Properties

Label 170.2.d.c
Level $170$
Weight $2$
Character orbit 170.d
Analytic conductor $1.357$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [170,2,Mod(169,170)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(170, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("170.169");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 170 = 2 \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 170.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.35745683436\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{8}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \zeta_{8}^{2} q^{2} + (2 \zeta_{8}^{3} - 2 \zeta_{8}) q^{3} - q^{4} + ( - \zeta_{8}^{3} - 2 \zeta_{8}) q^{5} + ( - 2 \zeta_{8}^{3} - 2 \zeta_{8}) q^{6} + ( - 3 \zeta_{8}^{3} + 3 \zeta_{8}) q^{7} - \zeta_{8}^{2} q^{8} + 5 q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + \zeta_{8}^{2} q^{2} + (2 \zeta_{8}^{3} - 2 \zeta_{8}) q^{3} - q^{4} + ( - \zeta_{8}^{3} - 2 \zeta_{8}) q^{5} + ( - 2 \zeta_{8}^{3} - 2 \zeta_{8}) q^{6} + ( - 3 \zeta_{8}^{3} + 3 \zeta_{8}) q^{7} - \zeta_{8}^{2} q^{8} + 5 q^{9} + ( - 2 \zeta_{8}^{3} + \zeta_{8}) q^{10} + ( - 2 \zeta_{8}^{3} + 2 \zeta_{8}) q^{12} - 6 \zeta_{8}^{2} q^{13} + (3 \zeta_{8}^{3} + 3 \zeta_{8}) q^{14} + (6 \zeta_{8}^{2} + 2) q^{15} + q^{16} + (2 \zeta_{8}^{3} - 3 \zeta_{8}^{2} - 2 \zeta_{8}) q^{17} + 5 \zeta_{8}^{2} q^{18} + 2 q^{19} + (\zeta_{8}^{3} + 2 \zeta_{8}) q^{20} - 12 q^{21} + ( - \zeta_{8}^{3} + \zeta_{8}) q^{23} + (2 \zeta_{8}^{3} + 2 \zeta_{8}) q^{24} + (3 \zeta_{8}^{2} - 4) q^{25} + 6 q^{26} + (4 \zeta_{8}^{3} - 4 \zeta_{8}) q^{27} + (3 \zeta_{8}^{3} - 3 \zeta_{8}) q^{28} + ( - 3 \zeta_{8}^{3} - 3 \zeta_{8}) q^{29} + (2 \zeta_{8}^{2} - 6) q^{30} + ( - 3 \zeta_{8}^{3} - 3 \zeta_{8}) q^{31} + \zeta_{8}^{2} q^{32} + ( - 2 \zeta_{8}^{3} - 2 \zeta_{8} + 3) q^{34} + ( - 9 \zeta_{8}^{2} - 3) q^{35} - 5 q^{36} + ( - 3 \zeta_{8}^{3} + 3 \zeta_{8}) q^{37} + 2 \zeta_{8}^{2} q^{38} + (12 \zeta_{8}^{3} + 12 \zeta_{8}) q^{39} + (2 \zeta_{8}^{3} - \zeta_{8}) q^{40} + (6 \zeta_{8}^{3} + 6 \zeta_{8}) q^{41} - 12 \zeta_{8}^{2} q^{42} + 6 \zeta_{8}^{2} q^{43} + ( - 5 \zeta_{8}^{3} - 10 \zeta_{8}) q^{45} + (\zeta_{8}^{3} + \zeta_{8}) q^{46} + (2 \zeta_{8}^{3} - 2 \zeta_{8}) q^{48} + 11 q^{49} + ( - 4 \zeta_{8}^{2} - 3) q^{50} + (6 \zeta_{8}^{3} + 6 \zeta_{8} + 8) q^{51} + 6 \zeta_{8}^{2} q^{52} - 6 \zeta_{8}^{2} q^{53} + ( - 4 \zeta_{8}^{3} - 4 \zeta_{8}) q^{54} + ( - 3 \zeta_{8}^{3} - 3 \zeta_{8}) q^{56} + (4 \zeta_{8}^{3} - 4 \zeta_{8}) q^{57} + ( - 3 \zeta_{8}^{3} + 3 \zeta_{8}) q^{58} - 12 q^{59} + ( - 6 \zeta_{8}^{2} - 2) q^{60} + ( - 3 \zeta_{8}^{3} - 3 \zeta_{8}) q^{61} + ( - 3 \zeta_{8}^{3} + 3 \zeta_{8}) q^{62} + ( - 15 \zeta_{8}^{3} + 15 \zeta_{8}) q^{63} - q^{64} + (12 \zeta_{8}^{3} - 6 \zeta_{8}) q^{65} + 12 \zeta_{8}^{2} q^{67} + ( - 2 \zeta_{8}^{3} + \cdots + 2 \zeta_{8}) q^{68} + \cdots + 11 \zeta_{8}^{2} q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} + 20 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{4} + 20 q^{9} + 8 q^{15} + 4 q^{16} + 8 q^{19} - 48 q^{21} - 16 q^{25} + 24 q^{26} - 24 q^{30} + 12 q^{34} - 12 q^{35} - 20 q^{36} + 44 q^{49} - 12 q^{50} + 32 q^{51} - 48 q^{59} - 8 q^{60} - 4 q^{64} - 16 q^{69} + 36 q^{70} - 8 q^{76} + 4 q^{81} + 48 q^{84} + 8 q^{85} - 24 q^{86} + 48 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/170\mathbb{Z}\right)^\times\).

\(n\) \(71\) \(137\)
\(\chi(n)\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
169.1
0.707107 0.707107i
−0.707107 + 0.707107i
0.707107 + 0.707107i
−0.707107 0.707107i
1.00000i −2.82843 −1.00000 −0.707107 + 2.12132i 2.82843i 4.24264 1.00000i 5.00000 2.12132 + 0.707107i
169.2 1.00000i 2.82843 −1.00000 0.707107 2.12132i 2.82843i −4.24264 1.00000i 5.00000 −2.12132 0.707107i
169.3 1.00000i −2.82843 −1.00000 −0.707107 2.12132i 2.82843i 4.24264 1.00000i 5.00000 2.12132 0.707107i
169.4 1.00000i 2.82843 −1.00000 0.707107 + 2.12132i 2.82843i −4.24264 1.00000i 5.00000 −2.12132 + 0.707107i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
17.b even 2 1 inner
85.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 170.2.d.c 4
3.b odd 2 1 1530.2.f.h 4
4.b odd 2 1 1360.2.o.d 4
5.b even 2 1 inner 170.2.d.c 4
5.c odd 4 1 850.2.b.b 2
5.c odd 4 1 850.2.b.g 2
15.d odd 2 1 1530.2.f.h 4
17.b even 2 1 inner 170.2.d.c 4
20.d odd 2 1 1360.2.o.d 4
51.c odd 2 1 1530.2.f.h 4
68.d odd 2 1 1360.2.o.d 4
85.c even 2 1 inner 170.2.d.c 4
85.g odd 4 1 850.2.b.b 2
85.g odd 4 1 850.2.b.g 2
255.h odd 2 1 1530.2.f.h 4
340.d odd 2 1 1360.2.o.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
170.2.d.c 4 1.a even 1 1 trivial
170.2.d.c 4 5.b even 2 1 inner
170.2.d.c 4 17.b even 2 1 inner
170.2.d.c 4 85.c even 2 1 inner
850.2.b.b 2 5.c odd 4 1
850.2.b.b 2 85.g odd 4 1
850.2.b.g 2 5.c odd 4 1
850.2.b.g 2 85.g odd 4 1
1360.2.o.d 4 4.b odd 2 1
1360.2.o.d 4 20.d odd 2 1
1360.2.o.d 4 68.d odd 2 1
1360.2.o.d 4 340.d odd 2 1
1530.2.f.h 4 3.b odd 2 1
1530.2.f.h 4 15.d odd 2 1
1530.2.f.h 4 51.c odd 2 1
1530.2.f.h 4 255.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - 8 \) acting on \(S_{2}^{\mathrm{new}}(170, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$3$ \( (T^{2} - 8)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} + 8T^{2} + 25 \) Copy content Toggle raw display
$7$ \( (T^{2} - 18)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + 2T^{2} + 289 \) Copy content Toggle raw display
$19$ \( (T - 2)^{4} \) Copy content Toggle raw display
$23$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 18)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 18)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} - 18)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} + 72)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} \) Copy content Toggle raw display
$53$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
$59$ \( (T + 12)^{4} \) Copy content Toggle raw display
$61$ \( (T^{2} + 18)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + 144)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} + 18)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} - 72)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + 18)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
$89$ \( (T - 12)^{4} \) Copy content Toggle raw display
$97$ \( T^{4} \) Copy content Toggle raw display
show more
show less