Properties

Label 171.10.a.e
Level $171$
Weight $10$
Character orbit 171.a
Self dual yes
Analytic conductor $88.071$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [171,10,Mod(1,171)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(171, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("171.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 171 = 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 171.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(88.0711279840\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 3446 x^{6} + 2146 x^{5} + 3632756 x^{4} + 1877896 x^{3} - 1128074928 x^{2} + \cdots - 684004608 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{5}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 57)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 - 2) q^{2} + (\beta_{2} + 4 \beta_1 + 354) q^{4} + ( - \beta_{4} + \beta_{2} - 15 \beta_1 - 485) q^{5} + (\beta_{7} + 2 \beta_{4} + \beta_{3} + \cdots + 1181) q^{7} + ( - \beta_{7} - 3 \beta_{6} + \cdots - 3451) q^{8}+ \cdots + (48416 \beta_{7} + 192055 \beta_{6} + \cdots + 634215594) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 17 q^{2} + 2833 q^{4} - 3902 q^{5} + 9488 q^{7} - 27927 q^{8} + 111324 q^{10} - 38328 q^{11} + 238594 q^{13} - 255570 q^{14} + 875017 q^{16} - 340248 q^{17} - 1042568 q^{19} + 70298 q^{20} - 2034178 q^{22}+ \cdots + 5080621865 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - x^{7} - 3446 x^{6} + 2146 x^{5} + 3632756 x^{4} + 1877896 x^{3} - 1128074928 x^{2} + \cdots - 684004608 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 862 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 248545 \nu^{7} - 6574249 \nu^{6} + 755626284 \nu^{5} + 16477812710 \nu^{4} + \cdots + 919755537257088 ) / 328794036480 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 680653 \nu^{7} - 3581003 \nu^{6} - 2400722940 \nu^{5} + 8005981330 \nu^{4} + \cdots - 11\!\cdots\!40 ) / 328794036480 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 64873 \nu^{7} + 144686 \nu^{6} + 236289207 \nu^{5} - 526583290 \nu^{4} + \cdots + 45613645265664 ) / 13699751520 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 1841779 \nu^{7} - 1545259 \nu^{6} + 6239657508 \nu^{5} + 1122039890 \nu^{4} + \cdots + 19\!\cdots\!96 ) / 328794036480 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 35797 \nu^{7} - 85625 \nu^{6} - 114994362 \nu^{5} + 334949170 \nu^{4} + 111824975932 \nu^{3} + \cdots - 15190761446784 ) / 6322962240 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 862 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{7} + 3\beta_{6} - \beta_{5} + 2\beta_{4} - 3\beta_{3} - 4\beta_{2} + 1338\beta _1 + 319 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 7\beta_{7} - 27\beta_{6} - 23\beta_{5} - 124\beta_{4} + 57\beta_{3} + 1742\beta_{2} - 1606\beta _1 + 1153903 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 2729 \beta_{7} + 7055 \beta_{6} - 1801 \beta_{5} + 4904 \beta_{4} - 7129 \beta_{3} - 11300 \beta_{2} + \cdots - 892147 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 2649 \beta_{7} - 92825 \beta_{6} - 56281 \beta_{5} - 341116 \beta_{4} + 126091 \beta_{3} + \cdots + 1689294713 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 5760253 \beta_{7} + 13322507 \beta_{6} - 2581085 \beta_{5} + 9850212 \beta_{4} - 13761361 \beta_{3} + \cdots - 4603466083 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
39.4843
36.8155
24.5052
−0.355238
−1.72136
−22.5401
−33.1038
−42.0845
−41.4843 0 1208.94 741.508 0 4318.56 −28912.2 0 −30760.9
1.2 −38.8155 0 994.645 −2396.22 0 3937.20 −18734.1 0 93010.5
1.3 −26.5052 0 190.524 −1296.92 0 −3384.63 8520.78 0 34375.1
1.4 −1.64476 0 −509.295 1313.38 0 −2188.42 1679.79 0 −2160.20
1.5 −0.278642 0 −511.922 −1999.74 0 10192.2 285.307 0 557.212
1.6 20.5401 0 −90.1033 −849.287 0 −10981.2 −12367.3 0 −17444.5
1.7 31.1038 0 455.444 −1145.37 0 10346.9 −1759.12 0 −35625.3
1.8 40.0845 0 1094.76 1730.65 0 −2752.52 23359.8 0 69372.1
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 171.10.a.e 8
3.b odd 2 1 57.10.a.d 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
57.10.a.d 8 3.b odd 2 1
171.10.a.e 8 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{8} + 17 T_{2}^{7} - 3320 T_{2}^{6} - 42966 T_{2}^{5} + 3405936 T_{2}^{4} + 26549304 T_{2}^{3} + \cdots - 500910592 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(171))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} + 17 T^{7} + \cdots - 500910592 \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( T^{8} + \cdots - 10\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( T^{8} + \cdots + 40\!\cdots\!00 \) Copy content Toggle raw display
$11$ \( T^{8} + \cdots + 25\!\cdots\!00 \) Copy content Toggle raw display
$13$ \( T^{8} + \cdots - 95\!\cdots\!08 \) Copy content Toggle raw display
$17$ \( T^{8} + \cdots + 48\!\cdots\!12 \) Copy content Toggle raw display
$19$ \( (T + 130321)^{8} \) Copy content Toggle raw display
$23$ \( T^{8} + \cdots - 74\!\cdots\!04 \) Copy content Toggle raw display
$29$ \( T^{8} + \cdots - 12\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{8} + \cdots - 11\!\cdots\!28 \) Copy content Toggle raw display
$37$ \( T^{8} + \cdots + 22\!\cdots\!00 \) Copy content Toggle raw display
$41$ \( T^{8} + \cdots - 12\!\cdots\!36 \) Copy content Toggle raw display
$43$ \( T^{8} + \cdots + 53\!\cdots\!36 \) Copy content Toggle raw display
$47$ \( T^{8} + \cdots + 26\!\cdots\!72 \) Copy content Toggle raw display
$53$ \( T^{8} + \cdots + 94\!\cdots\!72 \) Copy content Toggle raw display
$59$ \( T^{8} + \cdots - 13\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{8} + \cdots + 64\!\cdots\!88 \) Copy content Toggle raw display
$67$ \( T^{8} + \cdots - 18\!\cdots\!56 \) Copy content Toggle raw display
$71$ \( T^{8} + \cdots - 72\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T^{8} + \cdots - 67\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( T^{8} + \cdots - 76\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{8} + \cdots - 36\!\cdots\!16 \) Copy content Toggle raw display
$89$ \( T^{8} + \cdots - 28\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{8} + \cdots + 10\!\cdots\!00 \) Copy content Toggle raw display
show more
show less