Properties

Label 1690.2.b.a.339.3
Level $1690$
Weight $2$
Character 1690.339
Analytic conductor $13.495$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1690,2,Mod(339,1690)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1690, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1690.339");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1690 = 2 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1690.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4947179416\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.3534400.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 3x^{4} + 16x^{3} + x^{2} - 12x + 40 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 339.3
Root \(2.19082 + 1.44755i\) of defining polynomial
Character \(\chi\) \(=\) 1690.339
Dual form 1690.2.b.a.339.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} +2.89511i q^{3} -1.00000 q^{4} +(-1.44755 - 1.70429i) q^{5} +2.89511 q^{6} +4.38164i q^{7} +1.00000i q^{8} -5.38164 q^{9} +(-1.70429 + 1.44755i) q^{10} -2.00000 q^{11} -2.89511i q^{12} +4.38164 q^{14} +(4.93409 - 4.19082i) q^{15} +1.00000 q^{16} +5.86818i q^{17} +5.38164i q^{18} -0.973070 q^{19} +(1.44755 + 1.70429i) q^{20} -12.6853 q^{21} +2.00000i q^{22} -7.79021i q^{23} -2.89511 q^{24} +(-0.809179 + 4.93409i) q^{25} -6.89511i q^{27} -4.38164i q^{28} -0.973070 q^{29} +(-4.19082 - 4.93409i) q^{30} +1.79021 q^{31} -1.00000i q^{32} -5.79021i q^{33} +5.86818 q^{34} +(7.46757 - 6.34266i) q^{35} +5.38164 q^{36} +0.591429i q^{37} +0.973070i q^{38} +(1.70429 - 1.44755i) q^{40} -4.81714 q^{41} +12.6853i q^{42} -4.68532i q^{43} +2.00000 q^{44} +(7.79021 + 9.17185i) q^{45} -7.79021 q^{46} -0.381642i q^{47} +2.89511i q^{48} -12.1988 q^{49} +(4.93409 + 0.809179i) q^{50} -16.9890 q^{51} -7.79021i q^{53} -6.89511 q^{54} +(2.89511 + 3.40857i) q^{55} -4.38164 q^{56} -2.81714i q^{57} +0.973070i q^{58} -0.973070 q^{59} +(-4.93409 + 4.19082i) q^{60} -0.817143 q^{61} -1.79021i q^{62} -23.5804i q^{63} -1.00000 q^{64} -5.79021 q^{66} -1.79021i q^{67} -5.86818i q^{68} +22.5535 q^{69} +(-6.34266 - 7.46757i) q^{70} +3.92204 q^{71} -5.38164i q^{72} -6.00000i q^{73} +0.591429 q^{74} +(-14.2847 - 2.34266i) q^{75} +0.973070 q^{76} -8.76328i q^{77} -10.9731 q^{79} +(-1.44755 - 1.70429i) q^{80} +3.81714 q^{81} +4.81714i q^{82} -6.97307i q^{83} +12.6853 q^{84} +(10.0010 - 8.49450i) q^{85} -4.68532 q^{86} -2.81714i q^{87} -2.00000i q^{88} +0.973070 q^{89} +(9.17185 - 7.79021i) q^{90} +7.79021i q^{92} +5.18286i q^{93} -0.381642 q^{94} +(1.40857 + 1.65839i) q^{95} +2.89511 q^{96} +18.6074i q^{97} +12.1988i q^{98} +10.7633 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{4} - 10 q^{9} - 4 q^{10} - 12 q^{11} + 4 q^{14} + 16 q^{15} + 6 q^{16} + 4 q^{19} - 24 q^{21} - 16 q^{25} + 4 q^{29} - 14 q^{30} - 24 q^{31} + 8 q^{34} - 6 q^{35} + 10 q^{36} + 4 q^{40} - 4 q^{41}+ \cdots + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1690\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 2.89511i 1.67149i 0.549117 + 0.835745i \(0.314964\pi\)
−0.549117 + 0.835745i \(0.685036\pi\)
\(4\) −1.00000 −0.500000
\(5\) −1.44755 1.70429i −0.647365 0.762180i
\(6\) 2.89511 1.18192
\(7\) 4.38164i 1.65610i 0.560651 + 0.828052i \(0.310551\pi\)
−0.560651 + 0.828052i \(0.689449\pi\)
\(8\) 1.00000i 0.353553i
\(9\) −5.38164 −1.79388
\(10\) −1.70429 + 1.44755i −0.538942 + 0.457757i
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 2.89511i 0.835745i
\(13\) 0 0
\(14\) 4.38164 1.17104
\(15\) 4.93409 4.19082i 1.27398 1.08207i
\(16\) 1.00000 0.250000
\(17\) 5.86818i 1.42324i 0.702564 + 0.711621i \(0.252039\pi\)
−0.702564 + 0.711621i \(0.747961\pi\)
\(18\) 5.38164i 1.26847i
\(19\) −0.973070 −0.223238 −0.111619 0.993751i \(-0.535604\pi\)
−0.111619 + 0.993751i \(0.535604\pi\)
\(20\) 1.44755 + 1.70429i 0.323683 + 0.381090i
\(21\) −12.6853 −2.76816
\(22\) 2.00000i 0.426401i
\(23\) 7.79021i 1.62437i −0.583399 0.812186i \(-0.698278\pi\)
0.583399 0.812186i \(-0.301722\pi\)
\(24\) −2.89511 −0.590961
\(25\) −0.809179 + 4.93409i −0.161836 + 0.986818i
\(26\) 0 0
\(27\) 6.89511i 1.32696i
\(28\) 4.38164i 0.828052i
\(29\) −0.973070 −0.180695 −0.0903473 0.995910i \(-0.528798\pi\)
−0.0903473 + 0.995910i \(0.528798\pi\)
\(30\) −4.19082 4.93409i −0.765136 0.900837i
\(31\) 1.79021 0.321532 0.160766 0.986993i \(-0.448604\pi\)
0.160766 + 0.986993i \(0.448604\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 5.79021i 1.00795i
\(34\) 5.86818 1.00638
\(35\) 7.46757 6.34266i 1.26225 1.07211i
\(36\) 5.38164 0.896940
\(37\) 0.591429i 0.0972303i 0.998818 + 0.0486151i \(0.0154808\pi\)
−0.998818 + 0.0486151i \(0.984519\pi\)
\(38\) 0.973070i 0.157853i
\(39\) 0 0
\(40\) 1.70429 1.44755i 0.269471 0.228878i
\(41\) −4.81714 −0.752311 −0.376156 0.926556i \(-0.622754\pi\)
−0.376156 + 0.926556i \(0.622754\pi\)
\(42\) 12.6853i 1.95739i
\(43\) 4.68532i 0.714505i −0.934008 0.357252i \(-0.883714\pi\)
0.934008 0.357252i \(-0.116286\pi\)
\(44\) 2.00000 0.301511
\(45\) 7.79021 + 9.17185i 1.16130 + 1.36726i
\(46\) −7.79021 −1.14860
\(47\) 0.381642i 0.0556682i −0.999613 0.0278341i \(-0.991139\pi\)
0.999613 0.0278341i \(-0.00886101\pi\)
\(48\) 2.89511i 0.417873i
\(49\) −12.1988 −1.74268
\(50\) 4.93409 + 0.809179i 0.697785 + 0.114435i
\(51\) −16.9890 −2.37894
\(52\) 0 0
\(53\) 7.79021i 1.07007i −0.844831 0.535034i \(-0.820299\pi\)
0.844831 0.535034i \(-0.179701\pi\)
\(54\) −6.89511 −0.938305
\(55\) 2.89511 + 3.40857i 0.390376 + 0.459612i
\(56\) −4.38164 −0.585522
\(57\) 2.81714i 0.373140i
\(58\) 0.973070i 0.127770i
\(59\) −0.973070 −0.126683 −0.0633415 0.997992i \(-0.520176\pi\)
−0.0633415 + 0.997992i \(0.520176\pi\)
\(60\) −4.93409 + 4.19082i −0.636988 + 0.541033i
\(61\) −0.817143 −0.104624 −0.0523122 0.998631i \(-0.516659\pi\)
−0.0523122 + 0.998631i \(0.516659\pi\)
\(62\) 1.79021i 0.227357i
\(63\) 23.5804i 2.97085i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) −5.79021 −0.712726
\(67\) 1.79021i 0.218709i −0.994003 0.109355i \(-0.965122\pi\)
0.994003 0.109355i \(-0.0348784\pi\)
\(68\) 5.86818i 0.711621i
\(69\) 22.5535 2.71512
\(70\) −6.34266 7.46757i −0.758093 0.892545i
\(71\) 3.92204 0.465460 0.232730 0.972541i \(-0.425234\pi\)
0.232730 + 0.972541i \(0.425234\pi\)
\(72\) 5.38164i 0.634233i
\(73\) 6.00000i 0.702247i −0.936329 0.351123i \(-0.885800\pi\)
0.936329 0.351123i \(-0.114200\pi\)
\(74\) 0.591429 0.0687522
\(75\) −14.2847 2.34266i −1.64946 0.270507i
\(76\) 0.973070 0.111619
\(77\) 8.76328i 0.998669i
\(78\) 0 0
\(79\) −10.9731 −1.23457 −0.617283 0.786741i \(-0.711767\pi\)
−0.617283 + 0.786741i \(0.711767\pi\)
\(80\) −1.44755 1.70429i −0.161841 0.190545i
\(81\) 3.81714 0.424127
\(82\) 4.81714i 0.531964i
\(83\) 6.97307i 0.765394i −0.923874 0.382697i \(-0.874995\pi\)
0.923874 0.382697i \(-0.125005\pi\)
\(84\) 12.6853 1.38408
\(85\) 10.0010 8.49450i 1.08477 0.921358i
\(86\) −4.68532 −0.505231
\(87\) 2.81714i 0.302029i
\(88\) 2.00000i 0.213201i
\(89\) 0.973070 0.103145 0.0515726 0.998669i \(-0.483577\pi\)
0.0515726 + 0.998669i \(0.483577\pi\)
\(90\) 9.17185 7.79021i 0.966798 0.821161i
\(91\) 0 0
\(92\) 7.79021i 0.812186i
\(93\) 5.18286i 0.537437i
\(94\) −0.381642 −0.0393633
\(95\) 1.40857 + 1.65839i 0.144516 + 0.170147i
\(96\) 2.89511 0.295481
\(97\) 18.6074i 1.88929i 0.328093 + 0.944645i \(0.393594\pi\)
−0.328093 + 0.944645i \(0.606406\pi\)
\(98\) 12.1988i 1.23226i
\(99\) 10.7633 1.08175
\(100\) 0.809179 4.93409i 0.0809179 0.493409i
\(101\) 14.3437 1.42725 0.713626 0.700527i \(-0.247052\pi\)
0.713626 + 0.700527i \(0.247052\pi\)
\(102\) 16.9890i 1.68216i
\(103\) 9.73635i 0.959351i −0.877446 0.479676i \(-0.840754\pi\)
0.877446 0.479676i \(-0.159246\pi\)
\(104\) 0 0
\(105\) 18.3627 + 21.6194i 1.79201 + 2.10984i
\(106\) −7.79021 −0.756652
\(107\) 5.79021i 0.559761i −0.960035 0.279881i \(-0.909705\pi\)
0.960035 0.279881i \(-0.0902949\pi\)
\(108\) 6.89511i 0.663482i
\(109\) −0.685320 −0.0656417 −0.0328209 0.999461i \(-0.510449\pi\)
−0.0328209 + 0.999461i \(0.510449\pi\)
\(110\) 3.40857 2.89511i 0.324995 0.276038i
\(111\) −1.71225 −0.162519
\(112\) 4.38164i 0.414026i
\(113\) 4.00000i 0.376288i −0.982141 0.188144i \(-0.939753\pi\)
0.982141 0.188144i \(-0.0602472\pi\)
\(114\) −2.81714 −0.263850
\(115\) −13.2767 + 11.2767i −1.23806 + 1.05156i
\(116\) 0.973070 0.0903473
\(117\) 0 0
\(118\) 0.973070i 0.0895784i
\(119\) −25.7122 −2.35704
\(120\) 4.19082 + 4.93409i 0.382568 + 0.450419i
\(121\) −7.00000 −0.636364
\(122\) 0.817143i 0.0739806i
\(123\) 13.9461i 1.25748i
\(124\) −1.79021 −0.160766
\(125\) 9.58043 5.76328i 0.856899 0.515484i
\(126\) −23.5804 −2.10071
\(127\) 11.7902i 1.04621i 0.852268 + 0.523106i \(0.175227\pi\)
−0.852268 + 0.523106i \(0.824773\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 13.5645 1.19429
\(130\) 0 0
\(131\) −16.9890 −1.48434 −0.742168 0.670214i \(-0.766202\pi\)
−0.742168 + 0.670214i \(0.766202\pi\)
\(132\) 5.79021i 0.503973i
\(133\) 4.26365i 0.369705i
\(134\) −1.79021 −0.154651
\(135\) −11.7512 + 9.98103i −1.01138 + 0.859031i
\(136\) −5.86818 −0.503192
\(137\) 4.20979i 0.359666i −0.983697 0.179833i \(-0.942444\pi\)
0.983697 0.179833i \(-0.0575558\pi\)
\(138\) 22.5535i 1.91988i
\(139\) 6.17185 0.523490 0.261745 0.965137i \(-0.415702\pi\)
0.261745 + 0.965137i \(0.415702\pi\)
\(140\) −7.46757 + 6.34266i −0.631125 + 0.536053i
\(141\) 1.10489 0.0930488
\(142\) 3.92204i 0.329130i
\(143\) 0 0
\(144\) −5.38164 −0.448470
\(145\) 1.40857 + 1.65839i 0.116975 + 0.137722i
\(146\) −6.00000 −0.496564
\(147\) 35.3168i 2.91288i
\(148\) 0.591429i 0.0486151i
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) −2.34266 + 14.2847i −0.191277 + 1.16634i
\(151\) −15.5025 −1.26157 −0.630786 0.775957i \(-0.717268\pi\)
−0.630786 + 0.775957i \(0.717268\pi\)
\(152\) 0.973070i 0.0789264i
\(153\) 31.5804i 2.55313i
\(154\) −8.76328 −0.706166
\(155\) −2.59143 3.05103i −0.208149 0.245065i
\(156\) 0 0
\(157\) 8.97307i 0.716129i 0.933697 + 0.358064i \(0.116563\pi\)
−0.933697 + 0.358064i \(0.883437\pi\)
\(158\) 10.9731i 0.872971i
\(159\) 22.5535 1.78861
\(160\) −1.70429 + 1.44755i −0.134736 + 0.114439i
\(161\) 34.1339 2.69013
\(162\) 3.81714i 0.299903i
\(163\) 12.6074i 0.987484i −0.869608 0.493742i \(-0.835629\pi\)
0.869608 0.493742i \(-0.164371\pi\)
\(164\) 4.81714 0.376156
\(165\) −9.86818 + 8.38164i −0.768237 + 0.652510i
\(166\) −6.97307 −0.541215
\(167\) 23.1609i 1.79224i −0.443811 0.896120i \(-0.646374\pi\)
0.443811 0.896120i \(-0.353626\pi\)
\(168\) 12.6853i 0.978694i
\(169\) 0 0
\(170\) −8.49450 10.0010i −0.651498 0.767046i
\(171\) 5.23672 0.400462
\(172\) 4.68532i 0.357252i
\(173\) 19.7902i 1.50462i 0.658808 + 0.752311i \(0.271061\pi\)
−0.658808 + 0.752311i \(0.728939\pi\)
\(174\) −2.81714 −0.213567
\(175\) −21.6194 3.54553i −1.63427 0.268017i
\(176\) −2.00000 −0.150756
\(177\) 2.81714i 0.211749i
\(178\) 0.973070i 0.0729347i
\(179\) −6.17185 −0.461306 −0.230653 0.973036i \(-0.574086\pi\)
−0.230653 + 0.973036i \(0.574086\pi\)
\(180\) −7.79021 9.17185i −0.580648 0.683630i
\(181\) −19.3706 −1.43981 −0.719904 0.694074i \(-0.755814\pi\)
−0.719904 + 0.694074i \(0.755814\pi\)
\(182\) 0 0
\(183\) 2.36571i 0.174879i
\(184\) 7.79021 0.574302
\(185\) 1.00796 0.856125i 0.0741069 0.0629435i
\(186\) 5.18286 0.380026
\(187\) 11.7364i 0.858247i
\(188\) 0.381642i 0.0278341i
\(189\) 30.2119 2.19759
\(190\) 1.65839 1.40857i 0.120312 0.102189i
\(191\) −3.73635 −0.270353 −0.135177 0.990822i \(-0.543160\pi\)
−0.135177 + 0.990822i \(0.543160\pi\)
\(192\) 2.89511i 0.208936i
\(193\) 15.3706i 1.10640i 0.833048 + 0.553201i \(0.186594\pi\)
−0.833048 + 0.553201i \(0.813406\pi\)
\(194\) 18.6074 1.33593
\(195\) 0 0
\(196\) 12.1988 0.871342
\(197\) 26.9890i 1.92289i −0.275004 0.961443i \(-0.588679\pi\)
0.275004 0.961443i \(-0.411321\pi\)
\(198\) 10.7633i 0.764913i
\(199\) −23.3168 −1.65288 −0.826441 0.563023i \(-0.809638\pi\)
−0.826441 + 0.563023i \(0.809638\pi\)
\(200\) −4.93409 0.809179i −0.348893 0.0572176i
\(201\) 5.18286 0.365571
\(202\) 14.3437i 1.00922i
\(203\) 4.26365i 0.299249i
\(204\) 16.9890 1.18947
\(205\) 6.97307 + 8.20979i 0.487020 + 0.573396i
\(206\) −9.73635 −0.678364
\(207\) 41.9241i 2.91393i
\(208\) 0 0
\(209\) 1.94614 0.134617
\(210\) 21.6194 18.3627i 1.49188 1.26715i
\(211\) 15.3547 1.05706 0.528531 0.848914i \(-0.322743\pi\)
0.528531 + 0.848914i \(0.322743\pi\)
\(212\) 7.79021i 0.535034i
\(213\) 11.3547i 0.778012i
\(214\) −5.79021 −0.395811
\(215\) −7.98512 + 6.78225i −0.544581 + 0.462546i
\(216\) 6.89511 0.469153
\(217\) 7.84407i 0.532490i
\(218\) 0.685320i 0.0464157i
\(219\) 17.3706 1.17380
\(220\) −2.89511 3.40857i −0.195188 0.229806i
\(221\) 0 0
\(222\) 1.71225i 0.114919i
\(223\) 24.8331i 1.66295i 0.555566 + 0.831473i \(0.312502\pi\)
−0.555566 + 0.831473i \(0.687498\pi\)
\(224\) 4.38164 0.292761
\(225\) 4.35471 26.5535i 0.290314 1.77023i
\(226\) −4.00000 −0.266076
\(227\) 21.5266i 1.42877i 0.699754 + 0.714384i \(0.253293\pi\)
−0.699754 + 0.714384i \(0.746707\pi\)
\(228\) 2.81714i 0.186570i
\(229\) −2.63146 −0.173892 −0.0869459 0.996213i \(-0.527711\pi\)
−0.0869459 + 0.996213i \(0.527711\pi\)
\(230\) 11.2767 + 13.2767i 0.743567 + 0.875443i
\(231\) 25.3706 1.66927
\(232\) 0.973070i 0.0638852i
\(233\) 29.0290i 1.90175i 0.309568 + 0.950877i \(0.399816\pi\)
−0.309568 + 0.950877i \(0.600184\pi\)
\(234\) 0 0
\(235\) −0.650427 + 0.552447i −0.0424291 + 0.0360377i
\(236\) 0.973070 0.0633415
\(237\) 31.7682i 2.06357i
\(238\) 25.7122i 1.66668i
\(239\) 2.13182 0.137896 0.0689481 0.997620i \(-0.478036\pi\)
0.0689481 + 0.997620i \(0.478036\pi\)
\(240\) 4.93409 4.19082i 0.318494 0.270516i
\(241\) −22.4996 −1.44933 −0.724665 0.689102i \(-0.758005\pi\)
−0.724665 + 0.689102i \(0.758005\pi\)
\(242\) 7.00000i 0.449977i
\(243\) 9.63429i 0.618040i
\(244\) 0.817143 0.0523122
\(245\) 17.6584 + 20.7902i 1.12815 + 1.32824i
\(246\) −13.9461 −0.889173
\(247\) 0 0
\(248\) 1.79021i 0.113679i
\(249\) 20.1878 1.27935
\(250\) −5.76328 9.58043i −0.364502 0.605919i
\(251\) −0.419574 −0.0264833 −0.0132416 0.999912i \(-0.504215\pi\)
−0.0132416 + 0.999912i \(0.504215\pi\)
\(252\) 23.5804i 1.48543i
\(253\) 15.5804i 0.979533i
\(254\) 11.7902 0.739784
\(255\) 24.5925 + 28.9541i 1.54004 + 1.81318i
\(256\) 1.00000 0.0625000
\(257\) 19.6584i 1.22626i 0.789983 + 0.613128i \(0.210089\pi\)
−0.789983 + 0.613128i \(0.789911\pi\)
\(258\) 13.5645i 0.844489i
\(259\) −2.59143 −0.161024
\(260\) 0 0
\(261\) 5.23672 0.324145
\(262\) 16.9890i 1.04958i
\(263\) 10.7633i 0.663692i 0.943333 + 0.331846i \(0.107672\pi\)
−0.943333 + 0.331846i \(0.892328\pi\)
\(264\) 5.79021 0.356363
\(265\) −13.2767 + 11.2767i −0.815584 + 0.692725i
\(266\) −4.26365 −0.261421
\(267\) 2.81714i 0.172406i
\(268\) 1.79021i 0.109355i
\(269\) 14.7633 0.900133 0.450067 0.892995i \(-0.351400\pi\)
0.450067 + 0.892995i \(0.351400\pi\)
\(270\) 9.98103 + 11.7512i 0.607426 + 0.715157i
\(271\) 27.2388 1.65464 0.827320 0.561731i \(-0.189864\pi\)
0.827320 + 0.561731i \(0.189864\pi\)
\(272\) 5.86818i 0.355810i
\(273\) 0 0
\(274\) −4.20979 −0.254323
\(275\) 1.61836 9.86818i 0.0975907 0.595073i
\(276\) −22.5535 −1.35756
\(277\) 2.87100i 0.172502i −0.996273 0.0862509i \(-0.972511\pi\)
0.996273 0.0862509i \(-0.0274887\pi\)
\(278\) 6.17185i 0.370163i
\(279\) −9.63429 −0.576790
\(280\) 6.34266 + 7.46757i 0.379046 + 0.446273i
\(281\) −5.39264 −0.321698 −0.160849 0.986979i \(-0.551423\pi\)
−0.160849 + 0.986979i \(0.551423\pi\)
\(282\) 1.10489i 0.0657954i
\(283\) 24.9511i 1.48319i 0.670850 + 0.741593i \(0.265930\pi\)
−0.670850 + 0.741593i \(0.734070\pi\)
\(284\) −3.92204 −0.232730
\(285\) −4.80122 + 4.07796i −0.284399 + 0.241558i
\(286\) 0 0
\(287\) 21.1070i 1.24591i
\(288\) 5.38164i 0.317116i
\(289\) −17.4355 −1.02562
\(290\) 1.65839 1.40857i 0.0973840 0.0827142i
\(291\) −53.8703 −3.15793
\(292\) 6.00000i 0.351123i
\(293\) 24.9351i 1.45673i 0.685191 + 0.728363i \(0.259719\pi\)
−0.685191 + 0.728363i \(0.740281\pi\)
\(294\) −35.3168 −2.05972
\(295\) 1.40857 + 1.65839i 0.0820102 + 0.0965552i
\(296\) −0.591429 −0.0343761
\(297\) 13.7902i 0.800189i
\(298\) 0 0
\(299\) 0 0
\(300\) 14.2847 + 2.34266i 0.824728 + 0.135254i
\(301\) 20.5294 1.18329
\(302\) 15.5025i 0.892066i
\(303\) 41.5266i 2.38564i
\(304\) −0.973070 −0.0558094
\(305\) 1.18286 + 1.39264i 0.0677302 + 0.0797426i
\(306\) −31.5804 −1.80533
\(307\) 14.8171i 0.845659i 0.906209 + 0.422829i \(0.138963\pi\)
−0.906209 + 0.422829i \(0.861037\pi\)
\(308\) 8.76328i 0.499334i
\(309\) 28.1878 1.60355
\(310\) −3.05103 + 2.59143i −0.173287 + 0.147183i
\(311\) 12.8710 0.729848 0.364924 0.931037i \(-0.381095\pi\)
0.364924 + 0.931037i \(0.381095\pi\)
\(312\) 0 0
\(313\) 19.9220i 1.12606i −0.826436 0.563030i \(-0.809636\pi\)
0.826436 0.563030i \(-0.190364\pi\)
\(314\) 8.97307 0.506380
\(315\) −40.1878 + 34.1339i −2.26432 + 1.92323i
\(316\) 10.9731 0.617283
\(317\) 3.94614i 0.221637i 0.993841 + 0.110819i \(0.0353473\pi\)
−0.993841 + 0.110819i \(0.964653\pi\)
\(318\) 22.5535i 1.26474i
\(319\) 1.94614 0.108963
\(320\) 1.44755 + 1.70429i 0.0809207 + 0.0952725i
\(321\) 16.7633 0.935635
\(322\) 34.1339i 1.90221i
\(323\) 5.71015i 0.317721i
\(324\) −3.81714 −0.212063
\(325\) 0 0
\(326\) −12.6074 −0.698257
\(327\) 1.98407i 0.109719i
\(328\) 4.81714i 0.265982i
\(329\) 1.67222 0.0921923
\(330\) 8.38164 + 9.86818i 0.461394 + 0.543225i
\(331\) −21.4245 −1.17760 −0.588798 0.808280i \(-0.700399\pi\)
−0.588798 + 0.808280i \(0.700399\pi\)
\(332\) 6.97307i 0.382697i
\(333\) 3.18286i 0.174420i
\(334\) −23.1609 −1.26731
\(335\) −3.05103 + 2.59143i −0.166696 + 0.141585i
\(336\) −12.6853 −0.692041
\(337\) 11.2388i 0.612217i −0.951997 0.306109i \(-0.900973\pi\)
0.951997 0.306109i \(-0.0990271\pi\)
\(338\) 0 0
\(339\) 11.5804 0.628962
\(340\) −10.0010 + 8.49450i −0.542383 + 0.460679i
\(341\) −3.58043 −0.193891
\(342\) 5.23672i 0.283169i
\(343\) 22.7792i 1.22996i
\(344\) 4.68532 0.252616
\(345\) −32.6474 38.4376i −1.75768 2.06941i
\(346\) 19.7902 1.06393
\(347\) 16.9490i 0.909868i −0.890525 0.454934i \(-0.849663\pi\)
0.890525 0.454934i \(-0.150337\pi\)
\(348\) 2.81714i 0.151015i
\(349\) −10.2119 −0.546630 −0.273315 0.961925i \(-0.588120\pi\)
−0.273315 + 0.961925i \(0.588120\pi\)
\(350\) −3.54553 + 21.6194i −0.189517 + 1.15561i
\(351\) 0 0
\(352\) 2.00000i 0.106600i
\(353\) 14.9511i 0.795765i −0.917436 0.397882i \(-0.869745\pi\)
0.917436 0.397882i \(-0.130255\pi\)
\(354\) −2.81714 −0.149729
\(355\) −5.67736 6.68427i −0.301323 0.354764i
\(356\) −0.973070 −0.0515726
\(357\) 74.4397i 3.93977i
\(358\) 6.17185i 0.326193i
\(359\) 11.8441 0.625106 0.312553 0.949900i \(-0.398816\pi\)
0.312553 + 0.949900i \(0.398816\pi\)
\(360\) −9.17185 + 7.79021i −0.483399 + 0.410580i
\(361\) −18.0531 −0.950165
\(362\) 19.3706i 1.01810i
\(363\) 20.2657i 1.06368i
\(364\) 0 0
\(365\) −10.2257 + 8.68532i −0.535238 + 0.454610i
\(366\) −2.36571 −0.123658
\(367\) 16.0539i 0.838005i 0.907985 + 0.419002i \(0.137620\pi\)
−0.907985 + 0.419002i \(0.862380\pi\)
\(368\) 7.79021i 0.406093i
\(369\) 25.9241 1.34956
\(370\) −0.856125 1.00796i −0.0445078 0.0524015i
\(371\) 34.1339 1.77214
\(372\) 5.18286i 0.268719i
\(373\) 6.87100i 0.355767i 0.984052 + 0.177883i \(0.0569250\pi\)
−0.984052 + 0.177883i \(0.943075\pi\)
\(374\) −11.7364 −0.606872
\(375\) 16.6853 + 27.7364i 0.861626 + 1.43230i
\(376\) 0.381642 0.0196817
\(377\) 0 0
\(378\) 30.2119i 1.55393i
\(379\) 1.84407 0.0947236 0.0473618 0.998878i \(-0.484919\pi\)
0.0473618 + 0.998878i \(0.484919\pi\)
\(380\) −1.40857 1.65839i −0.0722582 0.0850736i
\(381\) −34.1339 −1.74873
\(382\) 3.73635i 0.191168i
\(383\) 9.25264i 0.472788i −0.971657 0.236394i \(-0.924034\pi\)
0.971657 0.236394i \(-0.0759656\pi\)
\(384\) −2.89511 −0.147740
\(385\) −14.9351 + 12.6853i −0.761165 + 0.646504i
\(386\) 15.3706 0.782345
\(387\) 25.2147i 1.28174i
\(388\) 18.6074i 0.944645i
\(389\) 21.2686 1.07836 0.539180 0.842191i \(-0.318734\pi\)
0.539180 + 0.842191i \(0.318734\pi\)
\(390\) 0 0
\(391\) 45.7143 2.31187
\(392\) 12.1988i 0.616132i
\(393\) 49.1850i 2.48105i
\(394\) −26.9890 −1.35969
\(395\) 15.8841 + 18.7012i 0.799216 + 0.940962i
\(396\) −10.7633 −0.540875
\(397\) 33.4727i 1.67995i 0.542627 + 0.839974i \(0.317430\pi\)
−0.542627 + 0.839974i \(0.682570\pi\)
\(398\) 23.3168i 1.16876i
\(399\) 12.3437 0.617958
\(400\) −0.809179 + 4.93409i −0.0404590 + 0.246704i
\(401\) −17.7364 −0.885711 −0.442856 0.896593i \(-0.646035\pi\)
−0.442856 + 0.896593i \(0.646035\pi\)
\(402\) 5.18286i 0.258497i
\(403\) 0 0
\(404\) −14.3437 −0.713626
\(405\) −5.52552 6.50550i −0.274565 0.323261i
\(406\) −4.26365 −0.211601
\(407\) 1.18286i 0.0586321i
\(408\) 16.9890i 0.841081i
\(409\) 7.68249 0.379875 0.189937 0.981796i \(-0.439171\pi\)
0.189937 + 0.981796i \(0.439171\pi\)
\(410\) 8.20979 6.97307i 0.405452 0.344375i
\(411\) 12.1878 0.601179
\(412\) 9.73635i 0.479676i
\(413\) 4.26365i 0.209800i
\(414\) 41.9241 2.06046
\(415\) −11.8841 + 10.0939i −0.583368 + 0.495490i
\(416\) 0 0
\(417\) 17.8682i 0.875008i
\(418\) 1.94614i 0.0951889i
\(419\) −11.8061 −0.576768 −0.288384 0.957515i \(-0.593118\pi\)
−0.288384 + 0.957515i \(0.593118\pi\)
\(420\) −18.3627 21.6194i −0.896007 1.05492i
\(421\) 26.3678 1.28509 0.642544 0.766249i \(-0.277879\pi\)
0.642544 + 0.766249i \(0.277879\pi\)
\(422\) 15.3547i 0.747456i
\(423\) 2.05386i 0.0998620i
\(424\) 7.79021 0.378326
\(425\) −28.9541 4.74841i −1.40448 0.230332i
\(426\) 11.3547 0.550138
\(427\) 3.58043i 0.173269i
\(428\) 5.79021i 0.279881i
\(429\) 0 0
\(430\) 6.78225 + 7.98512i 0.327069 + 0.385077i
\(431\) −1.71225 −0.0824761 −0.0412381 0.999149i \(-0.513130\pi\)
−0.0412381 + 0.999149i \(0.513130\pi\)
\(432\) 6.89511i 0.331741i
\(433\) 11.9220i 0.572936i 0.958090 + 0.286468i \(0.0924813\pi\)
−0.958090 + 0.286468i \(0.907519\pi\)
\(434\) 7.84407 0.376528
\(435\) −4.80122 + 4.07796i −0.230201 + 0.195523i
\(436\) 0.685320 0.0328209
\(437\) 7.58043i 0.362621i
\(438\) 17.3706i 0.830001i
\(439\) 12.3437 0.589133 0.294567 0.955631i \(-0.404825\pi\)
0.294567 + 0.955631i \(0.404825\pi\)
\(440\) −3.40857 + 2.89511i −0.162497 + 0.138019i
\(441\) 65.6495 3.12617
\(442\) 0 0
\(443\) 28.1580i 1.33783i 0.743340 + 0.668914i \(0.233241\pi\)
−0.743340 + 0.668914i \(0.766759\pi\)
\(444\) 1.71225 0.0812597
\(445\) −1.40857 1.65839i −0.0667727 0.0786152i
\(446\) 24.8331 1.17588
\(447\) 0 0
\(448\) 4.38164i 0.207013i
\(449\) −29.0531 −1.37110 −0.685551 0.728025i \(-0.740439\pi\)
−0.685551 + 0.728025i \(0.740439\pi\)
\(450\) −26.5535 4.35471i −1.25174 0.205283i
\(451\) 9.63429 0.453661
\(452\) 4.00000i 0.188144i
\(453\) 44.8813i 2.10871i
\(454\) 21.5266 1.01029
\(455\) 0 0
\(456\) 2.81714 0.131925
\(457\) 11.5266i 0.539190i 0.962974 + 0.269595i \(0.0868898\pi\)
−0.962974 + 0.269595i \(0.913110\pi\)
\(458\) 2.63146i 0.122960i
\(459\) 40.4617 1.88859
\(460\) 13.2767 11.2767i 0.619032 0.525781i
\(461\) −28.4217 −1.32373 −0.661865 0.749623i \(-0.730235\pi\)
−0.661865 + 0.749623i \(0.730235\pi\)
\(462\) 25.3706i 1.18035i
\(463\) 27.4727i 1.27677i −0.769719 0.638383i \(-0.779604\pi\)
0.769719 0.638383i \(-0.220396\pi\)
\(464\) −0.973070 −0.0451737
\(465\) 8.83307 7.50246i 0.409624 0.347918i
\(466\) 29.0290 1.34474
\(467\) 18.2098i 0.842648i −0.906910 0.421324i \(-0.861565\pi\)
0.906910 0.421324i \(-0.138435\pi\)
\(468\) 0 0
\(469\) 7.84407 0.362206
\(470\) 0.552447 + 0.650427i 0.0254825 + 0.0300019i
\(471\) −25.9780 −1.19700
\(472\) 0.973070i 0.0447892i
\(473\) 9.37064i 0.430862i
\(474\) −31.7682 −1.45916
\(475\) 0.787388 4.80122i 0.0361279 0.220295i
\(476\) 25.7122 1.17852
\(477\) 41.9241i 1.91957i
\(478\) 2.13182i 0.0975073i
\(479\) −33.6045 −1.53543 −0.767715 0.640791i \(-0.778606\pi\)
−0.767715 + 0.640791i \(0.778606\pi\)
\(480\) −4.19082 4.93409i −0.191284 0.225209i
\(481\) 0 0
\(482\) 22.4996i 1.02483i
\(483\) 98.8213i 4.49653i
\(484\) 7.00000 0.318182
\(485\) 31.7122 26.9351i 1.43998 1.22306i
\(486\) −9.63429 −0.437020
\(487\) 8.00000i 0.362515i −0.983436 0.181257i \(-0.941983\pi\)
0.983436 0.181257i \(-0.0580167\pi\)
\(488\) 0.817143i 0.0369903i
\(489\) 36.4996 1.65057
\(490\) 20.7902 17.6584i 0.939206 0.797725i
\(491\) −19.8061 −0.893839 −0.446919 0.894574i \(-0.647479\pi\)
−0.446919 + 0.894574i \(0.647479\pi\)
\(492\) 13.9461i 0.628741i
\(493\) 5.71015i 0.257172i
\(494\) 0 0
\(495\) −15.5804 18.3437i −0.700288 0.824488i
\(496\) 1.79021 0.0803829
\(497\) 17.1850i 0.770851i
\(498\) 20.1878i 0.904636i
\(499\) 9.12900 0.408670 0.204335 0.978901i \(-0.434497\pi\)
0.204335 + 0.978901i \(0.434497\pi\)
\(500\) −9.58043 + 5.76328i −0.428450 + 0.257742i
\(501\) 67.0531 2.99571
\(502\) 0.419574i 0.0187265i
\(503\) 10.6074i 0.472959i −0.971637 0.236479i \(-0.924006\pi\)
0.971637 0.236479i \(-0.0759935\pi\)
\(504\) 23.5804 1.05036
\(505\) −20.7633 24.4458i −0.923954 1.08782i
\(506\) 15.5804 0.692634
\(507\) 0 0
\(508\) 11.7902i 0.523106i
\(509\) −5.63429 −0.249735 −0.124868 0.992173i \(-0.539851\pi\)
−0.124868 + 0.992173i \(0.539851\pi\)
\(510\) 28.9541 24.5925i 1.28211 1.08897i
\(511\) 26.2899 1.16299
\(512\) 1.00000i 0.0441942i
\(513\) 6.70942i 0.296228i
\(514\) 19.6584 0.867094
\(515\) −16.5935 + 14.0939i −0.731198 + 0.621051i
\(516\) −13.5645 −0.597144
\(517\) 0.763283i 0.0335692i
\(518\) 2.59143i 0.113861i
\(519\) −57.2948 −2.51496
\(520\) 0 0
\(521\) −22.8012 −0.998939 −0.499470 0.866331i \(-0.666472\pi\)
−0.499470 + 0.866331i \(0.666472\pi\)
\(522\) 5.23672i 0.229205i
\(523\) 23.6286i 1.03321i −0.856224 0.516604i \(-0.827196\pi\)
0.856224 0.516604i \(-0.172804\pi\)
\(524\) 16.9890 0.742168
\(525\) 10.2647 62.5905i 0.447988 2.73167i
\(526\) 10.7633 0.469301
\(527\) 10.5053i 0.457617i
\(528\) 5.79021i 0.251987i
\(529\) −37.6874 −1.63858
\(530\) 11.2767 + 13.2767i 0.489831 + 0.576705i
\(531\) 5.23672 0.227254
\(532\) 4.26365i 0.184853i
\(533\) 0 0
\(534\) 2.81714 0.121910
\(535\) −9.86818 + 8.38164i −0.426638 + 0.362370i
\(536\) 1.79021 0.0773254
\(537\) 17.8682i 0.771069i
\(538\) 14.7633i 0.636490i
\(539\) 24.3976 1.05088
\(540\) 11.7512 9.98103i 0.505692 0.429515i
\(541\) −11.3147 −0.486456 −0.243228 0.969969i \(-0.578206\pi\)
−0.243228 + 0.969969i \(0.578206\pi\)
\(542\) 27.2388i 1.17001i
\(543\) 56.0801i 2.40663i
\(544\) 5.86818 0.251596
\(545\) 0.992037 + 1.16798i 0.0424942 + 0.0500308i
\(546\) 0 0
\(547\) 16.8412i 0.720080i 0.932937 + 0.360040i \(0.117237\pi\)
−0.932937 + 0.360040i \(0.882763\pi\)
\(548\) 4.20979i 0.179833i
\(549\) 4.39757 0.187684
\(550\) −9.86818 1.61836i −0.420780 0.0690070i
\(551\) 0.946866 0.0403379
\(552\) 22.5535i 0.959941i
\(553\) 48.0801i 2.04457i
\(554\) −2.87100 −0.121977
\(555\) 2.47857 + 2.91816i 0.105210 + 0.123869i
\(556\) −6.17185 −0.261745
\(557\) 35.7523i 1.51487i 0.652909 + 0.757436i \(0.273548\pi\)
−0.652909 + 0.757436i \(0.726452\pi\)
\(558\) 9.63429i 0.407852i
\(559\) 0 0
\(560\) 7.46757 6.34266i 0.315562 0.268026i
\(561\) 33.9780 1.43455
\(562\) 5.39264i 0.227475i
\(563\) 13.3685i 0.563417i 0.959500 + 0.281708i \(0.0909011\pi\)
−0.959500 + 0.281708i \(0.909099\pi\)
\(564\) −1.10489 −0.0465244
\(565\) −6.81714 + 5.79021i −0.286799 + 0.243596i
\(566\) 24.9511 1.04877
\(567\) 16.7254i 0.702399i
\(568\) 3.92204i 0.164565i
\(569\) 29.9621 1.25608 0.628038 0.778183i \(-0.283858\pi\)
0.628038 + 0.778183i \(0.283858\pi\)
\(570\) 4.07796 + 4.80122i 0.170807 + 0.201101i
\(571\) 30.5156 1.27704 0.638518 0.769607i \(-0.279548\pi\)
0.638518 + 0.769607i \(0.279548\pi\)
\(572\) 0 0
\(573\) 10.8171i 0.451893i
\(574\) −21.1070 −0.880989
\(575\) 38.4376 + 6.30368i 1.60296 + 0.262882i
\(576\) 5.38164 0.224235
\(577\) 33.1609i 1.38050i −0.723569 0.690252i \(-0.757500\pi\)
0.723569 0.690252i \(-0.242500\pi\)
\(578\) 17.4355i 0.725221i
\(579\) −44.4996 −1.84934
\(580\) −1.40857 1.65839i −0.0584877 0.0688609i
\(581\) 30.5535 1.26757
\(582\) 53.8703i 2.23299i
\(583\) 15.5804i 0.645275i
\(584\) 6.00000 0.248282
\(585\) 0 0
\(586\) 24.9351 1.03006
\(587\) 14.1339i 0.583369i −0.956515 0.291685i \(-0.905784\pi\)
0.956515 0.291685i \(-0.0942158\pi\)
\(588\) 35.3168i 1.45644i
\(589\) −1.74200 −0.0717780
\(590\) 1.65839 1.40857i 0.0682748 0.0579900i
\(591\) 78.1360 3.21409
\(592\) 0.591429i 0.0243076i
\(593\) 9.39264i 0.385710i −0.981227 0.192855i \(-0.938225\pi\)
0.981227 0.192855i \(-0.0617746\pi\)
\(594\) 13.7902 0.565819
\(595\) 37.2198 + 43.8210i 1.52587 + 1.79649i
\(596\) 0 0
\(597\) 67.5046i 2.76278i
\(598\) 0 0
\(599\) −45.5584 −1.86147 −0.930733 0.365699i \(-0.880830\pi\)
−0.930733 + 0.365699i \(0.880830\pi\)
\(600\) 2.34266 14.2847i 0.0956387 0.583171i
\(601\) 26.7254 1.09015 0.545075 0.838387i \(-0.316501\pi\)
0.545075 + 0.838387i \(0.316501\pi\)
\(602\) 20.5294i 0.836716i
\(603\) 9.63429i 0.392338i
\(604\) 15.5025 0.630786
\(605\) 10.1329 + 11.9300i 0.411960 + 0.485023i
\(606\) 41.5266 1.68690
\(607\) 30.0801i 1.22091i −0.792050 0.610456i \(-0.790986\pi\)
0.792050 0.610456i \(-0.209014\pi\)
\(608\) 0.973070i 0.0394632i
\(609\) 12.3437 0.500192
\(610\) 1.39264 1.18286i 0.0563865 0.0478925i
\(611\) 0 0
\(612\) 31.5804i 1.27656i
\(613\) 17.2686i 0.697471i −0.937221 0.348735i \(-0.886611\pi\)
0.937221 0.348735i \(-0.113389\pi\)
\(614\) 14.8171 0.597971
\(615\) −23.7682 + 20.1878i −0.958427 + 0.814050i
\(616\) 8.76328 0.353083
\(617\) 14.3437i 0.577456i 0.957411 + 0.288728i \(0.0932323\pi\)
−0.957411 + 0.288728i \(0.906768\pi\)
\(618\) 28.1878i 1.13388i
\(619\) −38.4514 −1.54549 −0.772747 0.634715i \(-0.781118\pi\)
−0.772747 + 0.634715i \(0.781118\pi\)
\(620\) 2.59143 + 3.05103i 0.104074 + 0.122532i
\(621\) −53.7143 −2.15548
\(622\) 12.8710i 0.516080i
\(623\) 4.26365i 0.170819i
\(624\) 0 0
\(625\) −23.6905 7.98512i −0.947618 0.319405i
\(626\) −19.9220 −0.796245
\(627\) 5.63429i 0.225012i
\(628\) 8.97307i 0.358064i
\(629\) −3.47061 −0.138382
\(630\) 34.1339 + 40.1878i 1.35993 + 1.60112i
\(631\) 8.18568 0.325867 0.162933 0.986637i \(-0.447904\pi\)
0.162933 + 0.986637i \(0.447904\pi\)
\(632\) 10.9731i 0.436485i
\(633\) 44.4535i 1.76687i
\(634\) 3.94614 0.156721
\(635\) 20.0939 17.0670i 0.797402 0.677282i
\(636\) −22.5535 −0.894304
\(637\) 0 0
\(638\) 1.94614i 0.0770485i
\(639\) −21.1070 −0.834980
\(640\) 1.70429 1.44755i 0.0673678 0.0572196i
\(641\) −12.3657 −0.488416 −0.244208 0.969723i \(-0.578528\pi\)
−0.244208 + 0.969723i \(0.578528\pi\)
\(642\) 16.7633i 0.661594i
\(643\) 46.8972i 1.84945i −0.380642 0.924723i \(-0.624297\pi\)
0.380642 0.924723i \(-0.375703\pi\)
\(644\) −34.1339 −1.34506
\(645\) −19.6353 23.1178i −0.773141 0.910262i
\(646\) −5.71015 −0.224663
\(647\) 26.1878i 1.02955i −0.857326 0.514774i \(-0.827876\pi\)
0.857326 0.514774i \(-0.172124\pi\)
\(648\) 3.81714i 0.149952i
\(649\) 1.94614 0.0763927
\(650\) 0 0
\(651\) −22.7094 −0.890053
\(652\) 12.6074i 0.493742i
\(653\) 10.7633i 0.421200i 0.977572 + 0.210600i \(0.0675417\pi\)
−0.977572 + 0.210600i \(0.932458\pi\)
\(654\) −1.98407 −0.0775834
\(655\) 24.5925 + 28.9541i 0.960908 + 1.13133i
\(656\) −4.81714 −0.188078
\(657\) 32.2899i 1.25975i
\(658\) 1.67222i 0.0651898i
\(659\) −31.4727 −1.22600 −0.613001 0.790082i \(-0.710038\pi\)
−0.613001 + 0.790082i \(0.710038\pi\)
\(660\) 9.86818 8.38164i 0.384118 0.326255i
\(661\) −25.2147 −0.980739 −0.490369 0.871515i \(-0.663138\pi\)
−0.490369 + 0.871515i \(0.663138\pi\)
\(662\) 21.4245i 0.832687i
\(663\) 0 0
\(664\) 6.97307 0.270608
\(665\) −7.26647 + 6.17185i −0.281782 + 0.239334i
\(666\) −3.18286 −0.123333
\(667\) 7.58043i 0.293515i
\(668\) 23.1609i 0.896120i
\(669\) −71.8944 −2.77960
\(670\) 2.59143 + 3.05103i 0.100116 + 0.117872i
\(671\) 1.63429 0.0630909
\(672\) 12.6853i 0.489347i
\(673\) 23.2388i 0.895791i −0.894086 0.447895i \(-0.852174\pi\)
0.894086 0.447895i \(-0.147826\pi\)
\(674\) −11.2388 −0.432903
\(675\) 34.0211 + 5.57938i 1.30947 + 0.214750i
\(676\) 0 0
\(677\) 47.2629i 1.81646i −0.418470 0.908231i \(-0.637433\pi\)
0.418470 0.908231i \(-0.362567\pi\)
\(678\) 11.5804i 0.444744i
\(679\) −81.5308 −3.12886
\(680\) 8.49450 + 10.0010i 0.325749 + 0.383523i
\(681\) −62.3217 −2.38817
\(682\) 3.58043i 0.137102i
\(683\) 6.97307i 0.266817i −0.991061 0.133409i \(-0.957408\pi\)
0.991061 0.133409i \(-0.0425922\pi\)
\(684\) −5.23672 −0.200231
\(685\) −7.17468 + 6.09389i −0.274130 + 0.232836i
\(686\) −22.7792 −0.869714
\(687\) 7.61836i 0.290658i
\(688\) 4.68532i 0.178626i
\(689\) 0 0
\(690\) −38.4376 + 32.6474i −1.46329 + 1.24286i
\(691\) 32.2899 1.22836 0.614182 0.789164i \(-0.289486\pi\)
0.614182 + 0.789164i \(0.289486\pi\)
\(692\) 19.7902i 0.752311i
\(693\) 47.1609i 1.79149i
\(694\) −16.9490 −0.643374
\(695\) −8.93409 10.5186i −0.338889 0.398993i
\(696\) 2.81714 0.106784
\(697\) 28.2678i 1.07072i
\(698\) 10.2119i 0.386526i
\(699\) −84.0421 −3.17877
\(700\) 21.6194 + 3.54553i 0.817137 + 0.134009i
\(701\) −0.521643 −0.0197022 −0.00985109 0.999951i \(-0.503136\pi\)
−0.00985109 + 0.999951i \(0.503136\pi\)
\(702\) 0 0
\(703\) 0.575502i 0.0217055i
\(704\) 2.00000 0.0753778
\(705\) −1.59939 1.88305i −0.0602366 0.0709199i
\(706\) −14.9511 −0.562691
\(707\) 62.8490i 2.36368i
\(708\) 2.81714i 0.105875i
\(709\) −33.2147 −1.24740 −0.623702 0.781662i \(-0.714372\pi\)
−0.623702 + 0.781662i \(0.714372\pi\)
\(710\) −6.68427 + 5.67736i −0.250856 + 0.213067i
\(711\) 59.0531 2.21467
\(712\) 0.973070i 0.0364674i
\(713\) 13.9461i 0.522287i
\(714\) −74.4397 −2.78584
\(715\) 0 0
\(716\) 6.17185 0.230653
\(717\) 6.17185i 0.230492i
\(718\) 11.8441i 0.442017i
\(719\) 4.26365 0.159007 0.0795036 0.996835i \(-0.474666\pi\)
0.0795036 + 0.996835i \(0.474666\pi\)
\(720\) 7.79021 + 9.17185i 0.290324 + 0.341815i
\(721\) 42.6612 1.58879
\(722\) 18.0531i 0.671868i
\(723\) 65.1388i 2.42254i
\(724\) 19.3706 0.719904
\(725\) 0.787388 4.80122i 0.0292429 0.178313i
\(726\) −20.2657 −0.752132
\(727\) 47.5266i 1.76266i 0.472499 + 0.881331i \(0.343352\pi\)
−0.472499 + 0.881331i \(0.656648\pi\)
\(728\) 0 0
\(729\) 39.3437 1.45717
\(730\) 8.68532 + 10.2257i 0.321458 + 0.378471i
\(731\) 27.4943 1.01691
\(732\) 2.36571i 0.0874393i
\(733\) 44.8593i 1.65692i 0.560052 + 0.828458i \(0.310781\pi\)
−0.560052 + 0.828458i \(0.689219\pi\)
\(734\) 16.0539 0.592559
\(735\) −60.1899 + 51.1229i −2.22014 + 1.88570i
\(736\) −7.79021 −0.287151
\(737\) 3.58043i 0.131887i
\(738\) 25.9241i 0.954281i
\(739\) −18.4514 −0.678747 −0.339373 0.940652i \(-0.610215\pi\)
−0.339373 + 0.940652i \(0.610215\pi\)
\(740\) −1.00796 + 0.856125i −0.0370535 + 0.0314718i
\(741\) 0 0
\(742\) 34.1339i 1.25310i
\(743\) 14.2201i 0.521684i −0.965382 0.260842i \(-0.916000\pi\)
0.965382 0.260842i \(-0.0840001\pi\)
\(744\) −5.18286 −0.190013
\(745\) 0 0
\(746\) 6.87100 0.251565
\(747\) 37.5266i 1.37303i
\(748\) 11.7364i 0.429124i
\(749\) 25.3706 0.927023
\(750\) 27.7364 16.6853i 1.01279 0.609262i
\(751\) −28.7951 −1.05075 −0.525375 0.850871i \(-0.676075\pi\)
−0.525375 + 0.850871i \(0.676075\pi\)
\(752\) 0.381642i 0.0139170i
\(753\) 1.21471i 0.0442665i
\(754\) 0 0
\(755\) 22.4406 + 26.4206i 0.816698 + 0.961545i
\(756\) −30.2119 −1.09880
\(757\) 13.7364i 0.499256i 0.968342 + 0.249628i \(0.0803084\pi\)
−0.968342 + 0.249628i \(0.919692\pi\)
\(758\) 1.84407i 0.0669797i
\(759\) −45.1070 −1.63728
\(760\) −1.65839 + 1.40857i −0.0601561 + 0.0510943i
\(761\) −5.39264 −0.195483 −0.0977416 0.995212i \(-0.531162\pi\)
−0.0977416 + 0.995212i \(0.531162\pi\)
\(762\) 34.1339i 1.23654i
\(763\) 3.00282i 0.108710i
\(764\) 3.73635 0.135177
\(765\) −53.8221 + 45.7143i −1.94594 + 1.65281i
\(766\) −9.25264 −0.334312
\(767\) 0 0
\(768\) 2.89511i 0.104468i
\(769\) −2.34371 −0.0845163 −0.0422582 0.999107i \(-0.513455\pi\)
−0.0422582 + 0.999107i \(0.513455\pi\)
\(770\) 12.6853 + 14.9351i 0.457147 + 0.538225i
\(771\) −56.9131 −2.04968
\(772\) 15.3706i 0.553201i
\(773\) 29.3547i 1.05582i −0.849302 0.527908i \(-0.822977\pi\)
0.849302 0.527908i \(-0.177023\pi\)
\(774\) 25.2147 0.906324
\(775\) −1.44860 + 8.83307i −0.0520354 + 0.317293i
\(776\) −18.6074 −0.667965
\(777\) 7.50246i 0.269149i
\(778\) 21.2686i 0.762515i
\(779\) 4.68742 0.167944
\(780\) 0 0
\(781\) −7.84407 −0.280683
\(782\) 45.7143i 1.63474i
\(783\) 6.70942i 0.239775i
\(784\) −12.1988 −0.435671
\(785\) 15.2927 12.9890i 0.545819 0.463597i
\(786\) −49.1850 −1.75437
\(787\) 34.6336i 1.23455i −0.786746 0.617277i \(-0.788236\pi\)
0.786746 0.617277i \(-0.211764\pi\)
\(788\) 26.9890i 0.961443i
\(789\) −31.1609 −1.10936
\(790\) 18.7012 15.8841i 0.665360 0.565131i
\(791\) 17.5266 0.623173
\(792\) 10.7633i 0.382457i
\(793\) 0 0
\(794\) 33.4727 1.18790
\(795\) −32.6474 38.4376i −1.15788 1.36324i
\(796\) 23.3168 0.826441
\(797\) 27.8221i 0.985508i 0.870169 + 0.492754i \(0.164010\pi\)
−0.870169 + 0.492754i \(0.835990\pi\)
\(798\) 12.3437i 0.436963i
\(799\) 2.23954 0.0792293
\(800\) 4.93409 + 0.809179i 0.174446 + 0.0286088i
\(801\) −5.23672 −0.185030
\(802\) 17.7364i 0.626292i
\(803\) 12.0000i 0.423471i
\(804\) −5.18286 −0.182785
\(805\) −49.4107 58.1740i −1.74150 2.05036i
\(806\) 0 0
\(807\) 42.7413i 1.50456i
\(808\) 14.3437i 0.504610i
\(809\) 23.1768 0.814852 0.407426 0.913238i \(-0.366426\pi\)
0.407426 + 0.913238i \(0.366426\pi\)
\(810\) −6.50550 + 5.52552i −0.228580 + 0.194147i
\(811\) −36.0857 −1.26714 −0.633570 0.773685i \(-0.718411\pi\)
−0.633570 + 0.773685i \(0.718411\pi\)
\(812\) 4.26365i 0.149625i
\(813\) 78.8593i 2.76572i
\(814\) −1.18286 −0.0414591
\(815\) −21.4865 + 18.2498i −0.752641 + 0.639263i
\(816\) −16.9890 −0.594734
\(817\) 4.55915i 0.159504i
\(818\) 7.68249i 0.268612i
\(819\) 0 0
\(820\) −6.97307 8.20979i −0.243510 0.286698i
\(821\) −38.3196 −1.33736 −0.668682 0.743549i \(-0.733141\pi\)
−0.668682 + 0.743549i \(0.733141\pi\)
\(822\) 12.1878i 0.425098i
\(823\) 53.3486i 1.85962i −0.368044 0.929808i \(-0.619973\pi\)
0.368044 0.929808i \(-0.380027\pi\)
\(824\) 9.73635 0.339182
\(825\) 28.5694 + 4.68532i 0.994660 + 0.163122i
\(826\) −4.26365 −0.148351
\(827\) 14.5053i 0.504398i −0.967675 0.252199i \(-0.918846\pi\)
0.967675 0.252199i \(-0.0811538\pi\)
\(828\) 41.9241i 1.45696i
\(829\) 13.3926 0.465146 0.232573 0.972579i \(-0.425286\pi\)
0.232573 + 0.972579i \(0.425286\pi\)
\(830\) 10.0939 + 11.8841i 0.350364 + 0.412503i
\(831\) 8.31186 0.288335
\(832\) 0 0
\(833\) 71.5846i 2.48026i
\(834\) 17.8682 0.618724
\(835\) −39.4727 + 33.5266i −1.36601 + 1.16023i
\(836\) −1.94614 −0.0673087
\(837\) 12.3437i 0.426661i
\(838\) 11.8061i 0.407836i
\(839\) 2.52164 0.0870568 0.0435284 0.999052i \(-0.486140\pi\)
0.0435284 + 0.999052i \(0.486140\pi\)
\(840\) −21.6194 + 18.3627i −0.745940 + 0.633573i
\(841\) −28.0531 −0.967349
\(842\) 26.3678i 0.908695i
\(843\) 15.6123i 0.537715i
\(844\) −15.3547 −0.528531
\(845\) 0 0
\(846\) 2.05386 0.0706131
\(847\) 30.6715i 1.05388i
\(848\) 7.79021i 0.267517i
\(849\) −72.2360 −2.47913
\(850\) −4.74841 + 28.9541i −0.162869 + 0.993118i
\(851\) 4.60736 0.157938
\(852\) 11.3547i 0.389006i
\(853\) 36.4078i 1.24658i 0.781990 + 0.623290i \(0.214205\pi\)
−0.781990 + 0.623290i \(0.785795\pi\)
\(854\) −3.58043 −0.122520
\(855\) −7.58043 8.92486i −0.259245 0.305224i
\(856\) 5.79021 0.197905
\(857\) 21.4188i 0.731654i 0.930683 + 0.365827i \(0.119214\pi\)
−0.930683 + 0.365827i \(0.880786\pi\)
\(858\) 0 0
\(859\) 41.9461 1.43118 0.715592 0.698519i \(-0.246157\pi\)
0.715592 + 0.698519i \(0.246157\pi\)
\(860\) 7.98512 6.78225i 0.272290 0.231273i
\(861\) 61.1070 2.08252
\(862\) 1.71225i 0.0583194i
\(863\) 38.3278i 1.30469i 0.757921 + 0.652346i \(0.226215\pi\)
−0.757921 + 0.652346i \(0.773785\pi\)
\(864\) −6.89511 −0.234576
\(865\) 33.7282 28.6474i 1.14679 0.974040i
\(866\) 11.9220 0.405127
\(867\) 50.4776i 1.71431i
\(868\) 7.84407i 0.266245i
\(869\) 21.9461 0.744472
\(870\) 4.07796 + 4.80122i 0.138256 + 0.162776i
\(871\) 0 0
\(872\) 0.685320i 0.0232078i
\(873\) 100.138i 3.38916i
\(874\) 7.58043 0.256412
\(875\) 25.2526 + 41.9780i 0.853695 + 1.41912i
\(876\) −17.3706 −0.586900
\(877\) 43.3327i 1.46324i 0.681712 + 0.731621i \(0.261236\pi\)
−0.681712 + 0.731621i \(0.738764\pi\)
\(878\) 12.3437i 0.416580i
\(879\) −72.1899 −2.43490
\(880\) 2.89511 + 3.40857i 0.0975940 + 0.114903i
\(881\) 1.09107 0.0367590 0.0183795 0.999831i \(-0.494149\pi\)
0.0183795 + 0.999831i \(0.494149\pi\)
\(882\) 65.6495i 2.21053i
\(883\) 28.3735i 0.954843i −0.878674 0.477422i \(-0.841571\pi\)
0.878674 0.477422i \(-0.158429\pi\)
\(884\) 0 0
\(885\) −4.80122 + 4.07796i −0.161391 + 0.137079i
\(886\) 28.1580 0.945987
\(887\) 4.50529i 0.151273i 0.997135 + 0.0756364i \(0.0240988\pi\)
−0.997135 + 0.0756364i \(0.975901\pi\)
\(888\) 1.71225i 0.0574593i
\(889\) −51.6605 −1.73264
\(890\) −1.65839 + 1.40857i −0.0555894 + 0.0472154i
\(891\) −7.63429 −0.255758
\(892\) 24.8331i 0.831473i
\(893\) 0.371364i 0.0124272i
\(894\) 0 0
\(895\) 8.93409 + 10.5186i 0.298634 + 0.351598i
\(896\) −4.38164 −0.146380
\(897\) 0 0
\(898\) 29.0531i 0.969516i
\(899\) −1.74200 −0.0580991
\(900\) −4.35471 + 26.5535i −0.145157 + 0.885117i
\(901\) 45.7143 1.52297
\(902\) 9.63429i 0.320787i
\(903\) 59.4348i 1.97787i
\(904\) 4.00000 0.133038
\(905\) 28.0400 + 33.0131i 0.932082 + 1.09739i
\(906\) −44.8813 −1.49108
\(907\) 48.0503i 1.59548i −0.602999 0.797742i \(-0.706028\pi\)
0.602999 0.797742i \(-0.293972\pi\)
\(908\) 21.5266i 0.714384i
\(909\) −77.1927 −2.56032
\(910\) 0 0
\(911\) 12.5755 0.416645 0.208322 0.978060i \(-0.433200\pi\)
0.208322 + 0.978060i \(0.433200\pi\)
\(912\) 2.81714i 0.0932849i
\(913\) 13.9461i 0.461550i
\(914\) 11.5266 0.381265
\(915\) −4.03185 + 3.42450i −0.133289 + 0.113210i
\(916\) 2.63146 0.0869459
\(917\) 74.4397i 2.45822i
\(918\) 40.4617i 1.33544i
\(919\) −23.6881 −0.781400 −0.390700 0.920518i \(-0.627767\pi\)
−0.390700 + 0.920518i \(0.627767\pi\)
\(920\) −11.2767 13.2767i −0.371783 0.437721i
\(921\) −42.8972 −1.41351
\(922\) 28.4217i 0.936018i
\(923\) 0 0
\(924\) −25.3706 −0.834633
\(925\) −2.91816 0.478572i −0.0959486 0.0157353i
\(926\) −27.4727 −0.902809
\(927\) 52.3976i 1.72096i
\(928\) 0.973070i 0.0319426i
\(929\) 45.0850 1.47919 0.739595 0.673052i \(-0.235017\pi\)
0.739595 + 0.673052i \(0.235017\pi\)
\(930\) −7.50246 8.83307i −0.246015 0.289648i
\(931\) 11.8703 0.389033
\(932\) 29.0290i 0.950877i
\(933\) 37.2629i 1.21993i
\(934\) −18.2098 −0.595842
\(935\) −20.0021 + 16.9890i −0.654139 + 0.555600i
\(936\) 0 0
\(937\) 28.7951i 0.940696i 0.882481 + 0.470348i \(0.155872\pi\)
−0.882481 + 0.470348i \(0.844128\pi\)
\(938\) 7.84407i 0.256118i
\(939\) 57.6764 1.88220
\(940\) 0.650427 0.552447i 0.0212146 0.0180188i
\(941\) 2.84690 0.0928062 0.0464031 0.998923i \(-0.485224\pi\)
0.0464031 + 0.998923i \(0.485224\pi\)
\(942\) 25.9780i 0.846409i
\(943\) 37.5266i 1.22203i
\(944\) −0.973070 −0.0316707
\(945\) −43.7333 51.4897i −1.42264 1.67496i
\(946\) 9.37064 0.304666
\(947\) 11.3168i 0.367746i −0.982950 0.183873i \(-0.941136\pi\)
0.982950 0.183873i \(-0.0588635\pi\)
\(948\) 31.7682i 1.03178i
\(949\) 0 0
\(950\) −4.80122 0.787388i −0.155772 0.0255462i
\(951\) −11.4245 −0.370465
\(952\) 25.7122i 0.833339i
\(953\) 28.4535i 0.921700i 0.887478 + 0.460850i \(0.152455\pi\)
−0.887478 + 0.460850i \(0.847545\pi\)
\(954\) 41.9241 1.35734
\(955\) 5.40857 + 6.36781i 0.175017 + 0.206058i
\(956\) −2.13182 −0.0689481
\(957\) 5.63429i 0.182131i
\(958\) 33.6045i 1.08571i
\(959\) 18.4458 0.595645
\(960\) −4.93409 + 4.19082i −0.159247 + 0.135258i
\(961\) −27.7951 −0.896617
\(962\) 0 0
\(963\) 31.1609i 1.00414i
\(964\) 22.4996 0.724665
\(965\) 26.1960 22.2498i 0.843278 0.716247i
\(966\) 98.8213 3.17952
\(967\) 1.48863i 0.0478713i 0.999714 + 0.0239356i \(0.00761968\pi\)
−0.999714 + 0.0239356i \(0.992380\pi\)
\(968\) 7.00000i 0.224989i
\(969\) 16.5315 0.531068
\(970\) −26.9351 31.7122i −0.864835 1.01822i
\(971\) 49.6446 1.59317 0.796585 0.604527i \(-0.206638\pi\)
0.796585 + 0.604527i \(0.206638\pi\)
\(972\) 9.63429i 0.309020i
\(973\) 27.0429i 0.866954i
\(974\) −8.00000 −0.256337
\(975\) 0 0
\(976\) −0.817143 −0.0261561
\(977\) 39.6066i 1.26713i 0.773690 + 0.633564i \(0.218409\pi\)
−0.773690 + 0.633564i \(0.781591\pi\)
\(978\) 36.4996i 1.16713i
\(979\) −1.94614 −0.0621989
\(980\) −17.6584 20.7902i −0.564077 0.664119i
\(981\) 3.68814 0.117753
\(982\) 19.8061i 0.632039i
\(983\) 0.725351i 0.0231351i −0.999933 0.0115676i \(-0.996318\pi\)
0.999933 0.0115676i \(-0.00368215\pi\)
\(984\) 13.9461 0.444587
\(985\) −45.9970 + 39.0680i −1.46559 + 1.24481i
\(986\) −5.71015 −0.181848
\(987\) 4.84125i 0.154099i
\(988\) 0 0
\(989\) −36.4996 −1.16062
\(990\) −18.3437 + 15.5804i −0.583001 + 0.495178i
\(991\) −35.5046 −1.12784 −0.563920 0.825830i \(-0.690707\pi\)
−0.563920 + 0.825830i \(0.690707\pi\)
\(992\) 1.79021i 0.0568393i
\(993\) 62.0262i 1.96834i
\(994\) 17.1850 0.545074
\(995\) 33.7523 + 39.7385i 1.07002 + 1.25979i
\(996\) −20.1878 −0.639674
\(997\) 10.4196i 0.329991i 0.986294 + 0.164996i \(0.0527610\pi\)
−0.986294 + 0.164996i \(0.947239\pi\)
\(998\) 9.12900i 0.288973i
\(999\) 4.07796 0.129021
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1690.2.b.a.339.3 6
5.2 odd 4 8450.2.a.cc.1.3 3
5.3 odd 4 8450.2.a.bs.1.1 3
5.4 even 2 inner 1690.2.b.a.339.4 6
13.5 odd 4 1690.2.c.a.1689.6 6
13.8 odd 4 1690.2.c.d.1689.6 6
13.12 even 2 130.2.b.a.79.6 yes 6
39.38 odd 2 1170.2.e.f.469.1 6
52.51 odd 2 1040.2.d.b.209.1 6
65.12 odd 4 650.2.a.n.1.3 3
65.34 odd 4 1690.2.c.a.1689.1 6
65.38 odd 4 650.2.a.o.1.1 3
65.44 odd 4 1690.2.c.d.1689.1 6
65.64 even 2 130.2.b.a.79.1 6
195.38 even 4 5850.2.a.cp.1.1 3
195.77 even 4 5850.2.a.cs.1.3 3
195.194 odd 2 1170.2.e.f.469.4 6
260.103 even 4 5200.2.a.cf.1.3 3
260.207 even 4 5200.2.a.ce.1.1 3
260.259 odd 2 1040.2.d.b.209.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.b.a.79.1 6 65.64 even 2
130.2.b.a.79.6 yes 6 13.12 even 2
650.2.a.n.1.3 3 65.12 odd 4
650.2.a.o.1.1 3 65.38 odd 4
1040.2.d.b.209.1 6 52.51 odd 2
1040.2.d.b.209.6 6 260.259 odd 2
1170.2.e.f.469.1 6 39.38 odd 2
1170.2.e.f.469.4 6 195.194 odd 2
1690.2.b.a.339.3 6 1.1 even 1 trivial
1690.2.b.a.339.4 6 5.4 even 2 inner
1690.2.c.a.1689.1 6 65.34 odd 4
1690.2.c.a.1689.6 6 13.5 odd 4
1690.2.c.d.1689.1 6 65.44 odd 4
1690.2.c.d.1689.6 6 13.8 odd 4
5200.2.a.ce.1.1 3 260.207 even 4
5200.2.a.cf.1.3 3 260.103 even 4
5850.2.a.cp.1.1 3 195.38 even 4
5850.2.a.cs.1.3 3 195.77 even 4
8450.2.a.bs.1.1 3 5.3 odd 4
8450.2.a.cc.1.3 3 5.2 odd 4