Properties

Label 1710.2.p.a.1063.1
Level $1710$
Weight $2$
Character 1710.1063
Analytic conductor $13.654$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1710,2,Mod(37,1710)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1710, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1710.37");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1710 = 2 \cdot 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1710.p (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.6544187456\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 190)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1063.1
Root \(0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 1710.1063
Dual form 1710.2.p.a.37.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 - 0.707107i) q^{2} +1.00000i q^{4} +(1.00000 - 2.00000i) q^{5} +(-1.00000 + 1.00000i) q^{7} +(0.707107 - 0.707107i) q^{8} +(-2.12132 + 0.707107i) q^{10} -2.00000 q^{11} +(4.24264 - 4.24264i) q^{13} +1.41421 q^{14} -1.00000 q^{16} +(-3.00000 + 3.00000i) q^{17} +(-4.24264 + 1.00000i) q^{19} +(2.00000 + 1.00000i) q^{20} +(1.41421 + 1.41421i) q^{22} +(-1.00000 - 1.00000i) q^{23} +(-3.00000 - 4.00000i) q^{25} -6.00000 q^{26} +(-1.00000 - 1.00000i) q^{28} -8.48528i q^{31} +(0.707107 + 0.707107i) q^{32} +4.24264 q^{34} +(1.00000 + 3.00000i) q^{35} +(4.24264 + 4.24264i) q^{37} +(3.70711 + 2.29289i) q^{38} +(-0.707107 - 2.12132i) q^{40} -8.48528i q^{41} +(-5.00000 - 5.00000i) q^{43} -2.00000i q^{44} +1.41421i q^{46} +(-7.00000 + 7.00000i) q^{47} +5.00000i q^{49} +(-0.707107 + 4.94975i) q^{50} +(4.24264 + 4.24264i) q^{52} +(-4.24264 + 4.24264i) q^{53} +(-2.00000 + 4.00000i) q^{55} +1.41421i q^{56} +8.00000 q^{61} +(-6.00000 + 6.00000i) q^{62} -1.00000i q^{64} +(-4.24264 - 12.7279i) q^{65} +(-8.48528 - 8.48528i) q^{67} +(-3.00000 - 3.00000i) q^{68} +(1.41421 - 2.82843i) q^{70} -8.48528i q^{71} +(-1.00000 - 1.00000i) q^{73} -6.00000i q^{74} +(-1.00000 - 4.24264i) q^{76} +(2.00000 - 2.00000i) q^{77} -8.48528 q^{79} +(-1.00000 + 2.00000i) q^{80} +(-6.00000 + 6.00000i) q^{82} +(-9.00000 - 9.00000i) q^{83} +(3.00000 + 9.00000i) q^{85} +7.07107i q^{86} +(-1.41421 + 1.41421i) q^{88} +8.48528 q^{89} +8.48528i q^{91} +(1.00000 - 1.00000i) q^{92} +9.89949 q^{94} +(-2.24264 + 9.48528i) q^{95} +(-4.24264 - 4.24264i) q^{97} +(3.53553 - 3.53553i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{5} - 4 q^{7} - 8 q^{11} - 4 q^{16} - 12 q^{17} + 8 q^{20} - 4 q^{23} - 12 q^{25} - 24 q^{26} - 4 q^{28} + 4 q^{35} + 12 q^{38} - 20 q^{43} - 28 q^{47} - 8 q^{55} + 32 q^{61} - 24 q^{62} - 12 q^{68}+ \cdots + 8 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1710\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(1027\) \(1351\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 0.707107i −0.500000 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) 1.00000 2.00000i 0.447214 0.894427i
\(6\) 0 0
\(7\) −1.00000 + 1.00000i −0.377964 + 0.377964i −0.870367 0.492403i \(-0.836119\pi\)
0.492403 + 0.870367i \(0.336119\pi\)
\(8\) 0.707107 0.707107i 0.250000 0.250000i
\(9\) 0 0
\(10\) −2.12132 + 0.707107i −0.670820 + 0.223607i
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 0 0
\(13\) 4.24264 4.24264i 1.17670 1.17670i 0.196116 0.980581i \(-0.437167\pi\)
0.980581 0.196116i \(-0.0628330\pi\)
\(14\) 1.41421 0.377964
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) −3.00000 + 3.00000i −0.727607 + 0.727607i −0.970143 0.242536i \(-0.922021\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) 0 0
\(19\) −4.24264 + 1.00000i −0.973329 + 0.229416i
\(20\) 2.00000 + 1.00000i 0.447214 + 0.223607i
\(21\) 0 0
\(22\) 1.41421 + 1.41421i 0.301511 + 0.301511i
\(23\) −1.00000 1.00000i −0.208514 0.208514i 0.595121 0.803636i \(-0.297104\pi\)
−0.803636 + 0.595121i \(0.797104\pi\)
\(24\) 0 0
\(25\) −3.00000 4.00000i −0.600000 0.800000i
\(26\) −6.00000 −1.17670
\(27\) 0 0
\(28\) −1.00000 1.00000i −0.188982 0.188982i
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 8.48528i 1.52400i −0.647576 0.762001i \(-0.724217\pi\)
0.647576 0.762001i \(-0.275783\pi\)
\(32\) 0.707107 + 0.707107i 0.125000 + 0.125000i
\(33\) 0 0
\(34\) 4.24264 0.727607
\(35\) 1.00000 + 3.00000i 0.169031 + 0.507093i
\(36\) 0 0
\(37\) 4.24264 + 4.24264i 0.697486 + 0.697486i 0.963868 0.266382i \(-0.0858282\pi\)
−0.266382 + 0.963868i \(0.585828\pi\)
\(38\) 3.70711 + 2.29289i 0.601372 + 0.371956i
\(39\) 0 0
\(40\) −0.707107 2.12132i −0.111803 0.335410i
\(41\) 8.48528i 1.32518i −0.748983 0.662589i \(-0.769458\pi\)
0.748983 0.662589i \(-0.230542\pi\)
\(42\) 0 0
\(43\) −5.00000 5.00000i −0.762493 0.762493i 0.214280 0.976772i \(-0.431260\pi\)
−0.976772 + 0.214280i \(0.931260\pi\)
\(44\) 2.00000i 0.301511i
\(45\) 0 0
\(46\) 1.41421i 0.208514i
\(47\) −7.00000 + 7.00000i −1.02105 + 1.02105i −0.0212814 + 0.999774i \(0.506775\pi\)
−0.999774 + 0.0212814i \(0.993225\pi\)
\(48\) 0 0
\(49\) 5.00000i 0.714286i
\(50\) −0.707107 + 4.94975i −0.100000 + 0.700000i
\(51\) 0 0
\(52\) 4.24264 + 4.24264i 0.588348 + 0.588348i
\(53\) −4.24264 + 4.24264i −0.582772 + 0.582772i −0.935664 0.352892i \(-0.885198\pi\)
0.352892 + 0.935664i \(0.385198\pi\)
\(54\) 0 0
\(55\) −2.00000 + 4.00000i −0.269680 + 0.539360i
\(56\) 1.41421i 0.188982i
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 8.00000 1.02430 0.512148 0.858898i \(-0.328850\pi\)
0.512148 + 0.858898i \(0.328850\pi\)
\(62\) −6.00000 + 6.00000i −0.762001 + 0.762001i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) −4.24264 12.7279i −0.526235 1.57870i
\(66\) 0 0
\(67\) −8.48528 8.48528i −1.03664 1.03664i −0.999303 0.0373395i \(-0.988112\pi\)
−0.0373395 0.999303i \(-0.511888\pi\)
\(68\) −3.00000 3.00000i −0.363803 0.363803i
\(69\) 0 0
\(70\) 1.41421 2.82843i 0.169031 0.338062i
\(71\) 8.48528i 1.00702i −0.863990 0.503509i \(-0.832042\pi\)
0.863990 0.503509i \(-0.167958\pi\)
\(72\) 0 0
\(73\) −1.00000 1.00000i −0.117041 0.117041i 0.646160 0.763202i \(-0.276374\pi\)
−0.763202 + 0.646160i \(0.776374\pi\)
\(74\) 6.00000i 0.697486i
\(75\) 0 0
\(76\) −1.00000 4.24264i −0.114708 0.486664i
\(77\) 2.00000 2.00000i 0.227921 0.227921i
\(78\) 0 0
\(79\) −8.48528 −0.954669 −0.477334 0.878722i \(-0.658397\pi\)
−0.477334 + 0.878722i \(0.658397\pi\)
\(80\) −1.00000 + 2.00000i −0.111803 + 0.223607i
\(81\) 0 0
\(82\) −6.00000 + 6.00000i −0.662589 + 0.662589i
\(83\) −9.00000 9.00000i −0.987878 0.987878i 0.0120491 0.999927i \(-0.496165\pi\)
−0.999927 + 0.0120491i \(0.996165\pi\)
\(84\) 0 0
\(85\) 3.00000 + 9.00000i 0.325396 + 0.976187i
\(86\) 7.07107i 0.762493i
\(87\) 0 0
\(88\) −1.41421 + 1.41421i −0.150756 + 0.150756i
\(89\) 8.48528 0.899438 0.449719 0.893170i \(-0.351524\pi\)
0.449719 + 0.893170i \(0.351524\pi\)
\(90\) 0 0
\(91\) 8.48528i 0.889499i
\(92\) 1.00000 1.00000i 0.104257 0.104257i
\(93\) 0 0
\(94\) 9.89949 1.02105
\(95\) −2.24264 + 9.48528i −0.230090 + 0.973169i
\(96\) 0 0
\(97\) −4.24264 4.24264i −0.430775 0.430775i 0.458117 0.888892i \(-0.348524\pi\)
−0.888892 + 0.458117i \(0.848524\pi\)
\(98\) 3.53553 3.53553i 0.357143 0.357143i
\(99\) 0 0
\(100\) 4.00000 3.00000i 0.400000 0.300000i
\(101\) −4.00000 −0.398015 −0.199007 0.979998i \(-0.563772\pi\)
−0.199007 + 0.979998i \(0.563772\pi\)
\(102\) 0 0
\(103\) −8.48528 + 8.48528i −0.836080 + 0.836080i −0.988340 0.152261i \(-0.951345\pi\)
0.152261 + 0.988340i \(0.451345\pi\)
\(104\) 6.00000i 0.588348i
\(105\) 0 0
\(106\) 6.00000 0.582772
\(107\) 8.48528 + 8.48528i 0.820303 + 0.820303i 0.986151 0.165848i \(-0.0530362\pi\)
−0.165848 + 0.986151i \(0.553036\pi\)
\(108\) 0 0
\(109\) 8.48528 0.812743 0.406371 0.913708i \(-0.366794\pi\)
0.406371 + 0.913708i \(0.366794\pi\)
\(110\) 4.24264 1.41421i 0.404520 0.134840i
\(111\) 0 0
\(112\) 1.00000 1.00000i 0.0944911 0.0944911i
\(113\) 4.24264 4.24264i 0.399114 0.399114i −0.478806 0.877920i \(-0.658930\pi\)
0.877920 + 0.478806i \(0.158930\pi\)
\(114\) 0 0
\(115\) −3.00000 + 1.00000i −0.279751 + 0.0932505i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 6.00000i 0.550019i
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) −5.65685 5.65685i −0.512148 0.512148i
\(123\) 0 0
\(124\) 8.48528 0.762001
\(125\) −11.0000 + 2.00000i −0.983870 + 0.178885i
\(126\) 0 0
\(127\) −8.48528 8.48528i −0.752947 0.752947i 0.222081 0.975028i \(-0.428715\pi\)
−0.975028 + 0.222081i \(0.928715\pi\)
\(128\) −0.707107 + 0.707107i −0.0625000 + 0.0625000i
\(129\) 0 0
\(130\) −6.00000 + 12.0000i −0.526235 + 1.05247i
\(131\) −4.00000 −0.349482 −0.174741 0.984614i \(-0.555909\pi\)
−0.174741 + 0.984614i \(0.555909\pi\)
\(132\) 0 0
\(133\) 3.24264 5.24264i 0.281173 0.454595i
\(134\) 12.0000i 1.03664i
\(135\) 0 0
\(136\) 4.24264i 0.363803i
\(137\) 3.00000 3.00000i 0.256307 0.256307i −0.567243 0.823550i \(-0.691990\pi\)
0.823550 + 0.567243i \(0.191990\pi\)
\(138\) 0 0
\(139\) 12.0000i 1.01783i −0.860818 0.508913i \(-0.830047\pi\)
0.860818 0.508913i \(-0.169953\pi\)
\(140\) −3.00000 + 1.00000i −0.253546 + 0.0845154i
\(141\) 0 0
\(142\) −6.00000 + 6.00000i −0.503509 + 0.503509i
\(143\) −8.48528 + 8.48528i −0.709575 + 0.709575i
\(144\) 0 0
\(145\) 0 0
\(146\) 1.41421i 0.117041i
\(147\) 0 0
\(148\) −4.24264 + 4.24264i −0.348743 + 0.348743i
\(149\) 10.0000i 0.819232i 0.912258 + 0.409616i \(0.134337\pi\)
−0.912258 + 0.409616i \(0.865663\pi\)
\(150\) 0 0
\(151\) 16.9706i 1.38104i 0.723311 + 0.690522i \(0.242619\pi\)
−0.723311 + 0.690522i \(0.757381\pi\)
\(152\) −2.29289 + 3.70711i −0.185978 + 0.300686i
\(153\) 0 0
\(154\) −2.82843 −0.227921
\(155\) −16.9706 8.48528i −1.36311 0.681554i
\(156\) 0 0
\(157\) −11.0000 + 11.0000i −0.877896 + 0.877896i −0.993317 0.115421i \(-0.963178\pi\)
0.115421 + 0.993317i \(0.463178\pi\)
\(158\) 6.00000 + 6.00000i 0.477334 + 0.477334i
\(159\) 0 0
\(160\) 2.12132 0.707107i 0.167705 0.0559017i
\(161\) 2.00000 0.157622
\(162\) 0 0
\(163\) −7.00000 7.00000i −0.548282 0.548282i 0.377661 0.925944i \(-0.376728\pi\)
−0.925944 + 0.377661i \(0.876728\pi\)
\(164\) 8.48528 0.662589
\(165\) 0 0
\(166\) 12.7279i 0.987878i
\(167\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(168\) 0 0
\(169\) 23.0000i 1.76923i
\(170\) 4.24264 8.48528i 0.325396 0.650791i
\(171\) 0 0
\(172\) 5.00000 5.00000i 0.381246 0.381246i
\(173\) −12.7279 + 12.7279i −0.967686 + 0.967686i −0.999494 0.0318080i \(-0.989873\pi\)
0.0318080 + 0.999494i \(0.489873\pi\)
\(174\) 0 0
\(175\) 7.00000 + 1.00000i 0.529150 + 0.0755929i
\(176\) 2.00000 0.150756
\(177\) 0 0
\(178\) −6.00000 6.00000i −0.449719 0.449719i
\(179\) −16.9706 −1.26844 −0.634220 0.773153i \(-0.718679\pi\)
−0.634220 + 0.773153i \(0.718679\pi\)
\(180\) 0 0
\(181\) 25.4558i 1.89212i −0.323994 0.946059i \(-0.605026\pi\)
0.323994 0.946059i \(-0.394974\pi\)
\(182\) 6.00000 6.00000i 0.444750 0.444750i
\(183\) 0 0
\(184\) −1.41421 −0.104257
\(185\) 12.7279 4.24264i 0.935775 0.311925i
\(186\) 0 0
\(187\) 6.00000 6.00000i 0.438763 0.438763i
\(188\) −7.00000 7.00000i −0.510527 0.510527i
\(189\) 0 0
\(190\) 8.29289 5.12132i 0.601630 0.371540i
\(191\) 16.0000 1.15772 0.578860 0.815427i \(-0.303498\pi\)
0.578860 + 0.815427i \(0.303498\pi\)
\(192\) 0 0
\(193\) −4.24264 + 4.24264i −0.305392 + 0.305392i −0.843119 0.537727i \(-0.819283\pi\)
0.537727 + 0.843119i \(0.319283\pi\)
\(194\) 6.00000i 0.430775i
\(195\) 0 0
\(196\) −5.00000 −0.357143
\(197\) −5.00000 + 5.00000i −0.356235 + 0.356235i −0.862423 0.506188i \(-0.831054\pi\)
0.506188 + 0.862423i \(0.331054\pi\)
\(198\) 0 0
\(199\) 18.0000i 1.27599i −0.770042 0.637993i \(-0.779765\pi\)
0.770042 0.637993i \(-0.220235\pi\)
\(200\) −4.94975 0.707107i −0.350000 0.0500000i
\(201\) 0 0
\(202\) 2.82843 + 2.82843i 0.199007 + 0.199007i
\(203\) 0 0
\(204\) 0 0
\(205\) −16.9706 8.48528i −1.18528 0.592638i
\(206\) 12.0000 0.836080
\(207\) 0 0
\(208\) −4.24264 + 4.24264i −0.294174 + 0.294174i
\(209\) 8.48528 2.00000i 0.586939 0.138343i
\(210\) 0 0
\(211\) 8.48528i 0.584151i 0.956395 + 0.292075i \(0.0943458\pi\)
−0.956395 + 0.292075i \(0.905654\pi\)
\(212\) −4.24264 4.24264i −0.291386 0.291386i
\(213\) 0 0
\(214\) 12.0000i 0.820303i
\(215\) −15.0000 + 5.00000i −1.02299 + 0.340997i
\(216\) 0 0
\(217\) 8.48528 + 8.48528i 0.576018 + 0.576018i
\(218\) −6.00000 6.00000i −0.406371 0.406371i
\(219\) 0 0
\(220\) −4.00000 2.00000i −0.269680 0.134840i
\(221\) 25.4558i 1.71235i
\(222\) 0 0
\(223\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(224\) −1.41421 −0.0944911
\(225\) 0 0
\(226\) −6.00000 −0.399114
\(227\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(228\) 0 0
\(229\) 6.00000i 0.396491i 0.980152 + 0.198246i \(0.0635244\pi\)
−0.980152 + 0.198246i \(0.936476\pi\)
\(230\) 2.82843 + 1.41421i 0.186501 + 0.0932505i
\(231\) 0 0
\(232\) 0 0
\(233\) −5.00000 5.00000i −0.327561 0.327561i 0.524097 0.851658i \(-0.324403\pi\)
−0.851658 + 0.524097i \(0.824403\pi\)
\(234\) 0 0
\(235\) 7.00000 + 21.0000i 0.456630 + 1.36989i
\(236\) 0 0
\(237\) 0 0
\(238\) −4.24264 + 4.24264i −0.275010 + 0.275010i
\(239\) 10.0000i 0.646846i −0.946254 0.323423i \(-0.895166\pi\)
0.946254 0.323423i \(-0.104834\pi\)
\(240\) 0 0
\(241\) 8.48528i 0.546585i −0.961931 0.273293i \(-0.911887\pi\)
0.961931 0.273293i \(-0.0881127\pi\)
\(242\) 4.94975 + 4.94975i 0.318182 + 0.318182i
\(243\) 0 0
\(244\) 8.00000i 0.512148i
\(245\) 10.0000 + 5.00000i 0.638877 + 0.319438i
\(246\) 0 0
\(247\) −13.7574 + 22.2426i −0.875360 + 1.41527i
\(248\) −6.00000 6.00000i −0.381000 0.381000i
\(249\) 0 0
\(250\) 9.19239 + 6.36396i 0.581378 + 0.402492i
\(251\) 20.0000 1.26239 0.631194 0.775625i \(-0.282565\pi\)
0.631194 + 0.775625i \(0.282565\pi\)
\(252\) 0 0
\(253\) 2.00000 + 2.00000i 0.125739 + 0.125739i
\(254\) 12.0000i 0.752947i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −4.24264 4.24264i −0.264649 0.264649i 0.562291 0.826940i \(-0.309920\pi\)
−0.826940 + 0.562291i \(0.809920\pi\)
\(258\) 0 0
\(259\) −8.48528 −0.527250
\(260\) 12.7279 4.24264i 0.789352 0.263117i
\(261\) 0 0
\(262\) 2.82843 + 2.82843i 0.174741 + 0.174741i
\(263\) −3.00000 3.00000i −0.184988 0.184988i 0.608537 0.793525i \(-0.291757\pi\)
−0.793525 + 0.608537i \(0.791757\pi\)
\(264\) 0 0
\(265\) 4.24264 + 12.7279i 0.260623 + 0.781870i
\(266\) −6.00000 + 1.41421i −0.367884 + 0.0867110i
\(267\) 0 0
\(268\) 8.48528 8.48528i 0.518321 0.518321i
\(269\) 8.48528 0.517357 0.258678 0.965964i \(-0.416713\pi\)
0.258678 + 0.965964i \(0.416713\pi\)
\(270\) 0 0
\(271\) 30.0000 1.82237 0.911185 0.411997i \(-0.135169\pi\)
0.911185 + 0.411997i \(0.135169\pi\)
\(272\) 3.00000 3.00000i 0.181902 0.181902i
\(273\) 0 0
\(274\) −4.24264 −0.256307
\(275\) 6.00000 + 8.00000i 0.361814 + 0.482418i
\(276\) 0 0
\(277\) −7.00000 + 7.00000i −0.420589 + 0.420589i −0.885407 0.464817i \(-0.846120\pi\)
0.464817 + 0.885407i \(0.346120\pi\)
\(278\) −8.48528 + 8.48528i −0.508913 + 0.508913i
\(279\) 0 0
\(280\) 2.82843 + 1.41421i 0.169031 + 0.0845154i
\(281\) 25.4558i 1.51857i −0.650759 0.759284i \(-0.725549\pi\)
0.650759 0.759284i \(-0.274451\pi\)
\(282\) 0 0
\(283\) 19.0000 + 19.0000i 1.12943 + 1.12943i 0.990269 + 0.139163i \(0.0444413\pi\)
0.139163 + 0.990269i \(0.455559\pi\)
\(284\) 8.48528 0.503509
\(285\) 0 0
\(286\) 12.0000 0.709575
\(287\) 8.48528 + 8.48528i 0.500870 + 0.500870i
\(288\) 0 0
\(289\) 1.00000i 0.0588235i
\(290\) 0 0
\(291\) 0 0
\(292\) 1.00000 1.00000i 0.0585206 0.0585206i
\(293\) 4.24264 4.24264i 0.247858 0.247858i −0.572233 0.820091i \(-0.693923\pi\)
0.820091 + 0.572233i \(0.193923\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 6.00000 0.348743
\(297\) 0 0
\(298\) 7.07107 7.07107i 0.409616 0.409616i
\(299\) −8.48528 −0.490716
\(300\) 0 0
\(301\) 10.0000 0.576390
\(302\) 12.0000 12.0000i 0.690522 0.690522i
\(303\) 0 0
\(304\) 4.24264 1.00000i 0.243332 0.0573539i
\(305\) 8.00000 16.0000i 0.458079 0.916157i
\(306\) 0 0
\(307\) 8.48528 + 8.48528i 0.484281 + 0.484281i 0.906496 0.422215i \(-0.138747\pi\)
−0.422215 + 0.906496i \(0.638747\pi\)
\(308\) 2.00000 + 2.00000i 0.113961 + 0.113961i
\(309\) 0 0
\(310\) 6.00000 + 18.0000i 0.340777 + 1.02233i
\(311\) 22.0000 1.24751 0.623753 0.781622i \(-0.285607\pi\)
0.623753 + 0.781622i \(0.285607\pi\)
\(312\) 0 0
\(313\) 1.00000 + 1.00000i 0.0565233 + 0.0565233i 0.734803 0.678280i \(-0.237274\pi\)
−0.678280 + 0.734803i \(0.737274\pi\)
\(314\) 15.5563 0.877896
\(315\) 0 0
\(316\) 8.48528i 0.477334i
\(317\) 4.24264 + 4.24264i 0.238290 + 0.238290i 0.816142 0.577851i \(-0.196109\pi\)
−0.577851 + 0.816142i \(0.696109\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −2.00000 1.00000i −0.111803 0.0559017i
\(321\) 0 0
\(322\) −1.41421 1.41421i −0.0788110 0.0788110i
\(323\) 9.72792 15.7279i 0.541276 0.875125i
\(324\) 0 0
\(325\) −29.6985 4.24264i −1.64738 0.235339i
\(326\) 9.89949i 0.548282i
\(327\) 0 0
\(328\) −6.00000 6.00000i −0.331295 0.331295i
\(329\) 14.0000i 0.771845i
\(330\) 0 0
\(331\) 8.48528i 0.466393i 0.972430 + 0.233197i \(0.0749186\pi\)
−0.972430 + 0.233197i \(0.925081\pi\)
\(332\) 9.00000 9.00000i 0.493939 0.493939i
\(333\) 0 0
\(334\) 0 0
\(335\) −25.4558 + 8.48528i −1.39080 + 0.463600i
\(336\) 0 0
\(337\) 4.24264 + 4.24264i 0.231111 + 0.231111i 0.813156 0.582045i \(-0.197747\pi\)
−0.582045 + 0.813156i \(0.697747\pi\)
\(338\) −16.2635 + 16.2635i −0.884615 + 0.884615i
\(339\) 0 0
\(340\) −9.00000 + 3.00000i −0.488094 + 0.162698i
\(341\) 16.9706i 0.919007i
\(342\) 0 0
\(343\) −12.0000 12.0000i −0.647939 0.647939i
\(344\) −7.07107 −0.381246
\(345\) 0 0
\(346\) 18.0000 0.967686
\(347\) 15.0000 15.0000i 0.805242 0.805242i −0.178667 0.983910i \(-0.557179\pi\)
0.983910 + 0.178667i \(0.0571786\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) −4.24264 5.65685i −0.226779 0.302372i
\(351\) 0 0
\(352\) −1.41421 1.41421i −0.0753778 0.0753778i
\(353\) 25.0000 + 25.0000i 1.33062 + 1.33062i 0.904819 + 0.425797i \(0.140006\pi\)
0.425797 + 0.904819i \(0.359994\pi\)
\(354\) 0 0
\(355\) −16.9706 8.48528i −0.900704 0.450352i
\(356\) 8.48528i 0.449719i
\(357\) 0 0
\(358\) 12.0000 + 12.0000i 0.634220 + 0.634220i
\(359\) 8.00000i 0.422224i 0.977462 + 0.211112i \(0.0677085\pi\)
−0.977462 + 0.211112i \(0.932292\pi\)
\(360\) 0 0
\(361\) 17.0000 8.48528i 0.894737 0.446594i
\(362\) −18.0000 + 18.0000i −0.946059 + 0.946059i
\(363\) 0 0
\(364\) −8.48528 −0.444750
\(365\) −3.00000 + 1.00000i −0.157027 + 0.0523424i
\(366\) 0 0
\(367\) 17.0000 17.0000i 0.887393 0.887393i −0.106879 0.994272i \(-0.534086\pi\)
0.994272 + 0.106879i \(0.0340858\pi\)
\(368\) 1.00000 + 1.00000i 0.0521286 + 0.0521286i
\(369\) 0 0
\(370\) −12.0000 6.00000i −0.623850 0.311925i
\(371\) 8.48528i 0.440534i
\(372\) 0 0
\(373\) −4.24264 + 4.24264i −0.219676 + 0.219676i −0.808362 0.588686i \(-0.799645\pi\)
0.588686 + 0.808362i \(0.299645\pi\)
\(374\) −8.48528 −0.438763
\(375\) 0 0
\(376\) 9.89949i 0.510527i
\(377\) 0 0
\(378\) 0 0
\(379\) 25.4558 1.30758 0.653789 0.756677i \(-0.273178\pi\)
0.653789 + 0.756677i \(0.273178\pi\)
\(380\) −9.48528 2.24264i −0.486585 0.115045i
\(381\) 0 0
\(382\) −11.3137 11.3137i −0.578860 0.578860i
\(383\) 25.4558 25.4558i 1.30073 1.30073i 0.372835 0.927898i \(-0.378386\pi\)
0.927898 0.372835i \(-0.121614\pi\)
\(384\) 0 0
\(385\) −2.00000 6.00000i −0.101929 0.305788i
\(386\) 6.00000 0.305392
\(387\) 0 0
\(388\) 4.24264 4.24264i 0.215387 0.215387i
\(389\) 4.00000i 0.202808i −0.994845 0.101404i \(-0.967667\pi\)
0.994845 0.101404i \(-0.0323335\pi\)
\(390\) 0 0
\(391\) 6.00000 0.303433
\(392\) 3.53553 + 3.53553i 0.178571 + 0.178571i
\(393\) 0 0
\(394\) 7.07107 0.356235
\(395\) −8.48528 + 16.9706i −0.426941 + 0.853882i
\(396\) 0 0
\(397\) 25.0000 25.0000i 1.25471 1.25471i 0.301131 0.953583i \(-0.402636\pi\)
0.953583 0.301131i \(-0.0973643\pi\)
\(398\) −12.7279 + 12.7279i −0.637993 + 0.637993i
\(399\) 0 0
\(400\) 3.00000 + 4.00000i 0.150000 + 0.200000i
\(401\) 33.9411i 1.69494i −0.530844 0.847469i \(-0.678125\pi\)
0.530844 0.847469i \(-0.321875\pi\)
\(402\) 0 0
\(403\) −36.0000 36.0000i −1.79329 1.79329i
\(404\) 4.00000i 0.199007i
\(405\) 0 0
\(406\) 0 0
\(407\) −8.48528 8.48528i −0.420600 0.420600i
\(408\) 0 0
\(409\) −16.9706 −0.839140 −0.419570 0.907723i \(-0.637819\pi\)
−0.419570 + 0.907723i \(0.637819\pi\)
\(410\) 6.00000 + 18.0000i 0.296319 + 0.888957i
\(411\) 0 0
\(412\) −8.48528 8.48528i −0.418040 0.418040i
\(413\) 0 0
\(414\) 0 0
\(415\) −27.0000 + 9.00000i −1.32538 + 0.441793i
\(416\) 6.00000 0.294174
\(417\) 0 0
\(418\) −7.41421 4.58579i −0.362641 0.224298i
\(419\) 2.00000i 0.0977064i −0.998806 0.0488532i \(-0.984443\pi\)
0.998806 0.0488532i \(-0.0155566\pi\)
\(420\) 0 0
\(421\) 33.9411i 1.65419i −0.562063 0.827095i \(-0.689992\pi\)
0.562063 0.827095i \(-0.310008\pi\)
\(422\) 6.00000 6.00000i 0.292075 0.292075i
\(423\) 0 0
\(424\) 6.00000i 0.291386i
\(425\) 21.0000 + 3.00000i 1.01865 + 0.145521i
\(426\) 0 0
\(427\) −8.00000 + 8.00000i −0.387147 + 0.387147i
\(428\) −8.48528 + 8.48528i −0.410152 + 0.410152i
\(429\) 0 0
\(430\) 14.1421 + 7.07107i 0.681994 + 0.340997i
\(431\) 16.9706i 0.817443i −0.912659 0.408722i \(-0.865975\pi\)
0.912659 0.408722i \(-0.134025\pi\)
\(432\) 0 0
\(433\) 21.2132 21.2132i 1.01944 1.01944i 0.0196343 0.999807i \(-0.493750\pi\)
0.999807 0.0196343i \(-0.00625018\pi\)
\(434\) 12.0000i 0.576018i
\(435\) 0 0
\(436\) 8.48528i 0.406371i
\(437\) 5.24264 + 3.24264i 0.250790 + 0.155117i
\(438\) 0 0
\(439\) 25.4558 1.21494 0.607471 0.794342i \(-0.292184\pi\)
0.607471 + 0.794342i \(0.292184\pi\)
\(440\) 1.41421 + 4.24264i 0.0674200 + 0.202260i
\(441\) 0 0
\(442\) 18.0000 18.0000i 0.856173 0.856173i
\(443\) 7.00000 + 7.00000i 0.332580 + 0.332580i 0.853566 0.520985i \(-0.174435\pi\)
−0.520985 + 0.853566i \(0.674435\pi\)
\(444\) 0 0
\(445\) 8.48528 16.9706i 0.402241 0.804482i
\(446\) 0 0
\(447\) 0 0
\(448\) 1.00000 + 1.00000i 0.0472456 + 0.0472456i
\(449\) 16.9706 0.800890 0.400445 0.916321i \(-0.368855\pi\)
0.400445 + 0.916321i \(0.368855\pi\)
\(450\) 0 0
\(451\) 16.9706i 0.799113i
\(452\) 4.24264 + 4.24264i 0.199557 + 0.199557i
\(453\) 0 0
\(454\) 0 0
\(455\) 16.9706 + 8.48528i 0.795592 + 0.397796i
\(456\) 0 0
\(457\) −7.00000 + 7.00000i −0.327446 + 0.327446i −0.851615 0.524168i \(-0.824376\pi\)
0.524168 + 0.851615i \(0.324376\pi\)
\(458\) 4.24264 4.24264i 0.198246 0.198246i
\(459\) 0 0
\(460\) −1.00000 3.00000i −0.0466252 0.139876i
\(461\) 14.0000 0.652045 0.326023 0.945362i \(-0.394291\pi\)
0.326023 + 0.945362i \(0.394291\pi\)
\(462\) 0 0
\(463\) 5.00000 + 5.00000i 0.232370 + 0.232370i 0.813681 0.581311i \(-0.197460\pi\)
−0.581311 + 0.813681i \(0.697460\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 7.07107i 0.327561i
\(467\) −13.0000 + 13.0000i −0.601568 + 0.601568i −0.940729 0.339160i \(-0.889857\pi\)
0.339160 + 0.940729i \(0.389857\pi\)
\(468\) 0 0
\(469\) 16.9706 0.783628
\(470\) 9.89949 19.7990i 0.456630 0.913259i
\(471\) 0 0
\(472\) 0 0
\(473\) 10.0000 + 10.0000i 0.459800 + 0.459800i
\(474\) 0 0
\(475\) 16.7279 + 13.9706i 0.767530 + 0.641013i
\(476\) 6.00000 0.275010
\(477\) 0 0
\(478\) −7.07107 + 7.07107i −0.323423 + 0.323423i
\(479\) 32.0000i 1.46212i −0.682315 0.731059i \(-0.739027\pi\)
0.682315 0.731059i \(-0.260973\pi\)
\(480\) 0 0
\(481\) 36.0000 1.64146
\(482\) −6.00000 + 6.00000i −0.273293 + 0.273293i
\(483\) 0 0
\(484\) 7.00000i 0.318182i
\(485\) −12.7279 + 4.24264i −0.577945 + 0.192648i
\(486\) 0 0
\(487\) 25.4558 + 25.4558i 1.15351 + 1.15351i 0.985843 + 0.167671i \(0.0536248\pi\)
0.167671 + 0.985843i \(0.446375\pi\)
\(488\) 5.65685 5.65685i 0.256074 0.256074i
\(489\) 0 0
\(490\) −3.53553 10.6066i −0.159719 0.479157i
\(491\) −28.0000 −1.26362 −0.631811 0.775122i \(-0.717688\pi\)
−0.631811 + 0.775122i \(0.717688\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 25.4558 6.00000i 1.14531 0.269953i
\(495\) 0 0
\(496\) 8.48528i 0.381000i
\(497\) 8.48528 + 8.48528i 0.380617 + 0.380617i
\(498\) 0 0
\(499\) 36.0000i 1.61158i 0.592200 + 0.805791i \(0.298259\pi\)
−0.592200 + 0.805791i \(0.701741\pi\)
\(500\) −2.00000 11.0000i −0.0894427 0.491935i
\(501\) 0 0
\(502\) −14.1421 14.1421i −0.631194 0.631194i
\(503\) 15.0000 + 15.0000i 0.668817 + 0.668817i 0.957442 0.288625i \(-0.0931982\pi\)
−0.288625 + 0.957442i \(0.593198\pi\)
\(504\) 0 0
\(505\) −4.00000 + 8.00000i −0.177998 + 0.355995i
\(506\) 2.82843i 0.125739i
\(507\) 0 0
\(508\) 8.48528 8.48528i 0.376473 0.376473i
\(509\) −33.9411 −1.50441 −0.752207 0.658927i \(-0.771011\pi\)
−0.752207 + 0.658927i \(0.771011\pi\)
\(510\) 0 0
\(511\) 2.00000 0.0884748
\(512\) −0.707107 0.707107i −0.0312500 0.0312500i
\(513\) 0 0
\(514\) 6.00000i 0.264649i
\(515\) 8.48528 + 25.4558i 0.373906 + 1.12172i
\(516\) 0 0
\(517\) 14.0000 14.0000i 0.615719 0.615719i
\(518\) 6.00000 + 6.00000i 0.263625 + 0.263625i
\(519\) 0 0
\(520\) −12.0000 6.00000i −0.526235 0.263117i
\(521\) 33.9411i 1.48699i 0.668743 + 0.743494i \(0.266833\pi\)
−0.668743 + 0.743494i \(0.733167\pi\)
\(522\) 0 0
\(523\) −16.9706 + 16.9706i −0.742071 + 0.742071i −0.972976 0.230905i \(-0.925831\pi\)
0.230905 + 0.972976i \(0.425831\pi\)
\(524\) 4.00000i 0.174741i
\(525\) 0 0
\(526\) 4.24264i 0.184988i
\(527\) 25.4558 + 25.4558i 1.10887 + 1.10887i
\(528\) 0 0
\(529\) 21.0000i 0.913043i
\(530\) 6.00000 12.0000i 0.260623 0.521247i
\(531\) 0 0
\(532\) 5.24264 + 3.24264i 0.227297 + 0.140586i
\(533\) −36.0000 36.0000i −1.55933 1.55933i
\(534\) 0 0
\(535\) 25.4558 8.48528i 1.10055 0.366851i
\(536\) −12.0000 −0.518321
\(537\) 0 0
\(538\) −6.00000 6.00000i −0.258678 0.258678i
\(539\) 10.0000i 0.430730i
\(540\) 0 0
\(541\) 12.0000 0.515920 0.257960 0.966156i \(-0.416950\pi\)
0.257960 + 0.966156i \(0.416950\pi\)
\(542\) −21.2132 21.2132i −0.911185 0.911185i
\(543\) 0 0
\(544\) −4.24264 −0.181902
\(545\) 8.48528 16.9706i 0.363470 0.726939i
\(546\) 0 0
\(547\) −8.48528 8.48528i −0.362804 0.362804i 0.502040 0.864844i \(-0.332583\pi\)
−0.864844 + 0.502040i \(0.832583\pi\)
\(548\) 3.00000 + 3.00000i 0.128154 + 0.128154i
\(549\) 0 0
\(550\) 1.41421 9.89949i 0.0603023 0.422116i
\(551\) 0 0
\(552\) 0 0
\(553\) 8.48528 8.48528i 0.360831 0.360831i
\(554\) 9.89949 0.420589
\(555\) 0 0
\(556\) 12.0000 0.508913
\(557\) 23.0000 23.0000i 0.974541 0.974541i −0.0251426 0.999684i \(-0.508004\pi\)
0.999684 + 0.0251426i \(0.00800398\pi\)
\(558\) 0 0
\(559\) −42.4264 −1.79445
\(560\) −1.00000 3.00000i −0.0422577 0.126773i
\(561\) 0 0
\(562\) −18.0000 + 18.0000i −0.759284 + 0.759284i
\(563\) 25.4558 25.4558i 1.07284 1.07284i 0.0757057 0.997130i \(-0.475879\pi\)
0.997130 0.0757057i \(-0.0241210\pi\)
\(564\) 0 0
\(565\) −4.24264 12.7279i −0.178489 0.535468i
\(566\) 26.8701i 1.12943i
\(567\) 0 0
\(568\) −6.00000 6.00000i −0.251754 0.251754i
\(569\) 16.9706 0.711443 0.355722 0.934592i \(-0.384235\pi\)
0.355722 + 0.934592i \(0.384235\pi\)
\(570\) 0 0
\(571\) −6.00000 −0.251092 −0.125546 0.992088i \(-0.540068\pi\)
−0.125546 + 0.992088i \(0.540068\pi\)
\(572\) −8.48528 8.48528i −0.354787 0.354787i
\(573\) 0 0
\(574\) 12.0000i 0.500870i
\(575\) −1.00000 + 7.00000i −0.0417029 + 0.291920i
\(576\) 0 0
\(577\) −23.0000 + 23.0000i −0.957503 + 0.957503i −0.999133 0.0416305i \(-0.986745\pi\)
0.0416305 + 0.999133i \(0.486745\pi\)
\(578\) −0.707107 + 0.707107i −0.0294118 + 0.0294118i
\(579\) 0 0
\(580\) 0 0
\(581\) 18.0000 0.746766
\(582\) 0 0
\(583\) 8.48528 8.48528i 0.351424 0.351424i
\(584\) −1.41421 −0.0585206
\(585\) 0 0
\(586\) −6.00000 −0.247858
\(587\) −11.0000 + 11.0000i −0.454019 + 0.454019i −0.896686 0.442667i \(-0.854032\pi\)
0.442667 + 0.896686i \(0.354032\pi\)
\(588\) 0 0
\(589\) 8.48528 + 36.0000i 0.349630 + 1.48335i
\(590\) 0 0
\(591\) 0 0
\(592\) −4.24264 4.24264i −0.174371 0.174371i
\(593\) −21.0000 21.0000i −0.862367 0.862367i 0.129246 0.991613i \(-0.458744\pi\)
−0.991613 + 0.129246i \(0.958744\pi\)
\(594\) 0 0
\(595\) −12.0000 6.00000i −0.491952 0.245976i
\(596\) −10.0000 −0.409616
\(597\) 0 0
\(598\) 6.00000 + 6.00000i 0.245358 + 0.245358i
\(599\) −25.4558 −1.04010 −0.520049 0.854137i \(-0.674086\pi\)
−0.520049 + 0.854137i \(0.674086\pi\)
\(600\) 0 0
\(601\) 8.48528i 0.346122i 0.984911 + 0.173061i \(0.0553658\pi\)
−0.984911 + 0.173061i \(0.944634\pi\)
\(602\) −7.07107 7.07107i −0.288195 0.288195i
\(603\) 0 0
\(604\) −16.9706 −0.690522
\(605\) −7.00000 + 14.0000i −0.284590 + 0.569181i
\(606\) 0 0
\(607\) −25.4558 25.4558i −1.03322 1.03322i −0.999429 0.0337920i \(-0.989242\pi\)
−0.0337920 0.999429i \(-0.510758\pi\)
\(608\) −3.70711 2.29289i −0.150343 0.0929891i
\(609\) 0 0
\(610\) −16.9706 + 5.65685i −0.687118 + 0.229039i
\(611\) 59.3970i 2.40294i
\(612\) 0 0
\(613\) −17.0000 17.0000i −0.686624 0.686624i 0.274861 0.961484i \(-0.411368\pi\)
−0.961484 + 0.274861i \(0.911368\pi\)
\(614\) 12.0000i 0.484281i
\(615\) 0 0
\(616\) 2.82843i 0.113961i
\(617\) −27.0000 + 27.0000i −1.08698 + 1.08698i −0.0911411 + 0.995838i \(0.529051\pi\)
−0.995838 + 0.0911411i \(0.970949\pi\)
\(618\) 0 0
\(619\) 12.0000i 0.482321i 0.970485 + 0.241160i \(0.0775280\pi\)
−0.970485 + 0.241160i \(0.922472\pi\)
\(620\) 8.48528 16.9706i 0.340777 0.681554i
\(621\) 0 0
\(622\) −15.5563 15.5563i −0.623753 0.623753i
\(623\) −8.48528 + 8.48528i −0.339956 + 0.339956i
\(624\) 0 0
\(625\) −7.00000 + 24.0000i −0.280000 + 0.960000i
\(626\) 1.41421i 0.0565233i
\(627\) 0 0
\(628\) −11.0000 11.0000i −0.438948 0.438948i
\(629\) −25.4558 −1.01499
\(630\) 0 0
\(631\) −2.00000 −0.0796187 −0.0398094 0.999207i \(-0.512675\pi\)
−0.0398094 + 0.999207i \(0.512675\pi\)
\(632\) −6.00000 + 6.00000i −0.238667 + 0.238667i
\(633\) 0 0
\(634\) 6.00000i 0.238290i
\(635\) −25.4558 + 8.48528i −1.01018 + 0.336728i
\(636\) 0 0
\(637\) 21.2132 + 21.2132i 0.840498 + 0.840498i
\(638\) 0 0
\(639\) 0 0
\(640\) 0.707107 + 2.12132i 0.0279508 + 0.0838525i
\(641\) 25.4558i 1.00545i −0.864448 0.502723i \(-0.832332\pi\)
0.864448 0.502723i \(-0.167668\pi\)
\(642\) 0 0
\(643\) 11.0000 + 11.0000i 0.433798 + 0.433798i 0.889918 0.456120i \(-0.150761\pi\)
−0.456120 + 0.889918i \(0.650761\pi\)
\(644\) 2.00000i 0.0788110i
\(645\) 0 0
\(646\) −18.0000 + 4.24264i −0.708201 + 0.166924i
\(647\) −9.00000 + 9.00000i −0.353827 + 0.353827i −0.861531 0.507705i \(-0.830494\pi\)
0.507705 + 0.861531i \(0.330494\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 18.0000 + 24.0000i 0.706018 + 0.941357i
\(651\) 0 0
\(652\) 7.00000 7.00000i 0.274141 0.274141i
\(653\) 9.00000 + 9.00000i 0.352197 + 0.352197i 0.860927 0.508729i \(-0.169885\pi\)
−0.508729 + 0.860927i \(0.669885\pi\)
\(654\) 0 0
\(655\) −4.00000 + 8.00000i −0.156293 + 0.312586i
\(656\) 8.48528i 0.331295i
\(657\) 0 0
\(658\) −9.89949 + 9.89949i −0.385922 + 0.385922i
\(659\) 16.9706 0.661079 0.330540 0.943792i \(-0.392769\pi\)
0.330540 + 0.943792i \(0.392769\pi\)
\(660\) 0 0
\(661\) 33.9411i 1.32016i 0.751197 + 0.660078i \(0.229477\pi\)
−0.751197 + 0.660078i \(0.770523\pi\)
\(662\) 6.00000 6.00000i 0.233197 0.233197i
\(663\) 0 0
\(664\) −12.7279 −0.493939
\(665\) −7.24264 11.7279i −0.280858 0.454789i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 24.0000 + 12.0000i 0.927201 + 0.463600i
\(671\) −16.0000 −0.617673
\(672\) 0 0
\(673\) 4.24264 4.24264i 0.163542 0.163542i −0.620592 0.784134i \(-0.713108\pi\)
0.784134 + 0.620592i \(0.213108\pi\)
\(674\) 6.00000i 0.231111i
\(675\) 0 0
\(676\) 23.0000 0.884615
\(677\) −29.6985 29.6985i −1.14141 1.14141i −0.988193 0.153212i \(-0.951038\pi\)
−0.153212 0.988193i \(-0.548962\pi\)
\(678\) 0 0
\(679\) 8.48528 0.325635
\(680\) 8.48528 + 4.24264i 0.325396 + 0.162698i
\(681\) 0 0
\(682\) 12.0000 12.0000i 0.459504 0.459504i
\(683\) −8.48528 + 8.48528i −0.324680 + 0.324680i −0.850559 0.525879i \(-0.823736\pi\)
0.525879 + 0.850559i \(0.323736\pi\)
\(684\) 0 0
\(685\) −3.00000 9.00000i −0.114624 0.343872i
\(686\) 16.9706i 0.647939i
\(687\) 0 0
\(688\) 5.00000 + 5.00000i 0.190623 + 0.190623i
\(689\) 36.0000i 1.37149i
\(690\) 0 0
\(691\) 30.0000 1.14125 0.570627 0.821209i \(-0.306700\pi\)
0.570627 + 0.821209i \(0.306700\pi\)
\(692\) −12.7279 12.7279i −0.483843 0.483843i
\(693\) 0 0
\(694\) −21.2132 −0.805242
\(695\) −24.0000 12.0000i −0.910372 0.455186i
\(696\) 0 0
\(697\) 25.4558 + 25.4558i 0.964209 + 0.964209i
\(698\) 0 0
\(699\) 0 0
\(700\) −1.00000 + 7.00000i −0.0377964 + 0.264575i
\(701\) 32.0000 1.20862 0.604312 0.796748i \(-0.293448\pi\)
0.604312 + 0.796748i \(0.293448\pi\)
\(702\) 0 0
\(703\) −22.2426 13.7574i −0.838897 0.518869i
\(704\) 2.00000i 0.0753778i
\(705\) 0 0
\(706\) 35.3553i 1.33062i
\(707\) 4.00000 4.00000i 0.150435 0.150435i
\(708\) 0 0
\(709\) 24.0000i 0.901339i −0.892691 0.450669i \(-0.851185\pi\)
0.892691 0.450669i \(-0.148815\pi\)
\(710\) 6.00000 + 18.0000i 0.225176 + 0.675528i
\(711\) 0 0
\(712\) 6.00000 6.00000i 0.224860 0.224860i
\(713\) −8.48528 + 8.48528i −0.317776 + 0.317776i
\(714\) 0 0
\(715\) 8.48528 + 25.4558i 0.317332 + 0.951995i
\(716\) 16.9706i 0.634220i
\(717\) 0 0
\(718\) 5.65685 5.65685i 0.211112 0.211112i
\(719\) 16.0000i 0.596699i 0.954457 + 0.298350i \(0.0964361\pi\)
−0.954457 + 0.298350i \(0.903564\pi\)
\(720\) 0 0
\(721\) 16.9706i 0.632017i
\(722\) −18.0208 6.02082i −0.670665 0.224072i
\(723\) 0 0
\(724\) 25.4558 0.946059
\(725\) 0 0
\(726\) 0 0
\(727\) −11.0000 + 11.0000i −0.407967 + 0.407967i −0.881029 0.473062i \(-0.843149\pi\)
0.473062 + 0.881029i \(0.343149\pi\)
\(728\) 6.00000 + 6.00000i 0.222375 + 0.222375i
\(729\) 0 0
\(730\) 2.82843 + 1.41421i 0.104685 + 0.0523424i
\(731\) 30.0000 1.10959
\(732\) 0 0
\(733\) −17.0000 17.0000i −0.627909 0.627909i 0.319632 0.947542i \(-0.396441\pi\)
−0.947542 + 0.319632i \(0.896441\pi\)
\(734\) −24.0416 −0.887393
\(735\) 0 0
\(736\) 1.41421i 0.0521286i
\(737\) 16.9706 + 16.9706i 0.625119 + 0.625119i
\(738\) 0 0
\(739\) 38.0000i 1.39785i −0.715194 0.698926i \(-0.753662\pi\)
0.715194 0.698926i \(-0.246338\pi\)
\(740\) 4.24264 + 12.7279i 0.155963 + 0.467888i
\(741\) 0 0
\(742\) −6.00000 + 6.00000i −0.220267 + 0.220267i
\(743\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(744\) 0 0
\(745\) 20.0000 + 10.0000i 0.732743 + 0.366372i
\(746\) 6.00000 0.219676
\(747\) 0 0
\(748\) 6.00000 + 6.00000i 0.219382 + 0.219382i
\(749\) −16.9706 −0.620091
\(750\) 0 0
\(751\) 16.9706i 0.619265i 0.950856 + 0.309632i \(0.100206\pi\)
−0.950856 + 0.309632i \(0.899794\pi\)
\(752\) 7.00000 7.00000i 0.255264 0.255264i
\(753\) 0 0
\(754\) 0 0
\(755\) 33.9411 + 16.9706i 1.23524 + 0.617622i
\(756\) 0 0
\(757\) −23.0000 + 23.0000i −0.835949 + 0.835949i −0.988323 0.152374i \(-0.951308\pi\)
0.152374 + 0.988323i \(0.451308\pi\)
\(758\) −18.0000 18.0000i −0.653789 0.653789i
\(759\) 0 0
\(760\) 5.12132 + 8.29289i 0.185770 + 0.300815i
\(761\) −20.0000 −0.724999 −0.362500 0.931984i \(-0.618077\pi\)
−0.362500 + 0.931984i \(0.618077\pi\)
\(762\) 0 0
\(763\) −8.48528 + 8.48528i −0.307188 + 0.307188i
\(764\) 16.0000i 0.578860i
\(765\) 0 0
\(766\) −36.0000 −1.30073
\(767\) 0 0
\(768\) 0 0
\(769\) 30.0000i 1.08183i 0.841078 + 0.540914i \(0.181921\pi\)
−0.841078 + 0.540914i \(0.818079\pi\)
\(770\) −2.82843 + 5.65685i −0.101929 + 0.203859i
\(771\) 0 0
\(772\) −4.24264 4.24264i −0.152696 0.152696i
\(773\) 29.6985 29.6985i 1.06818 1.06818i 0.0706813 0.997499i \(-0.477483\pi\)
0.997499 0.0706813i \(-0.0225173\pi\)
\(774\) 0 0
\(775\) −33.9411 + 25.4558i −1.21920 + 0.914401i
\(776\) −6.00000 −0.215387
\(777\) 0 0
\(778\) −2.82843 + 2.82843i −0.101404 + 0.101404i
\(779\) 8.48528 + 36.0000i 0.304017 + 1.28983i
\(780\) 0 0
\(781\) 16.9706i 0.607254i
\(782\) −4.24264 4.24264i −0.151717 0.151717i
\(783\) 0 0
\(784\) 5.00000i 0.178571i
\(785\) 11.0000 + 33.0000i 0.392607 + 1.17782i
\(786\) 0 0
\(787\) −25.4558 25.4558i −0.907403 0.907403i 0.0886592 0.996062i \(-0.471742\pi\)
−0.996062 + 0.0886592i \(0.971742\pi\)
\(788\) −5.00000 5.00000i −0.178118 0.178118i
\(789\) 0 0
\(790\) 18.0000 6.00000i 0.640411 0.213470i
\(791\) 8.48528i 0.301702i
\(792\) 0 0
\(793\) 33.9411 33.9411i 1.20528 1.20528i
\(794\) −35.3553 −1.25471
\(795\) 0 0
\(796\) 18.0000 0.637993
\(797\) −4.24264 4.24264i −0.150282 0.150282i 0.627962 0.778244i \(-0.283889\pi\)
−0.778244 + 0.627962i \(0.783889\pi\)
\(798\) 0 0
\(799\) 42.0000i 1.48585i
\(800\) 0.707107 4.94975i 0.0250000 0.175000i
\(801\) 0 0
\(802\) −24.0000 + 24.0000i −0.847469 + 0.847469i
\(803\) 2.00000 + 2.00000i 0.0705785 + 0.0705785i
\(804\) 0 0
\(805\) 2.00000 4.00000i 0.0704907 0.140981i
\(806\) 50.9117i 1.79329i
\(807\) 0 0
\(808\) −2.82843 + 2.82843i −0.0995037 + 0.0995037i
\(809\) 8.00000i 0.281265i −0.990062 0.140633i \(-0.955086\pi\)
0.990062 0.140633i \(-0.0449136\pi\)
\(810\) 0 0
\(811\) 50.9117i 1.78775i 0.448315 + 0.893876i \(0.352024\pi\)
−0.448315 + 0.893876i \(0.647976\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 12.0000i 0.420600i
\(815\) −21.0000 + 7.00000i −0.735598 + 0.245199i
\(816\) 0 0
\(817\) 26.2132 + 16.2132i 0.917084 + 0.567228i
\(818\) 12.0000 + 12.0000i 0.419570 + 0.419570i
\(819\) 0 0
\(820\) 8.48528 16.9706i 0.296319 0.592638i
\(821\) −34.0000 −1.18661 −0.593304 0.804978i \(-0.702177\pi\)
−0.593304 + 0.804978i \(0.702177\pi\)
\(822\) 0 0
\(823\) 23.0000 + 23.0000i 0.801730 + 0.801730i 0.983366 0.181636i \(-0.0581393\pi\)
−0.181636 + 0.983366i \(0.558139\pi\)
\(824\) 12.0000i 0.418040i
\(825\) 0 0
\(826\) 0 0
\(827\) −8.48528 8.48528i −0.295062 0.295062i 0.544014 0.839076i \(-0.316904\pi\)
−0.839076 + 0.544014i \(0.816904\pi\)
\(828\) 0 0
\(829\) −8.48528 −0.294706 −0.147353 0.989084i \(-0.547075\pi\)
−0.147353 + 0.989084i \(0.547075\pi\)
\(830\) 25.4558 + 12.7279i 0.883585 + 0.441793i
\(831\) 0 0
\(832\) −4.24264 4.24264i −0.147087 0.147087i
\(833\) −15.0000 15.0000i −0.519719 0.519719i
\(834\) 0 0
\(835\) 0 0
\(836\) 2.00000 + 8.48528i 0.0691714 + 0.293470i
\(837\) 0 0
\(838\) −1.41421 + 1.41421i −0.0488532 + 0.0488532i
\(839\) 42.4264 1.46472 0.732361 0.680916i \(-0.238418\pi\)
0.732361 + 0.680916i \(0.238418\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) −24.0000 + 24.0000i −0.827095 + 0.827095i
\(843\) 0 0
\(844\) −8.48528 −0.292075
\(845\) −46.0000 23.0000i −1.58245 0.791224i
\(846\) 0 0
\(847\) 7.00000 7.00000i 0.240523 0.240523i
\(848\) 4.24264 4.24264i 0.145693 0.145693i
\(849\) 0 0
\(850\) −12.7279 16.9706i −0.436564 0.582086i
\(851\) 8.48528i 0.290872i
\(852\) 0 0
\(853\) −1.00000 1.00000i −0.0342393 0.0342393i 0.689780 0.724019i \(-0.257707\pi\)
−0.724019 + 0.689780i \(0.757707\pi\)
\(854\) 11.3137 0.387147
\(855\) 0 0
\(856\) 12.0000 0.410152
\(857\) 29.6985 + 29.6985i 1.01448 + 1.01448i 0.999894 + 0.0145873i \(0.00464345\pi\)
0.0145873 + 0.999894i \(0.495357\pi\)
\(858\) 0 0
\(859\) 22.0000i 0.750630i −0.926897 0.375315i \(-0.877534\pi\)
0.926897 0.375315i \(-0.122466\pi\)
\(860\) −5.00000 15.0000i −0.170499 0.511496i
\(861\) 0 0
\(862\) −12.0000 + 12.0000i −0.408722 + 0.408722i
\(863\) −16.9706 + 16.9706i −0.577685 + 0.577685i −0.934265 0.356580i \(-0.883943\pi\)
0.356580 + 0.934265i \(0.383943\pi\)
\(864\) 0 0
\(865\) 12.7279 + 38.1838i 0.432762 + 1.29829i
\(866\) −30.0000 −1.01944
\(867\) 0 0
\(868\) −8.48528 + 8.48528i −0.288009 + 0.288009i
\(869\) 16.9706 0.575687
\(870\) 0 0
\(871\) −72.0000 −2.43963
\(872\) 6.00000 6.00000i 0.203186 0.203186i
\(873\) 0 0
\(874\) −1.41421 6.00000i −0.0478365 0.202953i
\(875\) 9.00000 13.0000i 0.304256 0.439480i
\(876\) 0 0
\(877\) −12.7279 12.7279i −0.429791 0.429791i 0.458766 0.888557i \(-0.348292\pi\)
−0.888557 + 0.458766i \(0.848292\pi\)
\(878\) −18.0000 18.0000i −0.607471 0.607471i
\(879\) 0 0
\(880\) 2.00000 4.00000i 0.0674200 0.134840i
\(881\) 8.00000 0.269527 0.134763 0.990878i \(-0.456973\pi\)
0.134763 + 0.990878i \(0.456973\pi\)
\(882\) 0 0
\(883\) 13.0000 + 13.0000i 0.437485 + 0.437485i 0.891165 0.453680i \(-0.149889\pi\)
−0.453680 + 0.891165i \(0.649889\pi\)
\(884\) −25.4558 −0.856173
\(885\) 0 0
\(886\) 9.89949i 0.332580i
\(887\) 8.48528 + 8.48528i 0.284908 + 0.284908i 0.835063 0.550155i \(-0.185431\pi\)
−0.550155 + 0.835063i \(0.685431\pi\)
\(888\) 0 0
\(889\) 16.9706 0.569174
\(890\) −18.0000 + 6.00000i −0.603361 + 0.201120i
\(891\) 0 0
\(892\) 0 0
\(893\) 22.6985 36.6985i 0.759576 1.22807i
\(894\) 0 0
\(895\) −16.9706 + 33.9411i −0.567263 + 1.13453i
\(896\) 1.41421i 0.0472456i
\(897\) 0 0
\(898\) −12.0000 12.0000i −0.400445 0.400445i
\(899\) 0 0
\(900\) 0 0
\(901\) 25.4558i 0.848057i
\(902\) 12.0000 12.0000i 0.399556 0.399556i
\(903\) 0 0
\(904\) 6.00000i 0.199557i
\(905\) −50.9117 25.4558i −1.69236 0.846181i
\(906\) 0 0
\(907\) 8.48528 + 8.48528i 0.281749 + 0.281749i 0.833806 0.552057i \(-0.186157\pi\)
−0.552057 + 0.833806i \(0.686157\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) −6.00000 18.0000i −0.198898 0.596694i
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 18.0000 + 18.0000i 0.595713 + 0.595713i
\(914\) 9.89949 0.327446
\(915\) 0 0
\(916\) −6.00000 −0.198246
\(917\) 4.00000 4.00000i 0.132092 0.132092i
\(918\) 0 0
\(919\) 38.0000i 1.25350i 0.779219 + 0.626752i \(0.215616\pi\)
−0.779219 + 0.626752i \(0.784384\pi\)
\(920\) −1.41421 + 2.82843i −0.0466252 + 0.0932505i
\(921\) 0 0
\(922\) −9.89949 9.89949i −0.326023 0.326023i
\(923\) −36.0000 36.0000i −1.18495 1.18495i
\(924\) 0 0
\(925\) 4.24264 29.6985i 0.139497 0.976480i
\(926\) 7.07107i 0.232370i
\(927\) 0 0
\(928\) 0 0
\(929\) 28.0000i 0.918650i −0.888268 0.459325i \(-0.848091\pi\)
0.888268 0.459325i \(-0.151909\pi\)
\(930\) 0 0
\(931\) −5.00000 21.2132i −0.163868 0.695235i
\(932\) 5.00000 5.00000i 0.163780 0.163780i
\(933\) 0 0
\(934\) 18.3848 0.601568
\(935\) −6.00000 18.0000i −0.196221 0.588663i
\(936\) 0 0
\(937\) −25.0000 + 25.0000i −0.816714 + 0.816714i −0.985630 0.168916i \(-0.945973\pi\)
0.168916 + 0.985630i \(0.445973\pi\)
\(938\) −12.0000 12.0000i −0.391814 0.391814i
\(939\) 0 0
\(940\) −21.0000 + 7.00000i −0.684944 + 0.228315i
\(941\) 25.4558i 0.829837i −0.909859 0.414918i \(-0.863810\pi\)
0.909859 0.414918i \(-0.136190\pi\)
\(942\) 0 0
\(943\) −8.48528 + 8.48528i −0.276319 + 0.276319i
\(944\) 0 0
\(945\) 0 0
\(946\) 14.1421i 0.459800i
\(947\) −15.0000 + 15.0000i −0.487435 + 0.487435i −0.907496 0.420061i \(-0.862009\pi\)
0.420061 + 0.907496i \(0.362009\pi\)
\(948\) 0 0
\(949\) −8.48528 −0.275444
\(950\) −1.94975 21.7071i −0.0632582 0.704272i
\(951\) 0 0
\(952\) −4.24264 4.24264i −0.137505 0.137505i
\(953\) −12.7279 + 12.7279i −0.412298 + 0.412298i −0.882538 0.470240i \(-0.844167\pi\)
0.470240 + 0.882538i \(0.344167\pi\)
\(954\) 0 0
\(955\) 16.0000 32.0000i 0.517748 1.03550i
\(956\) 10.0000 0.323423
\(957\) 0 0
\(958\) −22.6274 + 22.6274i −0.731059 + 0.731059i
\(959\) 6.00000i 0.193750i
\(960\) 0 0
\(961\) −41.0000 −1.32258
\(962\) −25.4558 25.4558i −0.820729 0.820729i
\(963\) 0 0
\(964\) 8.48528 0.273293
\(965\) 4.24264 + 12.7279i 0.136575 + 0.409726i
\(966\) 0 0
\(967\) −13.0000 + 13.0000i −0.418052 + 0.418052i −0.884532 0.466480i \(-0.845522\pi\)
0.466480 + 0.884532i \(0.345522\pi\)
\(968\) −4.94975 + 4.94975i −0.159091 + 0.159091i
\(969\) 0 0
\(970\) 12.0000 + 6.00000i 0.385297 + 0.192648i
\(971\) 50.9117i 1.63383i −0.576755 0.816917i \(-0.695681\pi\)
0.576755 0.816917i \(-0.304319\pi\)
\(972\) 0 0
\(973\) 12.0000 + 12.0000i 0.384702 + 0.384702i
\(974\) 36.0000i 1.15351i
\(975\) 0 0
\(976\) −8.00000 −0.256074
\(977\) −4.24264 4.24264i −0.135734 0.135734i 0.635975 0.771709i \(-0.280598\pi\)
−0.771709 + 0.635975i \(0.780598\pi\)
\(978\) 0 0
\(979\) −16.9706 −0.542382
\(980\) −5.00000 + 10.0000i −0.159719 + 0.319438i
\(981\) 0 0
\(982\) 19.7990 + 19.7990i 0.631811 + 0.631811i
\(983\) 16.9706 16.9706i 0.541277 0.541277i −0.382626 0.923903i \(-0.624980\pi\)
0.923903 + 0.382626i \(0.124980\pi\)
\(984\) 0 0
\(985\) 5.00000 + 15.0000i 0.159313 + 0.477940i
\(986\) 0 0
\(987\) 0 0
\(988\) −22.2426 13.7574i −0.707633 0.437680i
\(989\) 10.0000i 0.317982i
\(990\) 0 0
\(991\) 33.9411i 1.07818i −0.842250 0.539088i \(-0.818769\pi\)
0.842250 0.539088i \(-0.181231\pi\)
\(992\) 6.00000 6.00000i 0.190500 0.190500i
\(993\) 0 0
\(994\) 12.0000i 0.380617i
\(995\) −36.0000 18.0000i −1.14128 0.570638i
\(996\) 0 0
\(997\) 11.0000 11.0000i 0.348373 0.348373i −0.511130 0.859503i \(-0.670773\pi\)
0.859503 + 0.511130i \(0.170773\pi\)
\(998\) 25.4558 25.4558i 0.805791 0.805791i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1710.2.p.a.1063.1 4
3.2 odd 2 190.2.f.a.113.2 yes 4
5.2 odd 4 inner 1710.2.p.a.37.2 4
15.2 even 4 190.2.f.a.37.1 4
15.8 even 4 950.2.f.a.607.2 4
15.14 odd 2 950.2.f.a.493.1 4
19.18 odd 2 inner 1710.2.p.a.1063.2 4
57.56 even 2 190.2.f.a.113.1 yes 4
95.37 even 4 inner 1710.2.p.a.37.1 4
285.113 odd 4 950.2.f.a.607.1 4
285.227 odd 4 190.2.f.a.37.2 yes 4
285.284 even 2 950.2.f.a.493.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
190.2.f.a.37.1 4 15.2 even 4
190.2.f.a.37.2 yes 4 285.227 odd 4
190.2.f.a.113.1 yes 4 57.56 even 2
190.2.f.a.113.2 yes 4 3.2 odd 2
950.2.f.a.493.1 4 15.14 odd 2
950.2.f.a.493.2 4 285.284 even 2
950.2.f.a.607.1 4 285.113 odd 4
950.2.f.a.607.2 4 15.8 even 4
1710.2.p.a.37.1 4 95.37 even 4 inner
1710.2.p.a.37.2 4 5.2 odd 4 inner
1710.2.p.a.1063.1 4 1.1 even 1 trivial
1710.2.p.a.1063.2 4 19.18 odd 2 inner