128407i
\(277\) −72.5025 41.8594i −0.261742 0.151117i 0.363387 0.931638i \(-0.381620\pi\)
−0.625129 + 0.780521i \(0.714954\pi\)
\(278\) −272.190 + 272.190i −0.979101 + 0.979101i
\(279\) 2.96664 + 11.0717i 0.0106331 + 0.0396834i
\(280\) −235.717 + 63.1602i −0.841846 + 0.225572i
\(281\) 315.207 + 315.207i 1.12173 + 1.12173i 0.991481 + 0.130253i \(0.0415791\pi\)
0.130253 + 0.991481i \(0.458421\pi\)
\(282\) 45.3591 78.5642i 0.160848 0.278597i
\(283\) −151.579 + 87.5140i −0.535614 + 0.309237i −0.743299 0.668959i \(-0.766740\pi\)
0.207686 + 0.978196i \(0.433407\pi\)
\(284\) 1.39215 5.19559i 0.00490195 0.0182943i
\(285\) 66.9908i 0.235056i
\(286\) 0 0
\(287\) 337.476 1.17588
\(288\) −131.822 35.3216i −0.457715 0.122644i
\(289\) −32.1782 55.7343i −0.111343 0.192852i
\(290\) −102.906 59.4129i −0.354849 0.204872i
\(291\) 152.978 152.978i 0.525697 0.525697i
\(292\) 11.8479 + 44.2169i 0.0405749 + 0.151428i
\(293\) −489.465 + 131.152i −1.67053 + 0.447617i −0.965254 0.261315i \(-0.915844\pi\)
−0.705277 + 0.708932i \(0.749177\pi\)
\(294\) 174.276 + 174.276i 0.592774 + 0.592774i
\(295\) −18.7309 + 32.4429i −0.0634946 + 0.109976i
\(296\) −8.61956 + 4.97651i −0.0291201 + 0.0168125i
\(297\) 43.3317 161.716i 0.145898 0.544499i
\(298\) 270.985i 0.909345i
\(299\) 0 0
\(300\) −33.6710 −0.112237
\(301\) 35.6521 + 9.55294i 0.118445 + 0.0317373i
\(302\) 79.6645 + 137.983i 0.263790 + 0.456897i
\(303\) 174.887 + 100.971i 0.577183 + 0.333237i
\(304\) 149.274 149.274i 0.491033 0.491033i
\(305\) 12.5029 + 46.6613i 0.0409930 + 0.152988i
\(306\) −172.349 + 46.1809i −0.563233 + 0.150918i
\(307\) −38.2585 38.2585i −0.124621 0.124621i 0.642046 0.766666i \(-0.278086\pi\)
−0.766666 + 0.642046i \(0.778086\pi\)
\(308\) −59.7407 + 103.474i −0.193963 + 0.335954i
\(309\) 123.766 71.4566i 0.400538 0.231251i
\(310\) 1.53076 5.71286i 0.00493792 0.0184286i
\(311\) 64.9628i 0.208884i 0.994531 + 0.104442i \(0.0333056\pi\)
−0.994531 + 0.104442i \(0.966694\pi\)
\(312\) 0 0
\(313\) 8.09749 0.0258706 0.0129353 0.999916i \(-0.495882\pi\)
0.0129353 + 0.999916i \(0.495882\pi\)
\(314\) 199.246 + 53.3877i 0.634540 + 0.170025i
\(315\) 100.447 + 173.980i 0.318881 + 0.552318i
\(316\) −39.0029 22.5183i −0.123427 0.0712606i
\(317\) 335.718 335.718i 1.05905 1.05905i 0.0609026 0.998144i \(-0.480602\pi\)
0.998144 0.0609026i \(-0.0193979\pi\)
\(318\) −46.8236 174.748i −0.147244 0.549522i
\(319\) −237.390 + 63.6084i −0.744168 + 0.199399i
\(320\) 109.600 + 109.600i 0.342499 + 0.342499i
\(321\) 62.5827 108.396i 0.194962 0.337683i
\(322\) −441.330 + 254.802i −1.37059 + 0.791311i
\(323\) −86.2148 + 321.758i −0.266919 + 0.996155i
\(324\) 43.2448i 0.133471i
\(325\) 0 0
\(326\) 9.77524 0.0299854
\(327\) 55.8730 + 14.9711i 0.170865 + 0.0457832i
\(328\) −116.650 202.044i −0.355641 0.615988i
\(329\) 439.844 + 253.944i 1.33691 + 0.771866i
\(330\) −27.0787 + 27.0787i −0.0820568 + 0.0820568i
\(331\) 82.8635 + 309.251i 0.250343 + 0.934293i 0.970622 + 0.240609i \(0.0773470\pi\)
−0.720279 + 0.693684i \(0.755986\pi\)
\(332\) 96.1333 25.7588i 0.289558 0.0775869i
\(333\) 5.79378 + 5.79378i 0.0173987 + 0.0173987i
\(334\) −86.3070 + 149.488i −0.258404 + 0.447569i
\(335\) −27.6727 + 15.9768i −0.0826050 + 0.0476920i
\(336\) 41.9187 156.443i 0.124758 0.465603i
\(337\) 373.214i 1.10746i −0.832696 0.553730i \(-0.813204\pi\)
0.832696 0.553730i \(-0.186796\pi\)
\(338\) 0 0
\(339\) 150.475 0.443878
\(340\) −39.9815 10.7130i −0.117593 0.0315088i
\(341\) −6.11627 10.5937i −0.0179363 0.0310665i
\(342\) −229.133 132.290i −0.669981 0.386813i
\(343\) −539.374 + 539.374i −1.57252 + 1.57252i
\(344\) −6.60403 24.6466i −0.0191978 0.0716470i
\(345\) 70.9298 19.0056i 0.205594 0.0550886i
\(346\) −6.91975 6.91975i −0.0199993 0.0199993i
\(347\) 269.696 467.127i 0.777222 1.34619i −0.156316 0.987707i \(-0.549962\pi\)
0.933537 0.358480i \(-0.116705\pi\)
\(348\) −46.7466 + 26.9892i −0.134329 + 0.0775551i
\(349\) 125.254 467.455i 0.358895 1.33941i −0.516617 0.856217i \(-0.672809\pi\)
0.875512 0.483197i \(-0.160524\pi\)
\(350\) 419.296i 1.19799i
\(351\) 0 0
\(352\) 145.644 0.413761
\(353\) −280.940 75.2776i −0.795863 0.213251i −0.162096 0.986775i \(-0.551825\pi\)
−0.633767 + 0.773524i \(0.718492\pi\)
\(354\) −18.9260 32.7808i −0.0534633 0.0926012i
\(355\) 8.35869 + 4.82589i 0.0235456 + 0.0135941i
\(356\) −87.4064 + 87.4064i −0.245523 + 0.245523i
\(357\) 66.1445 + 246.855i 0.185279 + 0.691470i
\(358\) 76.3723 20.4639i 0.213331 0.0571618i
\(359\) −276.533 276.533i −0.770287 0.770287i 0.207870 0.978156i \(-0.433347\pi\)
−0.978156 + 0.207870i \(0.933347\pi\)
\(360\) 69.4402 120.274i 0.192889 0.334094i
\(361\) −115.132 + 66.4718i −0.318927 + 0.184132i
\(362\) −86.7058 + 323.590i −0.239519 + 0.893896i
\(363\) 84.6352i 0.233155i
\(364\) 0 0
\(365\) −82.1412 −0.225045
\(366\) −47.1474 12.6331i −0.128818 0.0345167i
\(367\) 143.103 + 247.862i 0.389928 + 0.675375i 0.992439 0.122735i \(-0.0391667\pi\)
−0.602512 + 0.798110i \(0.705833\pi\)
\(368\) 200.401 + 115.702i 0.544568 + 0.314406i
\(369\) −135.807 + 135.807i −0.368041 + 0.368041i
\(370\) −1.09424 4.08377i −0.00295741 0.0110372i
\(371\) 978.330 262.143i 2.63701 0.706584i
\(372\) −1.89978 1.89978i −0.00510694 0.00510694i
\(373\) −179.456 + 310.827i −0.481116 + 0.833317i −0.999765 0.0216699i \(-0.993102\pi\)
0.518649 + 0.854987i \(0.326435\pi\)
\(374\) 164.909 95.2103i 0.440933 0.254573i
\(375\) 35.1411 131.148i 0.0937095 0.349729i
\(376\) 351.107i 0.933795i
\(377\) 0 0
\(378\) −457.907 −1.21139
\(379\) −29.0239 7.77694i −0.0765803 0.0205196i 0.220325 0.975426i \(-0.429288\pi\)
−0.296906 + 0.954907i \(0.595955\pi\)
\(380\) −30.6886 53.1541i −0.0807594 0.139879i
\(381\) −0.679322 0.392207i −0.00178300 0.00102941i
\(382\) 193.134 193.134i 0.505588 0.505588i
\(383\) −154.761 577.577i −0.404076 1.50803i −0.805753 0.592252i \(-0.798239\pi\)
0.401677 0.915781i \(-0.368428\pi\)
\(384\) −51.6497 + 13.8395i −0.134504 + 0.0360404i
\(385\) −151.601 151.601i −0.393769 0.393769i
\(386\) −163.473 + 283.143i −0.423504 + 0.733531i
\(387\) −18.1914 + 10.5028i −0.0470061 + 0.0271390i
\(388\) 51.3016 191.460i 0.132221 0.493454i
\(389\) 430.894i 1.10770i 0.832618 + 0.553848i \(0.186841\pi\)
−0.832618 + 0.553848i \(0.813159\pi\)
\(390\) 0 0
\(391\) −365.136 −0.933853
\(392\) 921.384 + 246.884i 2.35047 + 0.629806i
\(393\) −129.307 223.967i −0.329026 0.569890i
\(394\) −171.996 99.3017i −0.436537 0.252035i
\(395\) 57.1437 57.1437i 0.144668 0.144668i
\(396\) −17.5991 65.6807i −0.0444421 0.165860i
\(397\) 141.940 38.0326i 0.357531 0.0958001i −0.0755826 0.997140i \(-0.524082\pi\)
0.433113 + 0.901339i \(0.357415\pi\)
\(398\) 244.007 + 244.007i 0.613082 + 0.613082i
\(399\) −189.478 + 328.186i −0.474883 + 0.822521i
\(400\) 164.887 95.1978i 0.412218 0.237994i
\(401\) −138.078 + 515.314i −0.344334 + 1.28507i 0.549054 + 0.835787i \(0.314988\pi\)
−0.893388 + 0.449285i \(0.851679\pi\)
\(402\) 32.2865i 0.0803147i
\(403\) 0 0
\(404\) 185.019 0.457969
\(405\) −74.9539 20.0838i −0.185071 0.0495897i
\(406\) 336.090 + 582.124i 0.827807 + 1.43380i
\(407\) −7.57278 4.37215i −0.0186063 0.0107424i
\(408\) 124.927 124.927i 0.306192 0.306192i
\(409\) 86.2913 + 322.044i 0.210981 + 0.787393i 0.987543 + 0.157351i \(0.0502954\pi\)
−0.776562 + 0.630041i \(0.783038\pi\)
\(410\) 95.7242 25.6492i 0.233474 0.0625591i
\(411\) 99.1698 + 99.1698i 0.241289 + 0.241289i
\(412\) 65.4686 113.395i 0.158904 0.275231i
\(413\) 183.524 105.958i 0.444368 0.256556i
\(414\) 75.0626 280.137i 0.181311 0.676660i
\(415\) 178.586i 0.430327i
\(416\) 0 0
\(417\) −313.771 −0.752449
\(418\) 272.740 + 73.0806i 0.652489 + 0.174834i
\(419\) −39.7623 68.8704i −0.0948982 0.164368i 0.814668 0.579928i \(-0.196919\pi\)
−0.909566 + 0.415559i \(0.863586\pi\)
\(420\) −40.7802 23.5445i −0.0970957 0.0560582i
\(421\) 186.173 186.173i 0.442215 0.442215i −0.450541 0.892756i \(-0.648769\pi\)
0.892756 + 0.450541i \(0.148769\pi\)
\(422\) −94.5377 352.820i −0.224023 0.836066i
\(423\) −279.193 + 74.8097i −0.660032 + 0.176855i
\(424\) −495.106 495.106i −1.16770 1.16770i
\(425\) −150.215 + 260.180i −0.353447 + 0.612188i
\(426\) −8.44576 + 4.87616i −0.0198257 + 0.0114464i
\(427\) 70.7267 263.955i 0.165636 0.618163i
\(428\) 114.677i 0.267936i
\(429\) 0 0
\(430\) 10.8387 0.0252062
\(431\) −615.768 164.994i −1.42869 0.382818i −0.540135 0.841578i \(-0.681627\pi\)
−0.888560 + 0.458761i \(0.848294\pi\)
\(432\) 103.964 + 180.071i 0.240657 + 0.416830i
\(433\) −150.078 86.6473i −0.346600 0.200109i 0.316587 0.948563i \(-0.397463\pi\)
−0.663187 + 0.748454i \(0.730796\pi\)
\(434\) −23.6575 + 23.6575i −0.0545103 + 0.0545103i
\(435\) −25.0688 93.5579i −0.0576293 0.215076i
\(436\) 51.1909 13.7166i 0.117410 0.0314600i
\(437\) −382.853 382.853i −0.876093 0.876093i
\(438\) 41.4985 71.8774i 0.0947453 0.164104i
\(439\) 729.932 421.426i 1.66271 0.959968i 0.691303 0.722565i \(-0.257037\pi\)
0.971411 0.237404i \(-0.0762964\pi\)
\(440\) −38.3606 + 143.164i −0.0871831 + 0.325372i
\(441\) 785.270i 1.78066i
\(442\) 0 0
\(443\) −424.878 −0.959094 −0.479547 0.877516i \(-0.659199\pi\)
−0.479547 + 0.877516i \(0.659199\pi\)
\(444\) −1.85511 0.497076i −0.00417818 0.00111954i
\(445\) −110.903 192.090i −0.249221 0.431664i
\(446\) −384.338 221.897i −0.861744 0.497528i
\(447\) −156.191 + 156.191i −0.349420 + 0.349420i
\(448\) −226.931 846.919i −0.506543 1.89044i
\(449\) 361.853 96.9583i 0.805909 0.215943i 0.167732 0.985833i \(-0.446356\pi\)
0.638177 + 0.769890i \(0.279689\pi\)
\(450\) −168.733 168.733i −0.374962 0.374962i
\(451\) 102.484 177.507i 0.227237 0.393586i
\(452\) 119.395 68.9325i 0.264147 0.152506i
\(453\) −33.6137 + 125.448i −0.0742025 + 0.276927i
\(454\) 28.0672i 0.0618220i
\(455\) 0 0
\(456\) 261.976 0.574508
\(457\) −400.057 107.195i −0.875397 0.234562i −0.206977 0.978346i \(-0.566363\pi\)
−0.668420 + 0.743784i \(0.733029\pi\)
\(458\) −358.756 621.383i −0.783309 1.35673i
\(459\) −284.138 164.047i −0.619037 0.357401i
\(460\) 47.5731 47.5731i 0.103420 0.103420i
\(461\) 116.647 + 435.334i 0.253031 + 0.944326i 0.969175 + 0.246373i \(0.0792388\pi\)
−0.716144 + 0.697953i \(0.754095\pi\)
\(462\) 209.248 56.0678i 0.452918 0.121359i
\(463\) 21.3332 + 21.3332i 0.0460761 + 0.0460761i 0.729769 0.683693i \(-0.239627\pi\)
−0.683693 + 0.729769i \(0.739627\pi\)
\(464\) 152.613 264.333i 0.328907 0.569683i
\(465\) 4.17509 2.41049i 0.00897869 0.00518385i
\(466\) 106.342 396.872i 0.228201 0.851658i
\(467\) 281.867i 0.603570i −0.953376 0.301785i \(-0.902418\pi\)
0.953376 0.301785i \(-0.0975825\pi\)
\(468\) 0 0
\(469\) 180.757 0.385409
\(470\) 144.061 + 38.6010i 0.306513 + 0.0821298i
\(471\) 84.0699 + 145.613i 0.178492 + 0.309158i
\(472\) −126.872 73.2495i −0.268796 0.155190i
\(473\) 15.8514 15.8514i 0.0335125 0.0335125i
\(474\) 21.1339 + 78.8729i 0.0445863 + 0.166398i
\(475\) −430.307 + 115.300i −0.905909 + 0.242738i
\(476\) 165.567 + 165.567i 0.347830 + 0.347830i
\(477\) −288.208 + 499.190i −0.604209 + 1.04652i
\(478\) −53.5126 + 30.8955i −0.111951 + 0.0646350i
\(479\) −94.1457 + 351.357i −0.196546 + 0.733521i 0.795315 + 0.606197i \(0.207306\pi\)
−0.991861 + 0.127324i \(0.959361\pi\)
\(480\) 57.3998i 0.119583i
\(481\) 0 0
\(482\) −128.643 −0.266894
\(483\) −401.239 107.512i −0.830722 0.222591i
\(484\) −38.7715 67.1542i −0.0801064 0.138748i
\(485\) 308.022 + 177.837i 0.635097 + 0.366673i
\(486\) 286.855 286.855i 0.590236 0.590236i
\(487\) 27.6734 + 103.278i 0.0568241 + 0.212071i 0.988500 0.151220i \(-0.0483200\pi\)
−0.931676 + 0.363290i \(0.881653\pi\)
\(488\) −182.475 + 48.8939i −0.373923 + 0.100192i
\(489\) 5.63428 + 5.63428i 0.0115220 + 0.0115220i
\(490\) −202.595 + 350.906i −0.413460 + 0.716134i
\(491\) 0.981954 0.566932i 0.00199991 0.00115465i −0.499000 0.866602i \(-0.666299\pi\)
0.501000 + 0.865448i \(0.332966\pi\)
\(492\) 11.6515 43.4841i 0.0236820 0.0883823i
\(493\) 481.623i 0.976922i
\(494\) 0 0
\(495\) 122.014 0.246494
\(496\) 14.6745 + 3.93202i 0.0295857 + 0.00792746i
\(497\) −27.2993 47.2838i −0.0549282 0.0951384i
\(498\) −156.271 90.2231i −0.313797 0.181171i
\(499\) 616.689 616.689i 1.23585 1.23585i 0.274169 0.961682i \(-0.411597\pi\)
0.961682 0.274169i \(-0.0884026\pi\)
\(500\) −32.1963 120.158i −0.0643926 0.240317i
\(501\) −135.908 + 36.4165i −0.271274 + 0.0726876i
\(502\) 500.520 + 500.520i 0.997052 + 0.997052i
\(503\) 253.315 438.754i 0.503608 0.872275i −0.496383 0.868104i \(-0.665339\pi\)
0.999991 0.00417148i \(-0.00132783\pi\)
\(504\) −680.371 + 392.812i −1.34994 + 0.779389i
\(505\) −85.9271 + 320.684i −0.170153 + 0.635018i
\(506\) 309.510i 0.611680i
\(507\) 0 0
\(508\) −0.718681 −0.00141473
\(509\) 820.945 + 219.972i 1.61286 + 0.432164i 0.948893 0.315598i \(-0.102205\pi\)
0.663966 + 0.747763i \(0.268872\pi\)
\(510\) 37.5234 + 64.9925i 0.0735753 + 0.127436i
\(511\) 402.407 + 232.330i 0.787490 + 0.454658i
\(512\) −361.783 + 361.783i −0.706608 + 0.706608i
\(513\) −125.918 469.931i −0.245453 0.916045i
\(514\) −54.4139 + 14.5802i −0.105864 + 0.0283661i
\(515\) 166.137 + 166.137i 0.322595 + 0.322595i
\(516\) 2.46181 4.26398i 0.00477095 0.00826352i
\(517\) 267.141 154.234i 0.516713 0.298325i
\(518\) −6.18996 + 23.1012i −0.0119497 + 0.0445970i
\(519\) 7.97684i 0.0153696i
\(520\) 0 0
\(521\) −499.516 −0.958764 −0.479382 0.877606i \(-0.659139\pi\)
−0.479382 + 0.877606i \(0.659139\pi\)
\(522\) −369.507 99.0091i −0.707868 0.189673i
\(523\) 355.627 + 615.964i 0.679976 + 1.17775i 0.974988 + 0.222259i \(0.0713430\pi\)
−0.295012 + 0.955494i \(0.595324\pi\)
\(524\) −205.199 118.472i −0.391601 0.226091i
\(525\) −241.675 + 241.675i −0.460333 + 0.460333i
\(526\) 133.700 + 498.975i 0.254182 + 0.948621i
\(527\) −23.1552 + 6.20443i −0.0439378 + 0.0117731i
\(528\) −69.5566 69.5566i −0.131736 0.131736i
\(529\) 32.2470 55.8534i 0.0609584 0.105583i
\(530\) 257.577 148.712i 0.485994 0.280589i
\(531\) −31.2142 + 116.493i −0.0587839 + 0.219384i
\(532\) 347.201i 0.652633i
\(533\) 0 0
\(534\) 224.117 0.419695
\(535\) 198.763 + 53.2584i 0.371520 + 0.0995484i
\(536\) −62.4793 108.217i −0.116566 0.201898i
\(537\) 55.8147 + 32.2246i 0.103938 + 0.0600086i
\(538\) −337.413 + 337.413i −0.627161 + 0.627161i
\(539\) 216.902 + 809.488i 0.402415 + 1.50183i
\(540\) 58.3933 15.6464i 0.108136 0.0289749i
\(541\) −126.688 126.688i −0.234173 0.234173i 0.580259 0.814432i \(-0.302951\pi\)
−0.814432 + 0.580259i \(0.802951\pi\)
\(542\) 342.346 592.960i 0.631634 1.09402i
\(543\) −236.487 + 136.536i −0.435520 + 0.251448i
\(544\) 73.8715 275.692i 0.135793 0.506787i
\(545\) 95.0968i 0.174490i
\(546\) 0 0
\(547\) 909.695 1.66306 0.831531 0.555478i \(-0.187465\pi\)
0.831531 + 0.555478i \(0.187465\pi\)
\(548\) 124.117 + 33.2569i 0.226490 + 0.0606878i
\(549\) 77.7590 + 134.683i 0.141638 + 0.245323i
\(550\) 220.543 + 127.331i 0.400987 + 0.231510i
\(551\) −504.991 + 504.991i −0.916499 + 0.916499i
\(552\) 74.3236 + 277.380i 0.134644 + 0.502499i
\(553\) −441.571 + 118.319i −0.798502 + 0.213958i
\(554\) 98.3369 + 98.3369i 0.177503 + 0.177503i
\(555\) 1.72311 2.98451i 0.00310470 0.00537750i
\(556\) −248.963 + 143.739i −0.447775 + 0.258523i
\(557\) 13.8904 51.8399i 0.0249380 0.0930698i −0.952335 0.305053i \(-0.901326\pi\)
0.977273 + 0.211984i \(0.0679924\pi\)
\(558\) 19.0405i 0.0341227i
\(559\) 0 0
\(560\) 266.268 0.475479
\(561\) 149.928 + 40.1731i 0.267252 + 0.0716099i
\(562\) −370.246 641.284i −0.658800 1.14108i
\(563\) 795.077 + 459.038i 1.41222 + 0.815343i 0.995597 0.0937388i \(-0.0298819\pi\)
0.416618 + 0.909082i \(0.363215\pi\)
\(564\) 47.9067 47.9067i 0.0849409 0.0849409i
\(565\) 64.0276 + 238.954i 0.113323 + 0.422928i
\(566\) 280.841 75.2510i 0.496185 0.132952i
\(567\) 310.391 + 310.391i 0.547427 + 0.547427i
\(568\) −18.8722 + 32.6877i −0.0332258 + 0.0575487i
\(569\) −918.009 + 530.013i −1.61337 + 0.931482i −0.624792 + 0.780791i \(0.714816\pi\)
−0.988581 + 0.150691i \(0.951850\pi\)
\(570\) −28.8018 + 107.490i −0.0505295 + 0.188579i
\(571\) 478.156i 0.837400i −0.908125 0.418700i \(-0.862486\pi\)
0.908125 0.418700i \(-0.137514\pi\)
\(572\) 0 0
\(573\) 222.639 0.388549
\(574\) −541.497 145.094i −0.943374 0.252776i
\(575\) −244.160 422.897i −0.424626 0.735473i
\(576\) 432.138 + 249.495i 0.750240 + 0.433151i
\(577\) −147.501 + 147.501i −0.255634 + 0.255634i −0.823276 0.567642i \(-0.807856\pi\)
0.567642 + 0.823276i \(0.307856\pi\)
\(578\) 27.6692 + 103.263i 0.0478706 + 0.178655i
\(579\) −257.421 + 68.9759i −0.444597 + 0.119129i
\(580\) −62.7499 62.7499i −0.108189 0.108189i
\(581\) 505.116 874.886i 0.869390 1.50583i
\(582\) −311.231 + 179.689i −0.534761 + 0.308744i
\(583\) 159.213 594.193i 0.273093 1.01920i
\(584\) 321.223i 0.550040i
\(585\) 0 0
\(586\) 841.757 1.43645
\(587\) 225.214 + 60.3460i 0.383670 + 0.102804i 0.445499 0.895283i \(-0.353026\pi\)
−0.0618283 + 0.998087i \(0.519693\pi\)
\(588\) 92.0319 + 159.404i 0.156517 + 0.271095i
\(589\) −30.7842 17.7733i −0.0522652 0.0301753i
\(590\) 44.0030 44.0030i 0.0745813 0.0745813i
\(591\) −41.8995 156.371i −0.0708959 0.264587i
\(592\) 10.4899 2.81076i 0.0177194 0.00474790i
\(593\) 451.487 + 451.487i 0.761361 + 0.761361i 0.976568 0.215207i \(-0.0690428\pi\)
−0.215207 + 0.976568i \(0.569043\pi\)
\(594\) −139.056 + 240.851i −0.234100 + 0.405474i
\(595\) −363.862 + 210.076i −0.611532 + 0.353068i
\(596\) −52.3791 + 195.481i −0.0878844 + 0.327989i
\(597\) 281.282i 0.471159i
\(598\) 0 0
\(599\) −759.661 −1.26822 −0.634108 0.773245i \(-0.718632\pi\)
−0.634108 + 0.773245i \(0.718632\pi\)
\(600\) 228.225 + 61.1526i 0.380374 + 0.101921i
\(601\) 369.738 + 640.405i 0.615205 + 1.06557i 0.990349 + 0.138599i \(0.0442600\pi\)
−0.375144 + 0.926967i \(0.622407\pi\)
\(602\) −53.0983 30.6563i −0.0882031 0.0509241i
\(603\) −72.7400 + 72.7400i −0.120630 + 0.120630i
\(604\) 30.7970 + 114.936i 0.0509883 + 0.190291i
\(605\) 134.401 36.0127i 0.222151 0.0595251i
\(606\) −237.203 237.203i −0.391424 0.391424i
\(607\) −528.810 + 915.925i −0.871186 + 1.50894i −0.0104143 + 0.999946i \(0.503315\pi\)
−0.860771 + 0.508992i \(0.830018\pi\)
\(608\) 366.524 211.613i 0.602836 0.348048i
\(609\) −141.810 + 529.242i −0.232857 + 0.869035i
\(610\) 80.2457i 0.131550i
\(611\) 0 0
\(612\) −133.255 −0.217737
\(613\) −416.368 111.565i −0.679230 0.181999i −0.0973207 0.995253i \(-0.531027\pi\)
−0.581909 + 0.813254i \(0.697694\pi\)
\(614\) 44.9389 + 77.8364i 0.0731904 + 0.126769i
\(615\) 69.9575 + 40.3900i 0.113752 + 0.0656747i
\(616\) 592.854 592.854i 0.962426 0.962426i
\(617\) −61.8106 230.680i −0.100179 0.373874i 0.897575 0.440863i \(-0.145327\pi\)
−0.997754 + 0.0669889i \(0.978661\pi\)
\(618\) −229.311 + 61.4437i −0.371053 + 0.0994234i
\(619\) 324.998 + 324.998i 0.525037 + 0.525037i 0.919088 0.394051i \(-0.128927\pi\)
−0.394051 + 0.919088i \(0.628927\pi\)
\(620\) 2.20849 3.82523i 0.00356209 0.00616972i
\(621\) 461.839 266.643i 0.743702 0.429376i
\(622\) 27.9299 104.236i 0.0449034 0.167582i
\(623\) 1254.73i 2.01401i
\(624\) 0 0
\(625\) −277.897 −0.444635
\(626\) −12.9928 3.48141i −0.0207553 0.00556136i
\(627\) 115.080 + 199.325i 0.183541 + 0.317903i
\(628\) 133.411 + 77.0250i 0.212438 + 0.122651i
\(629\) −12.1171 + 12.1171i −0.0192641 + 0.0192641i
\(630\) −86.3722 322.345i −0.137099 0.511659i
\(631\) −688.010 + 184.352i −1.09035 + 0.292158i −0.758829 0.651290i \(-0.774228\pi\)
−0.331520 + 0.943448i \(0.607561\pi\)
\(632\) 223.467 + 223.467i 0.353588 + 0.353588i
\(633\) 148.869 257.849i 0.235180 0.407344i
\(634\) −683.012 + 394.337i −1.07731 + 0.621983i
\(635\) 0.333772 1.24565i 0.000525625 0.00196166i
\(636\) 135.109i 0.212436i
\(637\) 0 0
\(638\) 408.251 0.639891
\(639\) 30.0137 + 8.04214i 0.0469698 + 0.0125855i
\(640\) −43.9544 76.1312i −0.0686787 0.118955i
\(641\) −801.516 462.756i −1.25042 0.721928i −0.279224 0.960226i \(-0.590077\pi\)
−0.971192 + 0.238298i \(0.923410\pi\)
\(642\) −147.020 + 147.020i −0.229004 + 0.229004i
\(643\) 127.199 + 474.714i 0.197822 + 0.738280i 0.991518 + 0.129967i \(0.0414870\pi\)
−0.793697 + 0.608314i \(0.791846\pi\)
\(644\) −367.616 + 98.5023i −0.570832 + 0.152954i
\(645\) 6.24721 + 6.24721i 0.00968560 + 0.00968560i
\(646\) 276.672 479.209i 0.428284 0.741810i
\(647\) −140.376 + 81.0463i −0.216965 + 0.125265i −0.604544 0.796572i \(-0.706645\pi\)
0.387579 + 0.921836i \(0.373311\pi\)
\(648\) 78.5403 293.116i 0.121204 0.452340i
\(649\) 128.708i 0.198317i
\(650\) 0 0
\(651\) −27.2715 −0.0418917
\(652\) 7.05161 + 1.88947i 0.0108153 + 0.00289796i
\(653\) 190.039 + 329.157i 0.291024 + 0.504069i 0.974052 0.226324i \(-0.0726707\pi\)
−0.683028 + 0.730392i \(0.739337\pi\)
\(654\) −83.2142 48.0437i −0.127239 0.0734614i
\(655\) 300.640 300.640i 0.458992 0.458992i
\(656\) 65.8846 + 245.885i 0.100434 + 0.374824i
\(657\) −255.431 + 68.4424i −0.388783 + 0.104174i
\(658\) −596.570 596.570i −0.906641 0.906641i
\(659\) −204.007 + 353.351i −0.309571 + 0.536192i −0.978268 0.207342i \(-0.933519\pi\)
0.668698 + 0.743534i \(0.266852\pi\)
\(660\) −24.7680 + 14.2998i −0.0375273 + 0.0216664i
\(661\) 44.8596 167.418i 0.0678663 0.253280i −0.923655 0.383225i \(-0.874813\pi\)
0.991521 + 0.129945i \(0.0414800\pi\)
\(662\) 531.834i 0.803374i
\(663\) 0 0
\(664\) −698.382 −1.05178
\(665\) −601.785 161.248i −0.904939 0.242478i
\(666\) −6.80543 11.7873i −0.0102184 0.0176987i
\(667\) −677.952 391.416i −1.01642 0.586830i
\(668\) −91.1544 + 91.1544i −0.136459 + 0.136459i
\(669\) −93.6277 349.423i −0.139952 0.522307i
\(670\) 51.2711 13.7381i 0.0765241 0.0205046i
\(671\) −117.358 117.358i −0.174901 0.174901i
\(672\) 162.351 281.200i 0.241593 0.418452i
\(673\) 909.212 524.934i 1.35098 0.779991i 0.362596 0.931946i \(-0.381890\pi\)
0.988387 + 0.151955i \(0.0485570\pi\)
\(674\) −160.458 + 598.839i −0.238069 + 0.888485i
\(675\) 438.781i 0.650046i
\(676\) 0 0
\(677\) 539.705 0.797201 0.398601 0.917125i \(-0.369496\pi\)
0.398601 + 0.917125i \(0.369496\pi\)
\(678\) −241.443 64.6946i −0.356111 0.0954197i
\(679\) −1005.99 1742.43i −1.48158 2.56617i
\(680\) 251.541 + 145.227i 0.369913 + 0.213569i
\(681\) 16.1774 16.1774i 0.0237554 0.0237554i
\(682\) 5.25922 + 19.6277i 0.00771147 + 0.0287796i
\(683\) 944.242 253.009i 1.38249 0.370438i 0.510466 0.859898i \(-0.329473\pi\)
0.872026 + 0.489460i \(0.162806\pi\)
\(684\) −139.720 139.720i −0.204269 0.204269i
\(685\) −115.285 + 199.679i −0.168299 + 0.291503i
\(686\) 1097.35 633.554i 1.59963 0.923548i
\(687\) 151.374 564.934i 0.220340 0.822321i
\(688\) 27.8410i 0.0404666i
\(689\) 0 0
\(690\) −121.981 −0.176785
\(691\) 1028.23 + 275.514i 1.48804 + 0.398718i 0.909073 0.416637i \(-0.136791\pi\)
0.578962 + 0.815355i \(0.303458\pi\)
\(692\) −3.65420 6.32926i −0.00528064 0.00914633i
\(693\) −597.744 345.108i −0.862546 0.497991i
\(694\) −633.575 + 633.575i −0.912933 + 0.912933i
\(695\) −133.511 498.270i −0.192102 0.716935i
\(696\) 365.870 98.0344i 0.525675 0.140854i
\(697\) −284.027 284.027i −0.407499 0.407499i
\(698\) −401.953 + 696.203i −0.575864 + 0.997425i
\(699\) 290.044 167.457i 0.414941 0.239566i
\(700\) −81.0465 + 302.470i −0.115781 + 0.432099i
\(701\) 179.431i 0.255964i −0.991777 0.127982i \(-0.959150\pi\)
0.991777 0.127982i \(-0.0408499\pi\)
\(702\) 0 0
\(703\) −25.4100 −0.0361451
\(704\) −514.380 137.828i −0.730653 0.195778i
\(705\) 60.7852 + 105.283i 0.0862202 + 0.149338i
\(706\) 418.416 + 241.573i 0.592658 + 0.342171i
\(707\) 1327.98 1327.98i 1.87834 1.87834i
\(708\) −7.31648 27.3055i −0.0103340 0.0385671i
\(709\) 764.925 204.961i 1.07888 0.289084i 0.324742 0.945803i \(-0.394723\pi\)
0.754136 + 0.656718i \(0.228056\pi\)
\(710\) −11.3371 11.3371i −0.0159677 0.0159677i
\(711\) 130.083 225.311i 0.182958 0.316893i
\(712\) 751.193 433.701i 1.05505 0.609131i
\(713\) 10.0847 37.6366i 0.0141440 0.0527863i
\(714\) 424.528i 0.594577i
\(715\) 0 0
\(716\) 59.0485 0.0824700
\(717\) −48.6513 13.0361i −0.0678540 0.0181814i
\(718\) 324.818 + 562.602i 0.452393 + 0.783568i
\(719\) 99.3951 + 57.3858i 0.138241 + 0.0798134i 0.567525 0.823356i \(-0.307901\pi\)
−0.429285 + 0.903169i \(0.641234\pi\)
\(720\) −107.152 + 107.152i −0.148822 + 0.148822i
\(721\) −343.994 1283.80i −0.477106 1.78058i
\(722\) 213.314 57.1574i 0.295449 0.0791653i
\(723\) −74.1475 74.1475i −0.102555 0.102555i
\(724\) −125.095 + 216.670i −0.172783 + 0.299268i
\(725\) −557.810 + 322.052i −0.769393 + 0.444209i
\(726\) −36.3878 + 135.801i −0.0501210 + 0.187054i
\(727\) 191.685i 0.263666i −0.991272 0.131833i \(-0.957914\pi\)
0.991272 0.131833i \(-0.0420862\pi\)
\(728\) 0 0
\(729\) 16.9500 0.0232510
\(730\) 131.800 + 35.3156i 0.180547 + 0.0483775i
\(731\) −21.9655 38.0454i −0.0300486 0.0520457i
\(732\) −31.5690 18.2264i −0.0431271 0.0248994i
\(733\) −417.210 + 417.210i −0.569181 + 0.569181i −0.931899 0.362718i \(-0.881849\pi\)
0.362718 + 0.931899i \(0.381849\pi\)
\(734\) −123.051 459.233i −0.167644 0.625657i
\(735\) −319.028 + 85.4833i −0.434052 + 0.116304i
\(736\) 328.040 + 328.040i 0.445706 + 0.445706i
\(737\) 54.8917 95.0752i 0.0744799 0.129003i
\(738\) 276.297 159.520i 0.374386 0.216152i
\(739\) −216.456 + 807.824i −0.292904 + 1.09313i 0.649964 + 0.759965i \(0.274784\pi\)
−0.942868 + 0.333167i \(0.891883\pi\)
\(740\) 3.15743i 0.00426680i
\(741\) 0 0
\(742\) −1682.48 −2.26750
\(743\) 643.721 + 172.485i 0.866381 + 0.232146i 0.664522 0.747269i \(-0.268635\pi\)
0.201859 + 0.979415i \(0.435302\pi\)
\(744\) 9.42651 + 16.3272i 0.0126700 + 0.0219452i
\(745\) −314.492 181.572i −0.422136 0.243721i
\(746\) 421.582 421.582i 0.565124 0.565124i
\(747\) 148.803 + 555.339i 0.199200 + 0.743426i
\(748\) 137.365 36.8067i 0.183642 0.0492068i
\(749\) −823.097 823.097i −1.09893 1.09893i
\(750\) −112.771 + 195.325i −0.150361 + 0.260433i
\(751\) −439.023 + 253.470i −0.584585 + 0.337510i −0.762953 0.646454i \(-0.776251\pi\)
0.178369 + 0.983964i \(0.442918\pi\)
\(752\) −99.1536 + 370.046i −0.131853 + 0.492083i
\(753\) 576.982i 0.766244i
\(754\) 0 0
\(755\) −213.515 −0.282801
\(756\) −330.322 88.5095i −0.436934 0.117076i
\(757\) 571.272 + 989.472i 0.754652 + 1.30710i 0.945547 + 0.325485i \(0.105528\pi\)
−0.190895 + 0.981610i \(0.561139\pi\)
\(758\) 43.2267 + 24.9569i 0.0570273 + 0.0329247i
\(759\) −178.396 + 178.396i −0.235041 + 0.235041i
\(760\) 111.472 + 416.019i 0.146674 + 0.547393i
\(761\) 49.7913 13.3415i 0.0654288 0.0175316i −0.225956 0.974137i \(-0.572551\pi\)
0.291385 + 0.956606i \(0.405884\pi\)
\(762\) 0.921380 + 0.921380i 0.00120916 + 0.00120916i
\(763\) 268.974 465.876i 0.352522 0.610585i
\(764\) 176.653 101.991i 0.231222 0.133496i
\(765\) 61.8865 230.964i 0.0808974 0.301913i
\(766\) 993.287i 1.29672i
\(767\) 0 0
\(768\) −288.292 −0.375381
\(769\) 751.552 + 201.378i 0.977310 + 0.261870i 0.711911 0.702269i \(-0.247830\pi\)
0.265399 + 0.964139i \(0.414496\pi\)
\(770\) 178.072 + 308.430i 0.231262 + 0.400558i
\(771\) −39.7669 22.9595i −0.0515784 0.0297788i
\(772\) −172.654 + 172.654i −0.223645 + 0.223645i
\(773\) −131.820 491.961i −0.170531 0.636430i −0.997270 0.0738443i \(-0.976473\pi\)
0.826739 0.562586i \(-0.190193\pi\)
\(774\) 33.7045 9.03108i 0.0435458 0.0116681i
\(775\) −22.6694 22.6694i −0.0292508 0.0292508i
\(776\) −695.452 + 1204.56i −0.896201 + 1.55227i
\(777\) −16.8829 + 9.74736i −0.0217283 + 0.0125449i
\(778\) 185.257 691.389i 0.238120 0.888675i
\(779\) 595.615i 0.764589i
\(780\) 0 0
\(781\) −33.1607 −0.0424593
\(782\) 585.879 + 156.986i 0.749206 + 0.200749i
\(783\) −351.707 609.175i −0.449179 0.778002i
\(784\) −901.364 520.403i −1.14970 0.663779i
\(785\) −195.463 + 195.463i −0.248997 + 0.248997i
\(786\) 111.188 + 414.959i 0.141461 + 0.527938i
\(787\) 1174.55 314.720i 1.49244 0.399898i 0.581880 0.813275i \(-0.302317\pi\)
0.910560 + 0.413377i \(0.135651\pi\)
\(788\) −104.879 104.879i −0.133095 0.133095i
\(789\) −210.538 + 364.662i −0.266841 + 0.462183i
\(790\) −116.258 + 67.1215i −0.147162 + 0.0849640i
\(791\) 362.194 1351.73i 0.457894 1.70888i
\(792\) 477.152i 0.602465i
\(793\) 0 0
\(794\) −244.101 −0.307432
\(795\) 234.178 + 62.7477i 0.294563 + 0.0789280i
\(796\) 128.856 + 223.184i 0.161879 + 0.280382i
\(797\) 353.791 + 204.261i 0.443904 + 0.256288i 0.705252 0.708957i \(-0.250834\pi\)
−0.261348 + 0.965245i \(0.584167\pi\)
\(798\) 445.126 445.126i 0.557802 0.557802i
\(799\) −156.457 583.905i −0.195816 0.730795i
\(800\) 368.700 98.7929i 0.460875 0.123491i
\(801\) −504.926 504.926i −0.630370 0.630370i
\(802\) 443.105 767.481i 0.552500 0.956958i
\(803\) 244.404 141.107i 0.304363 0.175724i
\(804\) 6.24071 23.2907i 0.00776208 0.0289685i
\(805\) 682.915i 0.848342i
\(806\) 0 0
\(807\) −388.958 −0.481980
\(808\) −1254.08 336.028i −1.55207 0.415877i
\(809\) −45.0218 77.9801i −0.0556512 0.0963907i 0.836858 0.547420i \(-0.184390\pi\)
−0.892509 + 0.451030i \(0.851057\pi\)
\(810\) 111.632 + 64.4509i 0.137818 + 0.0795690i
\(811\) −419.295 + 419.295i −0.517010 + 0.517010i −0.916665 0.399656i \(-0.869130\pi\)
0.399656 + 0.916665i \(0.369130\pi\)
\(812\) 129.927 + 484.893i 0.160008 + 0.597158i
\(813\) 539.094 144.450i 0.663092 0.177675i
\(814\) 10.2711 + 10.2711i 0.0126181 + 0.0126181i
\(815\) −6.54985 + 11.3447i −0.00803662 + 0.0139198i
\(816\) −166.945 + 96.3856i −0.204589 + 0.118120i
\(817\) 16.8601 62.9226i 0.0206366 0.0770167i
\(818\) 553.834i 0.677059i
\(819\) 0 0
\(820\) 74.0107 0.0902570
\(821\) −891.824 238.964i −1.08627 0.291064i −0.329106 0.944293i \(-0.606747\pi\)
−0.757160 + 0.653229i \(0.773414\pi\)
\(822\) −116.486 201.760i −0.141710 0.245450i
\(823\) 1172.63 + 677.017i 1.42482 + 0.822621i 0.996706 0.0811034i \(-0.0258444\pi\)
0.428115 + 0.903724i \(0.359178\pi\)
\(824\) −649.697 + 649.697i −0.788468 + 0.788468i
\(825\) 53.7260 + 200.508i 0.0651224 + 0.243040i
\(826\) −340.028 + 91.1103i −0.411657 + 0.110303i
\(827\) 55.7922 + 55.7922i 0.0674633 + 0.0674633i 0.740033 0.672570i \(-0.234810\pi\)
−0.672570 + 0.740033i \(0.734810\pi\)
\(828\) 108.296 187.575i 0.130793 0.226540i
\(829\) −1059.57 + 611.745i −1.27813 + 0.737931i −0.976505 0.215495i \(-0.930864\pi\)
−0.301628 + 0.953426i \(0.597530\pi\)
\(830\) 76.7807 286.549i 0.0925068 0.345240i
\(831\) 113.359i 0.136413i
\(832\) 0 0
\(833\) 1642.31 1.97156
\(834\) 503.460 + 134.902i 0.603670 + 0.161753i
\(835\) −115.659 200.327i −0.138514 0.239913i
\(836\) 182.622 + 105.437i 0.218447 + 0.126121i
\(837\) 24.7568 24.7568i 0.0295781 0.0295781i
\(838\) 34.1906 + 127.601i 0.0408003 + 0.152269i
\(839\) −602.958 + 161.562i −0.718662 + 0.192565i −0.599575 0.800319i \(-0.704664\pi\)
−0.119088 + 0.992884i \(0.537997\pi\)
\(840\) 233.650 + 233.650i 0.278155 + 0.278155i
\(841\) −95.7853 + 165.905i −0.113895 + 0.197271i
\(842\) −378.765 + 218.680i −0.449840 + 0.259715i
\(843\) 156.222 583.028i 0.185317 0.691611i
\(844\) 272.788i 0.323209i
\(845\) 0 0
\(846\) 480.143 0.567544
\(847\) −760.286 203.718i −0.897622 0.240517i
\(848\) 381.994 + 661.632i 0.450464 + 0.780227i
\(849\) 205.245 + 118.498i 0.241749 + 0.139574i
\(850\) 352.888 352.888i 0.415162 0.415162i
\(851\) −7.20893 26.9041i −0.00847113 0.0316147i
\(852\) −7.03508 + 1.88504i −0.00825713 + 0.00221249i
\(853\) 415.508 + 415.508i 0.487114 + 0.487114i 0.907394 0.420281i \(-0.138068\pi\)
−0.420281 + 0.907394i \(0.638068\pi\)
\(854\) −226.969 + 393.121i −0.265771 + 0.460329i
\(855\) 307.059 177.281i 0.359133 0.207346i
\(856\) −208.274 + 777.288i −0.243310 + 0.908046i
\(857\) 697.279i 0.813628i 0.913511 + 0.406814i \(0.133360\pi\)
−0.913511 + 0.406814i \(0.866640\pi\)
\(858\) 0 0
\(859\) 719.036 0.837062 0.418531 0.908203i \(-0.362545\pi\)
0.418531 + 0.908203i \(0.362545\pi\)
\(860\) 7.81873 + 2.09502i 0.00909154 + 0.00243607i
\(861\) −228.480 395.738i −0.265365 0.459626i
\(862\) 917.091 + 529.483i 1.06391 + 0.614249i
\(863\) 30.6850 30.6850i 0.0355563 0.0355563i −0.689105 0.724661i \(-0.741996\pi\)
0.724661 + 0.689105i \(0.241996\pi\)
\(864\) 107.890 + 402.651i 0.124873 + 0.466032i
\(865\) 12.6673 3.39418i 0.0146442 0.00392391i
\(866\) 203.554 + 203.554i 0.235050 + 0.235050i
\(867\) −43.5708 + 75.4669i −0.0502547 + 0.0870437i
\(868\) −21.6387 + 12.4931i −0.0249294 + 0.0143930i
\(869\) −71.8613 + 268.190i −0.0826943 + 0.308619i
\(870\) 160.896i 0.184938i
\(871\) 0 0
\(872\) −371.888 −0.426477
\(873\) 1106.02 + 296.357i 1.26692 + 0.339470i
\(874\) 449.703 + 778.908i 0.514534 + 0.891199i
\(875\) −1093.53 631.351i −1.24975 0.721544i
\(876\) 43.8292 43.8292i 0.0500334 0.0500334i
\(877\) −71.7955 267.945i −0.0818649 0.305524i 0.912837 0.408324i \(-0.133887\pi\)
−0.994702 + 0.102800i \(0.967220\pi\)
\(878\) −1352.40 + 362.374i −1.54031 + 0.412726i
\(879\) 485.174 + 485.174i 0.551961 + 0.551961i
\(880\) 80.8596 140.053i 0.0918859 0.159151i
\(881\) −469.562 + 271.102i −0.532988 + 0.307721i −0.742232 0.670143i \(-0.766233\pi\)
0.209245 + 0.977863i \(0.432900\pi\)
\(882\) −337.617 + 1260.00i −0.382785 + 1.42857i
\(883\) 849.149i 0.961664i −0.876813 0.480832i \(-0.840335\pi\)
0.876813 0.480832i \(-0.159665\pi\)
\(884\) 0 0
\(885\) 50.7251 0.0573165
\(886\) 681.738 + 182.671i 0.769456 + 0.206175i
\(887\) −62.1261 107.606i −0.0700407 0.121314i 0.828878 0.559429i \(-0.188980\pi\)
−0.898919 + 0.438115i \(0.855646\pi\)
\(888\) 11.6713 + 6.73843i 0.0131434 + 0.00758833i
\(889\) −5.15837 + 5.15837i −0.00580244 + 0.00580244i
\(890\) 95.3630 + 355.899i 0.107149 + 0.399887i
\(891\) 257.519 69.0021i 0.289023 0.0774434i
\(892\) −234.360 234.360i −0.262736 0.262736i
\(893\) 448.188 776.284i 0.501890 0.869299i
\(894\) 317.768 183.463i 0.355445 0.205216i
\(895\) −27.4235 + 102.346i −0.0306407 + 0.114353i
\(896\) 497.286i 0.555007i
\(897\) 0 0
\(898\) −622.296 −0.692980
\(899\) −49.6435 13.3019i −0.0552208 0.0147964i
\(900\) −89.1049 154.334i −0.0990055 0.171483i
\(901\) −1044.01 602.757i −1.15872 0.668987i
\(902\) −240.757 + 240.757i −0.266915 + 0.266915i
\(903\) −12.9351 48.2746i −0.0143246 0.0534603i
\(904\) −934.460 + 250.388i −1.03369 + 0.276978i
\(905\) −317.446 317.446i −0.350769 0.350769i
\(906\) 107.870 186.836i 0.119061 0.206220i
\(907\) −241.263 + 139.293i −0.266001 + 0.153576i −0.627069 0.778964i \(-0.715746\pi\)
0.361068 + 0.932540i \(0.382412\pi\)
\(908\) 5.42516 20.2470i 0.00597484 0.0222984i
\(909\) 1068.81i 1.17581i
\(910\) 0 0
\(911\) −702.767 −0.771423 −0.385712 0.922619i \(-0.626044\pi\)
−0.385712 + 0.922619i \(0.626044\pi\)
\(912\) −276.107 73.9827i −0.302749 0.0811214i
\(913\) −306.784 531.365i −0.336018 0.581999i
\(914\) 595.823 + 343.998i 0.651885 + 0.376366i
\(915\) 46.2522 46.2522i 0.0505488 0.0505488i
\(916\) −138.689 517.594i −0.151407 0.565059i
\(917\) −2323.16 + 622.489i −2.53343 + 0.678832i
\(918\) 385.383 + 385.383i 0.419807 + 0.419807i
\(919\) 394.084 682.574i 0.428818 0.742735i −0.567950 0.823063i \(-0.692263\pi\)
0.996768 + 0.0803278i \(0.0255967\pi\)
\(920\) −408.855 + 236.053i −0.444408 + 0.256579i
\(921\) −18.9616 + 70.7655i −0.0205880 + 0.0768355i
\(922\) 748.665i 0.812002i
\(923\) 0 0
\(924\) 161.784 0.175090
\(925\) −22.1364 5.93142i −0.0239312 0.00641234i
\(926\) −25.0582 43.4021i −0.0270607 0.0468705i
\(927\) 655.056 + 378.197i 0.706641 + 0.407979i
\(928\) 432.692 432.692i 0.466263 0.466263i
\(929\) 469.295 + 1751.43i 0.505161 + 1.88529i 0.463379 + 0.886160i \(0.346637\pi\)
0.0417820 + 0.999127i \(0.486697\pi\)
\(930\) −7.73549 + 2.07272i −0.00831773 + 0.00222873i
\(931\) 1722.00 + 1722.00i 1.84962 + 1.84962i
\(932\) 153.424 265.739i 0.164618 0.285127i
\(933\) 76.1781 43.9814i 0.0816485 0.0471398i
\(934\) −121.185 + 452.269i −0.129749 + 0.484228i
\(935\) 255.181i 0.272920i
\(936\) 0 0
\(937\) 1827.40 1.95026 0.975132 0.221626i \(-0.0711363\pi\)
0.975132 + 0.221626i \(0.0711363\pi\)
\(938\) −290.033 77.7140i −0.309203 0.0828508i
\(939\) −5.48220 9.49545i −0.00583834 0.0101123i
\(940\) 96.4606 + 55.6915i 0.102618 + 0.0592463i
\(941\) −473.343 + 473.343i −0.503022 + 0.503022i −0.912376 0.409354i \(-0.865754\pi\)
0.409354 + 0.912376i \(0.365754\pi\)
\(942\) −72.2896 269.788i −0.0767405 0.286400i
\(943\) 630.636 168.978i 0.668755 0.179192i
\(944\) 113.030 + 113.030i 0.119735 + 0.119735i
\(945\) 306.818 531.424i 0.324675 0.562353i
\(946\) −32.2494 + 18.6192i −0.0340903 + 0.0196820i
\(947\) 396.736 1480.64i 0.418940 1.56351i −0.357870 0.933772i \(-0.616497\pi\)
0.776810 0.629735i \(-0.216837\pi\)
\(948\) 60.9819i 0.0643269i
\(949\) 0 0
\(950\) 740.020 0.778968
\(951\) −620.965 166.387i −0.652960 0.174960i
\(952\) −821.527 1422.93i −0.862948 1.49467i
\(953\) −1241.21 716.612i −1.30242 0.751954i −0.321603 0.946875i \(-0.604222\pi\)
−0.980819 + 0.194921i \(0.937555\pi\)
\(954\) 677.063 677.063i 0.709710 0.709710i
\(955\) 94.7337 + 353.551i 0.0991976 + 0.370211i
\(956\) −44.5744 + 11.9437i −0.0466260 + 0.0124934i
\(957\) 235.308 + 235.308i 0.245881 + 0.245881i
\(958\) 302.123 523.292i 0.315368 0.546233i
\(959\) 1129.55 652.149i 1.17785 0.680030i
\(960\) 54.3194 202.723i 0.0565827 0.211169i
\(961\) 958.442i 0.997338i
\(962\) 0 0
\(963\) 662.460 0.687913
\(964\) −92.7996 24.8656i −0.0962652 0.0257942i
\(965\) −219.068 379.437i −0.227013 0.393199i
\(966\) 597.583 + 345.015i 0.618616 + 0.357158i
\(967\) −261.931 + 261.931i −0.270870 + 0.270870i −0.829450 0.558581i \(-0.811346\pi\)
0.558581 + 0.829450i \(0.311346\pi\)
\(968\) 140.832 + 525.592i 0.145488 + 0.542967i
\(969\) 435.676 116.739i 0.449614 0.120474i
\(970\) −417.777 417.777i −0.430698 0.430698i
\(971\) −120.377 + 208.498i −0.123972 + 0.214725i −0.921331 0.388780i \(-0.872897\pi\)
0.797359 + 0.603506i \(0.206230\pi\)
\(972\) 262.376 151.483i 0.269934 0.155847i
\(973\) −755.251 + 2818.63i −0.776208 + 2.89685i
\(974\) 177.613i 0.182354i
\(975\) 0 0
\(976\) 206.125 0.211194
\(977\) −1055.59 282.844i −1.08044 0.289502i −0.325662 0.945486i \(-0.605587\pi\)
−0.754775 + 0.655984i \(0.772254\pi\)
\(978\) −6.61808 11.4628i −0.00676695 0.0117207i
\(979\) 659.966 + 381.031i 0.674122 + 0.389205i
\(980\) −213.974 + 213.974i −0.218341 + 0.218341i
\(981\) 79.2374 + 295.718i 0.0807721 + 0.301446i
\(982\) −1.81934 + 0.487490i −0.00185269 + 0.000496426i
\(983\) 107.710 + 107.710i 0.109572 + 0.109572i 0.759767 0.650195i \(-0.225313\pi\)
−0.650195 + 0.759767i \(0.725313\pi\)
\(984\) −157.950 + 273.577i −0.160518 + 0.278026i
\(985\) 230.489 133.073i 0.233999 0.135100i
\(986\) 207.067 772.786i 0.210008 0.783759i
\(987\) 687.705i 0.696763i
\(988\) 0 0
\(989\) 71.4057 0.0721999
\(990\) −195.778 52.4585i −0.197755 0.0529884i
\(991\) −316.936 548.949i −0.319814 0.553935i 0.660635 0.750708i \(-0.270287\pi\)
−0.980449 + 0.196773i \(0.936954\pi\)
\(992\) 26.3768 + 15.2287i 0.0265896 + 0.0153515i
\(993\) 306.540 306.540i 0.308700 0.308700i
\(994\) 23.4740 + 87.6061i 0.0236157 + 0.0881349i
\(995\) −446.677 + 119.687i −0.448922 + 0.120288i
\(996\) −95.2904 95.2904i −0.0956731 0.0956731i
\(997\) −472.579 + 818.531i −0.474001 + 0.820994i −0.999557 0.0297650i \(-0.990524\pi\)
0.525556 + 0.850759i \(0.323857\pi\)
\(998\) −1254.64 + 724.369i −1.25716 + 0.725821i
\(999\) 6.47760 24.1747i 0.00648409 0.0241989i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.3.f.g.80.5 48
13.2 odd 12 169.3.d.e.99.5 yes 24
13.3 even 3 169.3.d.e.70.8 yes 24
13.4 even 6 inner 169.3.f.g.19.5 48
13.5 odd 4 inner 169.3.f.g.89.5 48
13.6 odd 12 inner 169.3.f.g.150.8 48
13.7 odd 12 inner 169.3.f.g.150.5 48
13.8 odd 4 inner 169.3.f.g.89.8 48
13.9 even 3 inner 169.3.f.g.19.8 48
13.10 even 6 169.3.d.e.70.5 24
13.11 odd 12 169.3.d.e.99.8 yes 24
13.12 even 2 inner 169.3.f.g.80.8 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
169.3.d.e.70.5 24 13.10 even 6
169.3.d.e.70.8 yes 24 13.3 even 3
169.3.d.e.99.5 yes 24 13.2 odd 12
169.3.d.e.99.8 yes 24 13.11 odd 12
169.3.f.g.19.5 48 13.4 even 6 inner
169.3.f.g.19.8 48 13.9 even 3 inner
169.3.f.g.80.5 48 1.1 even 1 trivial
169.3.f.g.80.8 48 13.12 even 2 inner
169.3.f.g.89.5 48 13.5 odd 4 inner
169.3.f.g.89.8 48 13.8 odd 4 inner
169.3.f.g.150.5 48 13.7 odd 12 inner
169.3.f.g.150.8 48 13.6 odd 12 inner