Properties

Label 1710.2.a.v.1.2
Level $1710$
Weight $2$
Character 1710.1
Self dual yes
Analytic conductor $13.654$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1710,2,Mod(1,1710)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1710, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1710.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1710 = 2 \cdot 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1710.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.6544187456\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.56155\) of defining polynomial
Character \(\chi\) \(=\) 1710.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} +1.00000 q^{5} +5.12311 q^{7} -1.00000 q^{8} -1.00000 q^{10} -2.00000 q^{11} +4.00000 q^{13} -5.12311 q^{14} +1.00000 q^{16} +5.12311 q^{17} -1.00000 q^{19} +1.00000 q^{20} +2.00000 q^{22} +1.00000 q^{25} -4.00000 q^{26} +5.12311 q^{28} +2.00000 q^{29} +0.876894 q^{31} -1.00000 q^{32} -5.12311 q^{34} +5.12311 q^{35} +1.00000 q^{38} -1.00000 q^{40} -3.12311 q^{41} -6.24621 q^{43} -2.00000 q^{44} +6.24621 q^{47} +19.2462 q^{49} -1.00000 q^{50} +4.00000 q^{52} -12.2462 q^{53} -2.00000 q^{55} -5.12311 q^{56} -2.00000 q^{58} -5.12311 q^{59} -4.24621 q^{61} -0.876894 q^{62} +1.00000 q^{64} +4.00000 q^{65} -10.2462 q^{67} +5.12311 q^{68} -5.12311 q^{70} +10.2462 q^{71} +6.00000 q^{73} -1.00000 q^{76} -10.2462 q^{77} +0.876894 q^{79} +1.00000 q^{80} +3.12311 q^{82} -15.1231 q^{83} +5.12311 q^{85} +6.24621 q^{86} +2.00000 q^{88} -13.3693 q^{89} +20.4924 q^{91} -6.24621 q^{94} -1.00000 q^{95} -6.00000 q^{97} -19.2462 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{4} + 2 q^{5} + 2 q^{7} - 2 q^{8} - 2 q^{10} - 4 q^{11} + 8 q^{13} - 2 q^{14} + 2 q^{16} + 2 q^{17} - 2 q^{19} + 2 q^{20} + 4 q^{22} + 2 q^{25} - 8 q^{26} + 2 q^{28} + 4 q^{29} + 10 q^{31}+ \cdots - 22 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 5.12311 1.93635 0.968176 0.250270i \(-0.0805195\pi\)
0.968176 + 0.250270i \(0.0805195\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) −1.00000 −0.316228
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 0 0
\(13\) 4.00000 1.10940 0.554700 0.832050i \(-0.312833\pi\)
0.554700 + 0.832050i \(0.312833\pi\)
\(14\) −5.12311 −1.36921
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 5.12311 1.24254 0.621268 0.783598i \(-0.286618\pi\)
0.621268 + 0.783598i \(0.286618\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 1.00000 0.223607
\(21\) 0 0
\(22\) 2.00000 0.426401
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) −4.00000 −0.784465
\(27\) 0 0
\(28\) 5.12311 0.968176
\(29\) 2.00000 0.371391 0.185695 0.982607i \(-0.440546\pi\)
0.185695 + 0.982607i \(0.440546\pi\)
\(30\) 0 0
\(31\) 0.876894 0.157495 0.0787474 0.996895i \(-0.474908\pi\)
0.0787474 + 0.996895i \(0.474908\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) −5.12311 −0.878605
\(35\) 5.12311 0.865963
\(36\) 0 0
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) 1.00000 0.162221
\(39\) 0 0
\(40\) −1.00000 −0.158114
\(41\) −3.12311 −0.487747 −0.243874 0.969807i \(-0.578418\pi\)
−0.243874 + 0.969807i \(0.578418\pi\)
\(42\) 0 0
\(43\) −6.24621 −0.952538 −0.476269 0.879300i \(-0.658011\pi\)
−0.476269 + 0.879300i \(0.658011\pi\)
\(44\) −2.00000 −0.301511
\(45\) 0 0
\(46\) 0 0
\(47\) 6.24621 0.911104 0.455552 0.890209i \(-0.349442\pi\)
0.455552 + 0.890209i \(0.349442\pi\)
\(48\) 0 0
\(49\) 19.2462 2.74946
\(50\) −1.00000 −0.141421
\(51\) 0 0
\(52\) 4.00000 0.554700
\(53\) −12.2462 −1.68215 −0.841073 0.540921i \(-0.818076\pi\)
−0.841073 + 0.540921i \(0.818076\pi\)
\(54\) 0 0
\(55\) −2.00000 −0.269680
\(56\) −5.12311 −0.684604
\(57\) 0 0
\(58\) −2.00000 −0.262613
\(59\) −5.12311 −0.666972 −0.333486 0.942755i \(-0.608225\pi\)
−0.333486 + 0.942755i \(0.608225\pi\)
\(60\) 0 0
\(61\) −4.24621 −0.543672 −0.271836 0.962344i \(-0.587631\pi\)
−0.271836 + 0.962344i \(0.587631\pi\)
\(62\) −0.876894 −0.111366
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 4.00000 0.496139
\(66\) 0 0
\(67\) −10.2462 −1.25177 −0.625887 0.779914i \(-0.715263\pi\)
−0.625887 + 0.779914i \(0.715263\pi\)
\(68\) 5.12311 0.621268
\(69\) 0 0
\(70\) −5.12311 −0.612328
\(71\) 10.2462 1.21600 0.608001 0.793936i \(-0.291972\pi\)
0.608001 + 0.793936i \(0.291972\pi\)
\(72\) 0 0
\(73\) 6.00000 0.702247 0.351123 0.936329i \(-0.385800\pi\)
0.351123 + 0.936329i \(0.385800\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) −1.00000 −0.114708
\(77\) −10.2462 −1.16766
\(78\) 0 0
\(79\) 0.876894 0.0986583 0.0493292 0.998783i \(-0.484292\pi\)
0.0493292 + 0.998783i \(0.484292\pi\)
\(80\) 1.00000 0.111803
\(81\) 0 0
\(82\) 3.12311 0.344889
\(83\) −15.1231 −1.65998 −0.829988 0.557781i \(-0.811653\pi\)
−0.829988 + 0.557781i \(0.811653\pi\)
\(84\) 0 0
\(85\) 5.12311 0.555679
\(86\) 6.24621 0.673546
\(87\) 0 0
\(88\) 2.00000 0.213201
\(89\) −13.3693 −1.41714 −0.708572 0.705638i \(-0.750660\pi\)
−0.708572 + 0.705638i \(0.750660\pi\)
\(90\) 0 0
\(91\) 20.4924 2.14819
\(92\) 0 0
\(93\) 0 0
\(94\) −6.24621 −0.644247
\(95\) −1.00000 −0.102598
\(96\) 0 0
\(97\) −6.00000 −0.609208 −0.304604 0.952479i \(-0.598524\pi\)
−0.304604 + 0.952479i \(0.598524\pi\)
\(98\) −19.2462 −1.94416
\(99\) 0 0
\(100\) 1.00000 0.100000
\(101\) 10.0000 0.995037 0.497519 0.867453i \(-0.334245\pi\)
0.497519 + 0.867453i \(0.334245\pi\)
\(102\) 0 0
\(103\) 8.24621 0.812523 0.406262 0.913757i \(-0.366832\pi\)
0.406262 + 0.913757i \(0.366832\pi\)
\(104\) −4.00000 −0.392232
\(105\) 0 0
\(106\) 12.2462 1.18946
\(107\) 2.24621 0.217149 0.108575 0.994088i \(-0.465371\pi\)
0.108575 + 0.994088i \(0.465371\pi\)
\(108\) 0 0
\(109\) 13.1231 1.25697 0.628483 0.777824i \(-0.283676\pi\)
0.628483 + 0.777824i \(0.283676\pi\)
\(110\) 2.00000 0.190693
\(111\) 0 0
\(112\) 5.12311 0.484088
\(113\) 12.2462 1.15203 0.576013 0.817440i \(-0.304608\pi\)
0.576013 + 0.817440i \(0.304608\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 2.00000 0.185695
\(117\) 0 0
\(118\) 5.12311 0.471620
\(119\) 26.2462 2.40599
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 4.24621 0.384434
\(123\) 0 0
\(124\) 0.876894 0.0787474
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −20.2462 −1.79656 −0.898280 0.439423i \(-0.855183\pi\)
−0.898280 + 0.439423i \(0.855183\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) −4.00000 −0.350823
\(131\) −10.4924 −0.916727 −0.458364 0.888765i \(-0.651564\pi\)
−0.458364 + 0.888765i \(0.651564\pi\)
\(132\) 0 0
\(133\) −5.12311 −0.444230
\(134\) 10.2462 0.885138
\(135\) 0 0
\(136\) −5.12311 −0.439303
\(137\) 10.8769 0.929276 0.464638 0.885501i \(-0.346184\pi\)
0.464638 + 0.885501i \(0.346184\pi\)
\(138\) 0 0
\(139\) 16.4924 1.39887 0.699435 0.714697i \(-0.253435\pi\)
0.699435 + 0.714697i \(0.253435\pi\)
\(140\) 5.12311 0.432981
\(141\) 0 0
\(142\) −10.2462 −0.859843
\(143\) −8.00000 −0.668994
\(144\) 0 0
\(145\) 2.00000 0.166091
\(146\) −6.00000 −0.496564
\(147\) 0 0
\(148\) 0 0
\(149\) 22.0000 1.80231 0.901155 0.433497i \(-0.142720\pi\)
0.901155 + 0.433497i \(0.142720\pi\)
\(150\) 0 0
\(151\) 11.1231 0.905185 0.452593 0.891717i \(-0.350499\pi\)
0.452593 + 0.891717i \(0.350499\pi\)
\(152\) 1.00000 0.0811107
\(153\) 0 0
\(154\) 10.2462 0.825663
\(155\) 0.876894 0.0704339
\(156\) 0 0
\(157\) 7.12311 0.568486 0.284243 0.958752i \(-0.408258\pi\)
0.284243 + 0.958752i \(0.408258\pi\)
\(158\) −0.876894 −0.0697620
\(159\) 0 0
\(160\) −1.00000 −0.0790569
\(161\) 0 0
\(162\) 0 0
\(163\) 12.0000 0.939913 0.469956 0.882690i \(-0.344270\pi\)
0.469956 + 0.882690i \(0.344270\pi\)
\(164\) −3.12311 −0.243874
\(165\) 0 0
\(166\) 15.1231 1.17378
\(167\) 8.00000 0.619059 0.309529 0.950890i \(-0.399829\pi\)
0.309529 + 0.950890i \(0.399829\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) −5.12311 −0.392924
\(171\) 0 0
\(172\) −6.24621 −0.476269
\(173\) 8.24621 0.626948 0.313474 0.949597i \(-0.398507\pi\)
0.313474 + 0.949597i \(0.398507\pi\)
\(174\) 0 0
\(175\) 5.12311 0.387270
\(176\) −2.00000 −0.150756
\(177\) 0 0
\(178\) 13.3693 1.00207
\(179\) 17.1231 1.27984 0.639921 0.768441i \(-0.278967\pi\)
0.639921 + 0.768441i \(0.278967\pi\)
\(180\) 0 0
\(181\) −15.3693 −1.14239 −0.571196 0.820814i \(-0.693520\pi\)
−0.571196 + 0.820814i \(0.693520\pi\)
\(182\) −20.4924 −1.51900
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −10.2462 −0.749277
\(188\) 6.24621 0.455552
\(189\) 0 0
\(190\) 1.00000 0.0725476
\(191\) 4.00000 0.289430 0.144715 0.989473i \(-0.453773\pi\)
0.144715 + 0.989473i \(0.453773\pi\)
\(192\) 0 0
\(193\) −14.4924 −1.04319 −0.521594 0.853194i \(-0.674662\pi\)
−0.521594 + 0.853194i \(0.674662\pi\)
\(194\) 6.00000 0.430775
\(195\) 0 0
\(196\) 19.2462 1.37473
\(197\) −8.24621 −0.587518 −0.293759 0.955879i \(-0.594906\pi\)
−0.293759 + 0.955879i \(0.594906\pi\)
\(198\) 0 0
\(199\) −6.24621 −0.442782 −0.221391 0.975185i \(-0.571060\pi\)
−0.221391 + 0.975185i \(0.571060\pi\)
\(200\) −1.00000 −0.0707107
\(201\) 0 0
\(202\) −10.0000 −0.703598
\(203\) 10.2462 0.719143
\(204\) 0 0
\(205\) −3.12311 −0.218127
\(206\) −8.24621 −0.574541
\(207\) 0 0
\(208\) 4.00000 0.277350
\(209\) 2.00000 0.138343
\(210\) 0 0
\(211\) −20.0000 −1.37686 −0.688428 0.725304i \(-0.741699\pi\)
−0.688428 + 0.725304i \(0.741699\pi\)
\(212\) −12.2462 −0.841073
\(213\) 0 0
\(214\) −2.24621 −0.153548
\(215\) −6.24621 −0.425988
\(216\) 0 0
\(217\) 4.49242 0.304966
\(218\) −13.1231 −0.888809
\(219\) 0 0
\(220\) −2.00000 −0.134840
\(221\) 20.4924 1.37847
\(222\) 0 0
\(223\) 10.0000 0.669650 0.334825 0.942280i \(-0.391323\pi\)
0.334825 + 0.942280i \(0.391323\pi\)
\(224\) −5.12311 −0.342302
\(225\) 0 0
\(226\) −12.2462 −0.814606
\(227\) −12.4924 −0.829151 −0.414576 0.910015i \(-0.636070\pi\)
−0.414576 + 0.910015i \(0.636070\pi\)
\(228\) 0 0
\(229\) −14.4924 −0.957686 −0.478843 0.877900i \(-0.658944\pi\)
−0.478843 + 0.877900i \(0.658944\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −2.00000 −0.131306
\(233\) −23.3693 −1.53097 −0.765487 0.643451i \(-0.777502\pi\)
−0.765487 + 0.643451i \(0.777502\pi\)
\(234\) 0 0
\(235\) 6.24621 0.407458
\(236\) −5.12311 −0.333486
\(237\) 0 0
\(238\) −26.2462 −1.70129
\(239\) 18.2462 1.18025 0.590125 0.807312i \(-0.299079\pi\)
0.590125 + 0.807312i \(0.299079\pi\)
\(240\) 0 0
\(241\) −16.2462 −1.04651 −0.523255 0.852176i \(-0.675283\pi\)
−0.523255 + 0.852176i \(0.675283\pi\)
\(242\) 7.00000 0.449977
\(243\) 0 0
\(244\) −4.24621 −0.271836
\(245\) 19.2462 1.22960
\(246\) 0 0
\(247\) −4.00000 −0.254514
\(248\) −0.876894 −0.0556828
\(249\) 0 0
\(250\) −1.00000 −0.0632456
\(251\) 0.246211 0.0155407 0.00777036 0.999970i \(-0.497527\pi\)
0.00777036 + 0.999970i \(0.497527\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 20.2462 1.27036
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −10.0000 −0.623783 −0.311891 0.950118i \(-0.600963\pi\)
−0.311891 + 0.950118i \(0.600963\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 4.00000 0.248069
\(261\) 0 0
\(262\) 10.4924 0.648224
\(263\) 20.4924 1.26362 0.631808 0.775125i \(-0.282313\pi\)
0.631808 + 0.775125i \(0.282313\pi\)
\(264\) 0 0
\(265\) −12.2462 −0.752279
\(266\) 5.12311 0.314118
\(267\) 0 0
\(268\) −10.2462 −0.625887
\(269\) 28.7386 1.75223 0.876113 0.482106i \(-0.160128\pi\)
0.876113 + 0.482106i \(0.160128\pi\)
\(270\) 0 0
\(271\) −14.2462 −0.865396 −0.432698 0.901539i \(-0.642438\pi\)
−0.432698 + 0.901539i \(0.642438\pi\)
\(272\) 5.12311 0.310634
\(273\) 0 0
\(274\) −10.8769 −0.657097
\(275\) −2.00000 −0.120605
\(276\) 0 0
\(277\) 31.6155 1.89959 0.949796 0.312868i \(-0.101290\pi\)
0.949796 + 0.312868i \(0.101290\pi\)
\(278\) −16.4924 −0.989150
\(279\) 0 0
\(280\) −5.12311 −0.306164
\(281\) 5.36932 0.320307 0.160153 0.987092i \(-0.448801\pi\)
0.160153 + 0.987092i \(0.448801\pi\)
\(282\) 0 0
\(283\) −24.4924 −1.45592 −0.727962 0.685618i \(-0.759532\pi\)
−0.727962 + 0.685618i \(0.759532\pi\)
\(284\) 10.2462 0.608001
\(285\) 0 0
\(286\) 8.00000 0.473050
\(287\) −16.0000 −0.944450
\(288\) 0 0
\(289\) 9.24621 0.543895
\(290\) −2.00000 −0.117444
\(291\) 0 0
\(292\) 6.00000 0.351123
\(293\) −14.4924 −0.846656 −0.423328 0.905976i \(-0.639138\pi\)
−0.423328 + 0.905976i \(0.639138\pi\)
\(294\) 0 0
\(295\) −5.12311 −0.298279
\(296\) 0 0
\(297\) 0 0
\(298\) −22.0000 −1.27443
\(299\) 0 0
\(300\) 0 0
\(301\) −32.0000 −1.84445
\(302\) −11.1231 −0.640063
\(303\) 0 0
\(304\) −1.00000 −0.0573539
\(305\) −4.24621 −0.243137
\(306\) 0 0
\(307\) −22.2462 −1.26966 −0.634829 0.772653i \(-0.718930\pi\)
−0.634829 + 0.772653i \(0.718930\pi\)
\(308\) −10.2462 −0.583832
\(309\) 0 0
\(310\) −0.876894 −0.0498043
\(311\) −20.0000 −1.13410 −0.567048 0.823685i \(-0.691915\pi\)
−0.567048 + 0.823685i \(0.691915\pi\)
\(312\) 0 0
\(313\) 24.7386 1.39831 0.699155 0.714970i \(-0.253560\pi\)
0.699155 + 0.714970i \(0.253560\pi\)
\(314\) −7.12311 −0.401980
\(315\) 0 0
\(316\) 0.876894 0.0493292
\(317\) 14.0000 0.786318 0.393159 0.919470i \(-0.371382\pi\)
0.393159 + 0.919470i \(0.371382\pi\)
\(318\) 0 0
\(319\) −4.00000 −0.223957
\(320\) 1.00000 0.0559017
\(321\) 0 0
\(322\) 0 0
\(323\) −5.12311 −0.285057
\(324\) 0 0
\(325\) 4.00000 0.221880
\(326\) −12.0000 −0.664619
\(327\) 0 0
\(328\) 3.12311 0.172445
\(329\) 32.0000 1.76422
\(330\) 0 0
\(331\) 8.49242 0.466786 0.233393 0.972383i \(-0.425017\pi\)
0.233393 + 0.972383i \(0.425017\pi\)
\(332\) −15.1231 −0.829988
\(333\) 0 0
\(334\) −8.00000 −0.437741
\(335\) −10.2462 −0.559810
\(336\) 0 0
\(337\) −26.0000 −1.41631 −0.708155 0.706057i \(-0.750472\pi\)
−0.708155 + 0.706057i \(0.750472\pi\)
\(338\) −3.00000 −0.163178
\(339\) 0 0
\(340\) 5.12311 0.277839
\(341\) −1.75379 −0.0949730
\(342\) 0 0
\(343\) 62.7386 3.38757
\(344\) 6.24621 0.336773
\(345\) 0 0
\(346\) −8.24621 −0.443319
\(347\) −33.3693 −1.79136 −0.895679 0.444700i \(-0.853310\pi\)
−0.895679 + 0.444700i \(0.853310\pi\)
\(348\) 0 0
\(349\) 22.4924 1.20399 0.601996 0.798499i \(-0.294372\pi\)
0.601996 + 0.798499i \(0.294372\pi\)
\(350\) −5.12311 −0.273842
\(351\) 0 0
\(352\) 2.00000 0.106600
\(353\) 31.8617 1.69583 0.847915 0.530133i \(-0.177858\pi\)
0.847915 + 0.530133i \(0.177858\pi\)
\(354\) 0 0
\(355\) 10.2462 0.543812
\(356\) −13.3693 −0.708572
\(357\) 0 0
\(358\) −17.1231 −0.904984
\(359\) −6.24621 −0.329662 −0.164831 0.986322i \(-0.552708\pi\)
−0.164831 + 0.986322i \(0.552708\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 15.3693 0.807793
\(363\) 0 0
\(364\) 20.4924 1.07409
\(365\) 6.00000 0.314054
\(366\) 0 0
\(367\) −9.12311 −0.476222 −0.238111 0.971238i \(-0.576528\pi\)
−0.238111 + 0.971238i \(0.576528\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −62.7386 −3.25723
\(372\) 0 0
\(373\) 2.24621 0.116304 0.0581522 0.998308i \(-0.481479\pi\)
0.0581522 + 0.998308i \(0.481479\pi\)
\(374\) 10.2462 0.529819
\(375\) 0 0
\(376\) −6.24621 −0.322124
\(377\) 8.00000 0.412021
\(378\) 0 0
\(379\) −24.4924 −1.25809 −0.629046 0.777368i \(-0.716554\pi\)
−0.629046 + 0.777368i \(0.716554\pi\)
\(380\) −1.00000 −0.0512989
\(381\) 0 0
\(382\) −4.00000 −0.204658
\(383\) −3.50758 −0.179229 −0.0896144 0.995977i \(-0.528563\pi\)
−0.0896144 + 0.995977i \(0.528563\pi\)
\(384\) 0 0
\(385\) −10.2462 −0.522195
\(386\) 14.4924 0.737645
\(387\) 0 0
\(388\) −6.00000 −0.304604
\(389\) 1.50758 0.0764372 0.0382186 0.999269i \(-0.487832\pi\)
0.0382186 + 0.999269i \(0.487832\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −19.2462 −0.972080
\(393\) 0 0
\(394\) 8.24621 0.415438
\(395\) 0.876894 0.0441213
\(396\) 0 0
\(397\) 4.87689 0.244764 0.122382 0.992483i \(-0.460947\pi\)
0.122382 + 0.992483i \(0.460947\pi\)
\(398\) 6.24621 0.313094
\(399\) 0 0
\(400\) 1.00000 0.0500000
\(401\) −25.8617 −1.29147 −0.645737 0.763560i \(-0.723450\pi\)
−0.645737 + 0.763560i \(0.723450\pi\)
\(402\) 0 0
\(403\) 3.50758 0.174725
\(404\) 10.0000 0.497519
\(405\) 0 0
\(406\) −10.2462 −0.508511
\(407\) 0 0
\(408\) 0 0
\(409\) −6.00000 −0.296681 −0.148340 0.988936i \(-0.547393\pi\)
−0.148340 + 0.988936i \(0.547393\pi\)
\(410\) 3.12311 0.154239
\(411\) 0 0
\(412\) 8.24621 0.406262
\(413\) −26.2462 −1.29149
\(414\) 0 0
\(415\) −15.1231 −0.742364
\(416\) −4.00000 −0.196116
\(417\) 0 0
\(418\) −2.00000 −0.0978232
\(419\) −4.24621 −0.207441 −0.103720 0.994606i \(-0.533075\pi\)
−0.103720 + 0.994606i \(0.533075\pi\)
\(420\) 0 0
\(421\) −6.87689 −0.335159 −0.167580 0.985859i \(-0.553595\pi\)
−0.167580 + 0.985859i \(0.553595\pi\)
\(422\) 20.0000 0.973585
\(423\) 0 0
\(424\) 12.2462 0.594729
\(425\) 5.12311 0.248507
\(426\) 0 0
\(427\) −21.7538 −1.05274
\(428\) 2.24621 0.108575
\(429\) 0 0
\(430\) 6.24621 0.301219
\(431\) −16.0000 −0.770693 −0.385346 0.922772i \(-0.625918\pi\)
−0.385346 + 0.922772i \(0.625918\pi\)
\(432\) 0 0
\(433\) −18.0000 −0.865025 −0.432512 0.901628i \(-0.642373\pi\)
−0.432512 + 0.901628i \(0.642373\pi\)
\(434\) −4.49242 −0.215643
\(435\) 0 0
\(436\) 13.1231 0.628483
\(437\) 0 0
\(438\) 0 0
\(439\) −19.1231 −0.912696 −0.456348 0.889801i \(-0.650843\pi\)
−0.456348 + 0.889801i \(0.650843\pi\)
\(440\) 2.00000 0.0953463
\(441\) 0 0
\(442\) −20.4924 −0.974725
\(443\) −37.8617 −1.79887 −0.899433 0.437059i \(-0.856020\pi\)
−0.899433 + 0.437059i \(0.856020\pi\)
\(444\) 0 0
\(445\) −13.3693 −0.633766
\(446\) −10.0000 −0.473514
\(447\) 0 0
\(448\) 5.12311 0.242044
\(449\) 29.3693 1.38602 0.693012 0.720926i \(-0.256283\pi\)
0.693012 + 0.720926i \(0.256283\pi\)
\(450\) 0 0
\(451\) 6.24621 0.294123
\(452\) 12.2462 0.576013
\(453\) 0 0
\(454\) 12.4924 0.586298
\(455\) 20.4924 0.960700
\(456\) 0 0
\(457\) 26.0000 1.21623 0.608114 0.793849i \(-0.291926\pi\)
0.608114 + 0.793849i \(0.291926\pi\)
\(458\) 14.4924 0.677186
\(459\) 0 0
\(460\) 0 0
\(461\) 10.4924 0.488681 0.244340 0.969690i \(-0.421429\pi\)
0.244340 + 0.969690i \(0.421429\pi\)
\(462\) 0 0
\(463\) −14.8769 −0.691388 −0.345694 0.938347i \(-0.612356\pi\)
−0.345694 + 0.938347i \(0.612356\pi\)
\(464\) 2.00000 0.0928477
\(465\) 0 0
\(466\) 23.3693 1.08256
\(467\) −39.1231 −1.81040 −0.905201 0.424984i \(-0.860280\pi\)
−0.905201 + 0.424984i \(0.860280\pi\)
\(468\) 0 0
\(469\) −52.4924 −2.42387
\(470\) −6.24621 −0.288116
\(471\) 0 0
\(472\) 5.12311 0.235810
\(473\) 12.4924 0.574402
\(474\) 0 0
\(475\) −1.00000 −0.0458831
\(476\) 26.2462 1.20299
\(477\) 0 0
\(478\) −18.2462 −0.834562
\(479\) −4.00000 −0.182765 −0.0913823 0.995816i \(-0.529129\pi\)
−0.0913823 + 0.995816i \(0.529129\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 16.2462 0.739995
\(483\) 0 0
\(484\) −7.00000 −0.318182
\(485\) −6.00000 −0.272446
\(486\) 0 0
\(487\) −32.2462 −1.46122 −0.730608 0.682798i \(-0.760763\pi\)
−0.730608 + 0.682798i \(0.760763\pi\)
\(488\) 4.24621 0.192217
\(489\) 0 0
\(490\) −19.2462 −0.869455
\(491\) −10.4924 −0.473516 −0.236758 0.971569i \(-0.576085\pi\)
−0.236758 + 0.971569i \(0.576085\pi\)
\(492\) 0 0
\(493\) 10.2462 0.461466
\(494\) 4.00000 0.179969
\(495\) 0 0
\(496\) 0.876894 0.0393737
\(497\) 52.4924 2.35461
\(498\) 0 0
\(499\) −4.00000 −0.179065 −0.0895323 0.995984i \(-0.528537\pi\)
−0.0895323 + 0.995984i \(0.528537\pi\)
\(500\) 1.00000 0.0447214
\(501\) 0 0
\(502\) −0.246211 −0.0109889
\(503\) −32.0000 −1.42681 −0.713405 0.700752i \(-0.752848\pi\)
−0.713405 + 0.700752i \(0.752848\pi\)
\(504\) 0 0
\(505\) 10.0000 0.444994
\(506\) 0 0
\(507\) 0 0
\(508\) −20.2462 −0.898280
\(509\) −9.50758 −0.421416 −0.210708 0.977549i \(-0.567577\pi\)
−0.210708 + 0.977549i \(0.567577\pi\)
\(510\) 0 0
\(511\) 30.7386 1.35980
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 10.0000 0.441081
\(515\) 8.24621 0.363371
\(516\) 0 0
\(517\) −12.4924 −0.549416
\(518\) 0 0
\(519\) 0 0
\(520\) −4.00000 −0.175412
\(521\) 27.6155 1.20986 0.604929 0.796279i \(-0.293201\pi\)
0.604929 + 0.796279i \(0.293201\pi\)
\(522\) 0 0
\(523\) −6.73863 −0.294660 −0.147330 0.989087i \(-0.547068\pi\)
−0.147330 + 0.989087i \(0.547068\pi\)
\(524\) −10.4924 −0.458364
\(525\) 0 0
\(526\) −20.4924 −0.893512
\(527\) 4.49242 0.195693
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 12.2462 0.531941
\(531\) 0 0
\(532\) −5.12311 −0.222115
\(533\) −12.4924 −0.541107
\(534\) 0 0
\(535\) 2.24621 0.0971122
\(536\) 10.2462 0.442569
\(537\) 0 0
\(538\) −28.7386 −1.23901
\(539\) −38.4924 −1.65799
\(540\) 0 0
\(541\) −34.4924 −1.48295 −0.741473 0.670983i \(-0.765872\pi\)
−0.741473 + 0.670983i \(0.765872\pi\)
\(542\) 14.2462 0.611927
\(543\) 0 0
\(544\) −5.12311 −0.219651
\(545\) 13.1231 0.562132
\(546\) 0 0
\(547\) −14.2462 −0.609124 −0.304562 0.952493i \(-0.598510\pi\)
−0.304562 + 0.952493i \(0.598510\pi\)
\(548\) 10.8769 0.464638
\(549\) 0 0
\(550\) 2.00000 0.0852803
\(551\) −2.00000 −0.0852029
\(552\) 0 0
\(553\) 4.49242 0.191037
\(554\) −31.6155 −1.34322
\(555\) 0 0
\(556\) 16.4924 0.699435
\(557\) 0.246211 0.0104323 0.00521615 0.999986i \(-0.498340\pi\)
0.00521615 + 0.999986i \(0.498340\pi\)
\(558\) 0 0
\(559\) −24.9848 −1.05675
\(560\) 5.12311 0.216491
\(561\) 0 0
\(562\) −5.36932 −0.226491
\(563\) −39.2311 −1.65339 −0.826696 0.562649i \(-0.809782\pi\)
−0.826696 + 0.562649i \(0.809782\pi\)
\(564\) 0 0
\(565\) 12.2462 0.515202
\(566\) 24.4924 1.02949
\(567\) 0 0
\(568\) −10.2462 −0.429921
\(569\) 32.8769 1.37827 0.689136 0.724632i \(-0.257990\pi\)
0.689136 + 0.724632i \(0.257990\pi\)
\(570\) 0 0
\(571\) −0.492423 −0.0206072 −0.0103036 0.999947i \(-0.503280\pi\)
−0.0103036 + 0.999947i \(0.503280\pi\)
\(572\) −8.00000 −0.334497
\(573\) 0 0
\(574\) 16.0000 0.667827
\(575\) 0 0
\(576\) 0 0
\(577\) −24.7386 −1.02988 −0.514941 0.857225i \(-0.672186\pi\)
−0.514941 + 0.857225i \(0.672186\pi\)
\(578\) −9.24621 −0.384592
\(579\) 0 0
\(580\) 2.00000 0.0830455
\(581\) −77.4773 −3.21430
\(582\) 0 0
\(583\) 24.4924 1.01437
\(584\) −6.00000 −0.248282
\(585\) 0 0
\(586\) 14.4924 0.598676
\(587\) 10.6307 0.438775 0.219388 0.975638i \(-0.429594\pi\)
0.219388 + 0.975638i \(0.429594\pi\)
\(588\) 0 0
\(589\) −0.876894 −0.0361318
\(590\) 5.12311 0.210915
\(591\) 0 0
\(592\) 0 0
\(593\) −25.6155 −1.05190 −0.525952 0.850514i \(-0.676291\pi\)
−0.525952 + 0.850514i \(0.676291\pi\)
\(594\) 0 0
\(595\) 26.2462 1.07599
\(596\) 22.0000 0.901155
\(597\) 0 0
\(598\) 0 0
\(599\) −20.4924 −0.837298 −0.418649 0.908148i \(-0.637496\pi\)
−0.418649 + 0.908148i \(0.637496\pi\)
\(600\) 0 0
\(601\) −12.7386 −0.519620 −0.259810 0.965660i \(-0.583660\pi\)
−0.259810 + 0.965660i \(0.583660\pi\)
\(602\) 32.0000 1.30422
\(603\) 0 0
\(604\) 11.1231 0.452593
\(605\) −7.00000 −0.284590
\(606\) 0 0
\(607\) 12.2462 0.497058 0.248529 0.968624i \(-0.420053\pi\)
0.248529 + 0.968624i \(0.420053\pi\)
\(608\) 1.00000 0.0405554
\(609\) 0 0
\(610\) 4.24621 0.171924
\(611\) 24.9848 1.01078
\(612\) 0 0
\(613\) 41.3693 1.67089 0.835445 0.549573i \(-0.185210\pi\)
0.835445 + 0.549573i \(0.185210\pi\)
\(614\) 22.2462 0.897784
\(615\) 0 0
\(616\) 10.2462 0.412832
\(617\) −9.12311 −0.367282 −0.183641 0.982993i \(-0.558788\pi\)
−0.183641 + 0.982993i \(0.558788\pi\)
\(618\) 0 0
\(619\) 36.0000 1.44696 0.723481 0.690344i \(-0.242541\pi\)
0.723481 + 0.690344i \(0.242541\pi\)
\(620\) 0.876894 0.0352169
\(621\) 0 0
\(622\) 20.0000 0.801927
\(623\) −68.4924 −2.74409
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −24.7386 −0.988755
\(627\) 0 0
\(628\) 7.12311 0.284243
\(629\) 0 0
\(630\) 0 0
\(631\) 28.9848 1.15387 0.576934 0.816791i \(-0.304249\pi\)
0.576934 + 0.816791i \(0.304249\pi\)
\(632\) −0.876894 −0.0348810
\(633\) 0 0
\(634\) −14.0000 −0.556011
\(635\) −20.2462 −0.803446
\(636\) 0 0
\(637\) 76.9848 3.05025
\(638\) 4.00000 0.158362
\(639\) 0 0
\(640\) −1.00000 −0.0395285
\(641\) 45.8617 1.81143 0.905715 0.423887i \(-0.139335\pi\)
0.905715 + 0.423887i \(0.139335\pi\)
\(642\) 0 0
\(643\) 0.492423 0.0194192 0.00970962 0.999953i \(-0.496909\pi\)
0.00970962 + 0.999953i \(0.496909\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 5.12311 0.201566
\(647\) 28.4924 1.12015 0.560076 0.828441i \(-0.310772\pi\)
0.560076 + 0.828441i \(0.310772\pi\)
\(648\) 0 0
\(649\) 10.2462 0.402199
\(650\) −4.00000 −0.156893
\(651\) 0 0
\(652\) 12.0000 0.469956
\(653\) 38.9848 1.52559 0.762797 0.646638i \(-0.223825\pi\)
0.762797 + 0.646638i \(0.223825\pi\)
\(654\) 0 0
\(655\) −10.4924 −0.409973
\(656\) −3.12311 −0.121937
\(657\) 0 0
\(658\) −32.0000 −1.24749
\(659\) 41.6155 1.62111 0.810555 0.585662i \(-0.199165\pi\)
0.810555 + 0.585662i \(0.199165\pi\)
\(660\) 0 0
\(661\) 9.61553 0.374001 0.187000 0.982360i \(-0.440123\pi\)
0.187000 + 0.982360i \(0.440123\pi\)
\(662\) −8.49242 −0.330067
\(663\) 0 0
\(664\) 15.1231 0.586890
\(665\) −5.12311 −0.198666
\(666\) 0 0
\(667\) 0 0
\(668\) 8.00000 0.309529
\(669\) 0 0
\(670\) 10.2462 0.395846
\(671\) 8.49242 0.327846
\(672\) 0 0
\(673\) 6.00000 0.231283 0.115642 0.993291i \(-0.463108\pi\)
0.115642 + 0.993291i \(0.463108\pi\)
\(674\) 26.0000 1.00148
\(675\) 0 0
\(676\) 3.00000 0.115385
\(677\) 30.9848 1.19084 0.595422 0.803413i \(-0.296985\pi\)
0.595422 + 0.803413i \(0.296985\pi\)
\(678\) 0 0
\(679\) −30.7386 −1.17964
\(680\) −5.12311 −0.196462
\(681\) 0 0
\(682\) 1.75379 0.0671560
\(683\) −20.0000 −0.765279 −0.382639 0.923898i \(-0.624985\pi\)
−0.382639 + 0.923898i \(0.624985\pi\)
\(684\) 0 0
\(685\) 10.8769 0.415585
\(686\) −62.7386 −2.39537
\(687\) 0 0
\(688\) −6.24621 −0.238135
\(689\) −48.9848 −1.86617
\(690\) 0 0
\(691\) −32.4924 −1.23607 −0.618035 0.786151i \(-0.712071\pi\)
−0.618035 + 0.786151i \(0.712071\pi\)
\(692\) 8.24621 0.313474
\(693\) 0 0
\(694\) 33.3693 1.26668
\(695\) 16.4924 0.625593
\(696\) 0 0
\(697\) −16.0000 −0.606043
\(698\) −22.4924 −0.851351
\(699\) 0 0
\(700\) 5.12311 0.193635
\(701\) −30.9848 −1.17028 −0.585141 0.810932i \(-0.698961\pi\)
−0.585141 + 0.810932i \(0.698961\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −2.00000 −0.0753778
\(705\) 0 0
\(706\) −31.8617 −1.19913
\(707\) 51.2311 1.92674
\(708\) 0 0
\(709\) 14.0000 0.525781 0.262891 0.964826i \(-0.415324\pi\)
0.262891 + 0.964826i \(0.415324\pi\)
\(710\) −10.2462 −0.384533
\(711\) 0 0
\(712\) 13.3693 0.501036
\(713\) 0 0
\(714\) 0 0
\(715\) −8.00000 −0.299183
\(716\) 17.1231 0.639921
\(717\) 0 0
\(718\) 6.24621 0.233107
\(719\) 6.24621 0.232944 0.116472 0.993194i \(-0.462841\pi\)
0.116472 + 0.993194i \(0.462841\pi\)
\(720\) 0 0
\(721\) 42.2462 1.57333
\(722\) −1.00000 −0.0372161
\(723\) 0 0
\(724\) −15.3693 −0.571196
\(725\) 2.00000 0.0742781
\(726\) 0 0
\(727\) 31.3693 1.16342 0.581712 0.813395i \(-0.302383\pi\)
0.581712 + 0.813395i \(0.302383\pi\)
\(728\) −20.4924 −0.759500
\(729\) 0 0
\(730\) −6.00000 −0.222070
\(731\) −32.0000 −1.18356
\(732\) 0 0
\(733\) −7.61553 −0.281286 −0.140643 0.990060i \(-0.544917\pi\)
−0.140643 + 0.990060i \(0.544917\pi\)
\(734\) 9.12311 0.336740
\(735\) 0 0
\(736\) 0 0
\(737\) 20.4924 0.754848
\(738\) 0 0
\(739\) 16.4924 0.606684 0.303342 0.952882i \(-0.401898\pi\)
0.303342 + 0.952882i \(0.401898\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 62.7386 2.30321
\(743\) 40.9848 1.50359 0.751794 0.659398i \(-0.229189\pi\)
0.751794 + 0.659398i \(0.229189\pi\)
\(744\) 0 0
\(745\) 22.0000 0.806018
\(746\) −2.24621 −0.0822396
\(747\) 0 0
\(748\) −10.2462 −0.374639
\(749\) 11.5076 0.420478
\(750\) 0 0
\(751\) 49.8617 1.81948 0.909740 0.415178i \(-0.136281\pi\)
0.909740 + 0.415178i \(0.136281\pi\)
\(752\) 6.24621 0.227776
\(753\) 0 0
\(754\) −8.00000 −0.291343
\(755\) 11.1231 0.404811
\(756\) 0 0
\(757\) 21.8617 0.794578 0.397289 0.917693i \(-0.369951\pi\)
0.397289 + 0.917693i \(0.369951\pi\)
\(758\) 24.4924 0.889605
\(759\) 0 0
\(760\) 1.00000 0.0362738
\(761\) 29.7538 1.07857 0.539287 0.842122i \(-0.318694\pi\)
0.539287 + 0.842122i \(0.318694\pi\)
\(762\) 0 0
\(763\) 67.2311 2.43393
\(764\) 4.00000 0.144715
\(765\) 0 0
\(766\) 3.50758 0.126734
\(767\) −20.4924 −0.739938
\(768\) 0 0
\(769\) −40.2462 −1.45132 −0.725658 0.688056i \(-0.758464\pi\)
−0.725658 + 0.688056i \(0.758464\pi\)
\(770\) 10.2462 0.369248
\(771\) 0 0
\(772\) −14.4924 −0.521594
\(773\) −48.2462 −1.73530 −0.867648 0.497179i \(-0.834369\pi\)
−0.867648 + 0.497179i \(0.834369\pi\)
\(774\) 0 0
\(775\) 0.876894 0.0314990
\(776\) 6.00000 0.215387
\(777\) 0 0
\(778\) −1.50758 −0.0540493
\(779\) 3.12311 0.111897
\(780\) 0 0
\(781\) −20.4924 −0.733277
\(782\) 0 0
\(783\) 0 0
\(784\) 19.2462 0.687365
\(785\) 7.12311 0.254235
\(786\) 0 0
\(787\) −8.49242 −0.302722 −0.151361 0.988479i \(-0.548366\pi\)
−0.151361 + 0.988479i \(0.548366\pi\)
\(788\) −8.24621 −0.293759
\(789\) 0 0
\(790\) −0.876894 −0.0311985
\(791\) 62.7386 2.23073
\(792\) 0 0
\(793\) −16.9848 −0.603150
\(794\) −4.87689 −0.173075
\(795\) 0 0
\(796\) −6.24621 −0.221391
\(797\) 30.4924 1.08010 0.540049 0.841634i \(-0.318406\pi\)
0.540049 + 0.841634i \(0.318406\pi\)
\(798\) 0 0
\(799\) 32.0000 1.13208
\(800\) −1.00000 −0.0353553
\(801\) 0 0
\(802\) 25.8617 0.913210
\(803\) −12.0000 −0.423471
\(804\) 0 0
\(805\) 0 0
\(806\) −3.50758 −0.123549
\(807\) 0 0
\(808\) −10.0000 −0.351799
\(809\) −14.2462 −0.500870 −0.250435 0.968133i \(-0.580574\pi\)
−0.250435 + 0.968133i \(0.580574\pi\)
\(810\) 0 0
\(811\) 20.9848 0.736878 0.368439 0.929652i \(-0.379892\pi\)
0.368439 + 0.929652i \(0.379892\pi\)
\(812\) 10.2462 0.359572
\(813\) 0 0
\(814\) 0 0
\(815\) 12.0000 0.420342
\(816\) 0 0
\(817\) 6.24621 0.218527
\(818\) 6.00000 0.209785
\(819\) 0 0
\(820\) −3.12311 −0.109064
\(821\) −14.0000 −0.488603 −0.244302 0.969699i \(-0.578559\pi\)
−0.244302 + 0.969699i \(0.578559\pi\)
\(822\) 0 0
\(823\) −55.8617 −1.94722 −0.973609 0.228223i \(-0.926709\pi\)
−0.973609 + 0.228223i \(0.926709\pi\)
\(824\) −8.24621 −0.287270
\(825\) 0 0
\(826\) 26.2462 0.913222
\(827\) −30.2462 −1.05176 −0.525882 0.850558i \(-0.676265\pi\)
−0.525882 + 0.850558i \(0.676265\pi\)
\(828\) 0 0
\(829\) 30.1080 1.04569 0.522846 0.852427i \(-0.324870\pi\)
0.522846 + 0.852427i \(0.324870\pi\)
\(830\) 15.1231 0.524931
\(831\) 0 0
\(832\) 4.00000 0.138675
\(833\) 98.6004 3.41630
\(834\) 0 0
\(835\) 8.00000 0.276851
\(836\) 2.00000 0.0691714
\(837\) 0 0
\(838\) 4.24621 0.146683
\(839\) −40.9848 −1.41495 −0.707477 0.706736i \(-0.750167\pi\)
−0.707477 + 0.706736i \(0.750167\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 6.87689 0.236993
\(843\) 0 0
\(844\) −20.0000 −0.688428
\(845\) 3.00000 0.103203
\(846\) 0 0
\(847\) −35.8617 −1.23222
\(848\) −12.2462 −0.420537
\(849\) 0 0
\(850\) −5.12311 −0.175721
\(851\) 0 0
\(852\) 0 0
\(853\) −9.36932 −0.320799 −0.160400 0.987052i \(-0.551278\pi\)
−0.160400 + 0.987052i \(0.551278\pi\)
\(854\) 21.7538 0.744399
\(855\) 0 0
\(856\) −2.24621 −0.0767739
\(857\) −43.4773 −1.48516 −0.742578 0.669760i \(-0.766397\pi\)
−0.742578 + 0.669760i \(0.766397\pi\)
\(858\) 0 0
\(859\) 32.4924 1.10863 0.554314 0.832308i \(-0.312981\pi\)
0.554314 + 0.832308i \(0.312981\pi\)
\(860\) −6.24621 −0.212994
\(861\) 0 0
\(862\) 16.0000 0.544962
\(863\) −4.49242 −0.152924 −0.0764619 0.997073i \(-0.524362\pi\)
−0.0764619 + 0.997073i \(0.524362\pi\)
\(864\) 0 0
\(865\) 8.24621 0.280380
\(866\) 18.0000 0.611665
\(867\) 0 0
\(868\) 4.49242 0.152483
\(869\) −1.75379 −0.0594932
\(870\) 0 0
\(871\) −40.9848 −1.38872
\(872\) −13.1231 −0.444404
\(873\) 0 0
\(874\) 0 0
\(875\) 5.12311 0.173193
\(876\) 0 0
\(877\) 21.7538 0.734573 0.367287 0.930108i \(-0.380287\pi\)
0.367287 + 0.930108i \(0.380287\pi\)
\(878\) 19.1231 0.645374
\(879\) 0 0
\(880\) −2.00000 −0.0674200
\(881\) −0.492423 −0.0165901 −0.00829507 0.999966i \(-0.502640\pi\)
−0.00829507 + 0.999966i \(0.502640\pi\)
\(882\) 0 0
\(883\) 7.50758 0.252650 0.126325 0.991989i \(-0.459682\pi\)
0.126325 + 0.991989i \(0.459682\pi\)
\(884\) 20.4924 0.689235
\(885\) 0 0
\(886\) 37.8617 1.27199
\(887\) −56.9848 −1.91336 −0.956682 0.291135i \(-0.905967\pi\)
−0.956682 + 0.291135i \(0.905967\pi\)
\(888\) 0 0
\(889\) −103.723 −3.47877
\(890\) 13.3693 0.448141
\(891\) 0 0
\(892\) 10.0000 0.334825
\(893\) −6.24621 −0.209021
\(894\) 0 0
\(895\) 17.1231 0.572362
\(896\) −5.12311 −0.171151
\(897\) 0 0
\(898\) −29.3693 −0.980067
\(899\) 1.75379 0.0584921
\(900\) 0 0
\(901\) −62.7386 −2.09013
\(902\) −6.24621 −0.207976
\(903\) 0 0
\(904\) −12.2462 −0.407303
\(905\) −15.3693 −0.510893
\(906\) 0 0
\(907\) 48.9848 1.62652 0.813258 0.581904i \(-0.197692\pi\)
0.813258 + 0.581904i \(0.197692\pi\)
\(908\) −12.4924 −0.414576
\(909\) 0 0
\(910\) −20.4924 −0.679317
\(911\) −56.9848 −1.88799 −0.943996 0.329957i \(-0.892966\pi\)
−0.943996 + 0.329957i \(0.892966\pi\)
\(912\) 0 0
\(913\) 30.2462 1.00100
\(914\) −26.0000 −0.860004
\(915\) 0 0
\(916\) −14.4924 −0.478843
\(917\) −53.7538 −1.77511
\(918\) 0 0
\(919\) −16.4924 −0.544035 −0.272017 0.962292i \(-0.587691\pi\)
−0.272017 + 0.962292i \(0.587691\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −10.4924 −0.345550
\(923\) 40.9848 1.34903
\(924\) 0 0
\(925\) 0 0
\(926\) 14.8769 0.488885
\(927\) 0 0
\(928\) −2.00000 −0.0656532
\(929\) 16.4924 0.541099 0.270549 0.962706i \(-0.412795\pi\)
0.270549 + 0.962706i \(0.412795\pi\)
\(930\) 0 0
\(931\) −19.2462 −0.630769
\(932\) −23.3693 −0.765487
\(933\) 0 0
\(934\) 39.1231 1.28015
\(935\) −10.2462 −0.335087
\(936\) 0 0
\(937\) 48.2462 1.57614 0.788068 0.615589i \(-0.211082\pi\)
0.788068 + 0.615589i \(0.211082\pi\)
\(938\) 52.4924 1.71394
\(939\) 0 0
\(940\) 6.24621 0.203729
\(941\) 45.2311 1.47449 0.737245 0.675625i \(-0.236126\pi\)
0.737245 + 0.675625i \(0.236126\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) −5.12311 −0.166743
\(945\) 0 0
\(946\) −12.4924 −0.406164
\(947\) −31.6155 −1.02737 −0.513683 0.857980i \(-0.671719\pi\)
−0.513683 + 0.857980i \(0.671719\pi\)
\(948\) 0 0
\(949\) 24.0000 0.779073
\(950\) 1.00000 0.0324443
\(951\) 0 0
\(952\) −26.2462 −0.850645
\(953\) −39.4773 −1.27879 −0.639397 0.768877i \(-0.720816\pi\)
−0.639397 + 0.768877i \(0.720816\pi\)
\(954\) 0 0
\(955\) 4.00000 0.129437
\(956\) 18.2462 0.590125
\(957\) 0 0
\(958\) 4.00000 0.129234
\(959\) 55.7235 1.79940
\(960\) 0 0
\(961\) −30.2311 −0.975195
\(962\) 0 0
\(963\) 0 0
\(964\) −16.2462 −0.523255
\(965\) −14.4924 −0.466528
\(966\) 0 0
\(967\) −42.8769 −1.37883 −0.689414 0.724368i \(-0.742132\pi\)
−0.689414 + 0.724368i \(0.742132\pi\)
\(968\) 7.00000 0.224989
\(969\) 0 0
\(970\) 6.00000 0.192648
\(971\) 1.61553 0.0518448 0.0259224 0.999664i \(-0.491748\pi\)
0.0259224 + 0.999664i \(0.491748\pi\)
\(972\) 0 0
\(973\) 84.4924 2.70870
\(974\) 32.2462 1.03324
\(975\) 0 0
\(976\) −4.24621 −0.135918
\(977\) 58.0000 1.85558 0.927792 0.373097i \(-0.121704\pi\)
0.927792 + 0.373097i \(0.121704\pi\)
\(978\) 0 0
\(979\) 26.7386 0.854570
\(980\) 19.2462 0.614798
\(981\) 0 0
\(982\) 10.4924 0.334827
\(983\) 3.50758 0.111874 0.0559372 0.998434i \(-0.482185\pi\)
0.0559372 + 0.998434i \(0.482185\pi\)
\(984\) 0 0
\(985\) −8.24621 −0.262746
\(986\) −10.2462 −0.326306
\(987\) 0 0
\(988\) −4.00000 −0.127257
\(989\) 0 0
\(990\) 0 0
\(991\) 39.6155 1.25843 0.629214 0.777232i \(-0.283377\pi\)
0.629214 + 0.777232i \(0.283377\pi\)
\(992\) −0.876894 −0.0278414
\(993\) 0 0
\(994\) −52.4924 −1.66496
\(995\) −6.24621 −0.198018
\(996\) 0 0
\(997\) 10.6307 0.336677 0.168339 0.985729i \(-0.446160\pi\)
0.168339 + 0.985729i \(0.446160\pi\)
\(998\) 4.00000 0.126618
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1710.2.a.v.1.2 2
3.2 odd 2 1710.2.a.x.1.2 yes 2
5.4 even 2 8550.2.a.bx.1.1 2
15.14 odd 2 8550.2.a.bp.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1710.2.a.v.1.2 2 1.1 even 1 trivial
1710.2.a.x.1.2 yes 2 3.2 odd 2
8550.2.a.bp.1.1 2 15.14 odd 2
8550.2.a.bx.1.1 2 5.4 even 2