Properties

Label 171.10.a.c.1.6
Level $171$
Weight $10$
Character 171.1
Self dual yes
Analytic conductor $88.071$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [171,10,Mod(1,171)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(171, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("171.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 171 = 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 171.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(88.0711279840\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 2124x^{4} - 384x^{3} + 1071312x^{2} + 1260144x - 135644992 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 19)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-35.7587\) of defining polynomial
Character \(\chi\) \(=\) 171.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+41.7587 q^{2} +1231.79 q^{4} +1014.12 q^{5} +11492.9 q^{7} +30057.3 q^{8} +42348.3 q^{10} +51884.4 q^{11} +43035.9 q^{13} +479927. q^{14} +624478. q^{16} -364626. q^{17} -130321. q^{19} +1.24918e6 q^{20} +2.16662e6 q^{22} -1.00095e6 q^{23} -924686. q^{25} +1.79712e6 q^{26} +1.41568e7 q^{28} -793096. q^{29} -7.60200e6 q^{31} +1.06880e7 q^{32} -1.52263e7 q^{34} +1.16551e7 q^{35} -7.70164e6 q^{37} -5.44203e6 q^{38} +3.04817e7 q^{40} +2.21833e7 q^{41} -1.50803e7 q^{43} +6.39104e7 q^{44} -4.17983e7 q^{46} -1.68125e7 q^{47} +9.17325e7 q^{49} -3.86136e7 q^{50} +5.30110e7 q^{52} +2.23907e7 q^{53} +5.26170e7 q^{55} +3.45445e8 q^{56} -3.31186e7 q^{58} -5.70512e7 q^{59} -4.31618e7 q^{61} -3.17450e8 q^{62} +1.26585e8 q^{64} +4.36436e7 q^{65} -3.83656e7 q^{67} -4.49141e8 q^{68} +4.86703e8 q^{70} +1.04064e7 q^{71} -4.12491e8 q^{73} -3.21610e8 q^{74} -1.60528e8 q^{76} +5.96301e8 q^{77} +6.20411e8 q^{79} +6.33295e8 q^{80} +9.26344e8 q^{82} +5.15116e8 q^{83} -3.69774e8 q^{85} -6.29735e8 q^{86} +1.55950e9 q^{88} +3.59933e8 q^{89} +4.94606e8 q^{91} -1.23296e9 q^{92} -7.02067e8 q^{94} -1.32161e8 q^{95} -4.39653e8 q^{97} +3.83063e9 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 33 q^{2} + 1365 q^{4} + 3612 q^{5} + 4085 q^{7} + 23511 q^{8} - 93884 q^{10} + 69312 q^{11} - 191747 q^{13} + 644691 q^{14} + 13905 q^{16} + 288195 q^{17} - 781926 q^{19} + 1551444 q^{20} + 2409710 q^{22}+ \cdots + 4245664590 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 41.7587 1.84549 0.922745 0.385412i \(-0.125941\pi\)
0.922745 + 0.385412i \(0.125941\pi\)
\(3\) 0 0
\(4\) 1231.79 2.40583
\(5\) 1014.12 0.725645 0.362823 0.931858i \(-0.381813\pi\)
0.362823 + 0.931858i \(0.381813\pi\)
\(6\) 0 0
\(7\) 11492.9 1.80920 0.904602 0.426258i \(-0.140168\pi\)
0.904602 + 0.426258i \(0.140168\pi\)
\(8\) 30057.3 2.59445
\(9\) 0 0
\(10\) 42348.3 1.33917
\(11\) 51884.4 1.06849 0.534244 0.845330i \(-0.320596\pi\)
0.534244 + 0.845330i \(0.320596\pi\)
\(12\) 0 0
\(13\) 43035.9 0.417913 0.208956 0.977925i \(-0.432993\pi\)
0.208956 + 0.977925i \(0.432993\pi\)
\(14\) 479927. 3.33887
\(15\) 0 0
\(16\) 624478. 2.38219
\(17\) −364626. −1.05883 −0.529416 0.848362i \(-0.677589\pi\)
−0.529416 + 0.848362i \(0.677589\pi\)
\(18\) 0 0
\(19\) −130321. −0.229416
\(20\) 1.24918e6 1.74578
\(21\) 0 0
\(22\) 2.16662e6 1.97188
\(23\) −1.00095e6 −0.745826 −0.372913 0.927866i \(-0.621641\pi\)
−0.372913 + 0.927866i \(0.621641\pi\)
\(24\) 0 0
\(25\) −924686. −0.473439
\(26\) 1.79712e6 0.771254
\(27\) 0 0
\(28\) 1.41568e7 4.35264
\(29\) −793096. −0.208226 −0.104113 0.994565i \(-0.533200\pi\)
−0.104113 + 0.994565i \(0.533200\pi\)
\(30\) 0 0
\(31\) −7.60200e6 −1.47843 −0.739215 0.673470i \(-0.764803\pi\)
−0.739215 + 0.673470i \(0.764803\pi\)
\(32\) 1.06880e7 1.80187
\(33\) 0 0
\(34\) −1.52263e7 −1.95407
\(35\) 1.16551e7 1.31284
\(36\) 0 0
\(37\) −7.70164e6 −0.675578 −0.337789 0.941222i \(-0.609679\pi\)
−0.337789 + 0.941222i \(0.609679\pi\)
\(38\) −5.44203e6 −0.423384
\(39\) 0 0
\(40\) 3.04817e7 1.88265
\(41\) 2.21833e7 1.22602 0.613011 0.790074i \(-0.289958\pi\)
0.613011 + 0.790074i \(0.289958\pi\)
\(42\) 0 0
\(43\) −1.50803e7 −0.672671 −0.336336 0.941742i \(-0.609188\pi\)
−0.336336 + 0.941742i \(0.609188\pi\)
\(44\) 6.39104e7 2.57060
\(45\) 0 0
\(46\) −4.17983e7 −1.37641
\(47\) −1.68125e7 −0.502564 −0.251282 0.967914i \(-0.580852\pi\)
−0.251282 + 0.967914i \(0.580852\pi\)
\(48\) 0 0
\(49\) 9.17325e7 2.27322
\(50\) −3.86136e7 −0.873727
\(51\) 0 0
\(52\) 5.30110e7 1.00543
\(53\) 2.23907e7 0.389786 0.194893 0.980825i \(-0.437564\pi\)
0.194893 + 0.980825i \(0.437564\pi\)
\(54\) 0 0
\(55\) 5.26170e7 0.775343
\(56\) 3.45445e8 4.69388
\(57\) 0 0
\(58\) −3.31186e7 −0.384279
\(59\) −5.70512e7 −0.612958 −0.306479 0.951877i \(-0.599151\pi\)
−0.306479 + 0.951877i \(0.599151\pi\)
\(60\) 0 0
\(61\) −4.31618e7 −0.399130 −0.199565 0.979885i \(-0.563953\pi\)
−0.199565 + 0.979885i \(0.563953\pi\)
\(62\) −3.17450e8 −2.72843
\(63\) 0 0
\(64\) 1.26585e8 0.943131
\(65\) 4.36436e7 0.303256
\(66\) 0 0
\(67\) −3.83656e7 −0.232598 −0.116299 0.993214i \(-0.537103\pi\)
−0.116299 + 0.993214i \(0.537103\pi\)
\(68\) −4.49141e8 −2.54737
\(69\) 0 0
\(70\) 4.86703e8 2.42283
\(71\) 1.04064e7 0.0486004 0.0243002 0.999705i \(-0.492264\pi\)
0.0243002 + 0.999705i \(0.492264\pi\)
\(72\) 0 0
\(73\) −4.12491e8 −1.70005 −0.850024 0.526744i \(-0.823413\pi\)
−0.850024 + 0.526744i \(0.823413\pi\)
\(74\) −3.21610e8 −1.24677
\(75\) 0 0
\(76\) −1.60528e8 −0.551936
\(77\) 5.96301e8 1.93311
\(78\) 0 0
\(79\) 6.20411e8 1.79208 0.896041 0.443972i \(-0.146431\pi\)
0.896041 + 0.443972i \(0.146431\pi\)
\(80\) 6.33295e8 1.72863
\(81\) 0 0
\(82\) 9.26344e8 2.26261
\(83\) 5.15116e8 1.19139 0.595694 0.803211i \(-0.296877\pi\)
0.595694 + 0.803211i \(0.296877\pi\)
\(84\) 0 0
\(85\) −3.69774e8 −0.768337
\(86\) −6.29735e8 −1.24141
\(87\) 0 0
\(88\) 1.55950e9 2.77213
\(89\) 3.59933e8 0.608089 0.304045 0.952658i \(-0.401663\pi\)
0.304045 + 0.952658i \(0.401663\pi\)
\(90\) 0 0
\(91\) 4.94606e8 0.756089
\(92\) −1.23296e9 −1.79433
\(93\) 0 0
\(94\) −7.02067e8 −0.927477
\(95\) −1.32161e8 −0.166474
\(96\) 0 0
\(97\) −4.39653e8 −0.504240 −0.252120 0.967696i \(-0.581128\pi\)
−0.252120 + 0.967696i \(0.581128\pi\)
\(98\) 3.83063e9 4.19520
\(99\) 0 0
\(100\) −1.13901e9 −1.13901
\(101\) 1.16061e9 1.10979 0.554893 0.831922i \(-0.312759\pi\)
0.554893 + 0.831922i \(0.312759\pi\)
\(102\) 0 0
\(103\) 4.11491e8 0.360240 0.180120 0.983645i \(-0.442351\pi\)
0.180120 + 0.983645i \(0.442351\pi\)
\(104\) 1.29354e9 1.08425
\(105\) 0 0
\(106\) 9.35005e8 0.719345
\(107\) 4.85221e8 0.357860 0.178930 0.983862i \(-0.442737\pi\)
0.178930 + 0.983862i \(0.442737\pi\)
\(108\) 0 0
\(109\) −1.60826e9 −1.09128 −0.545642 0.838019i \(-0.683714\pi\)
−0.545642 + 0.838019i \(0.683714\pi\)
\(110\) 2.19721e9 1.43089
\(111\) 0 0
\(112\) 7.17704e9 4.30987
\(113\) 5.46306e8 0.315198 0.157599 0.987503i \(-0.449625\pi\)
0.157599 + 0.987503i \(0.449625\pi\)
\(114\) 0 0
\(115\) −1.01508e9 −0.541205
\(116\) −9.76925e8 −0.500957
\(117\) 0 0
\(118\) −2.38238e9 −1.13121
\(119\) −4.19060e9 −1.91564
\(120\) 0 0
\(121\) 3.34041e8 0.141666
\(122\) −1.80238e9 −0.736591
\(123\) 0 0
\(124\) −9.36404e9 −3.55685
\(125\) −2.91845e9 −1.06919
\(126\) 0 0
\(127\) 9.85431e8 0.336132 0.168066 0.985776i \(-0.446248\pi\)
0.168066 + 0.985776i \(0.446248\pi\)
\(128\) −1.86252e8 −0.0613277
\(129\) 0 0
\(130\) 1.82250e9 0.559657
\(131\) 1.07735e9 0.319621 0.159811 0.987148i \(-0.448912\pi\)
0.159811 + 0.987148i \(0.448912\pi\)
\(132\) 0 0
\(133\) −1.49776e9 −0.415060
\(134\) −1.60210e9 −0.429257
\(135\) 0 0
\(136\) −1.09597e10 −2.74709
\(137\) −1.97459e9 −0.478888 −0.239444 0.970910i \(-0.576965\pi\)
−0.239444 + 0.970910i \(0.576965\pi\)
\(138\) 0 0
\(139\) −2.73066e9 −0.620442 −0.310221 0.950664i \(-0.600403\pi\)
−0.310221 + 0.950664i \(0.600403\pi\)
\(140\) 1.43566e10 3.15847
\(141\) 0 0
\(142\) 4.34559e8 0.0896916
\(143\) 2.23289e9 0.446535
\(144\) 0 0
\(145\) −8.04295e8 −0.151098
\(146\) −1.72251e10 −3.13742
\(147\) 0 0
\(148\) −9.48677e9 −1.62533
\(149\) 7.83959e9 1.30303 0.651516 0.758635i \(-0.274133\pi\)
0.651516 + 0.758635i \(0.274133\pi\)
\(150\) 0 0
\(151\) 8.02998e8 0.125695 0.0628475 0.998023i \(-0.479982\pi\)
0.0628475 + 0.998023i \(0.479982\pi\)
\(152\) −3.91710e9 −0.595207
\(153\) 0 0
\(154\) 2.49007e10 3.56754
\(155\) −7.70934e9 −1.07281
\(156\) 0 0
\(157\) −1.18394e10 −1.55518 −0.777590 0.628772i \(-0.783558\pi\)
−0.777590 + 0.628772i \(0.783558\pi\)
\(158\) 2.59075e10 3.30727
\(159\) 0 0
\(160\) 1.08389e10 1.30752
\(161\) −1.15038e10 −1.34935
\(162\) 0 0
\(163\) 1.21288e10 1.34577 0.672887 0.739746i \(-0.265054\pi\)
0.672887 + 0.739746i \(0.265054\pi\)
\(164\) 2.73251e10 2.94960
\(165\) 0 0
\(166\) 2.15105e10 2.19869
\(167\) −4.61691e9 −0.459333 −0.229666 0.973269i \(-0.573764\pi\)
−0.229666 + 0.973269i \(0.573764\pi\)
\(168\) 0 0
\(169\) −8.75241e9 −0.825349
\(170\) −1.54413e10 −1.41796
\(171\) 0 0
\(172\) −1.85757e10 −1.61833
\(173\) −7.93226e9 −0.673271 −0.336635 0.941635i \(-0.609289\pi\)
−0.336635 + 0.941635i \(0.609289\pi\)
\(174\) 0 0
\(175\) −1.06273e10 −0.856548
\(176\) 3.24006e10 2.54534
\(177\) 0 0
\(178\) 1.50303e10 1.12222
\(179\) 2.14340e10 1.56051 0.780253 0.625464i \(-0.215090\pi\)
0.780253 + 0.625464i \(0.215090\pi\)
\(180\) 0 0
\(181\) 2.17685e10 1.50756 0.753780 0.657127i \(-0.228228\pi\)
0.753780 + 0.657127i \(0.228228\pi\)
\(182\) 2.06541e10 1.39535
\(183\) 0 0
\(184\) −3.00858e10 −1.93500
\(185\) −7.81039e9 −0.490230
\(186\) 0 0
\(187\) −1.89184e10 −1.13135
\(188\) −2.07094e10 −1.20908
\(189\) 0 0
\(190\) −5.51887e9 −0.307227
\(191\) 2.29510e10 1.24782 0.623909 0.781497i \(-0.285544\pi\)
0.623909 + 0.781497i \(0.285544\pi\)
\(192\) 0 0
\(193\) −3.70544e10 −1.92234 −0.961172 0.275948i \(-0.911008\pi\)
−0.961172 + 0.275948i \(0.911008\pi\)
\(194\) −1.83593e10 −0.930569
\(195\) 0 0
\(196\) 1.12995e11 5.46898
\(197\) −7.47377e9 −0.353543 −0.176771 0.984252i \(-0.556565\pi\)
−0.176771 + 0.984252i \(0.556565\pi\)
\(198\) 0 0
\(199\) 3.18116e10 1.43796 0.718980 0.695031i \(-0.244609\pi\)
0.718980 + 0.695031i \(0.244609\pi\)
\(200\) −2.77935e10 −1.22831
\(201\) 0 0
\(202\) 4.84654e10 2.04810
\(203\) −9.11495e9 −0.376723
\(204\) 0 0
\(205\) 2.24965e10 0.889657
\(206\) 1.71833e10 0.664820
\(207\) 0 0
\(208\) 2.68750e10 0.995549
\(209\) −6.76162e9 −0.245128
\(210\) 0 0
\(211\) −2.37411e10 −0.824574 −0.412287 0.911054i \(-0.635270\pi\)
−0.412287 + 0.911054i \(0.635270\pi\)
\(212\) 2.75805e10 0.937758
\(213\) 0 0
\(214\) 2.02622e10 0.660426
\(215\) −1.52933e10 −0.488121
\(216\) 0 0
\(217\) −8.73689e10 −2.67478
\(218\) −6.71589e10 −2.01395
\(219\) 0 0
\(220\) 6.48128e10 1.86534
\(221\) −1.56920e10 −0.442500
\(222\) 0 0
\(223\) 2.52999e10 0.685089 0.342545 0.939502i \(-0.388711\pi\)
0.342545 + 0.939502i \(0.388711\pi\)
\(224\) 1.22836e11 3.25994
\(225\) 0 0
\(226\) 2.28130e10 0.581694
\(227\) 6.77167e9 0.169270 0.0846349 0.996412i \(-0.473028\pi\)
0.0846349 + 0.996412i \(0.473028\pi\)
\(228\) 0 0
\(229\) −7.64883e9 −0.183796 −0.0918979 0.995768i \(-0.529293\pi\)
−0.0918979 + 0.995768i \(0.529293\pi\)
\(230\) −4.23885e10 −0.998788
\(231\) 0 0
\(232\) −2.38383e10 −0.540231
\(233\) 4.69852e10 1.04438 0.522191 0.852828i \(-0.325115\pi\)
0.522191 + 0.852828i \(0.325115\pi\)
\(234\) 0 0
\(235\) −1.70499e10 −0.364683
\(236\) −7.02748e10 −1.47467
\(237\) 0 0
\(238\) −1.74994e11 −3.53530
\(239\) 7.82314e9 0.155092 0.0775462 0.996989i \(-0.475291\pi\)
0.0775462 + 0.996989i \(0.475291\pi\)
\(240\) 0 0
\(241\) −3.32182e9 −0.0634308 −0.0317154 0.999497i \(-0.510097\pi\)
−0.0317154 + 0.999497i \(0.510097\pi\)
\(242\) 1.39491e10 0.261443
\(243\) 0 0
\(244\) −5.31660e10 −0.960241
\(245\) 9.30277e10 1.64955
\(246\) 0 0
\(247\) −5.60848e9 −0.0958758
\(248\) −2.28496e11 −3.83571
\(249\) 0 0
\(250\) −1.21870e11 −1.97319
\(251\) −1.71033e10 −0.271987 −0.135994 0.990710i \(-0.543423\pi\)
−0.135994 + 0.990710i \(0.543423\pi\)
\(252\) 0 0
\(253\) −5.19337e10 −0.796905
\(254\) 4.11503e10 0.620327
\(255\) 0 0
\(256\) −7.25891e10 −1.05631
\(257\) −9.57932e10 −1.36973 −0.684866 0.728669i \(-0.740139\pi\)
−0.684866 + 0.728669i \(0.740139\pi\)
\(258\) 0 0
\(259\) −8.85140e10 −1.22226
\(260\) 5.37595e10 0.729584
\(261\) 0 0
\(262\) 4.49886e10 0.589857
\(263\) −6.34297e9 −0.0817507 −0.0408754 0.999164i \(-0.513015\pi\)
−0.0408754 + 0.999164i \(0.513015\pi\)
\(264\) 0 0
\(265\) 2.27068e10 0.282846
\(266\) −6.25446e10 −0.765988
\(267\) 0 0
\(268\) −4.72582e10 −0.559591
\(269\) 3.08503e10 0.359231 0.179615 0.983737i \(-0.442515\pi\)
0.179615 + 0.983737i \(0.442515\pi\)
\(270\) 0 0
\(271\) 1.45802e11 1.64210 0.821052 0.570853i \(-0.193387\pi\)
0.821052 + 0.570853i \(0.193387\pi\)
\(272\) −2.27701e11 −2.52234
\(273\) 0 0
\(274\) −8.24562e10 −0.883783
\(275\) −4.79768e10 −0.505864
\(276\) 0 0
\(277\) 3.79755e10 0.387565 0.193783 0.981044i \(-0.437924\pi\)
0.193783 + 0.981044i \(0.437924\pi\)
\(278\) −1.14029e11 −1.14502
\(279\) 0 0
\(280\) 3.50322e11 3.40609
\(281\) 1.21279e11 1.16039 0.580197 0.814476i \(-0.302975\pi\)
0.580197 + 0.814476i \(0.302975\pi\)
\(282\) 0 0
\(283\) −6.88549e10 −0.638110 −0.319055 0.947736i \(-0.603366\pi\)
−0.319055 + 0.947736i \(0.603366\pi\)
\(284\) 1.28185e10 0.116924
\(285\) 0 0
\(286\) 9.32425e10 0.824075
\(287\) 2.54950e11 2.21812
\(288\) 0 0
\(289\) 1.43642e10 0.121127
\(290\) −3.35863e10 −0.278850
\(291\) 0 0
\(292\) −5.08100e11 −4.09003
\(293\) −2.17421e11 −1.72344 −0.861721 0.507383i \(-0.830613\pi\)
−0.861721 + 0.507383i \(0.830613\pi\)
\(294\) 0 0
\(295\) −5.78567e10 −0.444790
\(296\) −2.31490e11 −1.75275
\(297\) 0 0
\(298\) 3.27371e11 2.40473
\(299\) −4.30768e10 −0.311690
\(300\) 0 0
\(301\) −1.73316e11 −1.21700
\(302\) 3.35321e10 0.231969
\(303\) 0 0
\(304\) −8.13826e10 −0.546513
\(305\) −4.37712e10 −0.289627
\(306\) 0 0
\(307\) −9.71479e10 −0.624181 −0.312091 0.950052i \(-0.601029\pi\)
−0.312091 + 0.950052i \(0.601029\pi\)
\(308\) 7.34514e11 4.65074
\(309\) 0 0
\(310\) −3.21932e11 −1.97987
\(311\) −1.26366e11 −0.765965 −0.382983 0.923756i \(-0.625103\pi\)
−0.382983 + 0.923756i \(0.625103\pi\)
\(312\) 0 0
\(313\) −1.26191e11 −0.743156 −0.371578 0.928402i \(-0.621183\pi\)
−0.371578 + 0.928402i \(0.621183\pi\)
\(314\) −4.94397e11 −2.87007
\(315\) 0 0
\(316\) 7.64214e11 4.31145
\(317\) −2.10513e11 −1.17088 −0.585439 0.810716i \(-0.699078\pi\)
−0.585439 + 0.810716i \(0.699078\pi\)
\(318\) 0 0
\(319\) −4.11493e10 −0.222487
\(320\) 1.28372e11 0.684378
\(321\) 0 0
\(322\) −4.80383e11 −2.49021
\(323\) 4.75184e10 0.242913
\(324\) 0 0
\(325\) −3.97947e10 −0.197856
\(326\) 5.06480e11 2.48361
\(327\) 0 0
\(328\) 6.66769e11 3.18085
\(329\) −1.93224e11 −0.909240
\(330\) 0 0
\(331\) −2.62984e11 −1.20421 −0.602106 0.798416i \(-0.705671\pi\)
−0.602106 + 0.798416i \(0.705671\pi\)
\(332\) 6.34512e11 2.86628
\(333\) 0 0
\(334\) −1.92796e11 −0.847694
\(335\) −3.89074e10 −0.168784
\(336\) 0 0
\(337\) 8.10072e10 0.342128 0.171064 0.985260i \(-0.445279\pi\)
0.171064 + 0.985260i \(0.445279\pi\)
\(338\) −3.65489e11 −1.52317
\(339\) 0 0
\(340\) −4.55483e11 −1.84849
\(341\) −3.94425e11 −1.57968
\(342\) 0 0
\(343\) 5.90491e11 2.30351
\(344\) −4.53274e11 −1.74521
\(345\) 0 0
\(346\) −3.31241e11 −1.24251
\(347\) 2.78162e11 1.02995 0.514974 0.857206i \(-0.327801\pi\)
0.514974 + 0.857206i \(0.327801\pi\)
\(348\) 0 0
\(349\) −1.23111e11 −0.444204 −0.222102 0.975023i \(-0.571292\pi\)
−0.222102 + 0.975023i \(0.571292\pi\)
\(350\) −4.43782e11 −1.58075
\(351\) 0 0
\(352\) 5.54541e11 1.92527
\(353\) 4.83818e11 1.65842 0.829212 0.558934i \(-0.188790\pi\)
0.829212 + 0.558934i \(0.188790\pi\)
\(354\) 0 0
\(355\) 1.05534e10 0.0352667
\(356\) 4.43361e11 1.46296
\(357\) 0 0
\(358\) 8.95057e11 2.87990
\(359\) 1.29651e10 0.0411957 0.0205979 0.999788i \(-0.493443\pi\)
0.0205979 + 0.999788i \(0.493443\pi\)
\(360\) 0 0
\(361\) 1.69836e10 0.0526316
\(362\) 9.09023e11 2.78219
\(363\) 0 0
\(364\) 6.09249e11 1.81902
\(365\) −4.18315e11 −1.23363
\(366\) 0 0
\(367\) −4.07401e11 −1.17226 −0.586131 0.810217i \(-0.699349\pi\)
−0.586131 + 0.810217i \(0.699349\pi\)
\(368\) −6.25071e11 −1.77670
\(369\) 0 0
\(370\) −3.26151e11 −0.904714
\(371\) 2.57333e11 0.705201
\(372\) 0 0
\(373\) 2.68806e10 0.0719034 0.0359517 0.999354i \(-0.488554\pi\)
0.0359517 + 0.999354i \(0.488554\pi\)
\(374\) −7.90007e11 −2.08789
\(375\) 0 0
\(376\) −5.05337e11 −1.30388
\(377\) −3.41316e10 −0.0870203
\(378\) 0 0
\(379\) 6.33155e10 0.157628 0.0788140 0.996889i \(-0.474887\pi\)
0.0788140 + 0.996889i \(0.474887\pi\)
\(380\) −1.62794e11 −0.400509
\(381\) 0 0
\(382\) 9.58402e11 2.30283
\(383\) −3.25509e11 −0.772979 −0.386490 0.922294i \(-0.626313\pi\)
−0.386490 + 0.922294i \(0.626313\pi\)
\(384\) 0 0
\(385\) 6.04720e11 1.40275
\(386\) −1.54734e12 −3.54767
\(387\) 0 0
\(388\) −5.41558e11 −1.21312
\(389\) 1.55902e11 0.345206 0.172603 0.984991i \(-0.444782\pi\)
0.172603 + 0.984991i \(0.444782\pi\)
\(390\) 0 0
\(391\) 3.64972e11 0.789705
\(392\) 2.75723e12 5.89774
\(393\) 0 0
\(394\) −3.12095e11 −0.652459
\(395\) 6.29171e11 1.30042
\(396\) 0 0
\(397\) 8.10900e11 1.63836 0.819181 0.573535i \(-0.194428\pi\)
0.819181 + 0.573535i \(0.194428\pi\)
\(398\) 1.32841e12 2.65374
\(399\) 0 0
\(400\) −5.77446e11 −1.12782
\(401\) 8.40675e11 1.62360 0.811799 0.583937i \(-0.198489\pi\)
0.811799 + 0.583937i \(0.198489\pi\)
\(402\) 0 0
\(403\) −3.27159e11 −0.617855
\(404\) 1.42962e12 2.66996
\(405\) 0 0
\(406\) −3.80628e11 −0.695239
\(407\) −3.99595e11 −0.721847
\(408\) 0 0
\(409\) 4.85989e11 0.858760 0.429380 0.903124i \(-0.358732\pi\)
0.429380 + 0.903124i \(0.358732\pi\)
\(410\) 9.39424e11 1.64185
\(411\) 0 0
\(412\) 5.06868e11 0.866678
\(413\) −6.55682e11 −1.10897
\(414\) 0 0
\(415\) 5.22389e11 0.864525
\(416\) 4.59969e11 0.753023
\(417\) 0 0
\(418\) −2.82356e11 −0.452381
\(419\) −1.12599e12 −1.78473 −0.892366 0.451312i \(-0.850956\pi\)
−0.892366 + 0.451312i \(0.850956\pi\)
\(420\) 0 0
\(421\) 5.18013e11 0.803658 0.401829 0.915715i \(-0.368375\pi\)
0.401829 + 0.915715i \(0.368375\pi\)
\(422\) −9.91396e11 −1.52174
\(423\) 0 0
\(424\) 6.73003e11 1.01128
\(425\) 3.37164e11 0.501293
\(426\) 0 0
\(427\) −4.96053e11 −0.722108
\(428\) 5.97688e11 0.860950
\(429\) 0 0
\(430\) −6.38626e11 −0.900822
\(431\) 9.63258e11 1.34461 0.672303 0.740276i \(-0.265305\pi\)
0.672303 + 0.740276i \(0.265305\pi\)
\(432\) 0 0
\(433\) −4.49398e11 −0.614378 −0.307189 0.951648i \(-0.599388\pi\)
−0.307189 + 0.951648i \(0.599388\pi\)
\(434\) −3.64841e12 −4.93628
\(435\) 0 0
\(436\) −1.98103e12 −2.62544
\(437\) 1.30445e11 0.171104
\(438\) 0 0
\(439\) −2.47686e11 −0.318281 −0.159141 0.987256i \(-0.550872\pi\)
−0.159141 + 0.987256i \(0.550872\pi\)
\(440\) 1.58152e12 2.01159
\(441\) 0 0
\(442\) −6.55277e11 −0.816629
\(443\) 1.45436e12 1.79414 0.897068 0.441893i \(-0.145693\pi\)
0.897068 + 0.441893i \(0.145693\pi\)
\(444\) 0 0
\(445\) 3.65016e11 0.441257
\(446\) 1.05649e12 1.26433
\(447\) 0 0
\(448\) 1.45482e12 1.70632
\(449\) 1.07615e12 1.24958 0.624790 0.780793i \(-0.285185\pi\)
0.624790 + 0.780793i \(0.285185\pi\)
\(450\) 0 0
\(451\) 1.15097e12 1.30999
\(452\) 6.72932e11 0.758313
\(453\) 0 0
\(454\) 2.82776e11 0.312386
\(455\) 5.01590e11 0.548652
\(456\) 0 0
\(457\) 5.14155e11 0.551406 0.275703 0.961243i \(-0.411089\pi\)
0.275703 + 0.961243i \(0.411089\pi\)
\(458\) −3.19405e11 −0.339193
\(459\) 0 0
\(460\) −1.25037e12 −1.30205
\(461\) −4.22940e11 −0.436139 −0.218070 0.975933i \(-0.569976\pi\)
−0.218070 + 0.975933i \(0.569976\pi\)
\(462\) 0 0
\(463\) −7.36798e11 −0.745134 −0.372567 0.928005i \(-0.621522\pi\)
−0.372567 + 0.928005i \(0.621522\pi\)
\(464\) −4.95271e11 −0.496035
\(465\) 0 0
\(466\) 1.96204e12 1.92740
\(467\) −5.12604e11 −0.498719 −0.249360 0.968411i \(-0.580220\pi\)
−0.249360 + 0.968411i \(0.580220\pi\)
\(468\) 0 0
\(469\) −4.40931e11 −0.420817
\(470\) −7.11980e11 −0.673019
\(471\) 0 0
\(472\) −1.71480e12 −1.59029
\(473\) −7.82434e11 −0.718741
\(474\) 0 0
\(475\) 1.20506e11 0.108614
\(476\) −5.16192e12 −4.60872
\(477\) 0 0
\(478\) 3.26684e11 0.286221
\(479\) 9.76695e11 0.847714 0.423857 0.905729i \(-0.360676\pi\)
0.423857 + 0.905729i \(0.360676\pi\)
\(480\) 0 0
\(481\) −3.31447e11 −0.282333
\(482\) −1.38715e11 −0.117061
\(483\) 0 0
\(484\) 4.11467e11 0.340825
\(485\) −4.45861e11 −0.365899
\(486\) 0 0
\(487\) −1.55134e11 −0.124976 −0.0624881 0.998046i \(-0.519904\pi\)
−0.0624881 + 0.998046i \(0.519904\pi\)
\(488\) −1.29733e12 −1.03552
\(489\) 0 0
\(490\) 3.88471e12 3.04422
\(491\) −9.27255e11 −0.720000 −0.360000 0.932952i \(-0.617223\pi\)
−0.360000 + 0.932952i \(0.617223\pi\)
\(492\) 0 0
\(493\) 2.89183e11 0.220477
\(494\) −2.34203e11 −0.176938
\(495\) 0 0
\(496\) −4.74728e12 −3.52190
\(497\) 1.19600e11 0.0879280
\(498\) 0 0
\(499\) −2.24714e12 −1.62247 −0.811236 0.584719i \(-0.801205\pi\)
−0.811236 + 0.584719i \(0.801205\pi\)
\(500\) −3.59490e12 −2.57230
\(501\) 0 0
\(502\) −7.14212e11 −0.501950
\(503\) −1.48116e12 −1.03168 −0.515840 0.856685i \(-0.672520\pi\)
−0.515840 + 0.856685i \(0.672520\pi\)
\(504\) 0 0
\(505\) 1.17700e12 0.805311
\(506\) −2.16868e12 −1.47068
\(507\) 0 0
\(508\) 1.21384e12 0.808676
\(509\) 2.73246e12 1.80436 0.902180 0.431360i \(-0.141966\pi\)
0.902180 + 0.431360i \(0.141966\pi\)
\(510\) 0 0
\(511\) −4.74070e12 −3.07573
\(512\) −2.93586e12 −1.88808
\(513\) 0 0
\(514\) −4.00020e12 −2.52783
\(515\) 4.17301e11 0.261407
\(516\) 0 0
\(517\) −8.72305e11 −0.536984
\(518\) −3.69623e12 −2.25566
\(519\) 0 0
\(520\) 1.31181e12 0.786783
\(521\) 3.34389e11 0.198830 0.0994150 0.995046i \(-0.468303\pi\)
0.0994150 + 0.995046i \(0.468303\pi\)
\(522\) 0 0
\(523\) 2.73251e12 1.59700 0.798498 0.601997i \(-0.205628\pi\)
0.798498 + 0.601997i \(0.205628\pi\)
\(524\) 1.32706e12 0.768954
\(525\) 0 0
\(526\) −2.64874e11 −0.150870
\(527\) 2.77189e12 1.56541
\(528\) 0 0
\(529\) −7.99251e11 −0.443744
\(530\) 9.48207e11 0.521989
\(531\) 0 0
\(532\) −1.84492e12 −0.998564
\(533\) 9.54677e11 0.512371
\(534\) 0 0
\(535\) 4.92072e11 0.259679
\(536\) −1.15317e12 −0.603463
\(537\) 0 0
\(538\) 1.28827e12 0.662957
\(539\) 4.75948e12 2.42890
\(540\) 0 0
\(541\) 5.64522e11 0.283330 0.141665 0.989915i \(-0.454754\pi\)
0.141665 + 0.989915i \(0.454754\pi\)
\(542\) 6.08849e12 3.03049
\(543\) 0 0
\(544\) −3.89713e12 −1.90787
\(545\) −1.63097e12 −0.791884
\(546\) 0 0
\(547\) 1.15089e12 0.549654 0.274827 0.961494i \(-0.411379\pi\)
0.274827 + 0.961494i \(0.411379\pi\)
\(548\) −2.43227e12 −1.15212
\(549\) 0 0
\(550\) −2.00344e12 −0.933567
\(551\) 1.03357e11 0.0477703
\(552\) 0 0
\(553\) 7.13031e12 3.24224
\(554\) 1.58581e12 0.715248
\(555\) 0 0
\(556\) −3.36359e12 −1.49268
\(557\) 2.90286e11 0.127784 0.0638921 0.997957i \(-0.479649\pi\)
0.0638921 + 0.997957i \(0.479649\pi\)
\(558\) 0 0
\(559\) −6.48996e11 −0.281118
\(560\) 7.27838e12 3.12744
\(561\) 0 0
\(562\) 5.06443e12 2.14150
\(563\) 7.83279e11 0.328571 0.164285 0.986413i \(-0.447468\pi\)
0.164285 + 0.986413i \(0.447468\pi\)
\(564\) 0 0
\(565\) 5.54020e11 0.228722
\(566\) −2.87529e12 −1.17763
\(567\) 0 0
\(568\) 3.12790e11 0.126091
\(569\) 3.73407e12 1.49340 0.746702 0.665159i \(-0.231636\pi\)
0.746702 + 0.665159i \(0.231636\pi\)
\(570\) 0 0
\(571\) 3.23290e12 1.27271 0.636355 0.771396i \(-0.280441\pi\)
0.636355 + 0.771396i \(0.280441\pi\)
\(572\) 2.75044e12 1.07429
\(573\) 0 0
\(574\) 1.06464e13 4.09352
\(575\) 9.25565e11 0.353103
\(576\) 0 0
\(577\) 3.14886e12 1.18267 0.591333 0.806427i \(-0.298602\pi\)
0.591333 + 0.806427i \(0.298602\pi\)
\(578\) 5.99831e11 0.223539
\(579\) 0 0
\(580\) −9.90719e11 −0.363517
\(581\) 5.92016e12 2.15546
\(582\) 0 0
\(583\) 1.16173e12 0.416481
\(584\) −1.23983e13 −4.41068
\(585\) 0 0
\(586\) −9.07920e12 −3.18059
\(587\) −4.38854e12 −1.52563 −0.762815 0.646617i \(-0.776183\pi\)
−0.762815 + 0.646617i \(0.776183\pi\)
\(588\) 0 0
\(589\) 9.90701e11 0.339175
\(590\) −2.41602e12 −0.820855
\(591\) 0 0
\(592\) −4.80950e12 −1.60936
\(593\) −3.83643e12 −1.27404 −0.637018 0.770849i \(-0.719832\pi\)
−0.637018 + 0.770849i \(0.719832\pi\)
\(594\) 0 0
\(595\) −4.24977e12 −1.39008
\(596\) 9.65670e12 3.13488
\(597\) 0 0
\(598\) −1.79883e12 −0.575221
\(599\) −3.29183e12 −1.04476 −0.522380 0.852713i \(-0.674956\pi\)
−0.522380 + 0.852713i \(0.674956\pi\)
\(600\) 0 0
\(601\) 4.43624e12 1.38701 0.693506 0.720451i \(-0.256065\pi\)
0.693506 + 0.720451i \(0.256065\pi\)
\(602\) −7.23746e12 −2.24596
\(603\) 0 0
\(604\) 9.89122e11 0.302401
\(605\) 3.38758e11 0.102799
\(606\) 0 0
\(607\) 1.67409e12 0.500529 0.250264 0.968178i \(-0.419482\pi\)
0.250264 + 0.968178i \(0.419482\pi\)
\(608\) −1.39287e12 −0.413376
\(609\) 0 0
\(610\) −1.82783e12 −0.534504
\(611\) −7.23540e11 −0.210028
\(612\) 0 0
\(613\) 1.31692e12 0.376694 0.188347 0.982103i \(-0.439687\pi\)
0.188347 + 0.982103i \(0.439687\pi\)
\(614\) −4.05677e12 −1.15192
\(615\) 0 0
\(616\) 1.79232e13 5.01536
\(617\) 5.34801e12 1.48562 0.742812 0.669500i \(-0.233492\pi\)
0.742812 + 0.669500i \(0.233492\pi\)
\(618\) 0 0
\(619\) 1.83252e12 0.501697 0.250849 0.968026i \(-0.419290\pi\)
0.250849 + 0.968026i \(0.419290\pi\)
\(620\) −9.49626e12 −2.58101
\(621\) 0 0
\(622\) −5.27688e12 −1.41358
\(623\) 4.13667e12 1.10016
\(624\) 0 0
\(625\) −1.15363e12 −0.302416
\(626\) −5.26958e12 −1.37149
\(627\) 0 0
\(628\) −1.45836e13 −3.74150
\(629\) 2.80822e12 0.715324
\(630\) 0 0
\(631\) 6.87154e11 0.172553 0.0862764 0.996271i \(-0.472503\pi\)
0.0862764 + 0.996271i \(0.472503\pi\)
\(632\) 1.86479e13 4.64946
\(633\) 0 0
\(634\) −8.79073e12 −2.16084
\(635\) 9.99345e11 0.243912
\(636\) 0 0
\(637\) 3.94779e12 0.950006
\(638\) −1.71834e12 −0.410597
\(639\) 0 0
\(640\) −1.88882e11 −0.0445022
\(641\) −2.50011e12 −0.584922 −0.292461 0.956277i \(-0.594474\pi\)
−0.292461 + 0.956277i \(0.594474\pi\)
\(642\) 0 0
\(643\) −1.48345e12 −0.342235 −0.171117 0.985251i \(-0.554738\pi\)
−0.171117 + 0.985251i \(0.554738\pi\)
\(644\) −1.41702e13 −3.24631
\(645\) 0 0
\(646\) 1.98431e12 0.448293
\(647\) 5.16393e12 1.15854 0.579270 0.815135i \(-0.303338\pi\)
0.579270 + 0.815135i \(0.303338\pi\)
\(648\) 0 0
\(649\) −2.96007e12 −0.654938
\(650\) −1.66177e12 −0.365142
\(651\) 0 0
\(652\) 1.49400e13 3.23770
\(653\) −8.25854e12 −1.77744 −0.888718 0.458455i \(-0.848403\pi\)
−0.888718 + 0.458455i \(0.848403\pi\)
\(654\) 0 0
\(655\) 1.09256e12 0.231931
\(656\) 1.38530e13 2.92062
\(657\) 0 0
\(658\) −8.06876e12 −1.67799
\(659\) −5.19776e12 −1.07357 −0.536787 0.843718i \(-0.680362\pi\)
−0.536787 + 0.843718i \(0.680362\pi\)
\(660\) 0 0
\(661\) −2.39001e12 −0.486961 −0.243480 0.969906i \(-0.578289\pi\)
−0.243480 + 0.969906i \(0.578289\pi\)
\(662\) −1.09818e13 −2.22236
\(663\) 0 0
\(664\) 1.54830e13 3.09099
\(665\) −1.51891e12 −0.301186
\(666\) 0 0
\(667\) 7.93850e11 0.155300
\(668\) −5.68705e12 −1.10508
\(669\) 0 0
\(670\) −1.62472e12 −0.311488
\(671\) −2.23942e12 −0.426466
\(672\) 0 0
\(673\) 1.30739e12 0.245662 0.122831 0.992428i \(-0.460803\pi\)
0.122831 + 0.992428i \(0.460803\pi\)
\(674\) 3.38275e12 0.631394
\(675\) 0 0
\(676\) −1.07811e13 −1.98565
\(677\) 4.51590e12 0.826219 0.413110 0.910681i \(-0.364443\pi\)
0.413110 + 0.910681i \(0.364443\pi\)
\(678\) 0 0
\(679\) −5.05287e12 −0.912272
\(680\) −1.11144e13 −1.99341
\(681\) 0 0
\(682\) −1.64707e13 −2.91529
\(683\) −6.82404e12 −1.19991 −0.599955 0.800034i \(-0.704815\pi\)
−0.599955 + 0.800034i \(0.704815\pi\)
\(684\) 0 0
\(685\) −2.00247e12 −0.347503
\(686\) 2.46581e13 4.25110
\(687\) 0 0
\(688\) −9.41733e12 −1.60243
\(689\) 9.63603e11 0.162896
\(690\) 0 0
\(691\) 5.63718e12 0.940613 0.470306 0.882503i \(-0.344143\pi\)
0.470306 + 0.882503i \(0.344143\pi\)
\(692\) −9.77085e12 −1.61978
\(693\) 0 0
\(694\) 1.16157e13 1.90076
\(695\) −2.76922e12 −0.450221
\(696\) 0 0
\(697\) −8.08860e12 −1.29815
\(698\) −5.14095e12 −0.819774
\(699\) 0 0
\(700\) −1.30906e13 −2.06071
\(701\) −7.92649e12 −1.23979 −0.619897 0.784683i \(-0.712826\pi\)
−0.619897 + 0.784683i \(0.712826\pi\)
\(702\) 0 0
\(703\) 1.00369e12 0.154988
\(704\) 6.56778e12 1.00772
\(705\) 0 0
\(706\) 2.02036e13 3.06060
\(707\) 1.33387e13 2.00783
\(708\) 0 0
\(709\) −9.03605e12 −1.34298 −0.671492 0.741012i \(-0.734346\pi\)
−0.671492 + 0.741012i \(0.734346\pi\)
\(710\) 4.40695e11 0.0650842
\(711\) 0 0
\(712\) 1.08186e13 1.57765
\(713\) 7.60923e12 1.10265
\(714\) 0 0
\(715\) 2.26442e12 0.324026
\(716\) 2.64022e13 3.75432
\(717\) 0 0
\(718\) 5.41407e11 0.0760263
\(719\) −4.32764e12 −0.603909 −0.301954 0.953322i \(-0.597639\pi\)
−0.301954 + 0.953322i \(0.597639\pi\)
\(720\) 0 0
\(721\) 4.72921e12 0.651748
\(722\) 7.09211e11 0.0971310
\(723\) 0 0
\(724\) 2.68141e13 3.62694
\(725\) 7.33365e11 0.0985823
\(726\) 0 0
\(727\) −1.03025e13 −1.36785 −0.683926 0.729551i \(-0.739729\pi\)
−0.683926 + 0.729551i \(0.739729\pi\)
\(728\) 1.48665e13 1.96163
\(729\) 0 0
\(730\) −1.74683e13 −2.27665
\(731\) 5.49868e12 0.712247
\(732\) 0 0
\(733\) −1.24191e13 −1.58900 −0.794499 0.607265i \(-0.792267\pi\)
−0.794499 + 0.607265i \(0.792267\pi\)
\(734\) −1.70125e13 −2.16340
\(735\) 0 0
\(736\) −1.06982e13 −1.34388
\(737\) −1.99058e12 −0.248528
\(738\) 0 0
\(739\) 9.29716e12 1.14670 0.573351 0.819310i \(-0.305643\pi\)
0.573351 + 0.819310i \(0.305643\pi\)
\(740\) −9.62073e12 −1.17941
\(741\) 0 0
\(742\) 1.07459e13 1.30144
\(743\) 5.92293e12 0.712996 0.356498 0.934296i \(-0.383971\pi\)
0.356498 + 0.934296i \(0.383971\pi\)
\(744\) 0 0
\(745\) 7.95029e12 0.945539
\(746\) 1.12250e12 0.132697
\(747\) 0 0
\(748\) −2.33034e13 −2.72184
\(749\) 5.57658e12 0.647441
\(750\) 0 0
\(751\) 8.05210e12 0.923696 0.461848 0.886959i \(-0.347186\pi\)
0.461848 + 0.886959i \(0.347186\pi\)
\(752\) −1.04990e13 −1.19720
\(753\) 0 0
\(754\) −1.42529e12 −0.160595
\(755\) 8.14336e11 0.0912100
\(756\) 0 0
\(757\) 1.02771e13 1.13746 0.568731 0.822523i \(-0.307434\pi\)
0.568731 + 0.822523i \(0.307434\pi\)
\(758\) 2.64397e12 0.290901
\(759\) 0 0
\(760\) −3.97240e12 −0.431909
\(761\) −4.78270e11 −0.0516943 −0.0258471 0.999666i \(-0.508228\pi\)
−0.0258471 + 0.999666i \(0.508228\pi\)
\(762\) 0 0
\(763\) −1.84835e13 −1.97435
\(764\) 2.82707e13 3.00204
\(765\) 0 0
\(766\) −1.35928e13 −1.42653
\(767\) −2.45525e12 −0.256163
\(768\) 0 0
\(769\) −1.06587e11 −0.0109909 −0.00549546 0.999985i \(-0.501749\pi\)
−0.00549546 + 0.999985i \(0.501749\pi\)
\(770\) 2.52523e13 2.58877
\(771\) 0 0
\(772\) −4.56430e13 −4.62484
\(773\) −1.57116e13 −1.58276 −0.791378 0.611327i \(-0.790636\pi\)
−0.791378 + 0.611327i \(0.790636\pi\)
\(774\) 0 0
\(775\) 7.02947e12 0.699946
\(776\) −1.32148e13 −1.30822
\(777\) 0 0
\(778\) 6.51026e12 0.637074
\(779\) −2.89095e12 −0.281269
\(780\) 0 0
\(781\) 5.39932e11 0.0519290
\(782\) 1.52408e13 1.45739
\(783\) 0 0
\(784\) 5.72849e13 5.41524
\(785\) −1.20065e13 −1.12851
\(786\) 0 0
\(787\) −1.23117e13 −1.14401 −0.572006 0.820250i \(-0.693834\pi\)
−0.572006 + 0.820250i \(0.693834\pi\)
\(788\) −9.20609e12 −0.850564
\(789\) 0 0
\(790\) 2.62734e13 2.39990
\(791\) 6.27863e12 0.570257
\(792\) 0 0
\(793\) −1.85750e12 −0.166802
\(794\) 3.38621e13 3.02358
\(795\) 0 0
\(796\) 3.91851e13 3.45949
\(797\) 1.25015e13 1.09749 0.548746 0.835989i \(-0.315105\pi\)
0.548746 + 0.835989i \(0.315105\pi\)
\(798\) 0 0
\(799\) 6.13027e12 0.532131
\(800\) −9.88306e12 −0.853074
\(801\) 0 0
\(802\) 3.51055e13 2.99633
\(803\) −2.14018e13 −1.81648
\(804\) 0 0
\(805\) −1.16662e13 −0.979149
\(806\) −1.36617e13 −1.14024
\(807\) 0 0
\(808\) 3.48847e13 2.87928
\(809\) −2.18197e12 −0.179094 −0.0895470 0.995983i \(-0.528542\pi\)
−0.0895470 + 0.995983i \(0.528542\pi\)
\(810\) 0 0
\(811\) −6.14819e12 −0.499061 −0.249530 0.968367i \(-0.580276\pi\)
−0.249530 + 0.968367i \(0.580276\pi\)
\(812\) −1.12277e13 −0.906332
\(813\) 0 0
\(814\) −1.66866e13 −1.33216
\(815\) 1.23000e13 0.976554
\(816\) 0 0
\(817\) 1.96528e12 0.154321
\(818\) 2.02943e13 1.58483
\(819\) 0 0
\(820\) 2.77109e13 2.14037
\(821\) −1.50871e13 −1.15894 −0.579471 0.814993i \(-0.696741\pi\)
−0.579471 + 0.814993i \(0.696741\pi\)
\(822\) 0 0
\(823\) −2.28414e13 −1.73550 −0.867748 0.497005i \(-0.834433\pi\)
−0.867748 + 0.497005i \(0.834433\pi\)
\(824\) 1.23683e13 0.934625
\(825\) 0 0
\(826\) −2.73804e13 −2.04658
\(827\) 2.56123e13 1.90403 0.952015 0.306051i \(-0.0990080\pi\)
0.952015 + 0.306051i \(0.0990080\pi\)
\(828\) 0 0
\(829\) 1.76802e13 1.30015 0.650074 0.759871i \(-0.274738\pi\)
0.650074 + 0.759871i \(0.274738\pi\)
\(830\) 2.18143e13 1.59547
\(831\) 0 0
\(832\) 5.44769e12 0.394146
\(833\) −3.34480e13 −2.40696
\(834\) 0 0
\(835\) −4.68210e12 −0.333313
\(836\) −8.32887e12 −0.589736
\(837\) 0 0
\(838\) −4.70200e13 −3.29370
\(839\) −8.38339e12 −0.584105 −0.292052 0.956402i \(-0.594338\pi\)
−0.292052 + 0.956402i \(0.594338\pi\)
\(840\) 0 0
\(841\) −1.38781e13 −0.956642
\(842\) 2.16315e13 1.48314
\(843\) 0 0
\(844\) −2.92439e13 −1.98379
\(845\) −8.87599e12 −0.598910
\(846\) 0 0
\(847\) 3.83909e12 0.256303
\(848\) 1.39825e13 0.928545
\(849\) 0 0
\(850\) 1.40795e13 0.925131
\(851\) 7.70896e12 0.503863
\(852\) 0 0
\(853\) −1.52642e13 −0.987197 −0.493598 0.869690i \(-0.664319\pi\)
−0.493598 + 0.869690i \(0.664319\pi\)
\(854\) −2.07145e13 −1.33264
\(855\) 0 0
\(856\) 1.45844e13 0.928448
\(857\) 4.72637e12 0.299305 0.149653 0.988739i \(-0.452184\pi\)
0.149653 + 0.988739i \(0.452184\pi\)
\(858\) 0 0
\(859\) −1.43858e13 −0.901497 −0.450749 0.892651i \(-0.648843\pi\)
−0.450749 + 0.892651i \(0.648843\pi\)
\(860\) −1.88380e13 −1.17434
\(861\) 0 0
\(862\) 4.02244e13 2.48146
\(863\) −3.24081e13 −1.98887 −0.994433 0.105375i \(-0.966396\pi\)
−0.994433 + 0.105375i \(0.966396\pi\)
\(864\) 0 0
\(865\) −8.04427e12 −0.488556
\(866\) −1.87663e13 −1.13383
\(867\) 0 0
\(868\) −1.07620e14 −6.43507
\(869\) 3.21897e13 1.91482
\(870\) 0 0
\(871\) −1.65110e12 −0.0972057
\(872\) −4.83400e13 −2.83128
\(873\) 0 0
\(874\) 5.44720e12 0.315771
\(875\) −3.35413e13 −1.93439
\(876\) 0 0
\(877\) −3.63648e11 −0.0207579 −0.0103789 0.999946i \(-0.503304\pi\)
−0.0103789 + 0.999946i \(0.503304\pi\)
\(878\) −1.03430e13 −0.587385
\(879\) 0 0
\(880\) 3.28581e13 1.84702
\(881\) −1.02213e13 −0.571632 −0.285816 0.958285i \(-0.592265\pi\)
−0.285816 + 0.958285i \(0.592265\pi\)
\(882\) 0 0
\(883\) −3.02685e13 −1.67559 −0.837795 0.545985i \(-0.816156\pi\)
−0.837795 + 0.545985i \(0.816156\pi\)
\(884\) −1.93292e13 −1.06458
\(885\) 0 0
\(886\) 6.07321e13 3.31106
\(887\) 1.17495e12 0.0637328 0.0318664 0.999492i \(-0.489855\pi\)
0.0318664 + 0.999492i \(0.489855\pi\)
\(888\) 0 0
\(889\) 1.13254e13 0.608130
\(890\) 1.52426e13 0.814335
\(891\) 0 0
\(892\) 3.11641e13 1.64821
\(893\) 2.19102e12 0.115296
\(894\) 0 0
\(895\) 2.17367e13 1.13237
\(896\) −2.14057e12 −0.110954
\(897\) 0 0
\(898\) 4.49386e13 2.30609
\(899\) 6.02912e12 0.307847
\(900\) 0 0
\(901\) −8.16422e12 −0.412718
\(902\) 4.80628e13 2.41757
\(903\) 0 0
\(904\) 1.64205e13 0.817764
\(905\) 2.20759e13 1.09395
\(906\) 0 0
\(907\) 2.49201e13 1.22269 0.611347 0.791363i \(-0.290628\pi\)
0.611347 + 0.791363i \(0.290628\pi\)
\(908\) 8.34124e12 0.407234
\(909\) 0 0
\(910\) 2.09457e13 1.01253
\(911\) 3.47770e13 1.67286 0.836428 0.548076i \(-0.184640\pi\)
0.836428 + 0.548076i \(0.184640\pi\)
\(912\) 0 0
\(913\) 2.67265e13 1.27298
\(914\) 2.14704e13 1.01761
\(915\) 0 0
\(916\) −9.42172e12 −0.442182
\(917\) 1.23818e13 0.578259
\(918\) 0 0
\(919\) 1.09456e13 0.506198 0.253099 0.967440i \(-0.418550\pi\)
0.253099 + 0.967440i \(0.418550\pi\)
\(920\) −3.05107e13 −1.40413
\(921\) 0 0
\(922\) −1.76614e13 −0.804890
\(923\) 4.47851e11 0.0203107
\(924\) 0 0
\(925\) 7.12160e12 0.319845
\(926\) −3.07677e13 −1.37514
\(927\) 0 0
\(928\) −8.47663e12 −0.375195
\(929\) −1.92304e13 −0.847065 −0.423533 0.905881i \(-0.639210\pi\)
−0.423533 + 0.905881i \(0.639210\pi\)
\(930\) 0 0
\(931\) −1.19547e13 −0.521512
\(932\) 5.78757e13 2.51261
\(933\) 0 0
\(934\) −2.14057e13 −0.920381
\(935\) −1.91855e13 −0.820959
\(936\) 0 0
\(937\) 2.66920e13 1.13123 0.565617 0.824668i \(-0.308638\pi\)
0.565617 + 0.824668i \(0.308638\pi\)
\(938\) −1.84127e13 −0.776613
\(939\) 0 0
\(940\) −2.10018e13 −0.877366
\(941\) 8.85521e12 0.368168 0.184084 0.982911i \(-0.441068\pi\)
0.184084 + 0.982911i \(0.441068\pi\)
\(942\) 0 0
\(943\) −2.22044e13 −0.914399
\(944\) −3.56272e13 −1.46018
\(945\) 0 0
\(946\) −3.26734e13 −1.32643
\(947\) 2.96409e13 1.19761 0.598807 0.800893i \(-0.295641\pi\)
0.598807 + 0.800893i \(0.295641\pi\)
\(948\) 0 0
\(949\) −1.77519e13 −0.710472
\(950\) 5.03217e12 0.200447
\(951\) 0 0
\(952\) −1.25958e14 −4.97004
\(953\) −3.63447e13 −1.42733 −0.713663 0.700489i \(-0.752965\pi\)
−0.713663 + 0.700489i \(0.752965\pi\)
\(954\) 0 0
\(955\) 2.32750e13 0.905473
\(956\) 9.63643e12 0.373126
\(957\) 0 0
\(958\) 4.07855e13 1.56445
\(959\) −2.26937e13 −0.866406
\(960\) 0 0
\(961\) 3.13509e13 1.18575
\(962\) −1.38408e13 −0.521042
\(963\) 0 0
\(964\) −4.09177e12 −0.152604
\(965\) −3.75776e13 −1.39494
\(966\) 0 0
\(967\) 1.76693e13 0.649829 0.324915 0.945743i \(-0.394664\pi\)
0.324915 + 0.945743i \(0.394664\pi\)
\(968\) 1.00404e13 0.367545
\(969\) 0 0
\(970\) −1.86185e13 −0.675263
\(971\) 7.14363e12 0.257889 0.128944 0.991652i \(-0.458841\pi\)
0.128944 + 0.991652i \(0.458841\pi\)
\(972\) 0 0
\(973\) −3.13831e13 −1.12251
\(974\) −6.47819e12 −0.230642
\(975\) 0 0
\(976\) −2.69536e13 −0.950806
\(977\) −2.58824e13 −0.908821 −0.454411 0.890792i \(-0.650150\pi\)
−0.454411 + 0.890792i \(0.650150\pi\)
\(978\) 0 0
\(979\) 1.86749e13 0.649736
\(980\) 1.14590e14 3.96854
\(981\) 0 0
\(982\) −3.87209e13 −1.32875
\(983\) 3.21189e13 1.09716 0.548579 0.836099i \(-0.315169\pi\)
0.548579 + 0.836099i \(0.315169\pi\)
\(984\) 0 0
\(985\) −7.57930e12 −0.256547
\(986\) 1.20759e13 0.406887
\(987\) 0 0
\(988\) −6.90845e12 −0.230661
\(989\) 1.50947e13 0.501696
\(990\) 0 0
\(991\) −3.52619e13 −1.16138 −0.580690 0.814125i \(-0.697217\pi\)
−0.580690 + 0.814125i \(0.697217\pi\)
\(992\) −8.12504e13 −2.66393
\(993\) 0 0
\(994\) 4.99433e12 0.162270
\(995\) 3.22608e13 1.04345
\(996\) 0 0
\(997\) 2.19749e13 0.704365 0.352183 0.935931i \(-0.385440\pi\)
0.352183 + 0.935931i \(0.385440\pi\)
\(998\) −9.38374e13 −2.99425
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 171.10.a.c.1.6 6
3.2 odd 2 19.10.a.a.1.1 6
12.11 even 2 304.10.a.f.1.6 6
57.56 even 2 361.10.a.b.1.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
19.10.a.a.1.1 6 3.2 odd 2
171.10.a.c.1.6 6 1.1 even 1 trivial
304.10.a.f.1.6 6 12.11 even 2
361.10.a.b.1.6 6 57.56 even 2