Properties

Label 1710.2.d.e.1369.6
Level $1710$
Weight $2$
Character 1710.1369
Analytic conductor $13.654$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1710,2,Mod(1369,1710)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1710, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1710.1369");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1710 = 2 \cdot 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1710.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.6544187456\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.350464.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 570)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1369.6
Root \(0.403032 - 0.403032i\) of defining polynomial
Character \(\chi\) \(=\) 1710.1369
Dual form 1710.2.d.e.1369.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -1.00000 q^{4} +(1.48119 - 1.67513i) q^{5} -3.35026i q^{7} -1.00000i q^{8} +(1.67513 + 1.48119i) q^{10} +1.61213 q^{11} -1.35026i q^{13} +3.35026 q^{14} +1.00000 q^{16} +6.96239i q^{17} +1.00000 q^{19} +(-1.48119 + 1.67513i) q^{20} +1.61213i q^{22} +1.35026i q^{23} +(-0.612127 - 4.96239i) q^{25} +1.35026 q^{26} +3.35026i q^{28} +3.61213 q^{29} -2.31265 q^{31} +1.00000i q^{32} -6.96239 q^{34} +(-5.61213 - 4.96239i) q^{35} -11.2750i q^{37} +1.00000i q^{38} +(-1.67513 - 1.48119i) q^{40} +3.35026 q^{41} -10.3127i q^{43} -1.61213 q^{44} -1.35026 q^{46} -4.57452i q^{47} -4.22425 q^{49} +(4.96239 - 0.612127i) q^{50} +1.35026i q^{52} -11.9248i q^{53} +(2.38787 - 2.70052i) q^{55} -3.35026 q^{56} +3.61213i q^{58} +1.03761 q^{59} +2.00000 q^{61} -2.31265i q^{62} -1.00000 q^{64} +(-2.26187 - 2.00000i) q^{65} +9.92478i q^{67} -6.96239i q^{68} +(4.96239 - 5.61213i) q^{70} +0.775746 q^{71} -3.22425i q^{73} +11.2750 q^{74} -1.00000 q^{76} -5.40105i q^{77} -14.3127 q^{79} +(1.48119 - 1.67513i) q^{80} +3.35026i q^{82} -10.8872i q^{83} +(11.6629 + 10.3127i) q^{85} +10.3127 q^{86} -1.61213i q^{88} -2.57452 q^{89} -4.52373 q^{91} -1.35026i q^{92} +4.57452 q^{94} +(1.48119 - 1.67513i) q^{95} +1.16362i q^{97} -4.22425i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{4} - 2 q^{5} + 8 q^{11} + 6 q^{16} + 6 q^{19} + 2 q^{20} - 2 q^{25} - 12 q^{26} + 20 q^{29} + 28 q^{31} - 20 q^{34} - 32 q^{35} - 8 q^{44} + 12 q^{46} - 22 q^{49} + 8 q^{50} + 16 q^{55} + 28 q^{59}+ \cdots - 2 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1710\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(1027\) \(1351\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) 1.48119 1.67513i 0.662410 0.749141i
\(6\) 0 0
\(7\) 3.35026i 1.26628i −0.774037 0.633140i \(-0.781766\pi\)
0.774037 0.633140i \(-0.218234\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 1.67513 + 1.48119i 0.529723 + 0.468395i
\(11\) 1.61213 0.486075 0.243037 0.970017i \(-0.421856\pi\)
0.243037 + 0.970017i \(0.421856\pi\)
\(12\) 0 0
\(13\) 1.35026i 0.374495i −0.982313 0.187248i \(-0.940043\pi\)
0.982313 0.187248i \(-0.0599567\pi\)
\(14\) 3.35026 0.895395
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 6.96239i 1.68863i 0.535849 + 0.844314i \(0.319992\pi\)
−0.535849 + 0.844314i \(0.680008\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) −1.48119 + 1.67513i −0.331205 + 0.374571i
\(21\) 0 0
\(22\) 1.61213i 0.343707i
\(23\) 1.35026i 0.281549i 0.990042 + 0.140775i \(0.0449593\pi\)
−0.990042 + 0.140775i \(0.955041\pi\)
\(24\) 0 0
\(25\) −0.612127 4.96239i −0.122425 0.992478i
\(26\) 1.35026 0.264808
\(27\) 0 0
\(28\) 3.35026i 0.633140i
\(29\) 3.61213 0.670755 0.335378 0.942084i \(-0.391136\pi\)
0.335378 + 0.942084i \(0.391136\pi\)
\(30\) 0 0
\(31\) −2.31265 −0.415364 −0.207682 0.978196i \(-0.566592\pi\)
−0.207682 + 0.978196i \(0.566592\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) −6.96239 −1.19404
\(35\) −5.61213 4.96239i −0.948623 0.838797i
\(36\) 0 0
\(37\) 11.2750i 1.85360i −0.375549 0.926802i \(-0.622546\pi\)
0.375549 0.926802i \(-0.377454\pi\)
\(38\) 1.00000i 0.162221i
\(39\) 0 0
\(40\) −1.67513 1.48119i −0.264861 0.234197i
\(41\) 3.35026 0.523223 0.261611 0.965173i \(-0.415746\pi\)
0.261611 + 0.965173i \(0.415746\pi\)
\(42\) 0 0
\(43\) 10.3127i 1.57266i −0.617804 0.786332i \(-0.711977\pi\)
0.617804 0.786332i \(-0.288023\pi\)
\(44\) −1.61213 −0.243037
\(45\) 0 0
\(46\) −1.35026 −0.199085
\(47\) 4.57452i 0.667262i −0.942704 0.333631i \(-0.891726\pi\)
0.942704 0.333631i \(-0.108274\pi\)
\(48\) 0 0
\(49\) −4.22425 −0.603465
\(50\) 4.96239 0.612127i 0.701788 0.0865678i
\(51\) 0 0
\(52\) 1.35026i 0.187248i
\(53\) 11.9248i 1.63799i −0.573798 0.818997i \(-0.694530\pi\)
0.573798 0.818997i \(-0.305470\pi\)
\(54\) 0 0
\(55\) 2.38787 2.70052i 0.321981 0.364139i
\(56\) −3.35026 −0.447698
\(57\) 0 0
\(58\) 3.61213i 0.474295i
\(59\) 1.03761 0.135085 0.0675427 0.997716i \(-0.478484\pi\)
0.0675427 + 0.997716i \(0.478484\pi\)
\(60\) 0 0
\(61\) 2.00000 0.256074 0.128037 0.991769i \(-0.459132\pi\)
0.128037 + 0.991769i \(0.459132\pi\)
\(62\) 2.31265i 0.293707i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −2.26187 2.00000i −0.280550 0.248069i
\(66\) 0 0
\(67\) 9.92478i 1.21250i 0.795272 + 0.606252i \(0.207328\pi\)
−0.795272 + 0.606252i \(0.792672\pi\)
\(68\) 6.96239i 0.844314i
\(69\) 0 0
\(70\) 4.96239 5.61213i 0.593119 0.670777i
\(71\) 0.775746 0.0920641 0.0460321 0.998940i \(-0.485342\pi\)
0.0460321 + 0.998940i \(0.485342\pi\)
\(72\) 0 0
\(73\) 3.22425i 0.377370i −0.982038 0.188685i \(-0.939577\pi\)
0.982038 0.188685i \(-0.0604226\pi\)
\(74\) 11.2750 1.31070
\(75\) 0 0
\(76\) −1.00000 −0.114708
\(77\) 5.40105i 0.615506i
\(78\) 0 0
\(79\) −14.3127 −1.61030 −0.805149 0.593072i \(-0.797915\pi\)
−0.805149 + 0.593072i \(0.797915\pi\)
\(80\) 1.48119 1.67513i 0.165603 0.187285i
\(81\) 0 0
\(82\) 3.35026i 0.369975i
\(83\) 10.8872i 1.19502i −0.801861 0.597511i \(-0.796156\pi\)
0.801861 0.597511i \(-0.203844\pi\)
\(84\) 0 0
\(85\) 11.6629 + 10.3127i 1.26502 + 1.11856i
\(86\) 10.3127 1.11204
\(87\) 0 0
\(88\) 1.61213i 0.171853i
\(89\) −2.57452 −0.272898 −0.136449 0.990647i \(-0.543569\pi\)
−0.136449 + 0.990647i \(0.543569\pi\)
\(90\) 0 0
\(91\) −4.52373 −0.474216
\(92\) 1.35026i 0.140775i
\(93\) 0 0
\(94\) 4.57452 0.471825
\(95\) 1.48119 1.67513i 0.151967 0.171865i
\(96\) 0 0
\(97\) 1.16362i 0.118148i 0.998254 + 0.0590738i \(0.0188147\pi\)
−0.998254 + 0.0590738i \(0.981185\pi\)
\(98\) 4.22425i 0.426714i
\(99\) 0 0
\(100\) 0.612127 + 4.96239i 0.0612127 + 0.496239i
\(101\) −8.88717 −0.884306 −0.442153 0.896940i \(-0.645785\pi\)
−0.442153 + 0.896940i \(0.645785\pi\)
\(102\) 0 0
\(103\) 7.03761i 0.693436i −0.937969 0.346718i \(-0.887296\pi\)
0.937969 0.346718i \(-0.112704\pi\)
\(104\) −1.35026 −0.132404
\(105\) 0 0
\(106\) 11.9248 1.15824
\(107\) 0.775746i 0.0749942i 0.999297 + 0.0374971i \(0.0119385\pi\)
−0.999297 + 0.0374971i \(0.988062\pi\)
\(108\) 0 0
\(109\) 20.1622 1.93119 0.965594 0.260052i \(-0.0837399\pi\)
0.965594 + 0.260052i \(0.0837399\pi\)
\(110\) 2.70052 + 2.38787i 0.257485 + 0.227675i
\(111\) 0 0
\(112\) 3.35026i 0.316570i
\(113\) 11.1490i 1.04881i 0.851468 + 0.524406i \(0.175713\pi\)
−0.851468 + 0.524406i \(0.824287\pi\)
\(114\) 0 0
\(115\) 2.26187 + 2.00000i 0.210920 + 0.186501i
\(116\) −3.61213 −0.335378
\(117\) 0 0
\(118\) 1.03761i 0.0955199i
\(119\) 23.3258 2.13827
\(120\) 0 0
\(121\) −8.40105 −0.763732
\(122\) 2.00000i 0.181071i
\(123\) 0 0
\(124\) 2.31265 0.207682
\(125\) −9.21933 6.32487i −0.824602 0.565713i
\(126\) 0 0
\(127\) 13.7381i 1.21906i 0.792762 + 0.609531i \(0.208642\pi\)
−0.792762 + 0.609531i \(0.791358\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0 0
\(130\) 2.00000 2.26187i 0.175412 0.198379i
\(131\) −5.61213 −0.490334 −0.245167 0.969481i \(-0.578843\pi\)
−0.245167 + 0.969481i \(0.578843\pi\)
\(132\) 0 0
\(133\) 3.35026i 0.290505i
\(134\) −9.92478 −0.857370
\(135\) 0 0
\(136\) 6.96239 0.597020
\(137\) 17.6629i 1.50904i 0.656275 + 0.754522i \(0.272131\pi\)
−0.656275 + 0.754522i \(0.727869\pi\)
\(138\) 0 0
\(139\) −10.7005 −0.907607 −0.453803 0.891102i \(-0.649933\pi\)
−0.453803 + 0.891102i \(0.649933\pi\)
\(140\) 5.61213 + 4.96239i 0.474311 + 0.419398i
\(141\) 0 0
\(142\) 0.775746i 0.0650992i
\(143\) 2.17679i 0.182033i
\(144\) 0 0
\(145\) 5.35026 6.05079i 0.444315 0.502490i
\(146\) 3.22425 0.266841
\(147\) 0 0
\(148\) 11.2750i 0.926802i
\(149\) 1.03761 0.0850044 0.0425022 0.999096i \(-0.486467\pi\)
0.0425022 + 0.999096i \(0.486467\pi\)
\(150\) 0 0
\(151\) 1.16362 0.0946940 0.0473470 0.998879i \(-0.484923\pi\)
0.0473470 + 0.998879i \(0.484923\pi\)
\(152\) 1.00000i 0.0811107i
\(153\) 0 0
\(154\) 5.40105 0.435229
\(155\) −3.42548 + 3.87399i −0.275142 + 0.311167i
\(156\) 0 0
\(157\) 10.9624i 0.874894i 0.899244 + 0.437447i \(0.144117\pi\)
−0.899244 + 0.437447i \(0.855883\pi\)
\(158\) 14.3127i 1.13865i
\(159\) 0 0
\(160\) 1.67513 + 1.48119i 0.132431 + 0.117099i
\(161\) 4.52373 0.356520
\(162\) 0 0
\(163\) 21.0132i 1.64588i −0.568129 0.822939i \(-0.692333\pi\)
0.568129 0.822939i \(-0.307667\pi\)
\(164\) −3.35026 −0.261611
\(165\) 0 0
\(166\) 10.8872 0.845008
\(167\) 9.92478i 0.768002i −0.923333 0.384001i \(-0.874546\pi\)
0.923333 0.384001i \(-0.125454\pi\)
\(168\) 0 0
\(169\) 11.1768 0.859753
\(170\) −10.3127 + 11.6629i −0.790944 + 0.894505i
\(171\) 0 0
\(172\) 10.3127i 0.786332i
\(173\) 14.6253i 1.11194i 0.831202 + 0.555971i \(0.187653\pi\)
−0.831202 + 0.555971i \(0.812347\pi\)
\(174\) 0 0
\(175\) −16.6253 + 2.05079i −1.25675 + 0.155025i
\(176\) 1.61213 0.121519
\(177\) 0 0
\(178\) 2.57452i 0.192968i
\(179\) 11.7381 0.877349 0.438675 0.898646i \(-0.355448\pi\)
0.438675 + 0.898646i \(0.355448\pi\)
\(180\) 0 0
\(181\) 21.4617 1.59523 0.797617 0.603164i \(-0.206094\pi\)
0.797617 + 0.603164i \(0.206094\pi\)
\(182\) 4.52373i 0.335321i
\(183\) 0 0
\(184\) 1.35026 0.0995426
\(185\) −18.8872 16.7005i −1.38861 1.22785i
\(186\) 0 0
\(187\) 11.2243i 0.820799i
\(188\) 4.57452i 0.333631i
\(189\) 0 0
\(190\) 1.67513 + 1.48119i 0.121527 + 0.107457i
\(191\) 21.2750 1.53941 0.769704 0.638401i \(-0.220404\pi\)
0.769704 + 0.638401i \(0.220404\pi\)
\(192\) 0 0
\(193\) 14.1622i 1.01942i 0.860347 + 0.509709i \(0.170247\pi\)
−0.860347 + 0.509709i \(0.829753\pi\)
\(194\) −1.16362 −0.0835430
\(195\) 0 0
\(196\) 4.22425 0.301732
\(197\) 3.87399i 0.276011i −0.990431 0.138005i \(-0.955931\pi\)
0.990431 0.138005i \(-0.0440691\pi\)
\(198\) 0 0
\(199\) −3.47627 −0.246426 −0.123213 0.992380i \(-0.539320\pi\)
−0.123213 + 0.992380i \(0.539320\pi\)
\(200\) −4.96239 + 0.612127i −0.350894 + 0.0432839i
\(201\) 0 0
\(202\) 8.88717i 0.625299i
\(203\) 12.1016i 0.849364i
\(204\) 0 0
\(205\) 4.96239 5.61213i 0.346588 0.391968i
\(206\) 7.03761 0.490334
\(207\) 0 0
\(208\) 1.35026i 0.0936238i
\(209\) 1.61213 0.111513
\(210\) 0 0
\(211\) 9.92478 0.683250 0.341625 0.939836i \(-0.389023\pi\)
0.341625 + 0.939836i \(0.389023\pi\)
\(212\) 11.9248i 0.818997i
\(213\) 0 0
\(214\) −0.775746 −0.0530289
\(215\) −17.2750 15.2750i −1.17815 1.04175i
\(216\) 0 0
\(217\) 7.74798i 0.525967i
\(218\) 20.1622i 1.36556i
\(219\) 0 0
\(220\) −2.38787 + 2.70052i −0.160990 + 0.182069i
\(221\) 9.40105 0.632383
\(222\) 0 0
\(223\) 7.03761i 0.471273i −0.971841 0.235637i \(-0.924282\pi\)
0.971841 0.235637i \(-0.0757175\pi\)
\(224\) 3.35026 0.223849
\(225\) 0 0
\(226\) −11.1490 −0.741623
\(227\) 14.5501i 0.965723i 0.875697 + 0.482861i \(0.160402\pi\)
−0.875697 + 0.482861i \(0.839598\pi\)
\(228\) 0 0
\(229\) −11.4010 −0.753402 −0.376701 0.926335i \(-0.622942\pi\)
−0.376701 + 0.926335i \(0.622942\pi\)
\(230\) −2.00000 + 2.26187i −0.131876 + 0.149143i
\(231\) 0 0
\(232\) 3.61213i 0.237148i
\(233\) 21.9149i 1.43569i 0.696201 + 0.717847i \(0.254872\pi\)
−0.696201 + 0.717847i \(0.745128\pi\)
\(234\) 0 0
\(235\) −7.66291 6.77575i −0.499873 0.442001i
\(236\) −1.03761 −0.0675427
\(237\) 0 0
\(238\) 23.3258i 1.51199i
\(239\) −13.2750 −0.858691 −0.429345 0.903140i \(-0.641256\pi\)
−0.429345 + 0.903140i \(0.641256\pi\)
\(240\) 0 0
\(241\) 21.3258 1.37372 0.686859 0.726791i \(-0.258989\pi\)
0.686859 + 0.726791i \(0.258989\pi\)
\(242\) 8.40105i 0.540040i
\(243\) 0 0
\(244\) −2.00000 −0.128037
\(245\) −6.25694 + 7.07618i −0.399741 + 0.452080i
\(246\) 0 0
\(247\) 1.35026i 0.0859151i
\(248\) 2.31265i 0.146853i
\(249\) 0 0
\(250\) 6.32487 9.21933i 0.400020 0.583082i
\(251\) −16.3127 −1.02965 −0.514823 0.857297i \(-0.672142\pi\)
−0.514823 + 0.857297i \(0.672142\pi\)
\(252\) 0 0
\(253\) 2.17679i 0.136854i
\(254\) −13.7381 −0.862007
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 24.5501i 1.53139i 0.643203 + 0.765696i \(0.277605\pi\)
−0.643203 + 0.765696i \(0.722395\pi\)
\(258\) 0 0
\(259\) −37.7743 −2.34718
\(260\) 2.26187 + 2.00000i 0.140275 + 0.124035i
\(261\) 0 0
\(262\) 5.61213i 0.346718i
\(263\) 30.3488i 1.87139i −0.352810 0.935695i \(-0.614774\pi\)
0.352810 0.935695i \(-0.385226\pi\)
\(264\) 0 0
\(265\) −19.9756 17.6629i −1.22709 1.08502i
\(266\) 3.35026 0.205418
\(267\) 0 0
\(268\) 9.92478i 0.606252i
\(269\) 14.3127 0.872658 0.436329 0.899787i \(-0.356278\pi\)
0.436329 + 0.899787i \(0.356278\pi\)
\(270\) 0 0
\(271\) −7.32582 −0.445012 −0.222506 0.974931i \(-0.571424\pi\)
−0.222506 + 0.974931i \(0.571424\pi\)
\(272\) 6.96239i 0.422157i
\(273\) 0 0
\(274\) −17.6629 −1.06706
\(275\) −0.986826 8.00000i −0.0595079 0.482418i
\(276\) 0 0
\(277\) 14.4387i 0.867535i 0.901025 + 0.433767i \(0.142816\pi\)
−0.901025 + 0.433767i \(0.857184\pi\)
\(278\) 10.7005i 0.641775i
\(279\) 0 0
\(280\) −4.96239 + 5.61213i −0.296559 + 0.335389i
\(281\) 11.9756 0.714402 0.357201 0.934028i \(-0.383731\pi\)
0.357201 + 0.934028i \(0.383731\pi\)
\(282\) 0 0
\(283\) 24.4894i 1.45575i −0.685712 0.727873i \(-0.740509\pi\)
0.685712 0.727873i \(-0.259491\pi\)
\(284\) −0.775746 −0.0460321
\(285\) 0 0
\(286\) 2.17679 0.128716
\(287\) 11.2243i 0.662547i
\(288\) 0 0
\(289\) −31.4749 −1.85146
\(290\) 6.05079 + 5.35026i 0.355314 + 0.314178i
\(291\) 0 0
\(292\) 3.22425i 0.188685i
\(293\) 18.1016i 1.05751i 0.848776 + 0.528753i \(0.177340\pi\)
−0.848776 + 0.528753i \(0.822660\pi\)
\(294\) 0 0
\(295\) 1.53690 1.73813i 0.0894820 0.101198i
\(296\) −11.2750 −0.655348
\(297\) 0 0
\(298\) 1.03761i 0.0601072i
\(299\) 1.82321 0.105439
\(300\) 0 0
\(301\) −34.5501 −1.99143
\(302\) 1.16362i 0.0669588i
\(303\) 0 0
\(304\) 1.00000 0.0573539
\(305\) 2.96239 3.35026i 0.169626 0.191835i
\(306\) 0 0
\(307\) 29.9248i 1.70790i 0.520357 + 0.853949i \(0.325799\pi\)
−0.520357 + 0.853949i \(0.674201\pi\)
\(308\) 5.40105i 0.307753i
\(309\) 0 0
\(310\) −3.87399 3.42548i −0.220028 0.194554i
\(311\) 21.2750 1.20640 0.603198 0.797591i \(-0.293893\pi\)
0.603198 + 0.797591i \(0.293893\pi\)
\(312\) 0 0
\(313\) 17.4010i 0.983565i −0.870718 0.491783i \(-0.836345\pi\)
0.870718 0.491783i \(-0.163655\pi\)
\(314\) −10.9624 −0.618643
\(315\) 0 0
\(316\) 14.3127 0.805149
\(317\) 14.1016i 0.792023i −0.918246 0.396012i \(-0.870394\pi\)
0.918246 0.396012i \(-0.129606\pi\)
\(318\) 0 0
\(319\) 5.82321 0.326037
\(320\) −1.48119 + 1.67513i −0.0828013 + 0.0936427i
\(321\) 0 0
\(322\) 4.52373i 0.252098i
\(323\) 6.96239i 0.387398i
\(324\) 0 0
\(325\) −6.70052 + 0.826531i −0.371678 + 0.0458477i
\(326\) 21.0132 1.16381
\(327\) 0 0
\(328\) 3.35026i 0.184987i
\(329\) −15.3258 −0.844940
\(330\) 0 0
\(331\) 6.85097 0.376563 0.188282 0.982115i \(-0.439708\pi\)
0.188282 + 0.982115i \(0.439708\pi\)
\(332\) 10.8872i 0.597511i
\(333\) 0 0
\(334\) 9.92478 0.543060
\(335\) 16.6253 + 14.7005i 0.908337 + 0.803175i
\(336\) 0 0
\(337\) 24.2374i 1.32030i 0.751135 + 0.660148i \(0.229507\pi\)
−0.751135 + 0.660148i \(0.770493\pi\)
\(338\) 11.1768i 0.607937i
\(339\) 0 0
\(340\) −11.6629 10.3127i −0.632510 0.559282i
\(341\) −3.72829 −0.201898
\(342\) 0 0
\(343\) 9.29948i 0.502125i
\(344\) −10.3127 −0.556021
\(345\) 0 0
\(346\) −14.6253 −0.786261
\(347\) 0.962389i 0.0516637i −0.999666 0.0258319i \(-0.991777\pi\)
0.999666 0.0258319i \(-0.00822345\pi\)
\(348\) 0 0
\(349\) 1.37470 0.0735860 0.0367930 0.999323i \(-0.488286\pi\)
0.0367930 + 0.999323i \(0.488286\pi\)
\(350\) −2.05079 16.6253i −0.109619 0.888660i
\(351\) 0 0
\(352\) 1.61213i 0.0859267i
\(353\) 28.7367i 1.52950i 0.644326 + 0.764751i \(0.277138\pi\)
−0.644326 + 0.764751i \(0.722862\pi\)
\(354\) 0 0
\(355\) 1.14903 1.29948i 0.0609842 0.0689691i
\(356\) 2.57452 0.136449
\(357\) 0 0
\(358\) 11.7381i 0.620380i
\(359\) 31.1998 1.64666 0.823332 0.567561i \(-0.192113\pi\)
0.823332 + 0.567561i \(0.192113\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 21.4617i 1.12800i
\(363\) 0 0
\(364\) 4.52373 0.237108
\(365\) −5.40105 4.77575i −0.282704 0.249974i
\(366\) 0 0
\(367\) 20.1260i 1.05057i 0.850927 + 0.525285i \(0.176041\pi\)
−0.850927 + 0.525285i \(0.823959\pi\)
\(368\) 1.35026i 0.0703873i
\(369\) 0 0
\(370\) 16.7005 18.8872i 0.868219 0.981897i
\(371\) −39.9511 −2.07416
\(372\) 0 0
\(373\) 17.9756i 0.930739i 0.885116 + 0.465370i \(0.154079\pi\)
−0.885116 + 0.465370i \(0.845921\pi\)
\(374\) −11.2243 −0.580392
\(375\) 0 0
\(376\) −4.57452 −0.235913
\(377\) 4.87732i 0.251195i
\(378\) 0 0
\(379\) −1.67276 −0.0859240 −0.0429620 0.999077i \(-0.513679\pi\)
−0.0429620 + 0.999077i \(0.513679\pi\)
\(380\) −1.48119 + 1.67513i −0.0759837 + 0.0859324i
\(381\) 0 0
\(382\) 21.2750i 1.08853i
\(383\) 31.8496i 1.62744i 0.581260 + 0.813718i \(0.302560\pi\)
−0.581260 + 0.813718i \(0.697440\pi\)
\(384\) 0 0
\(385\) −9.04746 8.00000i −0.461101 0.407718i
\(386\) −14.1622 −0.720837
\(387\) 0 0
\(388\) 1.16362i 0.0590738i
\(389\) −10.3371 −0.524111 −0.262056 0.965053i \(-0.584400\pi\)
−0.262056 + 0.965053i \(0.584400\pi\)
\(390\) 0 0
\(391\) −9.40105 −0.475431
\(392\) 4.22425i 0.213357i
\(393\) 0 0
\(394\) 3.87399 0.195169
\(395\) −21.1998 + 23.9756i −1.06668 + 1.20634i
\(396\) 0 0
\(397\) 31.4372i 1.57779i −0.614528 0.788895i \(-0.710654\pi\)
0.614528 0.788895i \(-0.289346\pi\)
\(398\) 3.47627i 0.174250i
\(399\) 0 0
\(400\) −0.612127 4.96239i −0.0306063 0.248119i
\(401\) −5.94921 −0.297090 −0.148545 0.988906i \(-0.547459\pi\)
−0.148545 + 0.988906i \(0.547459\pi\)
\(402\) 0 0
\(403\) 3.12268i 0.155552i
\(404\) 8.88717 0.442153
\(405\) 0 0
\(406\) 12.1016 0.600591
\(407\) 18.1768i 0.900990i
\(408\) 0 0
\(409\) 30.9986 1.53278 0.766391 0.642375i \(-0.222051\pi\)
0.766391 + 0.642375i \(0.222051\pi\)
\(410\) 5.61213 + 4.96239i 0.277163 + 0.245075i
\(411\) 0 0
\(412\) 7.03761i 0.346718i
\(413\) 3.47627i 0.171056i
\(414\) 0 0
\(415\) −18.2374 16.1260i −0.895240 0.791595i
\(416\) 1.35026 0.0662020
\(417\) 0 0
\(418\) 1.61213i 0.0788517i
\(419\) −34.3390 −1.67757 −0.838785 0.544463i \(-0.816734\pi\)
−0.838785 + 0.544463i \(0.816734\pi\)
\(420\) 0 0
\(421\) 22.8627 1.11426 0.557131 0.830425i \(-0.311902\pi\)
0.557131 + 0.830425i \(0.311902\pi\)
\(422\) 9.92478i 0.483131i
\(423\) 0 0
\(424\) −11.9248 −0.579118
\(425\) 34.5501 4.26187i 1.67592 0.206731i
\(426\) 0 0
\(427\) 6.70052i 0.324261i
\(428\) 0.775746i 0.0374971i
\(429\) 0 0
\(430\) 15.2750 17.2750i 0.736628 0.833076i
\(431\) −11.5975 −0.558634 −0.279317 0.960199i \(-0.590108\pi\)
−0.279317 + 0.960199i \(0.590108\pi\)
\(432\) 0 0
\(433\) 27.8350i 1.33766i −0.743414 0.668832i \(-0.766795\pi\)
0.743414 0.668832i \(-0.233205\pi\)
\(434\) −7.74798 −0.371915
\(435\) 0 0
\(436\) −20.1622 −0.965594
\(437\) 1.35026i 0.0645918i
\(438\) 0 0
\(439\) 38.7875 1.85123 0.925613 0.378471i \(-0.123550\pi\)
0.925613 + 0.378471i \(0.123550\pi\)
\(440\) −2.70052 2.38787i −0.128742 0.113837i
\(441\) 0 0
\(442\) 9.40105i 0.447162i
\(443\) 29.2144i 1.38802i −0.719966 0.694009i \(-0.755843\pi\)
0.719966 0.694009i \(-0.244157\pi\)
\(444\) 0 0
\(445\) −3.81336 + 4.31265i −0.180770 + 0.204439i
\(446\) 7.03761 0.333241
\(447\) 0 0
\(448\) 3.35026i 0.158285i
\(449\) −20.4993 −0.967421 −0.483711 0.875228i \(-0.660711\pi\)
−0.483711 + 0.875228i \(0.660711\pi\)
\(450\) 0 0
\(451\) 5.40105 0.254325
\(452\) 11.1490i 0.524406i
\(453\) 0 0
\(454\) −14.5501 −0.682869
\(455\) −6.70052 + 7.57784i −0.314125 + 0.355255i
\(456\) 0 0
\(457\) 6.44851i 0.301648i 0.988561 + 0.150824i \(0.0481927\pi\)
−0.988561 + 0.150824i \(0.951807\pi\)
\(458\) 11.4010i 0.532736i
\(459\) 0 0
\(460\) −2.26187 2.00000i −0.105460 0.0932505i
\(461\) 13.5125 0.629338 0.314669 0.949201i \(-0.398106\pi\)
0.314669 + 0.949201i \(0.398106\pi\)
\(462\) 0 0
\(463\) 6.20123i 0.288196i −0.989563 0.144098i \(-0.953972\pi\)
0.989563 0.144098i \(-0.0460280\pi\)
\(464\) 3.61213 0.167689
\(465\) 0 0
\(466\) −21.9149 −1.01519
\(467\) 16.5599i 0.766302i 0.923686 + 0.383151i \(0.125161\pi\)
−0.923686 + 0.383151i \(0.874839\pi\)
\(468\) 0 0
\(469\) 33.2506 1.53537
\(470\) 6.77575 7.66291i 0.312542 0.353464i
\(471\) 0 0
\(472\) 1.03761i 0.0477599i
\(473\) 16.6253i 0.764432i
\(474\) 0 0
\(475\) −0.612127 4.96239i −0.0280863 0.227690i
\(476\) −23.3258 −1.06914
\(477\) 0 0
\(478\) 13.2750i 0.607186i
\(479\) −30.5256 −1.39475 −0.697376 0.716705i \(-0.745649\pi\)
−0.697376 + 0.716705i \(0.745649\pi\)
\(480\) 0 0
\(481\) −15.2243 −0.694166
\(482\) 21.3258i 0.971365i
\(483\) 0 0
\(484\) 8.40105 0.381866
\(485\) 1.94921 + 1.72355i 0.0885093 + 0.0782622i
\(486\) 0 0
\(487\) 2.51388i 0.113915i −0.998377 0.0569574i \(-0.981860\pi\)
0.998377 0.0569574i \(-0.0181399\pi\)
\(488\) 2.00000i 0.0905357i
\(489\) 0 0
\(490\) −7.07618 6.25694i −0.319669 0.282660i
\(491\) −1.46168 −0.0659648 −0.0329824 0.999456i \(-0.510501\pi\)
−0.0329824 + 0.999456i \(0.510501\pi\)
\(492\) 0 0
\(493\) 25.1490i 1.13266i
\(494\) 1.35026 0.0607511
\(495\) 0 0
\(496\) −2.31265 −0.103841
\(497\) 2.59895i 0.116579i
\(498\) 0 0
\(499\) 5.55149 0.248519 0.124259 0.992250i \(-0.460344\pi\)
0.124259 + 0.992250i \(0.460344\pi\)
\(500\) 9.21933 + 6.32487i 0.412301 + 0.282857i
\(501\) 0 0
\(502\) 16.3127i 0.728069i
\(503\) 6.90175i 0.307734i 0.988092 + 0.153867i \(0.0491727\pi\)
−0.988092 + 0.153867i \(0.950827\pi\)
\(504\) 0 0
\(505\) −13.1636 + 14.8872i −0.585773 + 0.662470i
\(506\) −2.17679 −0.0967703
\(507\) 0 0
\(508\) 13.7381i 0.609531i
\(509\) 8.76116 0.388331 0.194166 0.980969i \(-0.437800\pi\)
0.194166 + 0.980969i \(0.437800\pi\)
\(510\) 0 0
\(511\) −10.8021 −0.477857
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) −24.5501 −1.08286
\(515\) −11.7889 10.4241i −0.519482 0.459339i
\(516\) 0 0
\(517\) 7.37470i 0.324339i
\(518\) 37.7743i 1.65971i
\(519\) 0 0
\(520\) −2.00000 + 2.26187i −0.0877058 + 0.0991893i
\(521\) −39.4518 −1.72842 −0.864208 0.503135i \(-0.832180\pi\)
−0.864208 + 0.503135i \(0.832180\pi\)
\(522\) 0 0
\(523\) 37.5026i 1.63987i 0.572453 + 0.819937i \(0.305992\pi\)
−0.572453 + 0.819937i \(0.694008\pi\)
\(524\) 5.61213 0.245167
\(525\) 0 0
\(526\) 30.3488 1.32327
\(527\) 16.1016i 0.701395i
\(528\) 0 0
\(529\) 21.1768 0.920730
\(530\) 17.6629 19.9756i 0.767228 0.867683i
\(531\) 0 0
\(532\) 3.35026i 0.145252i
\(533\) 4.52373i 0.195945i
\(534\) 0 0
\(535\) 1.29948 + 1.14903i 0.0561813 + 0.0496769i
\(536\) 9.92478 0.428685
\(537\) 0 0
\(538\) 14.3127i 0.617062i
\(539\) −6.81003 −0.293329
\(540\) 0 0
\(541\) −30.7757 −1.32315 −0.661576 0.749878i \(-0.730112\pi\)
−0.661576 + 0.749878i \(0.730112\pi\)
\(542\) 7.32582i 0.314671i
\(543\) 0 0
\(544\) −6.96239 −0.298510
\(545\) 29.8641 33.7743i 1.27924 1.44673i
\(546\) 0 0
\(547\) 1.77433i 0.0758649i −0.999280 0.0379325i \(-0.987923\pi\)
0.999280 0.0379325i \(-0.0120772\pi\)
\(548\) 17.6629i 0.754522i
\(549\) 0 0
\(550\) 8.00000 0.986826i 0.341121 0.0420784i
\(551\) 3.61213 0.153882
\(552\) 0 0
\(553\) 47.9511i 2.03909i
\(554\) −14.4387 −0.613440
\(555\) 0 0
\(556\) 10.7005 0.453803
\(557\) 8.90175i 0.377179i 0.982056 + 0.188590i \(0.0603916\pi\)
−0.982056 + 0.188590i \(0.939608\pi\)
\(558\) 0 0
\(559\) −13.9248 −0.588955
\(560\) −5.61213 4.96239i −0.237156 0.209699i
\(561\) 0 0
\(562\) 11.9756i 0.505159i
\(563\) 10.9525i 0.461595i −0.973002 0.230797i \(-0.925867\pi\)
0.973002 0.230797i \(-0.0741334\pi\)
\(564\) 0 0
\(565\) 18.6761 + 16.5139i 0.785709 + 0.694744i
\(566\) 24.4894 1.02937
\(567\) 0 0
\(568\) 0.775746i 0.0325496i
\(569\) −10.2012 −0.427658 −0.213829 0.976871i \(-0.568594\pi\)
−0.213829 + 0.976871i \(0.568594\pi\)
\(570\) 0 0
\(571\) −25.6531 −1.07355 −0.536774 0.843726i \(-0.680357\pi\)
−0.536774 + 0.843726i \(0.680357\pi\)
\(572\) 2.17679i 0.0910163i
\(573\) 0 0
\(574\) 11.2243 0.468491
\(575\) 6.70052 0.826531i 0.279431 0.0344687i
\(576\) 0 0
\(577\) 6.44851i 0.268455i 0.990951 + 0.134227i \(0.0428553\pi\)
−0.990951 + 0.134227i \(0.957145\pi\)
\(578\) 31.4749i 1.30918i
\(579\) 0 0
\(580\) −5.35026 + 6.05079i −0.222158 + 0.251245i
\(581\) −36.4749 −1.51323
\(582\) 0 0
\(583\) 19.2243i 0.796187i
\(584\) −3.22425 −0.133421
\(585\) 0 0
\(586\) −18.1016 −0.747769
\(587\) 41.8397i 1.72691i 0.504426 + 0.863455i \(0.331704\pi\)
−0.504426 + 0.863455i \(0.668296\pi\)
\(588\) 0 0
\(589\) −2.31265 −0.0952911
\(590\) 1.73813 + 1.53690i 0.0715579 + 0.0632733i
\(591\) 0 0
\(592\) 11.2750i 0.463401i
\(593\) 8.73672i 0.358774i 0.983779 + 0.179387i \(0.0574114\pi\)
−0.983779 + 0.179387i \(0.942589\pi\)
\(594\) 0 0
\(595\) 34.5501 39.0738i 1.41642 1.60187i
\(596\) −1.03761 −0.0425022
\(597\) 0 0
\(598\) 1.82321i 0.0745565i
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 30.6253 1.24923 0.624616 0.780932i \(-0.285255\pi\)
0.624616 + 0.780932i \(0.285255\pi\)
\(602\) 34.5501i 1.40816i
\(603\) 0 0
\(604\) −1.16362 −0.0473470
\(605\) −12.4436 + 14.0729i −0.505904 + 0.572143i
\(606\) 0 0
\(607\) 2.51388i 0.102035i −0.998698 0.0510176i \(-0.983754\pi\)
0.998698 0.0510176i \(-0.0162465\pi\)
\(608\) 1.00000i 0.0405554i
\(609\) 0 0
\(610\) 3.35026 + 2.96239i 0.135648 + 0.119944i
\(611\) −6.17679 −0.249886
\(612\) 0 0
\(613\) 2.96239i 0.119650i 0.998209 + 0.0598249i \(0.0190542\pi\)
−0.998209 + 0.0598249i \(0.980946\pi\)
\(614\) −29.9248 −1.20767
\(615\) 0 0
\(616\) −5.40105 −0.217614
\(617\) 18.3371i 0.738223i 0.929385 + 0.369112i \(0.120338\pi\)
−0.929385 + 0.369112i \(0.879662\pi\)
\(618\) 0 0
\(619\) 40.7269 1.63695 0.818476 0.574541i \(-0.194820\pi\)
0.818476 + 0.574541i \(0.194820\pi\)
\(620\) 3.42548 3.87399i 0.137571 0.155583i
\(621\) 0 0
\(622\) 21.2750i 0.853051i
\(623\) 8.62530i 0.345565i
\(624\) 0 0
\(625\) −24.2506 + 6.07522i −0.970024 + 0.243009i
\(626\) 17.4010 0.695486
\(627\) 0 0
\(628\) 10.9624i 0.437447i
\(629\) 78.5012 3.13005
\(630\) 0 0
\(631\) −5.92478 −0.235862 −0.117931 0.993022i \(-0.537626\pi\)
−0.117931 + 0.993022i \(0.537626\pi\)
\(632\) 14.3127i 0.569327i
\(633\) 0 0
\(634\) 14.1016 0.560045
\(635\) 23.0132 + 20.3488i 0.913250 + 0.807519i
\(636\) 0 0
\(637\) 5.70385i 0.225995i
\(638\) 5.82321i 0.230543i
\(639\) 0 0
\(640\) −1.67513 1.48119i −0.0662154 0.0585493i
\(641\) −19.0494 −0.752405 −0.376202 0.926537i \(-0.622770\pi\)
−0.376202 + 0.926537i \(0.622770\pi\)
\(642\) 0 0
\(643\) 1.06205i 0.0418831i 0.999781 + 0.0209416i \(0.00666639\pi\)
−0.999781 + 0.0209416i \(0.993334\pi\)
\(644\) −4.52373 −0.178260
\(645\) 0 0
\(646\) −6.96239 −0.273932
\(647\) 26.6497i 1.04771i −0.851808 0.523855i \(-0.824493\pi\)
0.851808 0.523855i \(-0.175507\pi\)
\(648\) 0 0
\(649\) 1.67276 0.0656616
\(650\) −0.826531 6.70052i −0.0324192 0.262816i
\(651\) 0 0
\(652\) 21.0132i 0.822939i
\(653\) 9.64832i 0.377568i −0.982019 0.188784i \(-0.939545\pi\)
0.982019 0.188784i \(-0.0604546\pi\)
\(654\) 0 0
\(655\) −8.31265 + 9.40105i −0.324802 + 0.367329i
\(656\) 3.35026 0.130806
\(657\) 0 0
\(658\) 15.3258i 0.597463i
\(659\) 10.0654 0.392091 0.196046 0.980595i \(-0.437190\pi\)
0.196046 + 0.980595i \(0.437190\pi\)
\(660\) 0 0
\(661\) 13.5633 0.527549 0.263775 0.964584i \(-0.415032\pi\)
0.263775 + 0.964584i \(0.415032\pi\)
\(662\) 6.85097i 0.266270i
\(663\) 0 0
\(664\) −10.8872 −0.422504
\(665\) −5.61213 4.96239i −0.217629 0.192433i
\(666\) 0 0
\(667\) 4.87732i 0.188850i
\(668\) 9.92478i 0.384001i
\(669\) 0 0
\(670\) −14.7005 + 16.6253i −0.567931 + 0.642291i
\(671\) 3.22425 0.124471
\(672\) 0 0
\(673\) 5.93937i 0.228946i 0.993426 + 0.114473i \(0.0365179\pi\)
−0.993426 + 0.114473i \(0.963482\pi\)
\(674\) −24.2374 −0.933591
\(675\) 0 0
\(676\) −11.1768 −0.429877
\(677\) 24.9525i 0.959004i 0.877541 + 0.479502i \(0.159183\pi\)
−0.877541 + 0.479502i \(0.840817\pi\)
\(678\) 0 0
\(679\) 3.89843 0.149608
\(680\) 10.3127 11.6629i 0.395472 0.447252i
\(681\) 0 0
\(682\) 3.72829i 0.142763i
\(683\) 45.6239i 1.74575i 0.487944 + 0.872875i \(0.337747\pi\)
−0.487944 + 0.872875i \(0.662253\pi\)
\(684\) 0 0
\(685\) 29.5877 + 26.1622i 1.13049 + 0.999606i
\(686\) 9.29948 0.355056
\(687\) 0 0
\(688\) 10.3127i 0.393166i
\(689\) −16.1016 −0.613421
\(690\) 0 0
\(691\) −11.7480 −0.446914 −0.223457 0.974714i \(-0.571734\pi\)
−0.223457 + 0.974714i \(0.571734\pi\)
\(692\) 14.6253i 0.555971i
\(693\) 0 0
\(694\) 0.962389 0.0365318
\(695\) −15.8496 + 17.9248i −0.601208 + 0.679926i
\(696\) 0 0
\(697\) 23.3258i 0.883529i
\(698\) 1.37470i 0.0520331i
\(699\) 0 0
\(700\) 16.6253 2.05079i 0.628377 0.0775124i
\(701\) 43.8105 1.65470 0.827350 0.561686i \(-0.189847\pi\)
0.827350 + 0.561686i \(0.189847\pi\)
\(702\) 0 0
\(703\) 11.2750i 0.425246i
\(704\) −1.61213 −0.0607593
\(705\) 0 0
\(706\) −28.7367 −1.08152
\(707\) 29.7743i 1.11978i
\(708\) 0 0
\(709\) 29.5975 1.11156 0.555779 0.831330i \(-0.312420\pi\)
0.555779 + 0.831330i \(0.312420\pi\)
\(710\) 1.29948 + 1.14903i 0.0487685 + 0.0431224i
\(711\) 0 0
\(712\) 2.57452i 0.0964840i
\(713\) 3.12268i 0.116945i
\(714\) 0 0
\(715\) −3.64641 3.22425i −0.136368 0.120580i
\(716\) −11.7381 −0.438675
\(717\) 0 0
\(718\) 31.1998i 1.16437i
\(719\) 7.45183 0.277906 0.138953 0.990299i \(-0.455626\pi\)
0.138953 + 0.990299i \(0.455626\pi\)
\(720\) 0 0
\(721\) −23.5778 −0.878085
\(722\) 1.00000i 0.0372161i
\(723\) 0 0
\(724\) −21.4617 −0.797617
\(725\) −2.21108 17.9248i −0.0821174 0.665710i
\(726\) 0 0
\(727\) 0.600863i 0.0222848i −0.999938 0.0111424i \(-0.996453\pi\)
0.999938 0.0111424i \(-0.00354681\pi\)
\(728\) 4.52373i 0.167661i
\(729\) 0 0
\(730\) 4.77575 5.40105i 0.176758 0.199902i
\(731\) 71.8007 2.65564
\(732\) 0 0
\(733\) 36.0625i 1.33200i 0.745952 + 0.666000i \(0.231995\pi\)
−0.745952 + 0.666000i \(0.768005\pi\)
\(734\) −20.1260 −0.742865
\(735\) 0 0
\(736\) −1.35026 −0.0497713
\(737\) 16.0000i 0.589368i
\(738\) 0 0
\(739\) 14.1768 0.521502 0.260751 0.965406i \(-0.416030\pi\)
0.260751 + 0.965406i \(0.416030\pi\)
\(740\) 18.8872 + 16.7005i 0.694306 + 0.613923i
\(741\) 0 0
\(742\) 39.9511i 1.46665i
\(743\) 24.9986i 0.917109i −0.888666 0.458555i \(-0.848367\pi\)
0.888666 0.458555i \(-0.151633\pi\)
\(744\) 0 0
\(745\) 1.53690 1.73813i 0.0563078 0.0636803i
\(746\) −17.9756 −0.658132
\(747\) 0 0
\(748\) 11.2243i 0.410399i
\(749\) 2.59895 0.0949637
\(750\) 0 0
\(751\) −10.2111 −0.372608 −0.186304 0.982492i \(-0.559651\pi\)
−0.186304 + 0.982492i \(0.559651\pi\)
\(752\) 4.57452i 0.166815i
\(753\) 0 0
\(754\) 4.87732 0.177621
\(755\) 1.72355 1.94921i 0.0627263 0.0709392i
\(756\) 0 0
\(757\) 44.4847i 1.61682i −0.588617 0.808412i \(-0.700327\pi\)
0.588617 0.808412i \(-0.299673\pi\)
\(758\) 1.67276i 0.0607574i
\(759\) 0 0
\(760\) −1.67513 1.48119i −0.0607634 0.0537286i
\(761\) −27.1490 −0.984152 −0.492076 0.870552i \(-0.663762\pi\)
−0.492076 + 0.870552i \(0.663762\pi\)
\(762\) 0 0
\(763\) 67.5487i 2.44543i
\(764\) −21.2750 −0.769704
\(765\) 0 0
\(766\) −31.8496 −1.15077
\(767\) 1.40105i 0.0505889i
\(768\) 0 0
\(769\) 31.4010 1.13235 0.566175 0.824285i \(-0.308422\pi\)
0.566175 + 0.824285i \(0.308422\pi\)
\(770\) 8.00000 9.04746i 0.288300 0.326048i
\(771\) 0 0
\(772\) 14.1622i 0.509709i
\(773\) 4.02635i 0.144818i −0.997375 0.0724088i \(-0.976931\pi\)
0.997375 0.0724088i \(-0.0230686\pi\)
\(774\) 0 0
\(775\) 1.41564 + 11.4763i 0.0508511 + 0.412240i
\(776\) 1.16362 0.0417715
\(777\) 0 0
\(778\) 10.3371i 0.370603i
\(779\) 3.35026 0.120036
\(780\) 0 0
\(781\) 1.25060 0.0447500
\(782\) 9.40105i 0.336181i
\(783\) 0 0
\(784\) −4.22425 −0.150866
\(785\) 18.3634 + 16.2374i 0.655419 + 0.579539i
\(786\) 0 0
\(787\) 18.2981i 0.652255i −0.945326 0.326128i \(-0.894256\pi\)
0.945326 0.326128i \(-0.105744\pi\)
\(788\) 3.87399i 0.138005i
\(789\) 0 0
\(790\) −23.9756 21.1998i −0.853012 0.754256i
\(791\) 37.3522 1.32809
\(792\) 0 0
\(793\) 2.70052i 0.0958984i
\(794\) 31.4372 1.11567
\(795\) 0 0
\(796\) 3.47627 0.123213
\(797\) 8.55008i 0.302859i −0.988468 0.151430i \(-0.951612\pi\)
0.988468 0.151430i \(-0.0483877\pi\)
\(798\) 0 0
\(799\) 31.8496 1.12676
\(800\) 4.96239 0.612127i 0.175447 0.0216420i
\(801\) 0 0
\(802\) 5.94921i 0.210074i
\(803\) 5.19791i 0.183430i
\(804\) 0 0
\(805\) 6.70052 7.57784i 0.236162 0.267084i
\(806\) −3.12268 −0.109992
\(807\) 0 0
\(808\) 8.88717i 0.312649i
\(809\) 50.7269 1.78346 0.891731 0.452566i \(-0.149491\pi\)
0.891731 + 0.452566i \(0.149491\pi\)
\(810\) 0 0
\(811\) 10.3272 0.362638 0.181319 0.983424i \(-0.441963\pi\)
0.181319 + 0.983424i \(0.441963\pi\)
\(812\) 12.1016i 0.424682i
\(813\) 0 0
\(814\) 18.1768 0.637096
\(815\) −35.1998 31.1246i −1.23300 1.09025i
\(816\) 0 0
\(817\) 10.3127i 0.360794i
\(818\) 30.9986i 1.08384i
\(819\) 0 0
\(820\) −4.96239 + 5.61213i −0.173294 + 0.195984i
\(821\) −36.5139 −1.27434 −0.637172 0.770722i \(-0.719896\pi\)
−0.637172 + 0.770722i \(0.719896\pi\)
\(822\) 0 0
\(823\) 23.0982i 0.805154i 0.915386 + 0.402577i \(0.131885\pi\)
−0.915386 + 0.402577i \(0.868115\pi\)
\(824\) −7.03761 −0.245167
\(825\) 0 0
\(826\) 3.47627 0.120955
\(827\) 3.37470i 0.117350i −0.998277 0.0586749i \(-0.981312\pi\)
0.998277 0.0586749i \(-0.0186875\pi\)
\(828\) 0 0
\(829\) −22.6399 −0.786316 −0.393158 0.919471i \(-0.628617\pi\)
−0.393158 + 0.919471i \(0.628617\pi\)
\(830\) 16.1260 18.2374i 0.559742 0.633030i
\(831\) 0 0
\(832\) 1.35026i 0.0468119i
\(833\) 29.4109i 1.01903i
\(834\) 0 0
\(835\) −16.6253 14.7005i −0.575342 0.508733i
\(836\) −1.61213 −0.0557566
\(837\) 0 0
\(838\) 34.3390i 1.18622i
\(839\) −9.02776 −0.311673 −0.155836 0.987783i \(-0.549807\pi\)
−0.155836 + 0.987783i \(0.549807\pi\)
\(840\) 0 0
\(841\) −15.9525 −0.550088
\(842\) 22.8627i 0.787902i
\(843\) 0 0
\(844\) −9.92478 −0.341625
\(845\) 16.5550 18.7226i 0.569509 0.644077i
\(846\) 0 0
\(847\) 28.1457i 0.967098i
\(848\) 11.9248i 0.409499i
\(849\) 0 0
\(850\) 4.26187 + 34.5501i 0.146181 + 1.18506i
\(851\) 15.2243 0.521881
\(852\) 0 0
\(853\) 43.1852i 1.47863i −0.673358 0.739317i \(-0.735149\pi\)
0.673358 0.739317i \(-0.264851\pi\)
\(854\) 6.70052 0.229287
\(855\) 0 0
\(856\) 0.775746 0.0265145
\(857\) 33.0249i 1.12811i −0.825737 0.564055i \(-0.809241\pi\)
0.825737 0.564055i \(-0.190759\pi\)
\(858\) 0 0
\(859\) −15.1754 −0.517777 −0.258889 0.965907i \(-0.583356\pi\)
−0.258889 + 0.965907i \(0.583356\pi\)
\(860\) 17.2750 + 15.2750i 0.589074 + 0.520875i
\(861\) 0 0
\(862\) 11.5975i 0.395014i
\(863\) 39.4763i 1.34379i 0.740647 + 0.671894i \(0.234519\pi\)
−0.740647 + 0.671894i \(0.765481\pi\)
\(864\) 0 0
\(865\) 24.4993 + 21.6629i 0.833001 + 0.736561i
\(866\) 27.8350 0.945871
\(867\) 0 0
\(868\) 7.74798i 0.262984i
\(869\) −23.0738 −0.782725
\(870\) 0 0
\(871\) 13.4010 0.454077
\(872\) 20.1622i 0.682778i
\(873\) 0 0
\(874\) −1.35026 −0.0456733
\(875\) −21.1900 + 30.8872i −0.716352 + 1.04418i
\(876\) 0 0
\(877\) 52.5256i 1.77366i 0.462091 + 0.886832i \(0.347099\pi\)
−0.462091 + 0.886832i \(0.652901\pi\)
\(878\) 38.7875i 1.30901i
\(879\) 0 0
\(880\) 2.38787 2.70052i 0.0804952 0.0910346i
\(881\) 41.8007 1.40830 0.704150 0.710051i \(-0.251328\pi\)
0.704150 + 0.710051i \(0.251328\pi\)
\(882\) 0 0
\(883\) 36.9643i 1.24395i 0.783038 + 0.621974i \(0.213669\pi\)
−0.783038 + 0.621974i \(0.786331\pi\)
\(884\) −9.40105 −0.316191
\(885\) 0 0
\(886\) 29.2144 0.981477
\(887\) 36.0724i 1.21119i −0.795772 0.605596i \(-0.792935\pi\)
0.795772 0.605596i \(-0.207065\pi\)
\(888\) 0 0
\(889\) 46.0263 1.54367
\(890\) −4.31265 3.81336i −0.144560 0.127824i
\(891\) 0 0
\(892\) 7.03761i 0.235637i
\(893\) 4.57452i 0.153080i
\(894\) 0 0
\(895\) 17.3865 19.6629i 0.581165 0.657259i
\(896\) −3.35026 −0.111924
\(897\) 0 0
\(898\) 20.4993i 0.684070i
\(899\) −8.35359 −0.278608
\(900\) 0 0
\(901\) 83.0249 2.76596
\(902\) 5.40105i 0.179835i
\(903\) 0 0
\(904\) 11.1490 0.370811
\(905\) 31.7889 35.9511i 1.05670 1.19506i
\(906\) 0 0
\(907\) 57.6239i 1.91337i −0.291126 0.956685i \(-0.594030\pi\)
0.291126 0.956685i \(-0.405970\pi\)
\(908\) 14.5501i 0.482861i
\(909\) 0 0
\(910\) −7.57784 6.70052i −0.251203 0.222120i
\(911\) −30.9234 −1.02454 −0.512268 0.858825i \(-0.671195\pi\)
−0.512268 + 0.858825i \(0.671195\pi\)
\(912\) 0 0
\(913\) 17.5515i 0.580870i
\(914\) −6.44851 −0.213298
\(915\) 0 0
\(916\) 11.4010 0.376701
\(917\) 18.8021i 0.620900i
\(918\) 0 0
\(919\) −33.7743 −1.11411 −0.557056 0.830475i \(-0.688069\pi\)
−0.557056 + 0.830475i \(0.688069\pi\)
\(920\) 2.00000 2.26187i 0.0659380 0.0745715i
\(921\) 0 0
\(922\) 13.5125i 0.445009i
\(923\) 1.04746i 0.0344776i
\(924\) 0 0
\(925\) −55.9511 + 6.90175i −1.83966 + 0.226928i
\(926\) 6.20123 0.203785
\(927\) 0 0
\(928\) 3.61213i 0.118574i
\(929\) 48.6516 1.59621 0.798104 0.602519i \(-0.205836\pi\)
0.798104 + 0.602519i \(0.205836\pi\)
\(930\) 0 0
\(931\) −4.22425 −0.138444
\(932\) 21.9149i 0.717847i
\(933\) 0 0
\(934\) −16.5599 −0.541857
\(935\) 18.8021 + 16.6253i 0.614894 + 0.543705i
\(936\) 0 0
\(937\) 18.7005i 0.610919i −0.952205 0.305460i \(-0.901190\pi\)
0.952205 0.305460i \(-0.0988101\pi\)
\(938\) 33.2506i 1.08567i
\(939\) 0 0
\(940\) 7.66291 + 6.77575i 0.249937 + 0.221000i
\(941\) −38.4142 −1.25227 −0.626134 0.779716i \(-0.715364\pi\)
−0.626134 + 0.779716i \(0.715364\pi\)
\(942\) 0 0
\(943\) 4.52373i 0.147313i
\(944\) 1.03761 0.0337714
\(945\) 0 0
\(946\) 16.6253 0.540535
\(947\) 44.0362i 1.43098i −0.698621 0.715492i \(-0.746203\pi\)
0.698621 0.715492i \(-0.253797\pi\)
\(948\) 0 0
\(949\) −4.35359 −0.141323
\(950\) 4.96239 0.612127i 0.161001 0.0198600i
\(951\) 0 0
\(952\) 23.3258i 0.755994i
\(953\) 38.0724i 1.23329i −0.787243 0.616643i \(-0.788492\pi\)
0.787243 0.616643i \(-0.211508\pi\)
\(954\) 0 0
\(955\) 31.5125 35.6385i 1.01972 1.15323i
\(956\) 13.2750 0.429345
\(957\) 0 0
\(958\) 30.5256i 0.986239i
\(959\) 59.1754 1.91087
\(960\) 0 0
\(961\) −25.6516 −0.827473
\(962\) 15.2243i 0.490850i
\(963\) 0 0
\(964\) −21.3258 −0.686859
\(965\) 23.7235 + 20.9770i 0.763688 + 0.675273i
\(966\) 0 0
\(967\) 42.5256i 1.36753i 0.729701 + 0.683766i \(0.239659\pi\)
−0.729701 + 0.683766i \(0.760341\pi\)
\(968\) 8.40105i 0.270020i
\(969\) 0 0
\(970\) −1.72355 + 1.94921i −0.0553397 + 0.0625855i
\(971\) 22.1378 0.710435 0.355217 0.934784i \(-0.384407\pi\)
0.355217 + 0.934784i \(0.384407\pi\)
\(972\) 0 0
\(973\) 35.8496i 1.14928i
\(974\) 2.51388 0.0805499
\(975\) 0 0
\(976\) 2.00000 0.0640184
\(977\) 21.7480i 0.695780i 0.937535 + 0.347890i \(0.113102\pi\)
−0.937535 + 0.347890i \(0.886898\pi\)
\(978\) 0 0
\(979\) −4.15045 −0.132649
\(980\) 6.25694 7.07618i 0.199871 0.226040i
\(981\) 0 0
\(982\) 1.46168i 0.0466441i
\(983\) 9.04746i 0.288569i 0.989536 + 0.144285i \(0.0460881\pi\)
−0.989536 + 0.144285i \(0.953912\pi\)
\(984\) 0 0
\(985\) −6.48944 5.73813i −0.206771 0.182832i
\(986\) −25.1490 −0.800908
\(987\) 0 0
\(988\) 1.35026i 0.0429575i
\(989\) 13.9248 0.442782
\(990\) 0 0
\(991\) −26.0606 −0.827843 −0.413922 0.910313i \(-0.635841\pi\)
−0.413922 + 0.910313i \(0.635841\pi\)
\(992\) 2.31265i 0.0734267i
\(993\) 0 0
\(994\) 2.59895 0.0824338
\(995\) −5.14903 + 5.82321i −0.163235 + 0.184608i
\(996\) 0 0
\(997\) 28.2130i 0.893514i 0.894655 + 0.446757i \(0.147421\pi\)
−0.894655 + 0.446757i \(0.852579\pi\)
\(998\) 5.55149i 0.175729i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1710.2.d.e.1369.6 6
3.2 odd 2 570.2.d.d.229.1 6
5.2 odd 4 8550.2.a.cf.1.3 3
5.3 odd 4 8550.2.a.cr.1.1 3
5.4 even 2 inner 1710.2.d.e.1369.3 6
15.2 even 4 2850.2.a.bn.1.3 3
15.8 even 4 2850.2.a.bk.1.1 3
15.14 odd 2 570.2.d.d.229.4 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
570.2.d.d.229.1 6 3.2 odd 2
570.2.d.d.229.4 yes 6 15.14 odd 2
1710.2.d.e.1369.3 6 5.4 even 2 inner
1710.2.d.e.1369.6 6 1.1 even 1 trivial
2850.2.a.bk.1.1 3 15.8 even 4
2850.2.a.bn.1.3 3 15.2 even 4
8550.2.a.cf.1.3 3 5.2 odd 4
8550.2.a.cr.1.1 3 5.3 odd 4