Properties

Label 171.10.a.c.1.4
Level $171$
Weight $10$
Character 171.1
Self dual yes
Analytic conductor $88.071$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [171,10,Mod(1,171)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(171, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("171.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 171 = 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 171.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(88.0711279840\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 2124x^{4} - 384x^{3} + 1071312x^{2} + 1260144x - 135644992 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 19)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-15.8741\) of defining polynomial
Character \(\chi\) \(=\) 171.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+21.8741 q^{2} -33.5233 q^{4} +698.718 q^{5} +5865.75 q^{7} -11932.8 q^{8} +15283.8 q^{10} +69006.8 q^{11} -99409.7 q^{13} +128308. q^{14} -243856. q^{16} +357590. q^{17} -130321. q^{19} -23423.3 q^{20} +1.50946e6 q^{22} +620216. q^{23} -1.46492e6 q^{25} -2.17450e6 q^{26} -196639. q^{28} -1.49302e6 q^{29} +4.48863e6 q^{31} +775473. q^{32} +7.82197e6 q^{34} +4.09851e6 q^{35} +1.88749e7 q^{37} -2.85066e6 q^{38} -8.33769e6 q^{40} -1.29370e7 q^{41} -1.66989e7 q^{43} -2.31333e6 q^{44} +1.35667e7 q^{46} +3.70039e7 q^{47} -5.94653e6 q^{49} -3.20438e7 q^{50} +3.33254e6 q^{52} +3.57930e7 q^{53} +4.82163e7 q^{55} -6.99951e7 q^{56} -3.26584e7 q^{58} +4.81006e7 q^{59} +5.33864e7 q^{61} +9.81847e7 q^{62} +1.41817e8 q^{64} -6.94594e7 q^{65} +2.23693e8 q^{67} -1.19876e7 q^{68} +8.96513e7 q^{70} +7.22238e7 q^{71} +1.56596e8 q^{73} +4.12871e8 q^{74} +4.36879e6 q^{76} +4.04777e8 q^{77} -2.65933e7 q^{79} -1.70387e8 q^{80} -2.82985e8 q^{82} +7.06750e8 q^{83} +2.49855e8 q^{85} -3.65273e8 q^{86} -8.23447e8 q^{88} -1.88064e8 q^{89} -5.83113e8 q^{91} -2.07917e7 q^{92} +8.09428e8 q^{94} -9.10577e7 q^{95} +1.15689e9 q^{97} -1.30075e8 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 33 q^{2} + 1365 q^{4} + 3612 q^{5} + 4085 q^{7} + 23511 q^{8} - 93884 q^{10} + 69312 q^{11} - 191747 q^{13} + 644691 q^{14} + 13905 q^{16} + 288195 q^{17} - 781926 q^{19} + 1551444 q^{20} + 2409710 q^{22}+ \cdots + 4245664590 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 21.8741 0.966708 0.483354 0.875425i \(-0.339418\pi\)
0.483354 + 0.875425i \(0.339418\pi\)
\(3\) 0 0
\(4\) −33.5233 −0.0654752
\(5\) 698.718 0.499962 0.249981 0.968251i \(-0.419576\pi\)
0.249981 + 0.968251i \(0.419576\pi\)
\(6\) 0 0
\(7\) 5865.75 0.923385 0.461692 0.887040i \(-0.347242\pi\)
0.461692 + 0.887040i \(0.347242\pi\)
\(8\) −11932.8 −1.03000
\(9\) 0 0
\(10\) 15283.8 0.483318
\(11\) 69006.8 1.42110 0.710550 0.703646i \(-0.248446\pi\)
0.710550 + 0.703646i \(0.248446\pi\)
\(12\) 0 0
\(13\) −99409.7 −0.965348 −0.482674 0.875800i \(-0.660334\pi\)
−0.482674 + 0.875800i \(0.660334\pi\)
\(14\) 128308. 0.892644
\(15\) 0 0
\(16\) −243856. −0.930238
\(17\) 357590. 1.03840 0.519201 0.854652i \(-0.326230\pi\)
0.519201 + 0.854652i \(0.326230\pi\)
\(18\) 0 0
\(19\) −130321. −0.229416
\(20\) −23423.3 −0.0327351
\(21\) 0 0
\(22\) 1.50946e6 1.37379
\(23\) 620216. 0.462134 0.231067 0.972938i \(-0.425778\pi\)
0.231067 + 0.972938i \(0.425778\pi\)
\(24\) 0 0
\(25\) −1.46492e6 −0.750038
\(26\) −2.17450e6 −0.933210
\(27\) 0 0
\(28\) −196639. −0.0604588
\(29\) −1.49302e6 −0.391989 −0.195994 0.980605i \(-0.562793\pi\)
−0.195994 + 0.980605i \(0.562793\pi\)
\(30\) 0 0
\(31\) 4.48863e6 0.872943 0.436471 0.899718i \(-0.356228\pi\)
0.436471 + 0.899718i \(0.356228\pi\)
\(32\) 775473. 0.130735
\(33\) 0 0
\(34\) 7.82197e6 1.00383
\(35\) 4.09851e6 0.461657
\(36\) 0 0
\(37\) 1.88749e7 1.65568 0.827840 0.560964i \(-0.189569\pi\)
0.827840 + 0.560964i \(0.189569\pi\)
\(38\) −2.85066e6 −0.221778
\(39\) 0 0
\(40\) −8.33769e6 −0.514963
\(41\) −1.29370e7 −0.715000 −0.357500 0.933913i \(-0.616371\pi\)
−0.357500 + 0.933913i \(0.616371\pi\)
\(42\) 0 0
\(43\) −1.66989e7 −0.744868 −0.372434 0.928059i \(-0.621477\pi\)
−0.372434 + 0.928059i \(0.621477\pi\)
\(44\) −2.31333e6 −0.0930468
\(45\) 0 0
\(46\) 1.35667e7 0.446749
\(47\) 3.70039e7 1.10613 0.553067 0.833137i \(-0.313457\pi\)
0.553067 + 0.833137i \(0.313457\pi\)
\(48\) 0 0
\(49\) −5.94653e6 −0.147361
\(50\) −3.20438e7 −0.725068
\(51\) 0 0
\(52\) 3.33254e6 0.0632063
\(53\) 3.57930e7 0.623098 0.311549 0.950230i \(-0.399152\pi\)
0.311549 + 0.950230i \(0.399152\pi\)
\(54\) 0 0
\(55\) 4.82163e7 0.710496
\(56\) −6.99951e7 −0.951090
\(57\) 0 0
\(58\) −3.26584e7 −0.378939
\(59\) 4.81006e7 0.516793 0.258397 0.966039i \(-0.416806\pi\)
0.258397 + 0.966039i \(0.416806\pi\)
\(60\) 0 0
\(61\) 5.33864e7 0.493681 0.246841 0.969056i \(-0.420608\pi\)
0.246841 + 0.969056i \(0.420608\pi\)
\(62\) 9.81847e7 0.843881
\(63\) 0 0
\(64\) 1.41817e8 1.05662
\(65\) −6.94594e7 −0.482637
\(66\) 0 0
\(67\) 2.23693e8 1.35617 0.678086 0.734982i \(-0.262810\pi\)
0.678086 + 0.734982i \(0.262810\pi\)
\(68\) −1.19876e7 −0.0679896
\(69\) 0 0
\(70\) 8.96513e7 0.446288
\(71\) 7.22238e7 0.337301 0.168650 0.985676i \(-0.446059\pi\)
0.168650 + 0.985676i \(0.446059\pi\)
\(72\) 0 0
\(73\) 1.56596e8 0.645398 0.322699 0.946502i \(-0.395410\pi\)
0.322699 + 0.946502i \(0.395410\pi\)
\(74\) 4.12871e8 1.60056
\(75\) 0 0
\(76\) 4.36879e6 0.0150210
\(77\) 4.04777e8 1.31222
\(78\) 0 0
\(79\) −2.65933e7 −0.0768159 −0.0384079 0.999262i \(-0.512229\pi\)
−0.0384079 + 0.999262i \(0.512229\pi\)
\(80\) −1.70387e8 −0.465084
\(81\) 0 0
\(82\) −2.82985e8 −0.691196
\(83\) 7.06750e8 1.63461 0.817306 0.576204i \(-0.195467\pi\)
0.817306 + 0.576204i \(0.195467\pi\)
\(84\) 0 0
\(85\) 2.49855e8 0.519162
\(86\) −3.65273e8 −0.720070
\(87\) 0 0
\(88\) −8.23447e8 −1.46374
\(89\) −1.88064e8 −0.317724 −0.158862 0.987301i \(-0.550782\pi\)
−0.158862 + 0.987301i \(0.550782\pi\)
\(90\) 0 0
\(91\) −5.83113e8 −0.891387
\(92\) −2.07917e7 −0.0302583
\(93\) 0 0
\(94\) 8.09428e8 1.06931
\(95\) −9.10577e7 −0.114699
\(96\) 0 0
\(97\) 1.15689e9 1.32685 0.663423 0.748244i \(-0.269103\pi\)
0.663423 + 0.748244i \(0.269103\pi\)
\(98\) −1.30075e8 −0.142455
\(99\) 0 0
\(100\) 4.91089e7 0.0491089
\(101\) −2.53441e8 −0.242343 −0.121172 0.992632i \(-0.538665\pi\)
−0.121172 + 0.992632i \(0.538665\pi\)
\(102\) 0 0
\(103\) 1.60503e9 1.40513 0.702563 0.711622i \(-0.252039\pi\)
0.702563 + 0.711622i \(0.252039\pi\)
\(104\) 1.18624e9 0.994312
\(105\) 0 0
\(106\) 7.82939e8 0.602354
\(107\) 2.15646e9 1.59043 0.795214 0.606329i \(-0.207359\pi\)
0.795214 + 0.606329i \(0.207359\pi\)
\(108\) 0 0
\(109\) −2.41905e9 −1.64144 −0.820721 0.571330i \(-0.806428\pi\)
−0.820721 + 0.571330i \(0.806428\pi\)
\(110\) 1.05469e9 0.686843
\(111\) 0 0
\(112\) −1.43040e9 −0.858967
\(113\) −1.54624e9 −0.892120 −0.446060 0.895003i \(-0.647173\pi\)
−0.446060 + 0.895003i \(0.647173\pi\)
\(114\) 0 0
\(115\) 4.33357e8 0.231050
\(116\) 5.00508e7 0.0256655
\(117\) 0 0
\(118\) 1.05216e9 0.499588
\(119\) 2.09754e9 0.958845
\(120\) 0 0
\(121\) 2.40399e9 1.01953
\(122\) 1.16778e9 0.477246
\(123\) 0 0
\(124\) −1.50474e8 −0.0571561
\(125\) −2.38825e9 −0.874953
\(126\) 0 0
\(127\) −9.47766e8 −0.323284 −0.161642 0.986849i \(-0.551679\pi\)
−0.161642 + 0.986849i \(0.551679\pi\)
\(128\) 2.70508e9 0.890709
\(129\) 0 0
\(130\) −1.51936e9 −0.466569
\(131\) −6.59678e9 −1.95709 −0.978546 0.206028i \(-0.933946\pi\)
−0.978546 + 0.206028i \(0.933946\pi\)
\(132\) 0 0
\(133\) −7.64431e8 −0.211839
\(134\) 4.89308e9 1.31102
\(135\) 0 0
\(136\) −4.26707e9 −1.06956
\(137\) 7.31940e9 1.77514 0.887570 0.460672i \(-0.152392\pi\)
0.887570 + 0.460672i \(0.152392\pi\)
\(138\) 0 0
\(139\) −2.60855e9 −0.592697 −0.296348 0.955080i \(-0.595769\pi\)
−0.296348 + 0.955080i \(0.595769\pi\)
\(140\) −1.37396e8 −0.0302271
\(141\) 0 0
\(142\) 1.57983e9 0.326072
\(143\) −6.85995e9 −1.37186
\(144\) 0 0
\(145\) −1.04320e9 −0.195980
\(146\) 3.42540e9 0.623911
\(147\) 0 0
\(148\) −6.32748e8 −0.108406
\(149\) −6.36482e9 −1.05791 −0.528954 0.848650i \(-0.677416\pi\)
−0.528954 + 0.848650i \(0.677416\pi\)
\(150\) 0 0
\(151\) 6.80337e9 1.06495 0.532473 0.846447i \(-0.321263\pi\)
0.532473 + 0.846447i \(0.321263\pi\)
\(152\) 1.55510e9 0.236299
\(153\) 0 0
\(154\) 8.85414e9 1.26854
\(155\) 3.13629e9 0.436438
\(156\) 0 0
\(157\) −9.76564e8 −0.128278 −0.0641390 0.997941i \(-0.520430\pi\)
−0.0641390 + 0.997941i \(0.520430\pi\)
\(158\) −5.81706e8 −0.0742585
\(159\) 0 0
\(160\) 5.41838e8 0.0653626
\(161\) 3.63804e9 0.426728
\(162\) 0 0
\(163\) 1.11013e10 1.23177 0.615884 0.787837i \(-0.288799\pi\)
0.615884 + 0.787837i \(0.288799\pi\)
\(164\) 4.33691e8 0.0468148
\(165\) 0 0
\(166\) 1.54595e10 1.58019
\(167\) 1.38400e10 1.37693 0.688465 0.725269i \(-0.258285\pi\)
0.688465 + 0.725269i \(0.258285\pi\)
\(168\) 0 0
\(169\) −7.22205e8 −0.0681036
\(170\) 5.46535e9 0.501878
\(171\) 0 0
\(172\) 5.59801e8 0.0487704
\(173\) 1.57166e10 1.33399 0.666993 0.745064i \(-0.267581\pi\)
0.666993 + 0.745064i \(0.267581\pi\)
\(174\) 0 0
\(175\) −8.59285e9 −0.692574
\(176\) −1.68277e10 −1.32196
\(177\) 0 0
\(178\) −4.11372e9 −0.307146
\(179\) 1.45874e10 1.06203 0.531017 0.847361i \(-0.321810\pi\)
0.531017 + 0.847361i \(0.321810\pi\)
\(180\) 0 0
\(181\) −2.66724e10 −1.84718 −0.923588 0.383388i \(-0.874757\pi\)
−0.923588 + 0.383388i \(0.874757\pi\)
\(182\) −1.27551e10 −0.861712
\(183\) 0 0
\(184\) −7.40094e9 −0.476000
\(185\) 1.31882e10 0.827778
\(186\) 0 0
\(187\) 2.46762e10 1.47567
\(188\) −1.24049e9 −0.0724243
\(189\) 0 0
\(190\) −1.99181e9 −0.110881
\(191\) −2.05405e10 −1.11676 −0.558382 0.829584i \(-0.688578\pi\)
−0.558382 + 0.829584i \(0.688578\pi\)
\(192\) 0 0
\(193\) −1.71562e10 −0.890049 −0.445024 0.895518i \(-0.646805\pi\)
−0.445024 + 0.895518i \(0.646805\pi\)
\(194\) 2.53060e10 1.28267
\(195\) 0 0
\(196\) 1.99347e8 0.00964846
\(197\) −2.45099e9 −0.115943 −0.0579713 0.998318i \(-0.518463\pi\)
−0.0579713 + 0.998318i \(0.518463\pi\)
\(198\) 0 0
\(199\) −9.88469e9 −0.446811 −0.223406 0.974726i \(-0.571717\pi\)
−0.223406 + 0.974726i \(0.571717\pi\)
\(200\) 1.74806e10 0.772542
\(201\) 0 0
\(202\) −5.54380e9 −0.234275
\(203\) −8.75767e9 −0.361957
\(204\) 0 0
\(205\) −9.03932e9 −0.357473
\(206\) 3.51086e10 1.35835
\(207\) 0 0
\(208\) 2.42417e10 0.898003
\(209\) −8.99304e9 −0.326023
\(210\) 0 0
\(211\) 3.09600e10 1.07530 0.537650 0.843168i \(-0.319312\pi\)
0.537650 + 0.843168i \(0.319312\pi\)
\(212\) −1.19990e9 −0.0407974
\(213\) 0 0
\(214\) 4.71706e10 1.53748
\(215\) −1.16678e10 −0.372406
\(216\) 0 0
\(217\) 2.63292e10 0.806062
\(218\) −5.29145e10 −1.58679
\(219\) 0 0
\(220\) −1.61637e9 −0.0465199
\(221\) −3.55480e10 −1.00242
\(222\) 0 0
\(223\) 1.02056e10 0.276353 0.138177 0.990408i \(-0.455876\pi\)
0.138177 + 0.990408i \(0.455876\pi\)
\(224\) 4.54874e9 0.120719
\(225\) 0 0
\(226\) −3.38226e10 −0.862420
\(227\) −7.93357e8 −0.0198313 −0.00991567 0.999951i \(-0.503156\pi\)
−0.00991567 + 0.999951i \(0.503156\pi\)
\(228\) 0 0
\(229\) −6.64052e10 −1.59567 −0.797833 0.602878i \(-0.794021\pi\)
−0.797833 + 0.602878i \(0.794021\pi\)
\(230\) 9.47929e9 0.223357
\(231\) 0 0
\(232\) 1.78159e10 0.403750
\(233\) −7.11080e10 −1.58058 −0.790290 0.612732i \(-0.790070\pi\)
−0.790290 + 0.612732i \(0.790070\pi\)
\(234\) 0 0
\(235\) 2.58553e10 0.553025
\(236\) −1.61249e9 −0.0338371
\(237\) 0 0
\(238\) 4.58818e10 0.926923
\(239\) 3.97648e10 0.788331 0.394166 0.919039i \(-0.371034\pi\)
0.394166 + 0.919039i \(0.371034\pi\)
\(240\) 0 0
\(241\) −7.89042e10 −1.50669 −0.753344 0.657626i \(-0.771561\pi\)
−0.753344 + 0.657626i \(0.771561\pi\)
\(242\) 5.25852e10 0.985585
\(243\) 0 0
\(244\) −1.78969e9 −0.0323239
\(245\) −4.15495e9 −0.0736747
\(246\) 0 0
\(247\) 1.29552e10 0.221466
\(248\) −5.35620e10 −0.899134
\(249\) 0 0
\(250\) −5.22408e10 −0.845824
\(251\) 5.62203e10 0.894049 0.447025 0.894522i \(-0.352484\pi\)
0.447025 + 0.894522i \(0.352484\pi\)
\(252\) 0 0
\(253\) 4.27991e10 0.656739
\(254\) −2.07315e10 −0.312522
\(255\) 0 0
\(256\) −1.34391e10 −0.195565
\(257\) −7.57735e10 −1.08347 −0.541737 0.840548i \(-0.682233\pi\)
−0.541737 + 0.840548i \(0.682233\pi\)
\(258\) 0 0
\(259\) 1.10715e11 1.52883
\(260\) 2.32851e9 0.0316008
\(261\) 0 0
\(262\) −1.44299e11 −1.89194
\(263\) −6.82969e10 −0.880237 −0.440119 0.897940i \(-0.645064\pi\)
−0.440119 + 0.897940i \(0.645064\pi\)
\(264\) 0 0
\(265\) 2.50092e10 0.311525
\(266\) −1.67212e10 −0.204786
\(267\) 0 0
\(268\) −7.49891e9 −0.0887956
\(269\) 5.77957e10 0.672993 0.336496 0.941685i \(-0.390758\pi\)
0.336496 + 0.941685i \(0.390758\pi\)
\(270\) 0 0
\(271\) −4.08135e10 −0.459665 −0.229833 0.973230i \(-0.573818\pi\)
−0.229833 + 0.973230i \(0.573818\pi\)
\(272\) −8.72006e10 −0.965961
\(273\) 0 0
\(274\) 1.60105e11 1.71604
\(275\) −1.01089e11 −1.06588
\(276\) 0 0
\(277\) −1.75586e11 −1.79197 −0.895985 0.444084i \(-0.853529\pi\)
−0.895985 + 0.444084i \(0.853529\pi\)
\(278\) −5.70597e10 −0.572965
\(279\) 0 0
\(280\) −4.89069e10 −0.475509
\(281\) 7.04649e10 0.674209 0.337105 0.941467i \(-0.390552\pi\)
0.337105 + 0.941467i \(0.390552\pi\)
\(282\) 0 0
\(283\) −2.04828e11 −1.89824 −0.949119 0.314919i \(-0.898023\pi\)
−0.949119 + 0.314919i \(0.898023\pi\)
\(284\) −2.42118e9 −0.0220848
\(285\) 0 0
\(286\) −1.50055e11 −1.32618
\(287\) −7.58852e10 −0.660220
\(288\) 0 0
\(289\) 9.28297e9 0.0782793
\(290\) −2.28190e10 −0.189455
\(291\) 0 0
\(292\) −5.24961e9 −0.0422575
\(293\) −2.01249e11 −1.59525 −0.797626 0.603152i \(-0.793911\pi\)
−0.797626 + 0.603152i \(0.793911\pi\)
\(294\) 0 0
\(295\) 3.36088e10 0.258377
\(296\) −2.25231e11 −1.70536
\(297\) 0 0
\(298\) −1.39225e11 −1.02269
\(299\) −6.16555e10 −0.446120
\(300\) 0 0
\(301\) −9.79515e10 −0.687800
\(302\) 1.48818e11 1.02949
\(303\) 0 0
\(304\) 3.17796e10 0.213411
\(305\) 3.73021e10 0.246822
\(306\) 0 0
\(307\) 7.21281e10 0.463428 0.231714 0.972784i \(-0.425567\pi\)
0.231714 + 0.972784i \(0.425567\pi\)
\(308\) −1.35695e10 −0.0859180
\(309\) 0 0
\(310\) 6.86035e10 0.421909
\(311\) 8.09818e10 0.490869 0.245434 0.969413i \(-0.421069\pi\)
0.245434 + 0.969413i \(0.421069\pi\)
\(312\) 0 0
\(313\) 1.25838e10 0.0741073 0.0370536 0.999313i \(-0.488203\pi\)
0.0370536 + 0.999313i \(0.488203\pi\)
\(314\) −2.13615e10 −0.124007
\(315\) 0 0
\(316\) 8.91496e8 0.00502953
\(317\) 1.28488e11 0.714654 0.357327 0.933979i \(-0.383688\pi\)
0.357327 + 0.933979i \(0.383688\pi\)
\(318\) 0 0
\(319\) −1.03028e11 −0.557056
\(320\) 9.90903e10 0.528270
\(321\) 0 0
\(322\) 7.95788e10 0.412521
\(323\) −4.66015e10 −0.238226
\(324\) 0 0
\(325\) 1.45627e11 0.724047
\(326\) 2.42831e11 1.19076
\(327\) 0 0
\(328\) 1.54375e11 0.736453
\(329\) 2.17056e11 1.02139
\(330\) 0 0
\(331\) 2.59970e10 0.119041 0.0595206 0.998227i \(-0.481043\pi\)
0.0595206 + 0.998227i \(0.481043\pi\)
\(332\) −2.36926e10 −0.107026
\(333\) 0 0
\(334\) 3.02738e11 1.33109
\(335\) 1.56298e11 0.678035
\(336\) 0 0
\(337\) −3.50929e11 −1.48212 −0.741061 0.671437i \(-0.765677\pi\)
−0.741061 + 0.671437i \(0.765677\pi\)
\(338\) −1.57976e10 −0.0658364
\(339\) 0 0
\(340\) −8.37596e9 −0.0339922
\(341\) 3.09746e11 1.24054
\(342\) 0 0
\(343\) −2.71585e11 −1.05946
\(344\) 1.99265e11 0.767217
\(345\) 0 0
\(346\) 3.43787e11 1.28957
\(347\) −4.08443e11 −1.51234 −0.756169 0.654376i \(-0.772931\pi\)
−0.756169 + 0.654376i \(0.772931\pi\)
\(348\) 0 0
\(349\) −6.73337e9 −0.0242951 −0.0121475 0.999926i \(-0.503867\pi\)
−0.0121475 + 0.999926i \(0.503867\pi\)
\(350\) −1.87961e11 −0.669517
\(351\) 0 0
\(352\) 5.35129e10 0.185788
\(353\) 1.85813e11 0.636929 0.318464 0.947935i \(-0.396833\pi\)
0.318464 + 0.947935i \(0.396833\pi\)
\(354\) 0 0
\(355\) 5.04641e10 0.168638
\(356\) 6.30451e9 0.0208030
\(357\) 0 0
\(358\) 3.19086e11 1.02668
\(359\) −4.19699e11 −1.33356 −0.666780 0.745254i \(-0.732328\pi\)
−0.666780 + 0.745254i \(0.732328\pi\)
\(360\) 0 0
\(361\) 1.69836e10 0.0526316
\(362\) −5.83434e11 −1.78568
\(363\) 0 0
\(364\) 1.95479e10 0.0583637
\(365\) 1.09416e11 0.322674
\(366\) 0 0
\(367\) −2.93032e11 −0.843174 −0.421587 0.906788i \(-0.638527\pi\)
−0.421587 + 0.906788i \(0.638527\pi\)
\(368\) −1.51244e11 −0.429895
\(369\) 0 0
\(370\) 2.88481e11 0.800219
\(371\) 2.09953e11 0.575359
\(372\) 0 0
\(373\) 5.79223e11 1.54937 0.774687 0.632345i \(-0.217907\pi\)
0.774687 + 0.632345i \(0.217907\pi\)
\(374\) 5.39769e11 1.42655
\(375\) 0 0
\(376\) −4.41562e11 −1.13932
\(377\) 1.48420e11 0.378406
\(378\) 0 0
\(379\) 2.86017e11 0.712058 0.356029 0.934475i \(-0.384130\pi\)
0.356029 + 0.934475i \(0.384130\pi\)
\(380\) 3.05255e9 0.00750995
\(381\) 0 0
\(382\) −4.49306e11 −1.07958
\(383\) 8.00783e11 1.90160 0.950802 0.309798i \(-0.100262\pi\)
0.950802 + 0.309798i \(0.100262\pi\)
\(384\) 0 0
\(385\) 2.82825e11 0.656062
\(386\) −3.75277e11 −0.860418
\(387\) 0 0
\(388\) −3.87829e10 −0.0868755
\(389\) 5.45637e11 1.20818 0.604089 0.796917i \(-0.293537\pi\)
0.604089 + 0.796917i \(0.293537\pi\)
\(390\) 0 0
\(391\) 2.21783e11 0.479881
\(392\) 7.09590e10 0.151782
\(393\) 0 0
\(394\) −5.36132e10 −0.112083
\(395\) −1.85813e10 −0.0384050
\(396\) 0 0
\(397\) 4.38015e11 0.884977 0.442488 0.896774i \(-0.354096\pi\)
0.442488 + 0.896774i \(0.354096\pi\)
\(398\) −2.16219e11 −0.431936
\(399\) 0 0
\(400\) 3.57229e11 0.697714
\(401\) −4.41087e11 −0.851872 −0.425936 0.904753i \(-0.640055\pi\)
−0.425936 + 0.904753i \(0.640055\pi\)
\(402\) 0 0
\(403\) −4.46213e11 −0.842694
\(404\) 8.49618e9 0.0158675
\(405\) 0 0
\(406\) −1.91566e11 −0.349906
\(407\) 1.30250e12 2.35289
\(408\) 0 0
\(409\) 6.33909e11 1.12014 0.560069 0.828446i \(-0.310774\pi\)
0.560069 + 0.828446i \(0.310774\pi\)
\(410\) −1.97727e11 −0.345572
\(411\) 0 0
\(412\) −5.38058e10 −0.0920008
\(413\) 2.82147e11 0.477199
\(414\) 0 0
\(415\) 4.93819e11 0.817244
\(416\) −7.70896e10 −0.126205
\(417\) 0 0
\(418\) −1.96715e11 −0.315169
\(419\) 4.50874e10 0.0714648 0.0357324 0.999361i \(-0.488624\pi\)
0.0357324 + 0.999361i \(0.488624\pi\)
\(420\) 0 0
\(421\) 2.38622e11 0.370205 0.185102 0.982719i \(-0.440738\pi\)
0.185102 + 0.982719i \(0.440738\pi\)
\(422\) 6.77222e11 1.03950
\(423\) 0 0
\(424\) −4.27112e11 −0.641793
\(425\) −5.23840e11 −0.778841
\(426\) 0 0
\(427\) 3.13152e11 0.455858
\(428\) −7.22915e10 −0.104133
\(429\) 0 0
\(430\) −2.55223e11 −0.360008
\(431\) 4.50145e10 0.0628355 0.0314177 0.999506i \(-0.489998\pi\)
0.0314177 + 0.999506i \(0.489998\pi\)
\(432\) 0 0
\(433\) 7.10784e11 0.971722 0.485861 0.874036i \(-0.338506\pi\)
0.485861 + 0.874036i \(0.338506\pi\)
\(434\) 5.75927e11 0.779227
\(435\) 0 0
\(436\) 8.10945e10 0.107474
\(437\) −8.08272e10 −0.106021
\(438\) 0 0
\(439\) −3.18777e10 −0.0409635 −0.0204817 0.999790i \(-0.506520\pi\)
−0.0204817 + 0.999790i \(0.506520\pi\)
\(440\) −5.75357e11 −0.731814
\(441\) 0 0
\(442\) −7.77580e11 −0.969047
\(443\) 7.05739e11 0.870617 0.435308 0.900281i \(-0.356639\pi\)
0.435308 + 0.900281i \(0.356639\pi\)
\(444\) 0 0
\(445\) −1.31403e11 −0.158850
\(446\) 2.23237e11 0.267153
\(447\) 0 0
\(448\) 8.31865e11 0.975667
\(449\) 9.97531e10 0.115829 0.0579146 0.998322i \(-0.481555\pi\)
0.0579146 + 0.998322i \(0.481555\pi\)
\(450\) 0 0
\(451\) −8.92741e11 −1.01609
\(452\) 5.18350e10 0.0584117
\(453\) 0 0
\(454\) −1.73540e10 −0.0191711
\(455\) −4.07432e11 −0.445660
\(456\) 0 0
\(457\) 4.00903e11 0.429949 0.214974 0.976620i \(-0.431033\pi\)
0.214974 + 0.976620i \(0.431033\pi\)
\(458\) −1.45255e12 −1.54254
\(459\) 0 0
\(460\) −1.45275e10 −0.0151280
\(461\) 9.84581e10 0.101531 0.0507653 0.998711i \(-0.483834\pi\)
0.0507653 + 0.998711i \(0.483834\pi\)
\(462\) 0 0
\(463\) −4.87218e11 −0.492730 −0.246365 0.969177i \(-0.579236\pi\)
−0.246365 + 0.969177i \(0.579236\pi\)
\(464\) 3.64082e11 0.364643
\(465\) 0 0
\(466\) −1.55542e12 −1.52796
\(467\) 1.77701e12 1.72888 0.864440 0.502737i \(-0.167673\pi\)
0.864440 + 0.502737i \(0.167673\pi\)
\(468\) 0 0
\(469\) 1.31213e12 1.25227
\(470\) 5.65562e11 0.534614
\(471\) 0 0
\(472\) −5.73977e11 −0.532299
\(473\) −1.15234e12 −1.05853
\(474\) 0 0
\(475\) 1.90910e11 0.172070
\(476\) −7.03163e10 −0.0627805
\(477\) 0 0
\(478\) 8.69821e11 0.762086
\(479\) −8.74626e11 −0.759124 −0.379562 0.925166i \(-0.623925\pi\)
−0.379562 + 0.925166i \(0.623925\pi\)
\(480\) 0 0
\(481\) −1.87635e12 −1.59831
\(482\) −1.72596e12 −1.45653
\(483\) 0 0
\(484\) −8.05897e10 −0.0667537
\(485\) 8.08343e11 0.663373
\(486\) 0 0
\(487\) −1.12352e12 −0.905112 −0.452556 0.891736i \(-0.649488\pi\)
−0.452556 + 0.891736i \(0.649488\pi\)
\(488\) −6.37052e11 −0.508494
\(489\) 0 0
\(490\) −9.08858e10 −0.0712220
\(491\) −6.54532e11 −0.508234 −0.254117 0.967173i \(-0.581785\pi\)
−0.254117 + 0.967173i \(0.581785\pi\)
\(492\) 0 0
\(493\) −5.33889e11 −0.407042
\(494\) 2.83383e11 0.214093
\(495\) 0 0
\(496\) −1.09458e12 −0.812045
\(497\) 4.23647e11 0.311459
\(498\) 0 0
\(499\) −1.45315e12 −1.04920 −0.524600 0.851349i \(-0.675785\pi\)
−0.524600 + 0.851349i \(0.675785\pi\)
\(500\) 8.00620e10 0.0572877
\(501\) 0 0
\(502\) 1.22977e12 0.864285
\(503\) −1.41787e12 −0.987602 −0.493801 0.869575i \(-0.664393\pi\)
−0.493801 + 0.869575i \(0.664393\pi\)
\(504\) 0 0
\(505\) −1.77084e11 −0.121162
\(506\) 9.36193e11 0.634875
\(507\) 0 0
\(508\) 3.17722e10 0.0211671
\(509\) 8.90571e11 0.588083 0.294042 0.955793i \(-0.405000\pi\)
0.294042 + 0.955793i \(0.405000\pi\)
\(510\) 0 0
\(511\) 9.18553e11 0.595951
\(512\) −1.67897e12 −1.07976
\(513\) 0 0
\(514\) −1.65748e12 −1.04740
\(515\) 1.12146e12 0.702509
\(516\) 0 0
\(517\) 2.55352e12 1.57193
\(518\) 2.42180e12 1.47793
\(519\) 0 0
\(520\) 8.28848e11 0.497118
\(521\) −9.36152e11 −0.556643 −0.278322 0.960488i \(-0.589778\pi\)
−0.278322 + 0.960488i \(0.589778\pi\)
\(522\) 0 0
\(523\) −1.01211e12 −0.591519 −0.295759 0.955262i \(-0.595573\pi\)
−0.295759 + 0.955262i \(0.595573\pi\)
\(524\) 2.21146e11 0.128141
\(525\) 0 0
\(526\) −1.49393e12 −0.850933
\(527\) 1.60509e12 0.906466
\(528\) 0 0
\(529\) −1.41648e12 −0.786432
\(530\) 5.47054e11 0.301154
\(531\) 0 0
\(532\) 2.56262e10 0.0138702
\(533\) 1.28606e12 0.690224
\(534\) 0 0
\(535\) 1.50676e12 0.795153
\(536\) −2.66929e12 −1.39686
\(537\) 0 0
\(538\) 1.26423e12 0.650588
\(539\) −4.10351e11 −0.209414
\(540\) 0 0
\(541\) −1.24268e12 −0.623692 −0.311846 0.950133i \(-0.600947\pi\)
−0.311846 + 0.950133i \(0.600947\pi\)
\(542\) −8.92758e11 −0.444362
\(543\) 0 0
\(544\) 2.77302e11 0.135756
\(545\) −1.69023e12 −0.820659
\(546\) 0 0
\(547\) 3.21870e12 1.53722 0.768612 0.639715i \(-0.220948\pi\)
0.768612 + 0.639715i \(0.220948\pi\)
\(548\) −2.45370e11 −0.116228
\(549\) 0 0
\(550\) −2.21124e12 −1.03039
\(551\) 1.94571e11 0.0899284
\(552\) 0 0
\(553\) −1.55990e11 −0.0709306
\(554\) −3.84079e12 −1.73231
\(555\) 0 0
\(556\) 8.74472e10 0.0388069
\(557\) −3.17464e12 −1.39748 −0.698741 0.715375i \(-0.746256\pi\)
−0.698741 + 0.715375i \(0.746256\pi\)
\(558\) 0 0
\(559\) 1.66003e12 0.719057
\(560\) −9.99447e11 −0.429451
\(561\) 0 0
\(562\) 1.54136e12 0.651763
\(563\) −1.80639e12 −0.757746 −0.378873 0.925449i \(-0.623688\pi\)
−0.378873 + 0.925449i \(0.623688\pi\)
\(564\) 0 0
\(565\) −1.08039e12 −0.446026
\(566\) −4.48043e12 −1.83504
\(567\) 0 0
\(568\) −8.61834e11 −0.347421
\(569\) 1.89764e12 0.758940 0.379470 0.925204i \(-0.376106\pi\)
0.379470 + 0.925204i \(0.376106\pi\)
\(570\) 0 0
\(571\) 4.80173e12 1.89032 0.945160 0.326608i \(-0.105906\pi\)
0.945160 + 0.326608i \(0.105906\pi\)
\(572\) 2.29968e11 0.0898225
\(573\) 0 0
\(574\) −1.65992e12 −0.638240
\(575\) −9.08566e11 −0.346618
\(576\) 0 0
\(577\) 2.07557e12 0.779555 0.389777 0.920909i \(-0.372552\pi\)
0.389777 + 0.920909i \(0.372552\pi\)
\(578\) 2.03057e11 0.0756732
\(579\) 0 0
\(580\) 3.49714e10 0.0128318
\(581\) 4.14562e12 1.50938
\(582\) 0 0
\(583\) 2.46996e12 0.885485
\(584\) −1.86863e12 −0.664762
\(585\) 0 0
\(586\) −4.40214e12 −1.54214
\(587\) 3.37346e12 1.17275 0.586373 0.810041i \(-0.300555\pi\)
0.586373 + 0.810041i \(0.300555\pi\)
\(588\) 0 0
\(589\) −5.84962e11 −0.200267
\(590\) 7.35163e11 0.249775
\(591\) 0 0
\(592\) −4.60276e12 −1.54018
\(593\) −1.13559e12 −0.377115 −0.188558 0.982062i \(-0.560381\pi\)
−0.188558 + 0.982062i \(0.560381\pi\)
\(594\) 0 0
\(595\) 1.46559e12 0.479386
\(596\) 2.13370e11 0.0692667
\(597\) 0 0
\(598\) −1.34866e12 −0.431268
\(599\) 1.09523e12 0.347603 0.173801 0.984781i \(-0.444395\pi\)
0.173801 + 0.984781i \(0.444395\pi\)
\(600\) 0 0
\(601\) 3.69611e12 1.15561 0.577803 0.816176i \(-0.303910\pi\)
0.577803 + 0.816176i \(0.303910\pi\)
\(602\) −2.14260e12 −0.664902
\(603\) 0 0
\(604\) −2.28071e11 −0.0697276
\(605\) 1.67971e12 0.509725
\(606\) 0 0
\(607\) 2.37375e12 0.709720 0.354860 0.934920i \(-0.384529\pi\)
0.354860 + 0.934920i \(0.384529\pi\)
\(608\) −1.01060e11 −0.0299927
\(609\) 0 0
\(610\) 8.15950e11 0.238605
\(611\) −3.67855e12 −1.06780
\(612\) 0 0
\(613\) −1.26316e12 −0.361314 −0.180657 0.983546i \(-0.557822\pi\)
−0.180657 + 0.983546i \(0.557822\pi\)
\(614\) 1.57774e12 0.447999
\(615\) 0 0
\(616\) −4.83014e12 −1.35159
\(617\) 2.28805e12 0.635599 0.317799 0.948158i \(-0.397056\pi\)
0.317799 + 0.948158i \(0.397056\pi\)
\(618\) 0 0
\(619\) −4.26483e12 −1.16760 −0.583799 0.811898i \(-0.698434\pi\)
−0.583799 + 0.811898i \(0.698434\pi\)
\(620\) −1.05139e11 −0.0285759
\(621\) 0 0
\(622\) 1.77140e12 0.474527
\(623\) −1.10313e12 −0.293381
\(624\) 0 0
\(625\) 1.19245e12 0.312595
\(626\) 2.75259e11 0.0716401
\(627\) 0 0
\(628\) 3.27376e10 0.00839902
\(629\) 6.74948e12 1.71926
\(630\) 0 0
\(631\) 4.18289e12 1.05038 0.525188 0.850986i \(-0.323995\pi\)
0.525188 + 0.850986i \(0.323995\pi\)
\(632\) 3.17334e11 0.0791206
\(633\) 0 0
\(634\) 2.81056e12 0.690862
\(635\) −6.62222e11 −0.161630
\(636\) 0 0
\(637\) 5.91143e11 0.142254
\(638\) −2.25365e12 −0.538510
\(639\) 0 0
\(640\) 1.89009e12 0.445321
\(641\) −1.75683e12 −0.411026 −0.205513 0.978654i \(-0.565886\pi\)
−0.205513 + 0.978654i \(0.565886\pi\)
\(642\) 0 0
\(643\) −4.78899e12 −1.10483 −0.552414 0.833570i \(-0.686293\pi\)
−0.552414 + 0.833570i \(0.686293\pi\)
\(644\) −1.21959e11 −0.0279401
\(645\) 0 0
\(646\) −1.01937e12 −0.230295
\(647\) −5.52406e12 −1.23934 −0.619668 0.784864i \(-0.712733\pi\)
−0.619668 + 0.784864i \(0.712733\pi\)
\(648\) 0 0
\(649\) 3.31927e12 0.734415
\(650\) 3.18546e12 0.699943
\(651\) 0 0
\(652\) −3.72151e11 −0.0806502
\(653\) 4.76047e12 1.02457 0.512283 0.858816i \(-0.328800\pi\)
0.512283 + 0.858816i \(0.328800\pi\)
\(654\) 0 0
\(655\) −4.60929e12 −0.978472
\(656\) 3.15477e12 0.665120
\(657\) 0 0
\(658\) 4.74791e12 0.987383
\(659\) 1.13341e12 0.234100 0.117050 0.993126i \(-0.462656\pi\)
0.117050 + 0.993126i \(0.462656\pi\)
\(660\) 0 0
\(661\) −4.58129e12 −0.933428 −0.466714 0.884408i \(-0.654562\pi\)
−0.466714 + 0.884408i \(0.654562\pi\)
\(662\) 5.68662e11 0.115078
\(663\) 0 0
\(664\) −8.43354e12 −1.68366
\(665\) −5.34122e11 −0.105911
\(666\) 0 0
\(667\) −9.25994e11 −0.181151
\(668\) −4.63962e11 −0.0901548
\(669\) 0 0
\(670\) 3.41888e12 0.655462
\(671\) 3.68403e12 0.701571
\(672\) 0 0
\(673\) −7.86344e12 −1.47756 −0.738780 0.673947i \(-0.764598\pi\)
−0.738780 + 0.673947i \(0.764598\pi\)
\(674\) −7.67625e12 −1.43278
\(675\) 0 0
\(676\) 2.42107e10 0.00445910
\(677\) 5.46353e12 0.999595 0.499798 0.866142i \(-0.333408\pi\)
0.499798 + 0.866142i \(0.333408\pi\)
\(678\) 0 0
\(679\) 6.78606e12 1.22519
\(680\) −2.98148e12 −0.534739
\(681\) 0 0
\(682\) 6.77541e12 1.19924
\(683\) 1.78774e12 0.314349 0.157174 0.987571i \(-0.449762\pi\)
0.157174 + 0.987571i \(0.449762\pi\)
\(684\) 0 0
\(685\) 5.11420e12 0.887503
\(686\) −5.94069e12 −1.02418
\(687\) 0 0
\(688\) 4.07213e12 0.692904
\(689\) −3.55817e12 −0.601506
\(690\) 0 0
\(691\) −2.11550e12 −0.352989 −0.176495 0.984302i \(-0.556476\pi\)
−0.176495 + 0.984302i \(0.556476\pi\)
\(692\) −5.26872e11 −0.0873429
\(693\) 0 0
\(694\) −8.93433e12 −1.46199
\(695\) −1.82264e12 −0.296326
\(696\) 0 0
\(697\) −4.62614e12 −0.742458
\(698\) −1.47287e11 −0.0234863
\(699\) 0 0
\(700\) 2.88061e11 0.0453464
\(701\) −4.18078e12 −0.653923 −0.326962 0.945038i \(-0.606025\pi\)
−0.326962 + 0.945038i \(0.606025\pi\)
\(702\) 0 0
\(703\) −2.45979e12 −0.379839
\(704\) 9.78635e12 1.50156
\(705\) 0 0
\(706\) 4.06450e12 0.615725
\(707\) −1.48662e12 −0.223776
\(708\) 0 0
\(709\) −6.70507e12 −0.996541 −0.498271 0.867022i \(-0.666031\pi\)
−0.498271 + 0.867022i \(0.666031\pi\)
\(710\) 1.10386e12 0.163023
\(711\) 0 0
\(712\) 2.24413e12 0.327257
\(713\) 2.78392e12 0.403417
\(714\) 0 0
\(715\) −4.79317e12 −0.685876
\(716\) −4.89017e11 −0.0695369
\(717\) 0 0
\(718\) −9.18054e12 −1.28916
\(719\) −2.80366e12 −0.391241 −0.195621 0.980680i \(-0.562672\pi\)
−0.195621 + 0.980680i \(0.562672\pi\)
\(720\) 0 0
\(721\) 9.41470e12 1.29747
\(722\) 3.71500e11 0.0508794
\(723\) 0 0
\(724\) 8.94146e11 0.120944
\(725\) 2.18715e12 0.294007
\(726\) 0 0
\(727\) 9.92301e12 1.31746 0.658732 0.752378i \(-0.271093\pi\)
0.658732 + 0.752378i \(0.271093\pi\)
\(728\) 6.95819e12 0.918132
\(729\) 0 0
\(730\) 2.39339e12 0.311932
\(731\) −5.97136e12 −0.773473
\(732\) 0 0
\(733\) −2.54793e12 −0.326001 −0.163000 0.986626i \(-0.552117\pi\)
−0.163000 + 0.986626i \(0.552117\pi\)
\(734\) −6.40981e12 −0.815103
\(735\) 0 0
\(736\) 4.80961e11 0.0604171
\(737\) 1.54363e13 1.92726
\(738\) 0 0
\(739\) −1.44078e13 −1.77704 −0.888520 0.458839i \(-0.848266\pi\)
−0.888520 + 0.458839i \(0.848266\pi\)
\(740\) −4.42113e11 −0.0541989
\(741\) 0 0
\(742\) 4.59253e12 0.556204
\(743\) −2.72437e12 −0.327957 −0.163978 0.986464i \(-0.552433\pi\)
−0.163978 + 0.986464i \(0.552433\pi\)
\(744\) 0 0
\(745\) −4.44722e12 −0.528914
\(746\) 1.26700e13 1.49779
\(747\) 0 0
\(748\) −8.27226e11 −0.0966200
\(749\) 1.26492e13 1.46858
\(750\) 0 0
\(751\) 1.59091e13 1.82501 0.912504 0.409067i \(-0.134146\pi\)
0.912504 + 0.409067i \(0.134146\pi\)
\(752\) −9.02364e12 −1.02897
\(753\) 0 0
\(754\) 3.24657e12 0.365808
\(755\) 4.75364e12 0.532433
\(756\) 0 0
\(757\) 1.65456e12 0.183126 0.0915631 0.995799i \(-0.470814\pi\)
0.0915631 + 0.995799i \(0.470814\pi\)
\(758\) 6.25637e12 0.688352
\(759\) 0 0
\(760\) 1.08658e12 0.118141
\(761\) −2.67031e12 −0.288622 −0.144311 0.989532i \(-0.546097\pi\)
−0.144311 + 0.989532i \(0.546097\pi\)
\(762\) 0 0
\(763\) −1.41895e13 −1.51568
\(764\) 6.88586e11 0.0731203
\(765\) 0 0
\(766\) 1.75164e13 1.83830
\(767\) −4.78167e12 −0.498885
\(768\) 0 0
\(769\) −2.16207e12 −0.222947 −0.111473 0.993767i \(-0.535557\pi\)
−0.111473 + 0.993767i \(0.535557\pi\)
\(770\) 6.18655e12 0.634220
\(771\) 0 0
\(772\) 5.75133e11 0.0582761
\(773\) −1.95566e12 −0.197009 −0.0985044 0.995137i \(-0.531406\pi\)
−0.0985044 + 0.995137i \(0.531406\pi\)
\(774\) 0 0
\(775\) −6.57547e12 −0.654740
\(776\) −1.38050e13 −1.36666
\(777\) 0 0
\(778\) 1.19353e13 1.16796
\(779\) 1.68596e12 0.164032
\(780\) 0 0
\(781\) 4.98393e12 0.479339
\(782\) 4.85131e12 0.463905
\(783\) 0 0
\(784\) 1.45010e12 0.137080
\(785\) −6.82343e11 −0.0641341
\(786\) 0 0
\(787\) 7.57561e12 0.703933 0.351966 0.936013i \(-0.385513\pi\)
0.351966 + 0.936013i \(0.385513\pi\)
\(788\) 8.21652e10 0.00759137
\(789\) 0 0
\(790\) −4.06448e11 −0.0371265
\(791\) −9.06985e12 −0.823770
\(792\) 0 0
\(793\) −5.30713e12 −0.476574
\(794\) 9.58119e12 0.855514
\(795\) 0 0
\(796\) 3.31367e11 0.0292550
\(797\) 5.83097e12 0.511892 0.255946 0.966691i \(-0.417613\pi\)
0.255946 + 0.966691i \(0.417613\pi\)
\(798\) 0 0
\(799\) 1.32323e13 1.14861
\(800\) −1.13600e12 −0.0980562
\(801\) 0 0
\(802\) −9.64838e12 −0.823511
\(803\) 1.08062e13 0.917175
\(804\) 0 0
\(805\) 2.54196e12 0.213348
\(806\) −9.76052e12 −0.814639
\(807\) 0 0
\(808\) 3.02427e12 0.249614
\(809\) −6.52428e12 −0.535506 −0.267753 0.963488i \(-0.586281\pi\)
−0.267753 + 0.963488i \(0.586281\pi\)
\(810\) 0 0
\(811\) −1.79836e12 −0.145977 −0.0729883 0.997333i \(-0.523254\pi\)
−0.0729883 + 0.997333i \(0.523254\pi\)
\(812\) 2.93586e11 0.0236992
\(813\) 0 0
\(814\) 2.84909e13 2.27456
\(815\) 7.75667e12 0.615837
\(816\) 0 0
\(817\) 2.17622e12 0.170884
\(818\) 1.38662e13 1.08285
\(819\) 0 0
\(820\) 3.03028e11 0.0234056
\(821\) 1.75567e13 1.34865 0.674324 0.738436i \(-0.264435\pi\)
0.674324 + 0.738436i \(0.264435\pi\)
\(822\) 0 0
\(823\) −1.95759e12 −0.148738 −0.0743692 0.997231i \(-0.523694\pi\)
−0.0743692 + 0.997231i \(0.523694\pi\)
\(824\) −1.91525e13 −1.44728
\(825\) 0 0
\(826\) 6.17171e12 0.461312
\(827\) −1.90700e13 −1.41767 −0.708835 0.705374i \(-0.750779\pi\)
−0.708835 + 0.705374i \(0.750779\pi\)
\(828\) 0 0
\(829\) −2.30481e13 −1.69489 −0.847443 0.530886i \(-0.821859\pi\)
−0.847443 + 0.530886i \(0.821859\pi\)
\(830\) 1.08019e13 0.790036
\(831\) 0 0
\(832\) −1.40980e13 −1.02001
\(833\) −2.12642e12 −0.153020
\(834\) 0 0
\(835\) 9.67026e12 0.688413
\(836\) 3.01476e11 0.0213464
\(837\) 0 0
\(838\) 9.86248e11 0.0690857
\(839\) 2.80134e12 0.195181 0.0975905 0.995227i \(-0.468886\pi\)
0.0975905 + 0.995227i \(0.468886\pi\)
\(840\) 0 0
\(841\) −1.22780e13 −0.846345
\(842\) 5.21965e12 0.357880
\(843\) 0 0
\(844\) −1.03788e12 −0.0704054
\(845\) −5.04618e11 −0.0340492
\(846\) 0 0
\(847\) 1.41012e13 0.941415
\(848\) −8.72834e12 −0.579629
\(849\) 0 0
\(850\) −1.14585e13 −0.752912
\(851\) 1.17065e13 0.765146
\(852\) 0 0
\(853\) −9.10919e12 −0.589128 −0.294564 0.955632i \(-0.595174\pi\)
−0.294564 + 0.955632i \(0.595174\pi\)
\(854\) 6.84992e12 0.440682
\(855\) 0 0
\(856\) −2.57327e13 −1.63815
\(857\) −1.60042e13 −1.01349 −0.506747 0.862095i \(-0.669152\pi\)
−0.506747 + 0.862095i \(0.669152\pi\)
\(858\) 0 0
\(859\) 1.88776e13 1.18298 0.591491 0.806312i \(-0.298539\pi\)
0.591491 + 0.806312i \(0.298539\pi\)
\(860\) 3.91144e11 0.0243833
\(861\) 0 0
\(862\) 9.84653e11 0.0607436
\(863\) 2.95424e12 0.181299 0.0906497 0.995883i \(-0.471106\pi\)
0.0906497 + 0.995883i \(0.471106\pi\)
\(864\) 0 0
\(865\) 1.09815e13 0.666942
\(866\) 1.55478e13 0.939372
\(867\) 0 0
\(868\) −8.82641e11 −0.0527771
\(869\) −1.83512e12 −0.109163
\(870\) 0 0
\(871\) −2.22372e13 −1.30918
\(872\) 2.88661e13 1.69069
\(873\) 0 0
\(874\) −1.76802e12 −0.102491
\(875\) −1.40089e13 −0.807918
\(876\) 0 0
\(877\) −1.95296e13 −1.11480 −0.557398 0.830246i \(-0.688200\pi\)
−0.557398 + 0.830246i \(0.688200\pi\)
\(878\) −6.97297e11 −0.0395997
\(879\) 0 0
\(880\) −1.17579e13 −0.660931
\(881\) −1.59453e13 −0.891745 −0.445872 0.895096i \(-0.647107\pi\)
−0.445872 + 0.895096i \(0.647107\pi\)
\(882\) 0 0
\(883\) 3.41632e13 1.89119 0.945597 0.325341i \(-0.105479\pi\)
0.945597 + 0.325341i \(0.105479\pi\)
\(884\) 1.19168e12 0.0656336
\(885\) 0 0
\(886\) 1.54374e13 0.841633
\(887\) −1.65254e13 −0.896388 −0.448194 0.893936i \(-0.647933\pi\)
−0.448194 + 0.893936i \(0.647933\pi\)
\(888\) 0 0
\(889\) −5.55937e12 −0.298516
\(890\) −2.87433e12 −0.153561
\(891\) 0 0
\(892\) −3.42124e11 −0.0180943
\(893\) −4.82239e12 −0.253764
\(894\) 0 0
\(895\) 1.01925e13 0.530977
\(896\) 1.58674e13 0.822467
\(897\) 0 0
\(898\) 2.18201e12 0.111973
\(899\) −6.70160e12 −0.342184
\(900\) 0 0
\(901\) 1.27992e13 0.647026
\(902\) −1.95279e13 −0.982260
\(903\) 0 0
\(904\) 1.84510e13 0.918887
\(905\) −1.86365e13 −0.923518
\(906\) 0 0
\(907\) −3.06612e13 −1.50438 −0.752188 0.658949i \(-0.771001\pi\)
−0.752188 + 0.658949i \(0.771001\pi\)
\(908\) 2.65959e10 0.00129846
\(909\) 0 0
\(910\) −8.91221e12 −0.430823
\(911\) 1.70337e13 0.819365 0.409683 0.912228i \(-0.365639\pi\)
0.409683 + 0.912228i \(0.365639\pi\)
\(912\) 0 0
\(913\) 4.87706e13 2.32295
\(914\) 8.76940e12 0.415635
\(915\) 0 0
\(916\) 2.22612e12 0.104477
\(917\) −3.86951e13 −1.80715
\(918\) 0 0
\(919\) −1.92109e13 −0.888441 −0.444221 0.895917i \(-0.646519\pi\)
−0.444221 + 0.895917i \(0.646519\pi\)
\(920\) −5.17117e12 −0.237982
\(921\) 0 0
\(922\) 2.15368e12 0.0981505
\(923\) −7.17974e12 −0.325613
\(924\) 0 0
\(925\) −2.76502e13 −1.24182
\(926\) −1.06575e13 −0.476326
\(927\) 0 0
\(928\) −1.15780e12 −0.0512467
\(929\) −6.24519e12 −0.275090 −0.137545 0.990496i \(-0.543921\pi\)
−0.137545 + 0.990496i \(0.543921\pi\)
\(930\) 0 0
\(931\) 7.74958e11 0.0338068
\(932\) 2.38377e12 0.103489
\(933\) 0 0
\(934\) 3.88706e13 1.67132
\(935\) 1.72417e13 0.737781
\(936\) 0 0
\(937\) 1.80123e13 0.763379 0.381689 0.924291i \(-0.375342\pi\)
0.381689 + 0.924291i \(0.375342\pi\)
\(938\) 2.87016e13 1.21058
\(939\) 0 0
\(940\) −8.66756e11 −0.0362094
\(941\) 2.60871e13 1.08461 0.542304 0.840182i \(-0.317552\pi\)
0.542304 + 0.840182i \(0.317552\pi\)
\(942\) 0 0
\(943\) −8.02374e12 −0.330426
\(944\) −1.17296e13 −0.480741
\(945\) 0 0
\(946\) −2.52063e13 −1.02329
\(947\) −1.24739e13 −0.503998 −0.251999 0.967728i \(-0.581088\pi\)
−0.251999 + 0.967728i \(0.581088\pi\)
\(948\) 0 0
\(949\) −1.55672e13 −0.623033
\(950\) 4.17598e12 0.166342
\(951\) 0 0
\(952\) −2.50296e13 −0.987614
\(953\) −3.64825e12 −0.143274 −0.0716369 0.997431i \(-0.522822\pi\)
−0.0716369 + 0.997431i \(0.522822\pi\)
\(954\) 0 0
\(955\) −1.43520e13 −0.558340
\(956\) −1.33305e12 −0.0516161
\(957\) 0 0
\(958\) −1.91317e13 −0.733851
\(959\) 4.29338e13 1.63914
\(960\) 0 0
\(961\) −6.29185e12 −0.237971
\(962\) −4.10434e13 −1.54510
\(963\) 0 0
\(964\) 2.64513e12 0.0986507
\(965\) −1.19874e13 −0.444991
\(966\) 0 0
\(967\) −4.99854e13 −1.83833 −0.919165 0.393872i \(-0.871135\pi\)
−0.919165 + 0.393872i \(0.871135\pi\)
\(968\) −2.86864e13 −1.05012
\(969\) 0 0
\(970\) 1.76818e13 0.641288
\(971\) −2.19803e13 −0.793501 −0.396750 0.917927i \(-0.629862\pi\)
−0.396750 + 0.917927i \(0.629862\pi\)
\(972\) 0 0
\(973\) −1.53011e13 −0.547287
\(974\) −2.45761e13 −0.874979
\(975\) 0 0
\(976\) −1.30186e13 −0.459241
\(977\) −1.75824e13 −0.617379 −0.308690 0.951163i \(-0.599890\pi\)
−0.308690 + 0.951163i \(0.599890\pi\)
\(978\) 0 0
\(979\) −1.29777e13 −0.451517
\(980\) 1.39288e11 0.00482386
\(981\) 0 0
\(982\) −1.43173e13 −0.491314
\(983\) −7.28755e12 −0.248938 −0.124469 0.992224i \(-0.539723\pi\)
−0.124469 + 0.992224i \(0.539723\pi\)
\(984\) 0 0
\(985\) −1.71255e12 −0.0579669
\(986\) −1.16783e13 −0.393491
\(987\) 0 0
\(988\) −4.34300e11 −0.0145005
\(989\) −1.03569e13 −0.344229
\(990\) 0 0
\(991\) −1.09639e13 −0.361107 −0.180553 0.983565i \(-0.557789\pi\)
−0.180553 + 0.983565i \(0.557789\pi\)
\(992\) 3.48081e12 0.114124
\(993\) 0 0
\(994\) 9.26690e12 0.301090
\(995\) −6.90661e12 −0.223389
\(996\) 0 0
\(997\) 2.25491e12 0.0722770 0.0361385 0.999347i \(-0.488494\pi\)
0.0361385 + 0.999347i \(0.488494\pi\)
\(998\) −3.17864e13 −1.01427
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 171.10.a.c.1.4 6
3.2 odd 2 19.10.a.a.1.3 6
12.11 even 2 304.10.a.f.1.2 6
57.56 even 2 361.10.a.b.1.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
19.10.a.a.1.3 6 3.2 odd 2
171.10.a.c.1.4 6 1.1 even 1 trivial
304.10.a.f.1.2 6 12.11 even 2
361.10.a.b.1.4 6 57.56 even 2