Properties

Label 171.4.f.h.163.5
Level $171$
Weight $4$
Character 171.163
Analytic conductor $10.089$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [171,4,Mod(64,171)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(171, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("171.64");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 171 = 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 171.f (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.0893266110\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 50x^{10} + 1797x^{8} + 29198x^{6} + 345409x^{4} + 2092128x^{2} + 8856576 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 163.5
Root \(1.71809 - 2.97581i\) of defining polynomial
Character \(\chi\) \(=\) 171.163
Dual form 171.4.f.h.64.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.71809 - 2.97581i) q^{2} +(-1.90364 - 3.29720i) q^{4} +(-6.83777 + 11.8434i) q^{5} -20.1525 q^{7} +14.4069 q^{8} +O(q^{10})\) \(q+(1.71809 - 2.97581i) q^{2} +(-1.90364 - 3.29720i) q^{4} +(-6.83777 + 11.8434i) q^{5} -20.1525 q^{7} +14.4069 q^{8} +(23.4957 + 40.6958i) q^{10} -48.0372 q^{11} +(34.8452 + 60.3537i) q^{13} +(-34.6237 + 59.9700i) q^{14} +(39.9814 - 69.2499i) q^{16} +(-58.9388 + 102.085i) q^{17} +(36.1083 + 74.5331i) q^{19} +52.0665 q^{20} +(-82.5321 + 142.950i) q^{22} +(-35.0585 - 60.7232i) q^{23} +(-31.0101 - 53.7110i) q^{25} +239.468 q^{26} +(38.3630 + 66.4467i) q^{28} +(-102.739 - 177.950i) q^{29} +264.207 q^{31} +(-79.7553 - 138.140i) q^{32} +(202.524 + 350.782i) q^{34} +(137.798 - 238.673i) q^{35} -385.101 q^{37} +(283.834 + 20.6027i) q^{38} +(-98.5112 + 170.626i) q^{40} +(-60.4708 + 104.738i) q^{41} +(156.011 - 270.219i) q^{43} +(91.4455 + 158.388i) q^{44} -240.934 q^{46} +(-57.5452 - 99.6712i) q^{47} +63.1222 q^{49} -213.112 q^{50} +(132.665 - 229.783i) q^{52} +(186.926 + 323.765i) q^{53} +(328.467 - 568.922i) q^{55} -290.335 q^{56} -706.060 q^{58} +(-131.683 + 228.082i) q^{59} +(143.638 + 248.788i) q^{61} +(453.930 - 786.229i) q^{62} +91.5968 q^{64} -953.053 q^{65} +(240.819 + 417.111i) q^{67} +448.793 q^{68} +(-473.497 - 820.121i) q^{70} +(17.3485 - 30.0484i) q^{71} +(352.438 - 610.440i) q^{73} +(-661.636 + 1145.99i) q^{74} +(177.013 - 260.940i) q^{76} +968.069 q^{77} +(-293.959 + 509.153i) q^{79} +(546.767 + 947.029i) q^{80} +(207.788 + 359.899i) q^{82} -898.559 q^{83} +(-806.020 - 1396.07i) q^{85} +(-536.081 - 928.520i) q^{86} -692.069 q^{88} +(100.471 + 174.020i) q^{89} +(-702.217 - 1216.28i) q^{91} +(-133.477 + 231.190i) q^{92} -395.470 q^{94} +(-1129.62 - 81.9960i) q^{95} +(-7.68349 + 13.3082i) q^{97} +(108.449 - 187.840i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 52 q^{4} - 60 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 52 q^{4} - 60 q^{7} - 56 q^{10} + 178 q^{13} - 172 q^{16} + 296 q^{19} - 944 q^{22} - 458 q^{25} - 140 q^{28} + 196 q^{31} - 400 q^{34} + 628 q^{37} + 48 q^{40} + 642 q^{43} - 960 q^{46} - 2296 q^{49} - 300 q^{52} + 648 q^{55} - 2880 q^{58} + 3446 q^{61} + 9528 q^{64} + 2730 q^{67} - 1920 q^{70} + 1690 q^{73} - 4308 q^{76} - 2898 q^{79} - 1616 q^{82} - 4176 q^{85} + 11856 q^{88} - 3210 q^{91} - 5280 q^{94} - 1180 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/171\mathbb{Z}\right)^\times\).

\(n\) \(20\) \(154\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.71809 2.97581i 0.607435 1.05211i −0.384227 0.923239i \(-0.625532\pi\)
0.991662 0.128869i \(-0.0411348\pi\)
\(3\) 0 0
\(4\) −1.90364 3.29720i −0.237955 0.412150i
\(5\) −6.83777 + 11.8434i −0.611588 + 1.05930i 0.379384 + 0.925239i \(0.376136\pi\)
−0.990973 + 0.134063i \(0.957198\pi\)
\(6\) 0 0
\(7\) −20.1525 −1.08813 −0.544066 0.839043i \(-0.683116\pi\)
−0.544066 + 0.839043i \(0.683116\pi\)
\(8\) 14.4069 0.636702
\(9\) 0 0
\(10\) 23.4957 + 40.6958i 0.743000 + 1.28691i
\(11\) −48.0372 −1.31671 −0.658353 0.752709i \(-0.728747\pi\)
−0.658353 + 0.752709i \(0.728747\pi\)
\(12\) 0 0
\(13\) 34.8452 + 60.3537i 0.743409 + 1.28762i 0.950934 + 0.309393i \(0.100126\pi\)
−0.207525 + 0.978230i \(0.566541\pi\)
\(14\) −34.6237 + 59.9700i −0.660969 + 1.14483i
\(15\) 0 0
\(16\) 39.9814 69.2499i 0.624710 1.08203i
\(17\) −58.9388 + 102.085i −0.840869 + 1.45643i 0.0482923 + 0.998833i \(0.484622\pi\)
−0.889161 + 0.457594i \(0.848711\pi\)
\(18\) 0 0
\(19\) 36.1083 + 74.5331i 0.435991 + 0.899951i
\(20\) 52.0665 0.582121
\(21\) 0 0
\(22\) −82.5321 + 142.950i −0.799814 + 1.38532i
\(23\) −35.0585 60.7232i −0.317835 0.550507i 0.662201 0.749326i \(-0.269623\pi\)
−0.980036 + 0.198820i \(0.936289\pi\)
\(24\) 0 0
\(25\) −31.0101 53.7110i −0.248081 0.429688i
\(26\) 239.468 1.80629
\(27\) 0 0
\(28\) 38.3630 + 66.4467i 0.258926 + 0.448473i
\(29\) −102.739 177.950i −0.657870 1.13946i −0.981166 0.193166i \(-0.938124\pi\)
0.323296 0.946298i \(-0.395209\pi\)
\(30\) 0 0
\(31\) 264.207 1.53074 0.765370 0.643591i \(-0.222556\pi\)
0.765370 + 0.643591i \(0.222556\pi\)
\(32\) −79.7553 138.140i −0.440590 0.763125i
\(33\) 0 0
\(34\) 202.524 + 350.782i 1.02155 + 1.76937i
\(35\) 137.798 238.673i 0.665488 1.15266i
\(36\) 0 0
\(37\) −385.101 −1.71108 −0.855542 0.517733i \(-0.826776\pi\)
−0.855542 + 0.517733i \(0.826776\pi\)
\(38\) 283.834 + 20.6027i 1.21168 + 0.0879525i
\(39\) 0 0
\(40\) −98.5112 + 170.626i −0.389400 + 0.674460i
\(41\) −60.4708 + 104.738i −0.230340 + 0.398961i −0.957908 0.287075i \(-0.907317\pi\)
0.727568 + 0.686036i \(0.240651\pi\)
\(42\) 0 0
\(43\) 156.011 270.219i 0.553290 0.958327i −0.444744 0.895658i \(-0.646705\pi\)
0.998034 0.0626691i \(-0.0199613\pi\)
\(44\) 91.4455 + 158.388i 0.313317 + 0.542680i
\(45\) 0 0
\(46\) −240.934 −0.772257
\(47\) −57.5452 99.6712i −0.178592 0.309331i 0.762806 0.646627i \(-0.223821\pi\)
−0.941399 + 0.337296i \(0.890488\pi\)
\(48\) 0 0
\(49\) 63.1222 0.184030
\(50\) −213.112 −0.602772
\(51\) 0 0
\(52\) 132.665 229.783i 0.353795 0.612792i
\(53\) 186.926 + 323.765i 0.484457 + 0.839104i 0.999841 0.0178557i \(-0.00568394\pi\)
−0.515384 + 0.856960i \(0.672351\pi\)
\(54\) 0 0
\(55\) 328.467 568.922i 0.805283 1.39479i
\(56\) −290.335 −0.692816
\(57\) 0 0
\(58\) −706.060 −1.59845
\(59\) −131.683 + 228.082i −0.290572 + 0.503285i −0.973945 0.226784i \(-0.927179\pi\)
0.683373 + 0.730069i \(0.260512\pi\)
\(60\) 0 0
\(61\) 143.638 + 248.788i 0.301491 + 0.522197i 0.976474 0.215636i \(-0.0691824\pi\)
−0.674983 + 0.737833i \(0.735849\pi\)
\(62\) 453.930 786.229i 0.929825 1.61050i
\(63\) 0 0
\(64\) 91.5968 0.178900
\(65\) −953.053 −1.81864
\(66\) 0 0
\(67\) 240.819 + 417.111i 0.439116 + 0.760571i 0.997622 0.0689299i \(-0.0219585\pi\)
−0.558506 + 0.829501i \(0.688625\pi\)
\(68\) 448.793 0.800355
\(69\) 0 0
\(70\) −473.497 820.121i −0.808482 1.40033i
\(71\) 17.3485 30.0484i 0.0289984 0.0502267i −0.851162 0.524903i \(-0.824102\pi\)
0.880160 + 0.474676i \(0.157435\pi\)
\(72\) 0 0
\(73\) 352.438 610.440i 0.565065 0.978721i −0.431979 0.901884i \(-0.642184\pi\)
0.997044 0.0768374i \(-0.0244822\pi\)
\(74\) −661.636 + 1145.99i −1.03937 + 1.80025i
\(75\) 0 0
\(76\) 177.013 260.940i 0.267168 0.393841i
\(77\) 968.069 1.43275
\(78\) 0 0
\(79\) −293.959 + 509.153i −0.418646 + 0.725116i −0.995804 0.0915170i \(-0.970828\pi\)
0.577158 + 0.816633i \(0.304162\pi\)
\(80\) 546.767 + 947.029i 0.764131 + 1.32351i
\(81\) 0 0
\(82\) 207.788 + 359.899i 0.279833 + 0.484686i
\(83\) −898.559 −1.18831 −0.594154 0.804351i \(-0.702513\pi\)
−0.594154 + 0.804351i \(0.702513\pi\)
\(84\) 0 0
\(85\) −806.020 1396.07i −1.02853 1.78147i
\(86\) −536.081 928.520i −0.672176 1.16424i
\(87\) 0 0
\(88\) −692.069 −0.838350
\(89\) 100.471 + 174.020i 0.119662 + 0.207260i 0.919634 0.392777i \(-0.128486\pi\)
−0.799972 + 0.600037i \(0.795152\pi\)
\(90\) 0 0
\(91\) −702.217 1216.28i −0.808927 1.40110i
\(92\) −133.477 + 231.190i −0.151261 + 0.261991i
\(93\) 0 0
\(94\) −395.470 −0.433933
\(95\) −1129.62 81.9960i −1.21997 0.0885538i
\(96\) 0 0
\(97\) −7.68349 + 13.3082i −0.00804269 + 0.0139303i −0.870019 0.493019i \(-0.835893\pi\)
0.861976 + 0.506949i \(0.169227\pi\)
\(98\) 108.449 187.840i 0.111786 0.193619i
\(99\) 0 0
\(100\) −118.064 + 204.493i −0.118064 + 0.204493i
\(101\) 150.572 + 260.798i 0.148341 + 0.256935i 0.930615 0.366001i \(-0.119273\pi\)
−0.782273 + 0.622935i \(0.785940\pi\)
\(102\) 0 0
\(103\) 899.433 0.860425 0.430212 0.902728i \(-0.358439\pi\)
0.430212 + 0.902728i \(0.358439\pi\)
\(104\) 502.012 + 869.511i 0.473330 + 0.819832i
\(105\) 0 0
\(106\) 1284.62 1.17710
\(107\) 1137.79 1.02798 0.513991 0.857796i \(-0.328167\pi\)
0.513991 + 0.857796i \(0.328167\pi\)
\(108\) 0 0
\(109\) 124.787 216.138i 0.109655 0.189929i −0.805975 0.591949i \(-0.798359\pi\)
0.915631 + 0.402020i \(0.131692\pi\)
\(110\) −1128.67 1954.91i −0.978314 1.69449i
\(111\) 0 0
\(112\) −805.725 + 1395.56i −0.679766 + 1.17739i
\(113\) 1120.78 0.933043 0.466521 0.884510i \(-0.345507\pi\)
0.466521 + 0.884510i \(0.345507\pi\)
\(114\) 0 0
\(115\) 958.888 0.777537
\(116\) −391.157 + 677.504i −0.313086 + 0.542281i
\(117\) 0 0
\(118\) 452.487 + 783.730i 0.353007 + 0.611426i
\(119\) 1187.76 2057.27i 0.914976 1.58478i
\(120\) 0 0
\(121\) 976.577 0.733717
\(122\) 987.128 0.732544
\(123\) 0 0
\(124\) −502.954 871.141i −0.364246 0.630893i
\(125\) −861.283 −0.616284
\(126\) 0 0
\(127\) 759.128 + 1314.85i 0.530407 + 0.918693i 0.999371 + 0.0354749i \(0.0112944\pi\)
−0.468963 + 0.883218i \(0.655372\pi\)
\(128\) 795.414 1377.70i 0.549260 0.951347i
\(129\) 0 0
\(130\) −1637.43 + 2836.11i −1.10471 + 1.91341i
\(131\) 140.689 243.681i 0.0938325 0.162523i −0.815288 0.579055i \(-0.803422\pi\)
0.909121 + 0.416533i \(0.136755\pi\)
\(132\) 0 0
\(133\) −727.673 1502.03i −0.474415 0.979265i
\(134\) 1654.99 1.06694
\(135\) 0 0
\(136\) −849.127 + 1470.73i −0.535383 + 0.927310i
\(137\) 1296.76 + 2246.05i 0.808681 + 1.40068i 0.913778 + 0.406215i \(0.133152\pi\)
−0.105096 + 0.994462i \(0.533515\pi\)
\(138\) 0 0
\(139\) −229.801 398.026i −0.140226 0.242879i 0.787356 0.616499i \(-0.211450\pi\)
−0.927582 + 0.373620i \(0.878116\pi\)
\(140\) −1049.27 −0.633424
\(141\) 0 0
\(142\) −59.6123 103.252i −0.0352293 0.0610189i
\(143\) −1673.87 2899.22i −0.978852 1.69542i
\(144\) 0 0
\(145\) 2810.03 1.60938
\(146\) −1211.04 2097.58i −0.686481 1.18902i
\(147\) 0 0
\(148\) 733.092 + 1269.75i 0.407161 + 0.705223i
\(149\) 850.942 1473.87i 0.467865 0.810366i −0.531461 0.847083i \(-0.678357\pi\)
0.999326 + 0.0367172i \(0.0116901\pi\)
\(150\) 0 0
\(151\) 2188.78 1.17960 0.589802 0.807548i \(-0.299206\pi\)
0.589802 + 0.807548i \(0.299206\pi\)
\(152\) 520.210 + 1073.79i 0.277596 + 0.573001i
\(153\) 0 0
\(154\) 1663.23 2880.79i 0.870303 1.50741i
\(155\) −1806.58 + 3129.09i −0.936182 + 1.62152i
\(156\) 0 0
\(157\) −1382.74 + 2394.98i −0.702896 + 1.21745i 0.264549 + 0.964372i \(0.414777\pi\)
−0.967445 + 0.253080i \(0.918557\pi\)
\(158\) 1010.09 + 1749.54i 0.508600 + 0.880921i
\(159\) 0 0
\(160\) 2181.39 1.07784
\(161\) 706.516 + 1223.72i 0.345846 + 0.599024i
\(162\) 0 0
\(163\) −3536.25 −1.69927 −0.849634 0.527372i \(-0.823177\pi\)
−0.849634 + 0.527372i \(0.823177\pi\)
\(164\) 460.458 0.219242
\(165\) 0 0
\(166\) −1543.80 + 2673.94i −0.721820 + 1.25023i
\(167\) 867.367 + 1502.32i 0.401909 + 0.696128i 0.993956 0.109776i \(-0.0350133\pi\)
−0.592047 + 0.805904i \(0.701680\pi\)
\(168\) 0 0
\(169\) −1329.88 + 2303.41i −0.605315 + 1.04844i
\(170\) −5539.25 −2.49906
\(171\) 0 0
\(172\) −1187.95 −0.526632
\(173\) −1761.89 + 3051.68i −0.774300 + 1.34113i 0.160887 + 0.986973i \(0.448565\pi\)
−0.935187 + 0.354154i \(0.884769\pi\)
\(174\) 0 0
\(175\) 624.930 + 1082.41i 0.269944 + 0.467557i
\(176\) −1920.60 + 3326.57i −0.822560 + 1.42472i
\(177\) 0 0
\(178\) 690.470 0.290747
\(179\) 2266.85 0.946548 0.473274 0.880915i \(-0.343072\pi\)
0.473274 + 0.880915i \(0.343072\pi\)
\(180\) 0 0
\(181\) 515.892 + 893.552i 0.211856 + 0.366946i 0.952295 0.305178i \(-0.0987158\pi\)
−0.740439 + 0.672123i \(0.765382\pi\)
\(182\) −4825.88 −1.96548
\(183\) 0 0
\(184\) −505.086 874.834i −0.202366 0.350509i
\(185\) 2633.23 4560.88i 1.04648 1.81256i
\(186\) 0 0
\(187\) 2831.26 4903.89i 1.10718 1.91769i
\(188\) −219.090 + 379.476i −0.0849937 + 0.147213i
\(189\) 0 0
\(190\) −2184.79 + 3220.67i −0.834219 + 1.22975i
\(191\) 2219.24 0.840724 0.420362 0.907357i \(-0.361903\pi\)
0.420362 + 0.907357i \(0.361903\pi\)
\(192\) 0 0
\(193\) 630.182 1091.51i 0.235034 0.407090i −0.724249 0.689539i \(-0.757813\pi\)
0.959282 + 0.282449i \(0.0911467\pi\)
\(194\) 26.4018 + 45.7293i 0.00977082 + 0.0169236i
\(195\) 0 0
\(196\) −120.162 208.126i −0.0437908 0.0758478i
\(197\) 1094.89 0.395977 0.197989 0.980204i \(-0.436559\pi\)
0.197989 + 0.980204i \(0.436559\pi\)
\(198\) 0 0
\(199\) 137.527 + 238.203i 0.0489900 + 0.0848531i 0.889481 0.456973i \(-0.151066\pi\)
−0.840491 + 0.541826i \(0.817733\pi\)
\(200\) −446.760 773.811i −0.157953 0.273583i
\(201\) 0 0
\(202\) 1034.78 0.360431
\(203\) 2070.45 + 3586.13i 0.715849 + 1.23989i
\(204\) 0 0
\(205\) −826.970 1432.35i −0.281747 0.488000i
\(206\) 1545.30 2676.54i 0.522652 0.905260i
\(207\) 0 0
\(208\) 5572.64 1.85766
\(209\) −1734.55 3580.37i −0.574072 1.18497i
\(210\) 0 0
\(211\) −45.3420 + 78.5347i −0.0147937 + 0.0256235i −0.873327 0.487134i \(-0.838042\pi\)
0.858534 + 0.512757i \(0.171376\pi\)
\(212\) 711.677 1232.66i 0.230558 0.399337i
\(213\) 0 0
\(214\) 1954.82 3385.84i 0.624432 1.08155i
\(215\) 2133.54 + 3695.39i 0.676772 + 1.17220i
\(216\) 0 0
\(217\) −5324.42 −1.66565
\(218\) −428.790 742.686i −0.133217 0.230739i
\(219\) 0 0
\(220\) −2501.13 −0.766483
\(221\) −8214.94 −2.50044
\(222\) 0 0
\(223\) 112.273 194.462i 0.0337145 0.0583952i −0.848676 0.528913i \(-0.822600\pi\)
0.882390 + 0.470518i \(0.155933\pi\)
\(224\) 1607.27 + 2783.87i 0.479420 + 0.830380i
\(225\) 0 0
\(226\) 1925.59 3335.22i 0.566763 0.981662i
\(227\) 3900.61 1.14050 0.570248 0.821473i \(-0.306847\pi\)
0.570248 + 0.821473i \(0.306847\pi\)
\(228\) 0 0
\(229\) −4006.56 −1.15616 −0.578081 0.815980i \(-0.696198\pi\)
−0.578081 + 0.815980i \(0.696198\pi\)
\(230\) 1647.45 2853.47i 0.472303 0.818053i
\(231\) 0 0
\(232\) −1480.16 2563.71i −0.418867 0.725499i
\(233\) 2459.07 4259.23i 0.691411 1.19756i −0.279964 0.960010i \(-0.590323\pi\)
0.971375 0.237549i \(-0.0763441\pi\)
\(234\) 0 0
\(235\) 1573.92 0.436900
\(236\) 1002.71 0.276572
\(237\) 0 0
\(238\) −4081.36 7069.12i −1.11158 1.92531i
\(239\) −4492.23 −1.21581 −0.607904 0.794010i \(-0.707990\pi\)
−0.607904 + 0.794010i \(0.707990\pi\)
\(240\) 0 0
\(241\) −740.199 1282.06i −0.197844 0.342676i 0.749985 0.661455i \(-0.230061\pi\)
−0.947829 + 0.318779i \(0.896727\pi\)
\(242\) 1677.84 2906.11i 0.445685 0.771950i
\(243\) 0 0
\(244\) 546.869 947.204i 0.143482 0.248519i
\(245\) −431.615 + 747.579i −0.112551 + 0.194943i
\(246\) 0 0
\(247\) −3240.14 + 4776.39i −0.834678 + 1.23042i
\(248\) 3806.40 0.974625
\(249\) 0 0
\(250\) −1479.76 + 2563.02i −0.374352 + 0.648397i
\(251\) −1986.80 3441.23i −0.499624 0.865374i 0.500376 0.865808i \(-0.333195\pi\)
−1.00000 0.000434399i \(0.999862\pi\)
\(252\) 0 0
\(253\) 1684.12 + 2916.97i 0.418496 + 0.724856i
\(254\) 5216.99 1.28875
\(255\) 0 0
\(256\) −2366.79 4099.40i −0.577830 1.00083i
\(257\) −2446.19 4236.92i −0.593731 1.02837i −0.993725 0.111855i \(-0.964321\pi\)
0.399993 0.916518i \(-0.369013\pi\)
\(258\) 0 0
\(259\) 7760.73 1.86189
\(260\) 1814.27 + 3142.40i 0.432754 + 0.749552i
\(261\) 0 0
\(262\) −483.432 837.328i −0.113994 0.197444i
\(263\) −1207.94 + 2092.21i −0.283212 + 0.490537i −0.972174 0.234260i \(-0.924733\pi\)
0.688962 + 0.724797i \(0.258067\pi\)
\(264\) 0 0
\(265\) −5112.62 −1.18515
\(266\) −5719.95 415.195i −1.31847 0.0957038i
\(267\) 0 0
\(268\) 916.865 1588.06i 0.208979 0.361963i
\(269\) −1435.35 + 2486.10i −0.325334 + 0.563496i −0.981580 0.191052i \(-0.938810\pi\)
0.656246 + 0.754547i \(0.272144\pi\)
\(270\) 0 0
\(271\) −922.683 + 1598.13i −0.206823 + 0.358228i −0.950712 0.310075i \(-0.899646\pi\)
0.743889 + 0.668303i \(0.232979\pi\)
\(272\) 4712.92 + 8163.01i 1.05060 + 1.81969i
\(273\) 0 0
\(274\) 8911.75 1.96489
\(275\) 1489.64 + 2580.13i 0.326649 + 0.565774i
\(276\) 0 0
\(277\) 5123.32 1.11130 0.555651 0.831416i \(-0.312469\pi\)
0.555651 + 0.831416i \(0.312469\pi\)
\(278\) −1579.27 −0.340713
\(279\) 0 0
\(280\) 1985.24 3438.54i 0.423718 0.733901i
\(281\) −728.024 1260.98i −0.154556 0.267699i 0.778341 0.627842i \(-0.216061\pi\)
−0.932897 + 0.360142i \(0.882728\pi\)
\(282\) 0 0
\(283\) −399.107 + 691.274i −0.0838320 + 0.145201i −0.904893 0.425639i \(-0.860049\pi\)
0.821061 + 0.570841i \(0.193383\pi\)
\(284\) −132.101 −0.0276012
\(285\) 0 0
\(286\) −11503.4 −2.37836
\(287\) 1218.64 2110.74i 0.250640 0.434122i
\(288\) 0 0
\(289\) −4491.07 7778.77i −0.914121 1.58330i
\(290\) 4827.87 8362.12i 0.977595 1.69324i
\(291\) 0 0
\(292\) −2683.66 −0.537839
\(293\) 170.658 0.0340272 0.0170136 0.999855i \(-0.494584\pi\)
0.0170136 + 0.999855i \(0.494584\pi\)
\(294\) 0 0
\(295\) −1800.84 3119.15i −0.355420 0.615606i
\(296\) −5548.11 −1.08945
\(297\) 0 0
\(298\) −2923.98 5064.48i −0.568395 0.984489i
\(299\) 2443.24 4231.82i 0.472563 0.818503i
\(300\) 0 0
\(301\) −3144.01 + 5445.59i −0.602052 + 1.04279i
\(302\) 3760.51 6513.40i 0.716533 1.24107i
\(303\) 0 0
\(304\) 6605.07 + 479.443i 1.24614 + 0.0904537i
\(305\) −3928.65 −0.737553
\(306\) 0 0
\(307\) −2699.49 + 4675.65i −0.501850 + 0.869229i 0.498148 + 0.867092i \(0.334014\pi\)
−0.999998 + 0.00213696i \(0.999320\pi\)
\(308\) −1842.85 3191.91i −0.340930 0.590507i
\(309\) 0 0
\(310\) 6207.73 + 10752.1i 1.13734 + 1.96993i
\(311\) −2039.15 −0.371799 −0.185899 0.982569i \(-0.559520\pi\)
−0.185899 + 0.982569i \(0.559520\pi\)
\(312\) 0 0
\(313\) −2081.83 3605.83i −0.375949 0.651162i 0.614520 0.788901i \(-0.289350\pi\)
−0.990469 + 0.137739i \(0.956016\pi\)
\(314\) 4751.33 + 8229.55i 0.853927 + 1.47905i
\(315\) 0 0
\(316\) 2238.37 0.398475
\(317\) 3184.80 + 5516.23i 0.564278 + 0.977358i 0.997116 + 0.0758865i \(0.0241787\pi\)
−0.432839 + 0.901471i \(0.642488\pi\)
\(318\) 0 0
\(319\) 4935.32 + 8548.22i 0.866222 + 1.50034i
\(320\) −626.317 + 1084.81i −0.109413 + 0.189509i
\(321\) 0 0
\(322\) 4855.42 0.840317
\(323\) −9736.90 706.773i −1.67732 0.121752i
\(324\) 0 0
\(325\) 2161.11 3743.14i 0.368851 0.638868i
\(326\) −6075.59 + 10523.2i −1.03220 + 1.78782i
\(327\) 0 0
\(328\) −871.198 + 1508.96i −0.146658 + 0.254019i
\(329\) 1159.68 + 2008.62i 0.194332 + 0.336592i
\(330\) 0 0
\(331\) 4136.21 0.686848 0.343424 0.939180i \(-0.388413\pi\)
0.343424 + 0.939180i \(0.388413\pi\)
\(332\) 1710.53 + 2962.72i 0.282764 + 0.489761i
\(333\) 0 0
\(334\) 5960.84 0.976536
\(335\) −6586.66 −1.07423
\(336\) 0 0
\(337\) −1545.96 + 2677.68i −0.249892 + 0.432826i −0.963496 0.267724i \(-0.913728\pi\)
0.713604 + 0.700550i \(0.247062\pi\)
\(338\) 4569.68 + 7914.92i 0.735378 + 1.27371i
\(339\) 0 0
\(340\) −3068.74 + 5315.21i −0.489488 + 0.847817i
\(341\) −12691.8 −2.01553
\(342\) 0 0
\(343\) 5640.23 0.887883
\(344\) 2247.64 3893.03i 0.352281 0.610169i
\(345\) 0 0
\(346\) 6054.15 + 10486.1i 0.940674 + 1.62930i
\(347\) −4129.64 + 7152.74i −0.638877 + 1.10657i 0.346802 + 0.937938i \(0.387268\pi\)
−0.985679 + 0.168630i \(0.946066\pi\)
\(348\) 0 0
\(349\) −12685.4 −1.94566 −0.972829 0.231525i \(-0.925628\pi\)
−0.972829 + 0.231525i \(0.925628\pi\)
\(350\) 4294.73 0.655895
\(351\) 0 0
\(352\) 3831.23 + 6635.88i 0.580128 + 1.00481i
\(353\) 10158.2 1.53163 0.765813 0.643064i \(-0.222337\pi\)
0.765813 + 0.643064i \(0.222337\pi\)
\(354\) 0 0
\(355\) 237.250 + 410.928i 0.0354701 + 0.0614361i
\(356\) 382.520 662.544i 0.0569481 0.0986369i
\(357\) 0 0
\(358\) 3894.64 6745.71i 0.574966 0.995871i
\(359\) −2770.03 + 4797.83i −0.407232 + 0.705347i −0.994578 0.103989i \(-0.966839\pi\)
0.587346 + 0.809336i \(0.300173\pi\)
\(360\) 0 0
\(361\) −4251.37 + 5382.54i −0.619824 + 0.784741i
\(362\) 3545.39 0.514756
\(363\) 0 0
\(364\) −2673.53 + 4630.69i −0.384976 + 0.666798i
\(365\) 4819.78 + 8348.10i 0.691174 + 1.19715i
\(366\) 0 0
\(367\) 3060.24 + 5300.50i 0.435268 + 0.753907i 0.997317 0.0731971i \(-0.0233202\pi\)
−0.562049 + 0.827104i \(0.689987\pi\)
\(368\) −5606.76 −0.794219
\(369\) 0 0
\(370\) −9048.22 15672.0i −1.27134 2.20202i
\(371\) −3767.01 6524.66i −0.527153 0.913055i
\(372\) 0 0
\(373\) −528.331 −0.0733403 −0.0366702 0.999327i \(-0.511675\pi\)
−0.0366702 + 0.999327i \(0.511675\pi\)
\(374\) −9728.69 16850.6i −1.34508 2.32974i
\(375\) 0 0
\(376\) −829.050 1435.96i −0.113710 0.196952i
\(377\) 7159.95 12401.4i 0.978133 1.69418i
\(378\) 0 0
\(379\) −3642.88 −0.493726 −0.246863 0.969050i \(-0.579400\pi\)
−0.246863 + 0.969050i \(0.579400\pi\)
\(380\) 1880.04 + 3880.68i 0.253799 + 0.523881i
\(381\) 0 0
\(382\) 3812.84 6604.03i 0.510685 0.884533i
\(383\) −137.925 + 238.893i −0.0184011 + 0.0318717i −0.875079 0.483979i \(-0.839191\pi\)
0.856678 + 0.515851i \(0.172524\pi\)
\(384\) 0 0
\(385\) −6619.43 + 11465.2i −0.876253 + 1.51772i
\(386\) −2165.41 3750.60i −0.285535 0.494562i
\(387\) 0 0
\(388\) 58.5063 0.00765518
\(389\) 3120.51 + 5404.88i 0.406725 + 0.704469i 0.994521 0.104541i \(-0.0333373\pi\)
−0.587795 + 0.809010i \(0.700004\pi\)
\(390\) 0 0
\(391\) 8265.24 1.06903
\(392\) 909.397 0.117172
\(393\) 0 0
\(394\) 1881.11 3258.18i 0.240531 0.416611i
\(395\) −4020.05 6962.93i −0.512078 0.886945i
\(396\) 0 0
\(397\) −5264.38 + 9118.17i −0.665521 + 1.15272i 0.313623 + 0.949547i \(0.398457\pi\)
−0.979144 + 0.203168i \(0.934876\pi\)
\(398\) 945.130 0.119033
\(399\) 0 0
\(400\) −4959.31 −0.619914
\(401\) 74.0088 128.187i 0.00921651 0.0159635i −0.861380 0.507960i \(-0.830400\pi\)
0.870597 + 0.491997i \(0.163733\pi\)
\(402\) 0 0
\(403\) 9206.33 + 15945.8i 1.13797 + 1.97101i
\(404\) 573.269 992.931i 0.0705970 0.122278i
\(405\) 0 0
\(406\) 14228.9 1.73933
\(407\) 18499.2 2.25300
\(408\) 0 0
\(409\) −5886.65 10196.0i −0.711677 1.23266i −0.964227 0.265077i \(-0.914603\pi\)
0.252550 0.967584i \(-0.418731\pi\)
\(410\) −5683.22 −0.684572
\(411\) 0 0
\(412\) −1712.19 2965.61i −0.204742 0.354624i
\(413\) 2653.75 4596.43i 0.316180 0.547640i
\(414\) 0 0
\(415\) 6144.13 10642.0i 0.726756 1.25878i
\(416\) 5558.18 9627.05i 0.655078 1.13463i
\(417\) 0 0
\(418\) −13634.6 989.695i −1.59543 0.115808i
\(419\) 14181.6 1.65350 0.826748 0.562572i \(-0.190188\pi\)
0.826748 + 0.562572i \(0.190188\pi\)
\(420\) 0 0
\(421\) 1297.61 2247.52i 0.150217 0.260184i −0.781090 0.624419i \(-0.785336\pi\)
0.931307 + 0.364234i \(0.118669\pi\)
\(422\) 155.803 + 269.859i 0.0179724 + 0.0311292i
\(423\) 0 0
\(424\) 2693.02 + 4664.45i 0.308455 + 0.534259i
\(425\) 7310.79 0.834413
\(426\) 0 0
\(427\) −2894.66 5013.69i −0.328062 0.568219i
\(428\) −2165.93 3751.51i −0.244613 0.423682i
\(429\) 0 0
\(430\) 14662.4 1.64438
\(431\) 77.1243 + 133.583i 0.00861937 + 0.0149292i 0.870303 0.492517i \(-0.163923\pi\)
−0.861684 + 0.507446i \(0.830590\pi\)
\(432\) 0 0
\(433\) 6168.73 + 10684.6i 0.684642 + 1.18584i 0.973549 + 0.228478i \(0.0733750\pi\)
−0.288907 + 0.957357i \(0.593292\pi\)
\(434\) −9147.81 + 15844.5i −1.01177 + 1.75244i
\(435\) 0 0
\(436\) −950.198 −0.104372
\(437\) 3259.98 4805.63i 0.356856 0.526052i
\(438\) 0 0
\(439\) 6179.21 10702.7i 0.671795 1.16358i −0.305600 0.952160i \(-0.598857\pi\)
0.977395 0.211422i \(-0.0678096\pi\)
\(440\) 4732.21 8196.42i 0.512725 0.888066i
\(441\) 0 0
\(442\) −14114.0 + 24446.1i −1.51885 + 2.63073i
\(443\) −6098.89 10563.6i −0.654102 1.13294i −0.982118 0.188265i \(-0.939714\pi\)
0.328017 0.944672i \(-0.393620\pi\)
\(444\) 0 0
\(445\) −2747.98 −0.292735
\(446\) −385.788 668.204i −0.0409587 0.0709425i
\(447\) 0 0
\(448\) −1845.90 −0.194667
\(449\) −296.946 −0.0312111 −0.0156055 0.999878i \(-0.504968\pi\)
−0.0156055 + 0.999878i \(0.504968\pi\)
\(450\) 0 0
\(451\) 2904.85 5031.35i 0.303291 0.525315i
\(452\) −2133.55 3695.42i −0.222022 0.384553i
\(453\) 0 0
\(454\) 6701.58 11607.5i 0.692777 1.19992i
\(455\) 19206.4 1.97892
\(456\) 0 0
\(457\) −11551.4 −1.18239 −0.591194 0.806530i \(-0.701343\pi\)
−0.591194 + 0.806530i \(0.701343\pi\)
\(458\) −6883.61 + 11922.8i −0.702293 + 1.21641i
\(459\) 0 0
\(460\) −1825.38 3161.64i −0.185019 0.320462i
\(461\) −7182.15 + 12439.9i −0.725610 + 1.25679i 0.233113 + 0.972450i \(0.425109\pi\)
−0.958722 + 0.284343i \(0.908224\pi\)
\(462\) 0 0
\(463\) 6329.23 0.635300 0.317650 0.948208i \(-0.397106\pi\)
0.317650 + 0.948208i \(0.397106\pi\)
\(464\) −16430.7 −1.64391
\(465\) 0 0
\(466\) −8449.78 14635.4i −0.839975 1.45488i
\(467\) −4857.69 −0.481343 −0.240671 0.970607i \(-0.577368\pi\)
−0.240671 + 0.970607i \(0.577368\pi\)
\(468\) 0 0
\(469\) −4853.10 8405.82i −0.477816 0.827601i
\(470\) 2704.13 4683.70i 0.265388 0.459666i
\(471\) 0 0
\(472\) −1897.15 + 3285.97i −0.185008 + 0.320443i
\(473\) −7494.35 + 12980.6i −0.728521 + 1.26184i
\(474\) 0 0
\(475\) 2883.53 4250.70i 0.278538 0.410601i
\(476\) −9044.28 −0.870891
\(477\) 0 0
\(478\) −7718.04 + 13368.0i −0.738525 + 1.27916i
\(479\) −3942.68 6828.91i −0.376086 0.651401i 0.614403 0.788993i \(-0.289397\pi\)
−0.990489 + 0.137592i \(0.956064\pi\)
\(480\) 0 0
\(481\) −13418.9 23242.2i −1.27204 2.20323i
\(482\) −5086.90 −0.480710
\(483\) 0 0
\(484\) −1859.05 3219.97i −0.174591 0.302401i
\(485\) −105.076 181.997i −0.00983763 0.0170393i
\(486\) 0 0
\(487\) −6718.11 −0.625106 −0.312553 0.949900i \(-0.601184\pi\)
−0.312553 + 0.949900i \(0.601184\pi\)
\(488\) 2069.38 + 3584.27i 0.191960 + 0.332484i
\(489\) 0 0
\(490\) 1483.10 + 2568.81i 0.136734 + 0.236831i
\(491\) 1291.08 2236.21i 0.118667 0.205537i −0.800573 0.599236i \(-0.795471\pi\)
0.919240 + 0.393698i \(0.128805\pi\)
\(492\) 0 0
\(493\) 24221.4 2.21273
\(494\) 8646.80 + 17848.3i 0.787526 + 1.62557i
\(495\) 0 0
\(496\) 10563.4 18296.3i 0.956268 1.65630i
\(497\) −349.615 + 605.550i −0.0315540 + 0.0546532i
\(498\) 0 0
\(499\) 9391.32 16266.2i 0.842511 1.45927i −0.0452537 0.998976i \(-0.514410\pi\)
0.887765 0.460297i \(-0.152257\pi\)
\(500\) 1639.57 + 2839.82i 0.146648 + 0.254001i
\(501\) 0 0
\(502\) −13654.0 −1.21396
\(503\) −2427.45 4204.46i −0.215178 0.372699i 0.738150 0.674637i \(-0.235700\pi\)
−0.953328 + 0.301938i \(0.902367\pi\)
\(504\) 0 0
\(505\) −4118.30 −0.362895
\(506\) 11573.8 1.01684
\(507\) 0 0
\(508\) 2890.21 5005.99i 0.252426 0.437214i
\(509\) 901.675 + 1561.75i 0.0785187 + 0.135998i 0.902611 0.430457i \(-0.141648\pi\)
−0.824092 + 0.566456i \(0.808314\pi\)
\(510\) 0 0
\(511\) −7102.50 + 12301.9i −0.614865 + 1.06498i
\(512\) −3538.78 −0.305456
\(513\) 0 0
\(514\) −16811.0 −1.44261
\(515\) −6150.11 + 10652.3i −0.526226 + 0.911450i
\(516\) 0 0
\(517\) 2764.31 + 4787.93i 0.235154 + 0.407298i
\(518\) 13333.6 23094.5i 1.13097 1.95890i
\(519\) 0 0
\(520\) −13730.6 −1.15793
\(521\) −3359.86 −0.282530 −0.141265 0.989972i \(-0.545117\pi\)
−0.141265 + 0.989972i \(0.545117\pi\)
\(522\) 0 0
\(523\) −4378.41 7583.62i −0.366070 0.634051i 0.622878 0.782319i \(-0.285963\pi\)
−0.988947 + 0.148268i \(0.952630\pi\)
\(524\) −1071.28 −0.0893115
\(525\) 0 0
\(526\) 4150.69 + 7189.20i 0.344066 + 0.595939i
\(527\) −15572.0 + 26971.6i −1.28715 + 2.22941i
\(528\) 0 0
\(529\) 3625.30 6279.20i 0.297962 0.516085i
\(530\) −8783.91 + 15214.2i −0.719903 + 1.24691i
\(531\) 0 0
\(532\) −3567.25 + 5258.59i −0.290714 + 0.428551i
\(533\) −8428.47 −0.684948
\(534\) 0 0
\(535\) −7779.92 + 13475.2i −0.628702 + 1.08894i
\(536\) 3469.46 + 6009.29i 0.279586 + 0.484257i
\(537\) 0 0
\(538\) 4932.11 + 8542.67i 0.395239 + 0.684574i
\(539\) −3032.22 −0.242313
\(540\) 0 0
\(541\) −6221.44 10775.9i −0.494419 0.856359i 0.505560 0.862791i \(-0.331286\pi\)
−0.999979 + 0.00643258i \(0.997952\pi\)
\(542\) 3170.50 + 5491.46i 0.251263 + 0.435200i
\(543\) 0 0
\(544\) 18802.8 1.48191
\(545\) 1706.53 + 2955.80i 0.134128 + 0.232316i
\(546\) 0 0
\(547\) −4266.57 7389.92i −0.333502 0.577642i 0.649694 0.760196i \(-0.274897\pi\)
−0.983196 + 0.182554i \(0.941564\pi\)
\(548\) 4937.10 8551.32i 0.384859 0.666595i
\(549\) 0 0
\(550\) 10237.3 0.793673
\(551\) 9553.41 14083.0i 0.738637 1.08885i
\(552\) 0 0
\(553\) 5924.01 10260.7i 0.455542 0.789021i
\(554\) 8802.30 15246.0i 0.675043 1.16921i
\(555\) 0 0
\(556\) −874.914 + 1515.40i −0.0667349 + 0.115588i
\(557\) −6672.82 11557.7i −0.507606 0.879199i −0.999961 0.00880454i \(-0.997197\pi\)
0.492356 0.870394i \(-0.336136\pi\)
\(558\) 0 0
\(559\) 21745.0 1.64528
\(560\) −11018.7 19085.0i −0.831474 1.44016i
\(561\) 0 0
\(562\) −5003.23 −0.375531
\(563\) 20502.4 1.53477 0.767384 0.641188i \(-0.221558\pi\)
0.767384 + 0.641188i \(0.221558\pi\)
\(564\) 0 0
\(565\) −7663.61 + 13273.8i −0.570638 + 0.988374i
\(566\) 1371.40 + 2375.34i 0.101845 + 0.176401i
\(567\) 0 0
\(568\) 249.938 432.905i 0.0184633 0.0319794i
\(569\) 508.261 0.0374471 0.0187236 0.999825i \(-0.494040\pi\)
0.0187236 + 0.999825i \(0.494040\pi\)
\(570\) 0 0
\(571\) −4594.65 −0.336743 −0.168371 0.985724i \(-0.553851\pi\)
−0.168371 + 0.985724i \(0.553851\pi\)
\(572\) −6372.87 + 11038.1i −0.465845 + 0.806867i
\(573\) 0 0
\(574\) −4187.44 7252.86i −0.304496 0.527402i
\(575\) −2174.34 + 3766.06i −0.157698 + 0.273140i
\(576\) 0 0
\(577\) −2104.42 −0.151834 −0.0759170 0.997114i \(-0.524188\pi\)
−0.0759170 + 0.997114i \(0.524188\pi\)
\(578\) −30864.2 −2.22108
\(579\) 0 0
\(580\) −5349.28 9265.22i −0.382960 0.663306i
\(581\) 18108.2 1.29304
\(582\) 0 0
\(583\) −8979.39 15552.8i −0.637888 1.10485i
\(584\) 5077.55 8794.57i 0.359778 0.623154i
\(585\) 0 0
\(586\) 293.206 507.848i 0.0206693 0.0358003i
\(587\) 4334.65 7507.84i 0.304787 0.527907i −0.672427 0.740164i \(-0.734748\pi\)
0.977214 + 0.212257i \(0.0680813\pi\)
\(588\) 0 0
\(589\) 9540.06 + 19692.1i 0.667388 + 1.37759i
\(590\) −12376.0 −0.863579
\(591\) 0 0
\(592\) −15396.9 + 26668.2i −1.06893 + 1.85144i
\(593\) 9878.50 + 17110.1i 0.684084 + 1.18487i 0.973724 + 0.227732i \(0.0731310\pi\)
−0.289640 + 0.957136i \(0.593536\pi\)
\(594\) 0 0
\(595\) 16243.3 + 28134.2i 1.11918 + 1.93847i
\(596\) −6479.54 −0.445322
\(597\) 0 0
\(598\) −8395.40 14541.3i −0.574103 0.994375i
\(599\) −297.408 515.125i −0.0202867 0.0351376i 0.855704 0.517466i \(-0.173125\pi\)
−0.875991 + 0.482328i \(0.839791\pi\)
\(600\) 0 0
\(601\) 15851.2 1.07585 0.537923 0.842994i \(-0.319209\pi\)
0.537923 + 0.842994i \(0.319209\pi\)
\(602\) 10803.4 + 18712.0i 0.731416 + 1.26685i
\(603\) 0 0
\(604\) −4166.64 7216.84i −0.280692 0.486174i
\(605\) −6677.61 + 11566.0i −0.448733 + 0.777228i
\(606\) 0 0
\(607\) 9350.34 0.625237 0.312618 0.949879i \(-0.398794\pi\)
0.312618 + 0.949879i \(0.398794\pi\)
\(608\) 7416.20 10932.4i 0.494682 0.729225i
\(609\) 0 0
\(610\) −6749.75 + 11690.9i −0.448016 + 0.775986i
\(611\) 4010.35 6946.13i 0.265534 0.459919i
\(612\) 0 0
\(613\) 5438.10 9419.06i 0.358308 0.620607i −0.629370 0.777105i \(-0.716687\pi\)
0.987678 + 0.156498i \(0.0500205\pi\)
\(614\) 9275.90 + 16066.3i 0.609682 + 1.05600i
\(615\) 0 0
\(616\) 13946.9 0.912235
\(617\) −9676.84 16760.8i −0.631402 1.09362i −0.987265 0.159082i \(-0.949147\pi\)
0.355864 0.934538i \(-0.384187\pi\)
\(618\) 0 0
\(619\) −9439.93 −0.612961 −0.306480 0.951877i \(-0.599151\pi\)
−0.306480 + 0.951877i \(0.599151\pi\)
\(620\) 13756.3 0.891076
\(621\) 0 0
\(622\) −3503.43 + 6068.12i −0.225844 + 0.391173i
\(623\) −2024.73 3506.94i −0.130208 0.225526i
\(624\) 0 0
\(625\) 9765.51 16914.4i 0.624993 1.08252i
\(626\) −14307.0 −0.913458
\(627\) 0 0
\(628\) 10528.9 0.669030
\(629\) 22697.4 39313.0i 1.43880 2.49207i
\(630\) 0 0
\(631\) −1928.16 3339.68i −0.121646 0.210698i 0.798771 0.601636i \(-0.205484\pi\)
−0.920417 + 0.390938i \(0.872151\pi\)
\(632\) −4235.05 + 7335.32i −0.266553 + 0.461683i
\(633\) 0 0
\(634\) 21887.0 1.37105
\(635\) −20763.0 −1.29756
\(636\) 0 0
\(637\) 2199.51 + 3809.66i 0.136809 + 0.236961i
\(638\) 33917.2 2.10469
\(639\) 0 0
\(640\) 10877.7 + 18840.7i 0.671842 + 1.16367i
\(641\) −13098.6 + 22687.4i −0.807117 + 1.39797i 0.107735 + 0.994180i \(0.465640\pi\)
−0.914852 + 0.403788i \(0.867693\pi\)
\(642\) 0 0
\(643\) −7522.53 + 13029.4i −0.461368 + 0.799113i −0.999029 0.0440482i \(-0.985974\pi\)
0.537662 + 0.843161i \(0.319308\pi\)
\(644\) 2689.90 4659.04i 0.164592 0.285081i
\(645\) 0 0
\(646\) −18832.1 + 27760.9i −1.14696 + 1.69077i
\(647\) −4217.62 −0.256278 −0.128139 0.991756i \(-0.540900\pi\)
−0.128139 + 0.991756i \(0.540900\pi\)
\(648\) 0 0
\(649\) 6325.71 10956.5i 0.382598 0.662679i
\(650\) −7425.93 12862.1i −0.448106 0.776142i
\(651\) 0 0
\(652\) 6731.75 + 11659.7i 0.404349 + 0.700353i
\(653\) 9871.02 0.591551 0.295776 0.955257i \(-0.404422\pi\)
0.295776 + 0.955257i \(0.404422\pi\)
\(654\) 0 0
\(655\) 1924.00 + 3332.46i 0.114774 + 0.198794i
\(656\) 4835.42 + 8375.19i 0.287792 + 0.498470i
\(657\) 0 0
\(658\) 7969.71 0.472176
\(659\) −13580.8 23522.6i −0.802781 1.39046i −0.917779 0.397092i \(-0.870019\pi\)
0.114998 0.993366i \(-0.463314\pi\)
\(660\) 0 0
\(661\) −2406.19 4167.65i −0.141589 0.245239i 0.786506 0.617582i \(-0.211888\pi\)
−0.928095 + 0.372343i \(0.878554\pi\)
\(662\) 7106.36 12308.6i 0.417216 0.722638i
\(663\) 0 0
\(664\) −12945.5 −0.756599
\(665\) 22764.7 + 1652.42i 1.32748 + 0.0963582i
\(666\) 0 0
\(667\) −7203.78 + 12477.3i −0.418188 + 0.724323i
\(668\) 3302.30 5719.76i 0.191272 0.331294i
\(669\) 0 0
\(670\) −11316.4 + 19600.7i −0.652526 + 1.13021i
\(671\) −6899.96 11951.1i −0.396975 0.687581i
\(672\) 0 0
\(673\) −1181.18 −0.0676540 −0.0338270 0.999428i \(-0.510770\pi\)
−0.0338270 + 0.999428i \(0.510770\pi\)
\(674\) 5312.17 + 9200.95i 0.303586 + 0.525827i
\(675\) 0 0
\(676\) 10126.4 0.576150
\(677\) −10321.0 −0.585919 −0.292959 0.956125i \(-0.594640\pi\)
−0.292959 + 0.956125i \(0.594640\pi\)
\(678\) 0 0
\(679\) 154.841 268.193i 0.00875150 0.0151580i
\(680\) −11612.3 20113.0i −0.654868 1.13426i
\(681\) 0 0
\(682\) −21805.5 + 37768.3i −1.22431 + 2.12056i
\(683\) 29335.0 1.64344 0.821721 0.569889i \(-0.193014\pi\)
0.821721 + 0.569889i \(0.193014\pi\)
\(684\) 0 0
\(685\) −35467.6 −1.97832
\(686\) 9690.40 16784.3i 0.539331 0.934149i
\(687\) 0 0
\(688\) −12475.1 21607.5i −0.691292 1.19735i
\(689\) −13026.9 + 22563.3i −0.720299 + 1.24760i
\(690\) 0 0
\(691\) 22205.1 1.22247 0.611233 0.791451i \(-0.290674\pi\)
0.611233 + 0.791451i \(0.290674\pi\)
\(692\) 13416.0 0.736993
\(693\) 0 0
\(694\) 14190.1 + 24578.0i 0.776153 + 1.34434i
\(695\) 6285.29 0.343043
\(696\) 0 0
\(697\) −7128.16 12346.3i −0.387372 0.670948i
\(698\) −21794.6 + 37749.4i −1.18186 + 2.04704i
\(699\) 0 0
\(700\) 2379.28 4121.03i 0.128469 0.222515i
\(701\) 2076.36 3596.37i 0.111873 0.193770i −0.804652 0.593746i \(-0.797648\pi\)
0.916526 + 0.399976i \(0.130982\pi\)
\(702\) 0 0
\(703\) −13905.3 28702.7i −0.746017 1.53989i
\(704\) −4400.06 −0.235559
\(705\) 0 0
\(706\) 17452.6 30228.7i 0.930363 1.61144i
\(707\) −3034.40 5255.73i −0.161415 0.279579i
\(708\) 0 0
\(709\) 11645.4 + 20170.5i 0.616859 + 1.06843i 0.990055 + 0.140679i \(0.0449286\pi\)
−0.373196 + 0.927753i \(0.621738\pi\)
\(710\) 1630.46 0.0861832
\(711\) 0 0
\(712\) 1447.47 + 2507.10i 0.0761888 + 0.131963i
\(713\) −9262.70 16043.5i −0.486523 0.842682i
\(714\) 0 0
\(715\) 45782.1 2.39462
\(716\) −4315.25 7474.24i −0.225235 0.390119i
\(717\) 0 0
\(718\) 9518.29 + 16486.2i 0.494735 + 0.856905i
\(719\) −13084.6 + 22663.1i −0.678682 + 1.17551i 0.296696 + 0.954972i \(0.404115\pi\)
−0.975378 + 0.220540i \(0.929218\pi\)
\(720\) 0 0
\(721\) −18125.8 −0.936255
\(722\) 8713.19 + 21898.9i 0.449129 + 1.12880i
\(723\) 0 0
\(724\) 1964.14 3402.00i 0.100824 0.174633i
\(725\) −6371.91 + 11036.5i −0.326410 + 0.565358i
\(726\) 0 0
\(727\) 15166.3 26268.8i 0.773708 1.34010i −0.161809 0.986822i \(-0.551733\pi\)
0.935518 0.353280i \(-0.114934\pi\)
\(728\) −10116.8 17522.8i −0.515045 0.892085i
\(729\) 0 0
\(730\) 33123.2 1.67937
\(731\) 18390.2 + 31852.8i 0.930489 + 1.61165i
\(732\) 0 0
\(733\) 14731.3 0.742308 0.371154 0.928571i \(-0.378962\pi\)
0.371154 + 0.928571i \(0.378962\pi\)
\(734\) 21031.0 1.05759
\(735\) 0 0
\(736\) −5592.21 + 9685.99i −0.280070 + 0.485096i
\(737\) −11568.3 20036.9i −0.578187 1.00145i
\(738\) 0 0
\(739\) −6622.38 + 11470.3i −0.329646 + 0.570963i −0.982442 0.186571i \(-0.940263\pi\)
0.652796 + 0.757534i \(0.273596\pi\)
\(740\) −20050.8 −0.996059
\(741\) 0 0
\(742\) −25888.2 −1.28084
\(743\) −11120.8 + 19261.8i −0.549102 + 0.951072i 0.449234 + 0.893414i \(0.351697\pi\)
−0.998336 + 0.0576585i \(0.981637\pi\)
\(744\) 0 0
\(745\) 11637.1 + 20156.0i 0.572281 + 0.991220i
\(746\) −907.718 + 1572.21i −0.0445495 + 0.0771619i
\(747\) 0 0
\(748\) −21558.8 −1.05383
\(749\) −22929.2 −1.11858
\(750\) 0 0
\(751\) −7341.12 12715.2i −0.356699 0.617821i 0.630708 0.776020i \(-0.282765\pi\)
−0.987407 + 0.158199i \(0.949431\pi\)
\(752\) −9202.96 −0.446273
\(753\) 0 0
\(754\) −24602.8 42613.3i −1.18830 2.05820i
\(755\) −14966.4 + 25922.5i −0.721433 + 1.24956i
\(756\) 0 0
\(757\) −348.860 + 604.243i −0.0167497 + 0.0290113i −0.874279 0.485424i \(-0.838665\pi\)
0.857529 + 0.514436i \(0.171999\pi\)
\(758\) −6258.78 + 10840.5i −0.299907 + 0.519453i
\(759\) 0 0
\(760\) −16274.4 1181.31i −0.776756 0.0563824i
\(761\) −8661.54 −0.412589 −0.206295 0.978490i \(-0.566141\pi\)
−0.206295 + 0.978490i \(0.566141\pi\)
\(762\) 0 0
\(763\) −2514.77 + 4355.71i −0.119319 + 0.206667i
\(764\) −4224.62 7317.26i −0.200054 0.346504i
\(765\) 0 0
\(766\) 473.933 + 820.877i 0.0223550 + 0.0387200i
\(767\) −18354.1 −0.864055
\(768\) 0 0
\(769\) −7896.13 13676.5i −0.370275 0.641336i 0.619332 0.785129i \(-0.287403\pi\)
−0.989608 + 0.143793i \(0.954070\pi\)
\(770\) 22745.5 + 39396.4i 1.06453 + 1.84383i
\(771\) 0 0
\(772\) −4798.55 −0.223709
\(773\) 12645.3 + 21902.3i 0.588384 + 1.01911i 0.994444 + 0.105264i \(0.0335689\pi\)
−0.406061 + 0.913846i \(0.633098\pi\)
\(774\) 0 0
\(775\) −8193.07 14190.8i −0.379747 0.657741i
\(776\) −110.695 + 191.730i −0.00512079 + 0.00886948i
\(777\) 0 0
\(778\) 21445.2 0.988236
\(779\) −9989.99 725.144i −0.459472 0.0333517i
\(780\) 0 0
\(781\) −833.373 + 1443.44i −0.0381824 + 0.0661338i
\(782\) 14200.4 24595.8i 0.649367 1.12474i
\(783\) 0 0
\(784\) 2523.72 4371.21i 0.114965 0.199126i
\(785\) −18909.7 32752.6i −0.859766 1.48916i
\(786\) 0 0
\(787\) 5864.90 0.265643 0.132822 0.991140i \(-0.457596\pi\)
0.132822 + 0.991140i \(0.457596\pi\)
\(788\) −2084.27 3610.06i −0.0942247 0.163202i
\(789\) 0 0
\(790\) −27627.2 −1.24422
\(791\) −22586.4 −1.01527
\(792\) 0 0
\(793\) −10010.2 + 17338.1i −0.448262 + 0.776413i
\(794\) 18089.3 + 31331.6i 0.808521 + 1.40040i
\(795\) 0 0
\(796\) 523.601 906.904i 0.0233148 0.0403824i
\(797\) 24968.0 1.10967 0.554837 0.831959i \(-0.312781\pi\)
0.554837 + 0.831959i \(0.312781\pi\)
\(798\) 0 0
\(799\) 13566.6 0.600690
\(800\) −4946.44 + 8567.49i −0.218604 + 0.378633i
\(801\) 0 0
\(802\) −254.307 440.472i −0.0111969 0.0193935i
\(803\) −16930.1 + 29323.9i −0.744025 + 1.28869i
\(804\) 0 0
\(805\) −19324.0 −0.846063
\(806\) 63269.1 2.76496
\(807\) 0 0
\(808\) 2169.28 + 3757.30i 0.0944492 + 0.163591i
\(809\) −6447.62 −0.280206 −0.140103 0.990137i \(-0.544743\pi\)
−0.140103 + 0.990137i \(0.544743\pi\)
\(810\) 0 0
\(811\) 14130.1 + 24474.0i 0.611806 + 1.05968i 0.990936 + 0.134336i \(0.0428901\pi\)
−0.379130 + 0.925344i \(0.623777\pi\)
\(812\) 7882.78 13653.4i 0.340679 0.590073i
\(813\) 0 0
\(814\) 31783.2 55050.0i 1.36855 2.37040i
\(815\) 24180.1 41881.1i 1.03925 1.80004i
\(816\) 0 0
\(817\) 25773.6 + 1870.83i 1.10368 + 0.0801127i
\(818\) −40455.1 −1.72919
\(819\) 0 0
\(820\) −3148.50 + 5453.37i −0.134086 + 0.232244i
\(821\) −16719.7 28959.4i −0.710745 1.23105i −0.964578 0.263798i \(-0.915025\pi\)
0.253833 0.967248i \(-0.418309\pi\)
\(822\) 0 0
\(823\) −12853.8 22263.4i −0.544417 0.942958i −0.998643 0.0520717i \(-0.983418\pi\)
0.454226 0.890886i \(-0.349916\pi\)
\(824\) 12958.1 0.547834
\(825\) 0 0
\(826\) −9118.73 15794.1i −0.384118 0.665312i
\(827\) 18188.6 + 31503.5i 0.764786 + 1.32465i 0.940360 + 0.340182i \(0.110489\pi\)
−0.175574 + 0.984466i \(0.556178\pi\)
\(828\) 0 0
\(829\) −7507.51 −0.314532 −0.157266 0.987556i \(-0.550268\pi\)
−0.157266 + 0.987556i \(0.550268\pi\)
\(830\) −21112.3 36567.6i −0.882914 1.52925i
\(831\) 0 0
\(832\) 3191.71 + 5528.20i 0.132996 + 0.230356i
\(833\) −3720.35 + 6443.84i −0.154745 + 0.268026i
\(834\) 0 0
\(835\) −23723.4 −0.983213
\(836\) −8503.23 + 12534.9i −0.351783 + 0.518573i
\(837\) 0 0
\(838\) 24365.1 42201.7i 1.00439 1.73966i
\(839\) 11882.5 20581.1i 0.488951 0.846888i −0.510968 0.859600i \(-0.670713\pi\)
0.999919 + 0.0127114i \(0.00404627\pi\)
\(840\) 0 0
\(841\) −8916.26 + 15443.4i −0.365585 + 0.633212i
\(842\) −4458.80 7722.87i −0.182495 0.316090i
\(843\) 0 0
\(844\) 345.259 0.0140809
\(845\) −18186.8 31500.4i −0.740407 1.28242i
\(846\) 0 0
\(847\) −19680.4 −0.798380
\(848\) 29894.2 1.21058
\(849\) 0 0
\(850\) 12560.6 21755.5i 0.506852 0.877893i
\(851\) 13501.1 + 23384.5i 0.543843 + 0.941964i
\(852\) 0 0
\(853\) 1044.10 1808.43i 0.0419101 0.0725904i −0.844309 0.535856i \(-0.819989\pi\)
0.886220 + 0.463265i \(0.153322\pi\)
\(854\) −19893.1 −0.797104
\(855\) 0 0
\(856\) 16392.0 0.654518
\(857\) 11006.9 19064.4i 0.438725 0.759894i −0.558867 0.829258i \(-0.688764\pi\)
0.997591 + 0.0693638i \(0.0220969\pi\)
\(858\) 0 0
\(859\) −882.757 1528.98i −0.0350632 0.0607312i 0.847961 0.530058i \(-0.177830\pi\)
−0.883024 + 0.469327i \(0.844497\pi\)
\(860\) 8122.96 14069.4i 0.322082 0.557862i
\(861\) 0 0
\(862\) 530.025 0.0209428
\(863\) −1230.83 −0.0485492 −0.0242746 0.999705i \(-0.507728\pi\)
−0.0242746 + 0.999705i \(0.507728\pi\)
\(864\) 0 0
\(865\) −24094.8 41733.4i −0.947106 1.64044i
\(866\) 42393.6 1.66350
\(867\) 0 0
\(868\) 10135.8 + 17555.6i 0.396348 + 0.686495i
\(869\) 14121.0 24458.3i 0.551234 0.954765i
\(870\) 0 0
\(871\) −16782.8 + 29068.6i −0.652885 + 1.13083i
\(872\) 1797.80 3113.88i 0.0698178 0.120928i
\(873\) 0 0
\(874\) −8699.74 17957.6i −0.336697 0.694993i
\(875\) 17357.0 0.670598
\(876\) 0 0
\(877\) −16694.1 + 28915.1i −0.642783 + 1.11333i 0.342026 + 0.939690i \(0.388887\pi\)
−0.984809 + 0.173642i \(0.944446\pi\)
\(878\) −21232.8 36776.4i −0.816143 1.41360i
\(879\) 0 0
\(880\) −26265.2 45492.7i −1.00614 1.74268i
\(881\) 37508.8 1.43440 0.717198 0.696869i \(-0.245424\pi\)
0.717198 + 0.696869i \(0.245424\pi\)
\(882\) 0 0
\(883\) −6307.84 10925.5i −0.240403 0.416390i 0.720426 0.693532i \(-0.243946\pi\)
−0.960829 + 0.277142i \(0.910613\pi\)
\(884\) 15638.3 + 27086.3i 0.594991 + 1.03055i
\(885\) 0 0
\(886\) −41913.7 −1.58930
\(887\) −7532.37 13046.4i −0.285132 0.493863i 0.687509 0.726176i \(-0.258704\pi\)
−0.972641 + 0.232312i \(0.925371\pi\)
\(888\) 0 0
\(889\) −15298.3 26497.5i −0.577153 0.999658i
\(890\) −4721.27 + 8177.48i −0.177817 + 0.307988i
\(891\) 0 0
\(892\) −854.905 −0.0320901
\(893\) 5350.95 7887.99i 0.200518 0.295590i
\(894\) 0 0
\(895\) −15500.2 + 26847.1i −0.578898 + 1.00268i
\(896\) −16029.6 + 27764.0i −0.597667 + 1.03519i
\(897\) 0 0
\(898\) −510.179 + 883.656i −0.0189587 + 0.0328374i
\(899\) −27144.4 47015.5i −1.00703 1.74422i
\(900\) 0 0
\(901\) −44068.7 −1.62946
\(902\) −9981.56 17288.6i −0.368459 0.638189i
\(903\) 0 0
\(904\) 16146.9 0.594070
\(905\) −14110.2 −0.518275
\(906\) 0 0
\(907\) 12114.7 20983.3i 0.443509 0.768180i −0.554438 0.832225i \(-0.687067\pi\)
0.997947 + 0.0640453i \(0.0204002\pi\)
\(908\) −7425.34 12861.1i −0.271386 0.470055i
\(909\) 0 0
\(910\) 32998.2 57154.6i 1.20207 2.08204i
\(911\) 48867.9 1.77724 0.888619 0.458645i \(-0.151665\pi\)
0.888619 + 0.458645i \(0.151665\pi\)
\(912\) 0 0
\(913\) 43164.3 1.56465
\(914\) −19846.3 + 34374.8i −0.718224 + 1.24400i
\(915\) 0 0
\(916\) 7627.04 + 13210.4i 0.275114 + 0.476511i
\(917\) −2835.23 + 4910.77i −0.102102 + 0.176846i
\(918\) 0 0
\(919\) 26159.2 0.938969 0.469484 0.882941i \(-0.344440\pi\)
0.469484 + 0.882941i \(0.344440\pi\)
\(920\) 13814.6 0.495060
\(921\) 0 0
\(922\) 24679.1 + 42745.5i 0.881522 + 1.52684i
\(923\) 2418.04 0.0862306
\(924\) 0 0
\(925\) 11942.0 + 20684.1i 0.424487 + 0.735233i
\(926\) 10874.2 18834.6i 0.385904 0.668405i
\(927\) 0 0
\(928\) −16388.0 + 28384.9i −0.579702 + 1.00407i
\(929\) −20608.9 + 35695.6i −0.727831 + 1.26064i 0.229968 + 0.973198i \(0.426138\pi\)
−0.957798 + 0.287441i \(0.907195\pi\)
\(930\) 0 0
\(931\) 2279.24 + 4704.70i 0.0802353 + 0.165618i
\(932\) −18724.7 −0.658098
\(933\) 0 0
\(934\) −8345.93 + 14455.6i −0.292385 + 0.506425i
\(935\) 38719.0 + 67063.2i 1.35427 + 2.34567i
\(936\) 0 0
\(937\) −765.118 1325.22i −0.0266759 0.0462040i 0.852379 0.522924i \(-0.175159\pi\)
−0.879055 + 0.476720i \(0.841826\pi\)
\(938\) −33352.2 −1.16097
\(939\) 0 0
\(940\) −2996.18 5189.53i −0.103962 0.180068i
\(941\) 28011.5 + 48517.3i 0.970402 + 1.68079i 0.694342 + 0.719645i \(0.255696\pi\)
0.276060 + 0.961140i \(0.410971\pi\)
\(942\) 0 0
\(943\) 8480.07 0.292841
\(944\) 10529.8 + 18238.1i 0.363046 + 0.628814i
\(945\) 0 0
\(946\) 25751.9 + 44603.5i 0.885058 + 1.53297i
\(947\) −13508.1 + 23396.7i −0.463520 + 0.802840i −0.999133 0.0416230i \(-0.986747\pi\)
0.535613 + 0.844463i \(0.320081\pi\)
\(948\) 0 0
\(949\) 49123.1 1.68030
\(950\) −7695.12 15883.9i −0.262803 0.542465i
\(951\) 0 0
\(952\) 17112.0 29638.9i 0.582567 1.00904i
\(953\) 3150.12 5456.17i 0.107075 0.185459i −0.807509 0.589855i \(-0.799185\pi\)
0.914584 + 0.404396i \(0.132518\pi\)
\(954\) 0 0
\(955\) −15174.6 + 26283.2i −0.514177 + 0.890580i
\(956\) 8551.58 + 14811.8i 0.289307 + 0.501095i
\(957\) 0 0
\(958\) −27095.4 −0.913792
\(959\) −26132.8 45263.4i −0.879951 1.52412i
\(960\) 0 0
\(961\) 40014.1 1.34316
\(962\) −92219.3 −3.09072
\(963\) 0 0
\(964\) −2818.14 + 4881.16i −0.0941558 + 0.163083i
\(965\) 8618.07 + 14926.9i 0.287488 + 0.497943i
\(966\) 0 0
\(967\) −17965.7 + 31117.4i −0.597453 + 1.03482i 0.395743 + 0.918361i \(0.370487\pi\)
−0.993196 + 0.116457i \(0.962846\pi\)
\(968\) 14069.5 0.467159
\(969\) 0 0
\(970\) −722.117 −0.0239029
\(971\) 27922.0 48362.3i 0.922820 1.59837i 0.127791 0.991801i \(-0.459211\pi\)
0.795030 0.606571i \(-0.207455\pi\)
\(972\) 0 0
\(973\) 4631.05 + 8021.21i 0.152584 + 0.264284i
\(974\) −11542.3 + 19991.8i −0.379711 + 0.657679i
\(975\) 0 0
\(976\) 22971.4 0.753377
\(977\) −23155.4 −0.758247 −0.379124 0.925346i \(-0.623774\pi\)
−0.379124 + 0.925346i \(0.623774\pi\)
\(978\) 0 0
\(979\) −4826.34 8359.46i −0.157559 0.272901i
\(980\) 3286.55 0.107128
\(981\) 0 0
\(982\) −4436.36 7684.01i −0.144165 0.249701i
\(983\) 22002.7 38109.8i 0.713914 1.23654i −0.249463 0.968384i \(-0.580254\pi\)
0.963377 0.268151i \(-0.0864126\pi\)
\(984\) 0 0
\(985\) −7486.59 + 12967.2i −0.242175 + 0.419460i
\(986\) 41614.4 72078.2i 1.34409 2.32803i
\(987\) 0 0
\(988\) 21916.8 + 1590.87i 0.705734 + 0.0512272i
\(989\) −21878.1 −0.703420
\(990\) 0 0
\(991\) −22980.8 + 39803.9i −0.736639 + 1.27590i 0.217362 + 0.976091i \(0.430255\pi\)
−0.954001 + 0.299805i \(0.903078\pi\)
\(992\) −21071.9 36497.6i −0.674429 1.16814i
\(993\) 0 0
\(994\) 1201.34 + 2080.77i 0.0383341 + 0.0663965i
\(995\) −3761.50 −0.119847
\(996\) 0 0
\(997\) 19751.6 + 34210.7i 0.627420 + 1.08672i 0.988067 + 0.154022i \(0.0492225\pi\)
−0.360647 + 0.932702i \(0.617444\pi\)
\(998\) −32270.2 55893.6i −1.02354 1.77283i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 171.4.f.h.163.5 yes 12
3.2 odd 2 inner 171.4.f.h.163.2 yes 12
19.7 even 3 inner 171.4.f.h.64.5 yes 12
57.26 odd 6 inner 171.4.f.h.64.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
171.4.f.h.64.2 12 57.26 odd 6 inner
171.4.f.h.64.5 yes 12 19.7 even 3 inner
171.4.f.h.163.2 yes 12 3.2 odd 2 inner
171.4.f.h.163.5 yes 12 1.1 even 1 trivial