Properties

Label 171.6.a.b
Level $171$
Weight $6$
Character orbit 171.a
Self dual yes
Analytic conductor $27.426$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [171,6,Mod(1,171)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(171, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("171.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 171 = 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 171.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(27.4256331880\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 19)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 2 q^{2} - 28 q^{4} + 24 q^{5} - 167 q^{7} - 120 q^{8} + 48 q^{10} - 262 q^{11} + 749 q^{13} - 334 q^{14} + 656 q^{16} + 1597 q^{17} - 361 q^{19} - 672 q^{20} - 524 q^{22} + 2011 q^{23} - 2549 q^{25}+ \cdots + 22164 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
2.00000 0 −28.0000 24.0000 0 −167.000 −120.000 0 48.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 171.6.a.b 1
3.b odd 2 1 19.6.a.b 1
12.b even 2 1 304.6.a.b 1
15.d odd 2 1 475.6.a.a 1
21.c even 2 1 931.6.a.b 1
57.d even 2 1 361.6.a.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
19.6.a.b 1 3.b odd 2 1
171.6.a.b 1 1.a even 1 1 trivial
304.6.a.b 1 12.b even 2 1
361.6.a.b 1 57.d even 2 1
475.6.a.a 1 15.d odd 2 1
931.6.a.b 1 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(171))\):

\( T_{2} - 2 \) Copy content Toggle raw display
\( T_{5} - 24 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 2 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T - 24 \) Copy content Toggle raw display
$7$ \( T + 167 \) Copy content Toggle raw display
$11$ \( T + 262 \) Copy content Toggle raw display
$13$ \( T - 749 \) Copy content Toggle raw display
$17$ \( T - 1597 \) Copy content Toggle raw display
$19$ \( T + 361 \) Copy content Toggle raw display
$23$ \( T - 2011 \) Copy content Toggle raw display
$29$ \( T - 1055 \) Copy content Toggle raw display
$31$ \( T + 1548 \) Copy content Toggle raw display
$37$ \( T - 9378 \) Copy content Toggle raw display
$41$ \( T - 10248 \) Copy content Toggle raw display
$43$ \( T - 10544 \) Copy content Toggle raw display
$47$ \( T - 6912 \) Copy content Toggle raw display
$53$ \( T - 35291 \) Copy content Toggle raw display
$59$ \( T + 33655 \) Copy content Toggle raw display
$61$ \( T + 26218 \) Copy content Toggle raw display
$67$ \( T - 45083 \) Copy content Toggle raw display
$71$ \( T + 30942 \) Copy content Toggle raw display
$73$ \( T - 46969 \) Copy content Toggle raw display
$79$ \( T + 64430 \) Copy content Toggle raw display
$83$ \( T - 13986 \) Copy content Toggle raw display
$89$ \( T - 137700 \) Copy content Toggle raw display
$97$ \( T + 22162 \) Copy content Toggle raw display
show more
show less