Properties

Label 1725.1.bc.a.476.1
Level 17251725
Weight 11
Character 1725.476
Analytic conductor 0.8610.861
Analytic rank 00
Dimension 2020
Projective image D11D_{11}
CM discriminant -15
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1725,1,Mod(26,1725)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1725, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([11, 0, 16]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1725.26");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 1725=35223 1725 = 3 \cdot 5^{2} \cdot 23
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1725.bc (of order 2222, degree 1010, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.8608871467920.860887146792
Analytic rank: 00
Dimension: 2020
Relative dimension: 22 over Q(ζ22)\Q(\zeta_{22})
Coefficient field: Q(ζ44)\Q(\zeta_{44})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x20x18+x16x14+x12x10+x8x6+x4x2+1 x^{20} - x^{18} + x^{16} - x^{14} + x^{12} - x^{10} + x^{8} - x^{6} + x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 345)
Projective image: D11D_{11}
Projective field: Galois closure of Q[x]/(x11)\mathbb{Q}[x]/(x^{11} - \cdots)

Embedding invariants

Embedding label 476.1
Root 0.540641+0.841254i-0.540641 + 0.841254i of defining polynomial
Character χ\chi == 1725.476
Dual form 1725.1.bc.a.1301.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(1.271551.10181i)q2+(0.5406410.841254i)q3+(0.260554+1.81219i)q4+(0.239446+1.66538i)q6+(0.7557501.17597i)q8+(0.415415+0.909632i)q9+(1.383651.19894i)q12+(0.500000+0.146813i)q16+(0.281733+0.0405070i)q17+(1.530460.698939i)q18+(0.2731001.89945i)q19+(0.755750+0.654861i)q231.39788q24+(0.9898210.142315i)q27+(1.614351.03748i)q31+(0.4740170.216476i)q32+(0.3136070.361922i)q34+(1.756670.515804i)q36+(1.74557+2.71616i)q38+1.68251q461.30972iq47+(0.393828+0.341254i)q48+(0.841254+0.540641i)q49+(0.1182390.258908i)q51+(0.3689911.25667i)q53+(1.415420.909632i)q54+(1.45027+1.25667i)q57+(1.101810.708089i)q61+(0.909632+3.09792i)q62+(0.580699+1.27155i)q64+0.521109iq68+(0.959493+0.281733i)q69+(0.755750+1.17597i)q72+(3.371020.989821i)q76+(0.797176+0.234072i)q79+(0.6548610.755750i)q81+(1.530460.698939i)q83+(1.383651.19894i)q92+1.91899iq93+(1.44306+1.66538i)q94+(0.0741615+0.515804i)q96+(1.66538+0.239446i)q98+O(q100)q+(-1.27155 - 1.10181i) q^{2} +(-0.540641 - 0.841254i) q^{3} +(0.260554 + 1.81219i) q^{4} +(-0.239446 + 1.66538i) q^{6} +(0.755750 - 1.17597i) q^{8} +(-0.415415 + 0.909632i) q^{9} +(1.38365 - 1.19894i) q^{12} +(-0.500000 + 0.146813i) q^{16} +(0.281733 + 0.0405070i) q^{17} +(1.53046 - 0.698939i) q^{18} +(-0.273100 - 1.89945i) q^{19} +(-0.755750 + 0.654861i) q^{23} -1.39788 q^{24} +(0.989821 - 0.142315i) q^{27} +(-1.61435 - 1.03748i) q^{31} +(-0.474017 - 0.216476i) q^{32} +(-0.313607 - 0.361922i) q^{34} +(-1.75667 - 0.515804i) q^{36} +(-1.74557 + 2.71616i) q^{38} +1.68251 q^{46} -1.30972i q^{47} +(0.393828 + 0.341254i) q^{48} +(-0.841254 + 0.540641i) q^{49} +(-0.118239 - 0.258908i) q^{51} +(-0.368991 - 1.25667i) q^{53} +(-1.41542 - 0.909632i) q^{54} +(-1.45027 + 1.25667i) q^{57} +(-1.10181 - 0.708089i) q^{61} +(0.909632 + 3.09792i) q^{62} +(0.580699 + 1.27155i) q^{64} +0.521109i q^{68} +(0.959493 + 0.281733i) q^{69} +(0.755750 + 1.17597i) q^{72} +(3.37102 - 0.989821i) q^{76} +(0.797176 + 0.234072i) q^{79} +(-0.654861 - 0.755750i) q^{81} +(-1.53046 - 0.698939i) q^{83} +(-1.38365 - 1.19894i) q^{92} +1.91899i q^{93} +(-1.44306 + 1.66538i) q^{94} +(0.0741615 + 0.515804i) q^{96} +(1.66538 + 0.239446i) q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 20q+6q44q6+2q910q16+4q19+8q244q3114q346q364q46+2q494q5118q544q618q64+2q69+10q76+4q79++10q96+O(q100) 20 q + 6 q^{4} - 4 q^{6} + 2 q^{9} - 10 q^{16} + 4 q^{19} + 8 q^{24} - 4 q^{31} - 14 q^{34} - 6 q^{36} - 4 q^{46} + 2 q^{49} - 4 q^{51} - 18 q^{54} - 4 q^{61} - 8 q^{64} + 2 q^{69} + 10 q^{76} + 4 q^{79}+ \cdots + 10 q^{96}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1725Z)×\left(\mathbb{Z}/1725\mathbb{Z}\right)^\times.

nn 277277 11511151 12011201
χ(n)\chi(n) 11 1-1 e(411)e\left(\frac{4}{11}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −1.27155 1.10181i −1.27155 1.10181i −0.989821 0.142315i 0.954545π-0.954545\pi
−0.281733 0.959493i 0.590909π-0.590909\pi
33 −0.540641 0.841254i −0.540641 0.841254i
44 0.260554 + 1.81219i 0.260554 + 1.81219i
55 0 0
66 −0.239446 + 1.66538i −0.239446 + 1.66538i
77 0 0 −0.281733 0.959493i 0.590909π-0.590909\pi
0.281733 + 0.959493i 0.409091π0.409091\pi
88 0.755750 1.17597i 0.755750 1.17597i
99 −0.415415 + 0.909632i −0.415415 + 0.909632i
1010 0 0
1111 0 0 −0.654861 0.755750i 0.727273π-0.727273\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
1212 1.38365 1.19894i 1.38365 1.19894i
1313 0 0 0.281733 0.959493i 0.409091π-0.409091\pi
−0.281733 + 0.959493i 0.590909π0.590909\pi
1414 0 0
1515 0 0
1616 −0.500000 + 0.146813i −0.500000 + 0.146813i
1717 0.281733 + 0.0405070i 0.281733 + 0.0405070i 0.281733 0.959493i 0.409091π-0.409091\pi
1.00000i 0.5π0.5\pi
1818 1.53046 0.698939i 1.53046 0.698939i
1919 −0.273100 1.89945i −0.273100 1.89945i −0.415415 0.909632i 0.636364π-0.636364\pi
0.142315 0.989821i 0.454545π-0.454545\pi
2020 0 0
2121 0 0
2222 0 0
2323 −0.755750 + 0.654861i −0.755750 + 0.654861i
2424 −1.39788 −1.39788
2525 0 0
2626 0 0
2727 0.989821 0.142315i 0.989821 0.142315i
2828 0 0
2929 0 0 0.142315 0.989821i 0.454545π-0.454545\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
3030 0 0
3131 −1.61435 1.03748i −1.61435 1.03748i −0.959493 0.281733i 0.909091π-0.909091\pi
−0.654861 0.755750i 0.727273π-0.727273\pi
3232 −0.474017 0.216476i −0.474017 0.216476i
3333 0 0
3434 −0.313607 0.361922i −0.313607 0.361922i
3535 0 0
3636 −1.75667 0.515804i −1.75667 0.515804i
3737 0 0 −0.909632 0.415415i 0.863636π-0.863636\pi
0.909632 + 0.415415i 0.136364π0.136364\pi
3838 −1.74557 + 2.71616i −1.74557 + 2.71616i
3939 0 0
4040 0 0
4141 0 0 −0.415415 0.909632i 0.636364π-0.636364\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
4242 0 0
4343 0 0 −0.540641 0.841254i 0.681818π-0.681818\pi
0.540641 + 0.841254i 0.318182π0.318182\pi
4444 0 0
4545 0 0
4646 1.68251 1.68251
4747 1.30972i 1.30972i −0.755750 0.654861i 0.772727π-0.772727\pi
0.755750 0.654861i 0.227273π-0.227273\pi
4848 0.393828 + 0.341254i 0.393828 + 0.341254i
4949 −0.841254 + 0.540641i −0.841254 + 0.540641i
5050 0 0
5151 −0.118239 0.258908i −0.118239 0.258908i
5252 0 0
5353 −0.368991 1.25667i −0.368991 1.25667i −0.909632 0.415415i 0.863636π-0.863636\pi
0.540641 0.841254i 0.318182π-0.318182\pi
5454 −1.41542 0.909632i −1.41542 0.909632i
5555 0 0
5656 0 0
5757 −1.45027 + 1.25667i −1.45027 + 1.25667i
5858 0 0
5959 0 0 −0.959493 0.281733i 0.909091π-0.909091\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
6060 0 0
6161 −1.10181 0.708089i −1.10181 0.708089i −0.142315 0.989821i 0.545455π-0.545455\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
6262 0.909632 + 3.09792i 0.909632 + 3.09792i
6363 0 0
6464 0.580699 + 1.27155i 0.580699 + 1.27155i
6565 0 0
6666 0 0
6767 0 0 −0.755750 0.654861i 0.772727π-0.772727\pi
0.755750 + 0.654861i 0.227273π0.227273\pi
6868 0.521109i 0.521109i
6969 0.959493 + 0.281733i 0.959493 + 0.281733i
7070 0 0
7171 0 0 0.654861 0.755750i 0.272727π-0.272727\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
7272 0.755750 + 1.17597i 0.755750 + 1.17597i
7373 0 0 0.989821 0.142315i 0.0454545π-0.0454545\pi
−0.989821 + 0.142315i 0.954545π0.954545\pi
7474 0 0
7575 0 0
7676 3.37102 0.989821i 3.37102 0.989821i
7777 0 0
7878 0 0
7979 0.797176 + 0.234072i 0.797176 + 0.234072i 0.654861 0.755750i 0.272727π-0.272727\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
8080 0 0
8181 −0.654861 0.755750i −0.654861 0.755750i
8282 0 0
8383 −1.53046 0.698939i −1.53046 0.698939i −0.540641 0.841254i 0.681818π-0.681818\pi
−0.989821 + 0.142315i 0.954545π0.954545\pi
8484 0 0
8585 0 0
8686 0 0
8787 0 0
8888 0 0
8989 0 0 0.841254 0.540641i 0.181818π-0.181818\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
9090 0 0
9191 0 0
9292 −1.38365 1.19894i −1.38365 1.19894i
9393 1.91899i 1.91899i
9494 −1.44306 + 1.66538i −1.44306 + 1.66538i
9595 0 0
9696 0.0741615 + 0.515804i 0.0741615 + 0.515804i
9797 0 0 0.909632 0.415415i 0.136364π-0.136364\pi
−0.909632 + 0.415415i 0.863636π0.863636\pi
9898 1.66538 + 0.239446i 1.66538 + 0.239446i
9999 0 0
100100 0 0
101101 0 0 0.415415 0.909632i 0.363636π-0.363636\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
102102 −0.134919 + 0.459493i −0.134919 + 0.459493i
103103 0 0 0.755750 0.654861i 0.227273π-0.227273\pi
−0.755750 + 0.654861i 0.772727π0.772727\pi
104104 0 0
105105 0 0
106106 −0.915415 + 2.00448i −0.915415 + 2.00448i
107107 −0.449181 + 0.698939i −0.449181 + 0.698939i −0.989821 0.142315i 0.954545π-0.954545\pi
0.540641 + 0.841254i 0.318182π0.318182\pi
108108 0.515804 + 1.75667i 0.515804 + 1.75667i
109109 0.118239 0.822373i 0.118239 0.822373i −0.841254 0.540641i 0.818182π-0.818182\pi
0.959493 0.281733i 0.0909091π-0.0909091\pi
110110 0 0
111111 0 0
112112 0 0
113113 1.27155 + 1.10181i 1.27155 + 1.10181i 0.989821 + 0.142315i 0.0454545π0.0454545\pi
0.281733 + 0.959493i 0.409091π0.409091\pi
114114 3.22871 3.22871
115115 0 0
116116 0 0
117117 0 0
118118 0 0
119119 0 0
120120 0 0
121121 −0.142315 + 0.989821i −0.142315 + 0.989821i
122122 0.620830 + 2.11435i 0.620830 + 2.11435i
123123 0 0
124124 1.45949 3.19584i 1.45949 3.19584i
125125 0 0
126126 0 0
127127 0 0 0.755750 0.654861i 0.227273π-0.227273\pi
−0.755750 + 0.654861i 0.772727π0.772727\pi
128128 0.515804 1.75667i 0.515804 1.75667i
129129 0 0
130130 0 0
131131 0 0 0.959493 0.281733i 0.0909091π-0.0909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 0.260554 0.300696i 0.260554 0.300696i
137137 0.830830i 0.830830i 0.909632 + 0.415415i 0.136364π0.136364\pi
−0.909632 + 0.415415i 0.863636π0.863636\pi
138138 −0.909632 1.41542i −0.909632 1.41542i
139139 1.30972 1.30972 0.654861 0.755750i 0.272727π-0.272727\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
140140 0 0
141141 −1.10181 + 0.708089i −1.10181 + 0.708089i
142142 0 0
143143 0 0
144144 0.0741615 0.515804i 0.0741615 0.515804i
145145 0 0
146146 0 0
147147 0.909632 + 0.415415i 0.909632 + 0.415415i
148148 0 0
149149 0 0 −0.654861 0.755750i 0.727273π-0.727273\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
150150 0 0
151151 0.273100 + 0.0801894i 0.273100 + 0.0801894i 0.415415 0.909632i 0.363636π-0.363636\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
152152 −2.44009 1.11435i −2.44009 1.11435i
153153 −0.153882 + 0.239446i −0.153882 + 0.239446i
154154 0 0
155155 0 0
156156 0 0
157157 0 0 0.989821 0.142315i 0.0454545π-0.0454545\pi
−0.989821 + 0.142315i 0.954545π0.954545\pi
158158 −0.755750 1.17597i −0.755750 1.17597i
159159 −0.857685 + 0.989821i −0.857685 + 0.989821i
160160 0 0
161161 0 0
162162 1.68251i 1.68251i
163163 0 0 −0.755750 0.654861i 0.772727π-0.772727\pi
0.755750 + 0.654861i 0.227273π0.227273\pi
164164 0 0
165165 0 0
166166 1.17597 + 2.57501i 1.17597 + 2.57501i
167167 −0.822373 0.118239i −0.822373 0.118239i −0.281733 0.959493i 0.590909π-0.590909\pi
−0.540641 + 0.841254i 0.681818π0.681818\pi
168168 0 0
169169 −0.841254 0.540641i −0.841254 0.540641i
170170 0 0
171171 1.84125 + 0.540641i 1.84125 + 0.540641i
172172 0 0
173173 0.989821 0.857685i 0.989821 0.857685i 1.00000i 0.5π-0.5\pi
0.989821 + 0.142315i 0.0454545π0.0454545\pi
174174 0 0
175175 0 0
176176 0 0
177177 0 0
178178 0 0
179179 0 0 −0.415415 0.909632i 0.636364π-0.636364\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
180180 0 0
181181 −0.239446 + 0.153882i −0.239446 + 0.153882i −0.654861 0.755750i 0.727273π-0.727273\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
182182 0 0
183183 1.30972i 1.30972i
184184 0.198939 + 1.38365i 0.198939 + 1.38365i
185185 0 0
186186 2.11435 2.44009i 2.11435 2.44009i
187187 0 0
188188 2.37347 0.341254i 2.37347 0.341254i
189189 0 0
190190 0 0
191191 0 0 0.959493 0.281733i 0.0909091π-0.0909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
192192 0.755750 1.17597i 0.755750 1.17597i
193193 0 0 −0.909632 0.415415i 0.863636π-0.863636\pi
0.909632 + 0.415415i 0.136364π0.136364\pi
194194 0 0
195195 0 0
196196 −1.19894 1.38365i −1.19894 1.38365i
197197 0.234072 0.797176i 0.234072 0.797176i −0.755750 0.654861i 0.772727π-0.772727\pi
0.989821 0.142315i 0.0454545π-0.0454545\pi
198198 0 0
199199 −1.41542 0.909632i −1.41542 0.909632i −0.415415 0.909632i 0.636364π-0.636364\pi
−1.00000 π\pi
200200 0 0
201201 0 0
202202 0 0
203203 0 0
204204 0.438384 0.281733i 0.438384 0.281733i
205205 0 0
206206 0 0
207207 −0.281733 0.959493i −0.281733 0.959493i
208208 0 0
209209 0 0
210210 0 0
211211 0.0405070 + 0.281733i 0.0405070 + 0.281733i 1.00000 00
−0.959493 + 0.281733i 0.909091π0.909091\pi
212212 2.18119 0.996114i 2.18119 0.996114i
213213 0 0
214214 1.34125 0.393828i 1.34125 0.393828i
215215 0 0
216216 0.580699 1.27155i 0.580699 1.27155i
217217 0 0
218218 −1.05645 + 0.915415i −1.05645 + 0.915415i
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 0 0 −0.281733 0.959493i 0.590909π-0.590909\pi
0.281733 + 0.959493i 0.409091π0.409091\pi
224224 0 0
225225 0 0
226226 −0.402869 2.80202i −0.402869 2.80202i
227227 −0.708089 1.10181i −0.708089 1.10181i −0.989821 0.142315i 0.954545π-0.954545\pi
0.281733 0.959493i 0.409091π-0.409091\pi
228228 −2.65520 2.30075i −2.65520 2.30075i
229229 −1.68251 −1.68251 −0.841254 0.540641i 0.818182π-0.818182\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
230230 0 0
231231 0 0
232232 0 0
233233 −0.449181 0.698939i −0.449181 0.698939i 0.540641 0.841254i 0.318182π-0.318182\pi
−0.989821 + 0.142315i 0.954545π0.954545\pi
234234 0 0
235235 0 0
236236 0 0
237237 −0.234072 0.797176i −0.234072 0.797176i
238238 0 0
239239 0 0 0.415415 0.909632i 0.363636π-0.363636\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
240240 0 0
241241 0.186393 + 0.215109i 0.186393 + 0.215109i 0.841254 0.540641i 0.181818π-0.181818\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
242242 1.27155 1.10181i 1.27155 1.10181i
243243 −0.281733 + 0.959493i −0.281733 + 0.959493i
244244 0.996114 2.18119i 0.996114 2.18119i
245245 0 0
246246 0 0
247247 0 0
248248 −2.44009 + 1.11435i −2.44009 + 1.11435i
249249 0.239446 + 1.66538i 0.239446 + 1.66538i
250250 0 0
251251 0 0 0.654861 0.755750i 0.272727π-0.272727\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 −1.41542 + 0.909632i −1.41542 + 0.909632i
257257 −0.281733 + 0.0405070i −0.281733 + 0.0405070i −0.281733 0.959493i 0.590909π-0.590909\pi
1.00000i 0.5π0.5\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 0 0
263263 0.540641 1.84125i 0.540641 1.84125i 1.00000i 0.5π-0.5\pi
0.540641 0.841254i 0.318182π-0.318182\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 0 0
269269 0 0 0.959493 0.281733i 0.0909091π-0.0909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
270270 0 0
271271 −0.544078 1.19136i −0.544078 1.19136i −0.959493 0.281733i 0.909091π-0.909091\pi
0.415415 0.909632i 0.363636π-0.363636\pi
272272 −0.146813 + 0.0211086i −0.146813 + 0.0211086i
273273 0 0
274274 0.915415 1.05645i 0.915415 1.05645i
275275 0 0
276276 −0.260554 + 1.81219i −0.260554 + 1.81219i
277277 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
278278 −1.66538 1.44306i −1.66538 1.44306i
279279 1.61435 1.03748i 1.61435 1.03748i
280280 0 0
281281 0 0 −0.415415 0.909632i 0.636364π-0.636364\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
282282 2.18119 + 0.313607i 2.18119 + 0.313607i
283283 0 0 −0.281733 0.959493i 0.590909π-0.590909\pi
0.281733 + 0.959493i 0.409091π0.409091\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0.393828 0.341254i 0.393828 0.341254i
289289 −0.881761 0.258908i −0.881761 0.258908i
290290 0 0
291291 0 0
292292 0 0
293293 1.66538 + 0.239446i 1.66538 + 0.239446i 0.909632 0.415415i 0.136364π-0.136364\pi
0.755750 + 0.654861i 0.227273π0.227273\pi
294294 −0.698939 1.53046i −0.698939 1.53046i
295295 0 0
296296 0 0
297297 0 0
298298 0 0
299299 0 0
300300 0 0
301301 0 0
302302 −0.258908 0.402869i −0.258908 0.402869i
303303 0 0
304304 0.415415 + 0.909632i 0.415415 + 0.909632i
305305 0 0
306306 0.459493 0.134919i 0.459493 0.134919i
307307 0 0 0.540641 0.841254i 0.318182π-0.318182\pi
−0.540641 + 0.841254i 0.681818π0.681818\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 −0.654861 0.755750i 0.727273π-0.727273\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
312312 0 0
313313 0 0 −0.909632 0.415415i 0.863636π-0.863636\pi
0.909632 + 0.415415i 0.136364π0.136364\pi
314314 0 0
315315 0 0
316316 −0.216476 + 1.50563i −0.216476 + 1.50563i
317317 0.258908 0.118239i 0.258908 0.118239i −0.281733 0.959493i 0.590909π-0.590909\pi
0.540641 + 0.841254i 0.318182π0.318182\pi
318318 2.18119 0.313607i 2.18119 0.313607i
319319 0 0
320320 0 0
321321 0.830830 0.830830
322322 0 0
323323 0.546200i 0.546200i
324324 1.19894 1.38365i 1.19894 1.38365i
325325 0 0
326326 0 0
327327 −0.755750 + 0.345139i −0.755750 + 0.345139i
328328 0 0
329329 0 0
330330 0 0
331331 0.698939 1.53046i 0.698939 1.53046i −0.142315 0.989821i 0.545455π-0.545455\pi
0.841254 0.540641i 0.181818π-0.181818\pi
332332 0.867845 2.95561i 0.867845 2.95561i
333333 0 0
334334 0.915415 + 1.05645i 0.915415 + 1.05645i
335335 0 0
336336 0 0
337337 0 0 0.540641 0.841254i 0.318182π-0.318182\pi
−0.540641 + 0.841254i 0.681818π0.681818\pi
338338 0.474017 + 1.61435i 0.474017 + 1.61435i
339339 0.239446 1.66538i 0.239446 1.66538i
340340 0 0
341341 0 0
342342 −1.74557 2.71616i −1.74557 2.71616i
343343 0 0
344344 0 0
345345 0 0
346346 −2.20362 −2.20362
347347 1.45027 + 1.25667i 1.45027 + 1.25667i 0.909632 + 0.415415i 0.136364π0.136364\pi
0.540641 + 0.841254i 0.318182π0.318182\pi
348348 0 0
349349 0.239446 + 1.66538i 0.239446 + 1.66538i 0.654861 + 0.755750i 0.272727π0.272727\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
350350 0 0
351351 0 0
352352 0 0
353353 −1.03748 + 1.61435i −1.03748 + 1.61435i −0.281733 + 0.959493i 0.590909π0.590909\pi
−0.755750 + 0.654861i 0.772727π0.772727\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 0 0 0.415415 0.909632i 0.363636π-0.363636\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
360360 0 0
361361 −2.57385 + 0.755750i −2.57385 + 0.755750i
362362 0.474017 + 0.0681534i 0.474017 + 0.0681534i
363363 0.909632 0.415415i 0.909632 0.415415i
364364 0 0
365365 0 0
366366 1.44306 1.66538i 1.44306 1.66538i
367367 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
368368 0.281733 0.438384i 0.281733 0.438384i
369369 0 0
370370 0 0
371371 0 0
372372 −3.47758 + 0.500000i −3.47758 + 0.500000i
373373 0 0 0.909632 0.415415i 0.136364π-0.136364\pi
−0.909632 + 0.415415i 0.863636π0.863636\pi
374374 0 0
375375 0 0
376376 −1.54019 0.989821i −1.54019 0.989821i
377377 0 0
378378 0 0
379379 1.10181 + 1.27155i 1.10181 + 1.27155i 0.959493 + 0.281733i 0.0909091π0.0909091\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
380380 0 0
381381 0 0
382382 0 0
383383 0.909632 1.41542i 0.909632 1.41542i 1.00000i 0.5π-0.5\pi
0.909632 0.415415i 0.136364π-0.136364\pi
384384 −1.75667 + 0.515804i −1.75667 + 0.515804i
385385 0 0
386386 0 0
387387 0 0
388388 0 0
389389 0 0 0.654861 0.755750i 0.272727π-0.272727\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
390390 0 0
391391 −0.239446 + 0.153882i −0.239446 + 0.153882i
392392 1.39788i 1.39788i
393393 0 0
394394 −1.17597 + 0.755750i −1.17597 + 0.755750i
395395 0 0
396396 0 0
397397 0 0 −0.989821 0.142315i 0.954545π-0.954545\pi
0.989821 + 0.142315i 0.0454545π0.0454545\pi
398398 0.797537 + 2.71616i 0.797537 + 2.71616i
399399 0 0
400400 0 0
401401 0 0 −0.959493 0.281733i 0.909091π-0.909091\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
402402 0 0
403403 0 0
404404 0 0
405405 0 0
406406 0 0
407407 0 0
408408 −0.393828 0.0566239i −0.393828 0.0566239i
409409 0.118239 + 0.258908i 0.118239 + 0.258908i 0.959493 0.281733i 0.0909091π-0.0909091\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
410410 0 0
411411 0.698939 0.449181i 0.698939 0.449181i
412412 0 0
413413 0 0
414414 −0.698939 + 1.53046i −0.698939 + 1.53046i
415415 0 0
416416 0 0
417417 −0.708089 1.10181i −0.708089 1.10181i
418418 0 0
419419 0 0 −0.415415 0.909632i 0.636364π-0.636364\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
420420 0 0
421421 1.84125 0.540641i 1.84125 0.540641i 0.841254 0.540641i 0.181818π-0.181818\pi
1.00000 00
422422 0.258908 0.402869i 0.258908 0.402869i
423423 1.19136 + 0.544078i 1.19136 + 0.544078i
424424 −1.75667 0.515804i −1.75667 0.515804i
425425 0 0
426426 0 0
427427 0 0
428428 −1.38365 0.631891i −1.38365 0.631891i
429429 0 0
430430 0 0
431431 0 0 0.142315 0.989821i 0.454545π-0.454545\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
432432 −0.474017 + 0.216476i −0.474017 + 0.216476i
433433 0 0 0.989821 0.142315i 0.0454545π-0.0454545\pi
−0.989821 + 0.142315i 0.954545π0.954545\pi
434434 0 0
435435 0 0
436436 1.52111 1.52111
437437 1.45027 + 1.25667i 1.45027 + 1.25667i
438438 0 0
439439 1.10181 1.27155i 1.10181 1.27155i 0.142315 0.989821i 0.454545π-0.454545\pi
0.959493 0.281733i 0.0909091π-0.0909091\pi
440440 0 0
441441 −0.142315 0.989821i −0.142315 0.989821i
442442 0 0
443443 −0.281733 0.0405070i −0.281733 0.0405070i 1.00000i 0.5π-0.5\pi
−0.281733 + 0.959493i 0.590909π0.590909\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 0 0
449449 0 0 −0.654861 0.755750i 0.727273π-0.727273\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
450450 0 0
451451 0 0
452452 −1.66538 + 2.59138i −1.66538 + 2.59138i
453453 −0.0801894 0.273100i −0.0801894 0.273100i
454454 −0.313607 + 2.18119i −0.313607 + 2.18119i
455455 0 0
456456 0.381761 + 2.65520i 0.381761 + 2.65520i
457457 0 0 −0.540641 0.841254i 0.681818π-0.681818\pi
0.540641 + 0.841254i 0.318182π0.318182\pi
458458 2.13940 + 1.85380i 2.13940 + 1.85380i
459459 0.284630 0.284630
460460 0 0
461461 0 0 1.00000 00
−1.00000 π\pi
462462 0 0
463463 0 0 −0.540641 0.841254i 0.681818π-0.681818\pi
0.540641 + 0.841254i 0.318182π0.318182\pi
464464 0 0
465465 0 0
466466 −0.198939 + 1.38365i −0.198939 + 1.38365i
467467 0.0801894 + 0.273100i 0.0801894 + 0.273100i 0.989821 0.142315i 0.0454545π-0.0454545\pi
−0.909632 + 0.415415i 0.863636π0.863636\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 0 0
474474 −0.580699 + 1.27155i −0.580699 + 1.27155i
475475 0 0
476476 0 0
477477 1.29639 + 0.186393i 1.29639 + 0.186393i
478478 0 0
479479 0 0 −0.142315 0.989821i 0.545455π-0.545455\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
480480 0 0
481481 0 0
482482 0.478891i 0.478891i
483483 0 0
484484 −1.83083 −1.83083
485485 0 0
486486 1.41542 0.909632i 1.41542 0.909632i
487487 0 0 0.989821 0.142315i 0.0454545π-0.0454545\pi
−0.989821 + 0.142315i 0.954545π0.954545\pi
488488 −1.66538 + 0.760554i −1.66538 + 0.760554i
489489 0 0
490490 0 0
491491 0 0 −0.841254 0.540641i 0.818182π-0.818182\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0.959493 + 0.281733i 0.959493 + 0.281733i
497497 0 0
498498 1.53046 2.38145i 1.53046 2.38145i
499499 0.797176 0.234072i 0.797176 0.234072i 0.142315 0.989821i 0.454545π-0.454545\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
500500 0 0
501501 0.345139 + 0.755750i 0.345139 + 0.755750i
502502 0 0
503503 1.03748 + 1.61435i 1.03748 + 1.61435i 0.755750 + 0.654861i 0.227273π0.227273\pi
0.281733 + 0.959493i 0.409091π0.409091\pi
504504 0 0
505505 0 0
506506 0 0
507507 1.00000i 1.00000i
508508 0 0
509509 0 0 0.841254 0.540641i 0.181818π-0.181818\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
510510 0 0
511511 0 0
512512 0.989821 + 0.142315i 0.989821 + 0.142315i
513513 −0.540641 1.84125i −0.540641 1.84125i
514514 0.402869 + 0.258908i 0.402869 + 0.258908i
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 −1.25667 0.368991i −1.25667 0.368991i
520520 0 0
521521 0 0 −0.841254 0.540641i 0.818182π-0.818182\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
522522 0 0
523523 0 0 −0.989821 0.142315i 0.954545π-0.954545\pi
0.989821 + 0.142315i 0.0454545π0.0454545\pi
524524 0 0
525525 0 0
526526 −2.71616 + 1.74557i −2.71616 + 1.74557i
527527 −0.412791 0.357685i −0.412791 0.357685i
528528 0 0
529529 0.142315 0.989821i 0.142315 0.989821i
530530 0 0
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 0 0
539539 0 0
540540 0 0
541541 1.25667 + 1.45027i 1.25667 + 1.45027i 0.841254 + 0.540641i 0.181818π0.181818\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
542542 −0.620830 + 2.11435i −0.620830 + 2.11435i
543543 0.258908 + 0.118239i 0.258908 + 0.118239i
544544 −0.124777 0.0801894i −0.124777 0.0801894i
545545 0 0
546546 0 0
547547 0 0 0.909632 0.415415i 0.136364π-0.136364\pi
−0.909632 + 0.415415i 0.863636π0.863636\pi
548548 −1.50563 + 0.216476i −1.50563 + 0.216476i
549549 1.10181 0.708089i 1.10181 0.708089i
550550 0 0
551551 0 0
552552 1.05645 0.915415i 1.05645 0.915415i
553553 0 0
554554 0 0
555555 0 0
556556 0.341254 + 2.37347i 0.341254 + 2.37347i
557557 1.74557 0.797176i 1.74557 0.797176i 0.755750 0.654861i 0.227273π-0.227273\pi
0.989821 0.142315i 0.0454545π-0.0454545\pi
558558 −3.19584 0.459493i −3.19584 0.459493i
559559 0 0
560560 0 0
561561 0 0
562562 0 0
563563 0.989821 0.857685i 0.989821 0.857685i 1.00000i 0.5π-0.5\pi
0.989821 + 0.142315i 0.0454545π0.0454545\pi
564564 −1.57028 1.81219i −1.57028 1.81219i
565565 0 0
566566 0 0
567567 0 0
568568 0 0
569569 0 0 0.142315 0.989821i 0.454545π-0.454545\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
570570 0 0
571571 0.186393 + 1.29639i 0.186393 + 1.29639i 0.841254 + 0.540641i 0.181818π0.181818\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 −1.39788 −1.39788
577577 0 0 −0.755750 0.654861i 0.772727π-0.772727\pi
0.755750 + 0.654861i 0.227273π0.227273\pi
578578 0.835939 + 1.30075i 0.835939 + 1.30075i
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 −1.85380 2.13940i −1.85380 2.13940i
587587 −1.45027 + 1.25667i −1.45027 + 1.25667i −0.540641 + 0.841254i 0.681818π0.681818\pi
−0.909632 + 0.415415i 0.863636π0.863636\pi
588588 −0.515804 + 1.75667i −0.515804 + 1.75667i
589589 −1.52977 + 3.34973i −1.52977 + 3.34973i
590590 0 0
591591 −0.797176 + 0.234072i −0.797176 + 0.234072i
592592 0 0
593593 −1.74557 + 0.797176i −1.74557 + 0.797176i −0.755750 + 0.654861i 0.772727π0.772727\pi
−0.989821 + 0.142315i 0.954545π0.954545\pi
594594 0 0
595595 0 0
596596 0 0
597597 1.68251i 1.68251i
598598 0 0
599599 0 0 1.00000 00
−1.00000 π\pi
600600 0 0
601601 0.698939 0.449181i 0.698939 0.449181i −0.142315 0.989821i 0.545455π-0.545455\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
602602 0 0
603603 0 0
604604 −0.0741615 + 0.515804i −0.0741615 + 0.515804i
605605 0 0
606606 0 0
607607 0 0 −0.909632 0.415415i 0.863636π-0.863636\pi
0.909632 + 0.415415i 0.136364π0.136364\pi
608608 −0.281733 + 0.959493i −0.281733 + 0.959493i
609609 0 0
610610 0 0
611611 0 0
612612 −0.474017 0.216476i −0.474017 0.216476i
613613 0 0 0.540641 0.841254i 0.318182π-0.318182\pi
−0.540641 + 0.841254i 0.681818π0.681818\pi
614614 0 0
615615 0 0
616616 0 0
617617 −1.29639 + 0.186393i −1.29639 + 0.186393i −0.755750 0.654861i 0.772727π-0.772727\pi
−0.540641 + 0.841254i 0.681818π0.681818\pi
618618 0 0
619619 0.544078 0.627899i 0.544078 0.627899i −0.415415 0.909632i 0.636364π-0.636364\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
620620 0 0
621621 −0.654861 + 0.755750i −0.654861 + 0.755750i
622622 0 0
623623 0 0
624624 0 0
625625 0 0
626626 0 0
627627 0 0
628628 0 0
629629 0 0
630630 0 0
631631 0.273100 + 0.0801894i 0.273100 + 0.0801894i 0.415415 0.909632i 0.363636π-0.363636\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
632632 0.877726 0.760554i 0.877726 0.760554i
633633 0.215109 0.186393i 0.215109 0.186393i
634634 −0.459493 0.134919i −0.459493 0.134919i
635635 0 0
636636 −2.01722 1.29639i −2.01722 1.29639i
637637 0 0
638638 0 0
639639 0 0
640640 0 0
641641 0 0 0.841254 0.540641i 0.181818π-0.181818\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
642642 −1.05645 0.915415i −1.05645 0.915415i
643643 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
644644 0 0
645645 0 0
646646 −0.601808 + 0.694523i −0.601808 + 0.694523i
647647 −0.153882 0.239446i −0.153882 0.239446i 0.755750 0.654861i 0.227273π-0.227273\pi
−0.909632 + 0.415415i 0.863636π0.863636\pi
648648 −1.38365 + 0.198939i −1.38365 + 0.198939i
649649 0 0
650650 0 0
651651 0 0
652652 0 0
653653 −0.755750 0.345139i −0.755750 0.345139i 1.00000i 0.5π-0.5\pi
−0.755750 + 0.654861i 0.772727π0.772727\pi
654654 1.34125 + 0.393828i 1.34125 + 0.393828i
655655 0 0
656656 0 0
657657 0 0
658658 0 0
659659 0 0 −0.841254 0.540641i 0.818182π-0.818182\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
660660 0 0
661661 0.273100 1.89945i 0.273100 1.89945i −0.142315 0.989821i 0.545455π-0.545455\pi
0.415415 0.909632i 0.363636π-0.363636\pi
662662 −2.57501 + 1.17597i −2.57501 + 1.17597i
663663 0 0
664664 −1.97858 + 1.27155i −1.97858 + 1.27155i
665665 0 0
666666 0 0
667667 0 0
668668 1.52111i 1.52111i
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 0 0 −0.989821 0.142315i 0.954545π-0.954545\pi
0.989821 + 0.142315i 0.0454545π0.0454545\pi
674674 0 0
675675 0 0
676676 0.760554 1.66538i 0.760554 1.66538i
677677 0.234072 0.797176i 0.234072 0.797176i −0.755750 0.654861i 0.772727π-0.772727\pi
0.989821 0.142315i 0.0454545π-0.0454545\pi
678678 −2.13940 + 1.85380i −2.13940 + 1.85380i
679679 0 0
680680 0 0
681681 −0.544078 + 1.19136i −0.544078 + 1.19136i
682682 0 0
683683 −0.368991 1.25667i −0.368991 1.25667i −0.909632 0.415415i 0.863636π-0.863636\pi
0.540641 0.841254i 0.318182π-0.318182\pi
684684 −0.500000 + 3.47758i −0.500000 + 3.47758i
685685 0 0
686686 0 0
687687 0.909632 + 1.41542i 0.909632 + 1.41542i
688688 0 0
689689 0 0
690690 0 0
691691 1.68251 1.68251 0.841254 0.540641i 0.181818π-0.181818\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
692692 1.81219 + 1.57028i 1.81219 + 1.57028i
693693 0 0
694694 −0.459493 3.19584i −0.459493 3.19584i
695695 0 0
696696 0 0
697697 0 0
698698 1.53046 2.38145i 1.53046 2.38145i
699699 −0.345139 + 0.755750i −0.345139 + 0.755750i
700700 0 0
701701 0 0 −0.654861 0.755750i 0.727273π-0.727273\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 3.09792 0.909632i 3.09792 0.909632i
707707 0 0
708708 0 0
709709 −0.0405070 0.281733i −0.0405070 0.281733i 0.959493 0.281733i 0.0909091π-0.0909091\pi
−1.00000 π\pi
710710 0 0
711711 −0.544078 + 0.627899i −0.544078 + 0.627899i
712712 0 0
713713 1.89945 0.273100i 1.89945 0.273100i
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 0 0 0.142315 0.989821i 0.454545π-0.454545\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
720720 0 0
721721 0 0
722722 4.10548 + 1.87491i 4.10548 + 1.87491i
723723 0.0801894 0.273100i 0.0801894 0.273100i
724724 −0.341254 0.393828i −0.341254 0.393828i
725725 0 0
726726 −1.61435 0.474017i −1.61435 0.474017i
727727 0 0 −0.909632 0.415415i 0.863636π-0.863636\pi
0.909632 + 0.415415i 0.136364π0.136364\pi
728728 0 0
729729 0.959493 0.281733i 0.959493 0.281733i
730730 0 0
731731 0 0
732732 −2.37347 + 0.341254i −2.37347 + 0.341254i
733733 0 0 −0.540641 0.841254i 0.681818π-0.681818\pi
0.540641 + 0.841254i 0.318182π0.318182\pi
734734 0 0
735735 0 0
736736 0.500000 0.146813i 0.500000 0.146813i
737737 0 0
738738 0 0
739739 −1.41542 + 0.909632i −1.41542 + 0.909632i −0.415415 + 0.909632i 0.636364π0.636364\pi
−1.00000 π\pi
740740 0 0
741741 0 0
742742 0 0
743743 0.474017 + 1.61435i 0.474017 + 1.61435i 0.755750 + 0.654861i 0.227273π0.227273\pi
−0.281733 + 0.959493i 0.590909π0.590909\pi
744744 2.25667 + 1.45027i 2.25667 + 1.45027i
745745 0 0
746746 0 0
747747 1.27155 1.10181i 1.27155 1.10181i
748748 0 0
749749 0 0
750750 0 0
751751 −0.239446 0.153882i −0.239446 0.153882i 0.415415 0.909632i 0.363636π-0.363636\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
752752 0.192284 + 0.654861i 0.192284 + 0.654861i
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 0 0 −0.755750 0.654861i 0.772727π-0.772727\pi
0.755750 + 0.654861i 0.227273π0.227273\pi
758758 2.83083i 2.83083i
759759 0 0
760760 0 0
761761 0 0 0.654861 0.755750i 0.272727π-0.272727\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
762762 0 0
763763 0 0
764764 0 0
765765 0 0
766766 −2.71616 + 0.797537i −2.71616 + 0.797537i
767767 0 0
768768 1.53046 + 0.698939i 1.53046 + 0.698939i
769769 1.91899 + 0.563465i 1.91899 + 0.563465i 0.959493 + 0.281733i 0.0909091π0.0909091\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
770770 0 0
771771 0.186393 + 0.215109i 0.186393 + 0.215109i
772772 0 0
773773 1.74557 + 0.797176i 1.74557 + 0.797176i 0.989821 + 0.142315i 0.0454545π0.0454545\pi
0.755750 + 0.654861i 0.227273π0.227273\pi
774774 0 0
775775 0 0
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 0.474017 + 0.0681534i 0.474017 + 0.0681534i
783783 0 0
784784 0.341254 0.393828i 0.341254 0.393828i
785785 0 0
786786 0 0
787787 0 0 0.909632 0.415415i 0.136364π-0.136364\pi
−0.909632 + 0.415415i 0.863636π0.863636\pi
788788 1.50563 + 0.216476i 1.50563 + 0.216476i
789789 −1.84125 + 0.540641i −1.84125 + 0.540641i
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 0 0
795795 0 0
796796 1.27964 2.80202i 1.27964 2.80202i
797797 1.03748 1.61435i 1.03748 1.61435i 0.281733 0.959493i 0.409091π-0.409091\pi
0.755750 0.654861i 0.227273π-0.227273\pi
798798 0 0
799799 0.0530529 0.368991i 0.0530529 0.368991i
800800 0 0
801801 0 0
802802 0 0
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 0 0 −0.142315 0.989821i 0.545455π-0.545455\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
810810 0 0
811811 −0.118239 + 0.822373i −0.118239 + 0.822373i 0.841254 + 0.540641i 0.181818π0.181818\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
812812 0 0
813813 −0.708089 + 1.10181i −0.708089 + 1.10181i
814814 0 0
815815 0 0
816816 0.0971309 + 0.112095i 0.0971309 + 0.112095i
817817 0 0
818818 0.134919 0.459493i 0.134919 0.459493i
819819 0 0
820820 0 0
821821 0 0 0.959493 0.281733i 0.0909091π-0.0909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
822822 −1.38365 0.198939i −1.38365 0.198939i
823823 0 0 0.909632 0.415415i 0.136364π-0.136364\pi
−0.909632 + 0.415415i 0.863636π0.863636\pi
824824 0 0
825825 0 0
826826 0 0
827827 1.91899i 1.91899i −0.281733 0.959493i 0.590909π-0.590909\pi
0.281733 0.959493i 0.409091π-0.409091\pi
828828 1.66538 0.760554i 1.66538 0.760554i
829829 −0.830830 −0.830830 −0.415415 0.909632i 0.636364π-0.636364\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
830830 0 0
831831 0 0
832832 0 0
833833 −0.258908 + 0.118239i −0.258908 + 0.118239i
834834 −0.313607 + 2.18119i −0.313607 + 2.18119i
835835 0 0
836836 0 0
837837 −1.74557 0.797176i −1.74557 0.797176i
838838 0 0
839839 0 0 −0.654861 0.755750i 0.727273π-0.727273\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
840840 0 0
841841 −0.959493 0.281733i −0.959493 0.281733i
842842 −2.93694 1.34125i −2.93694 1.34125i
843843 0 0
844844 −0.500000 + 0.146813i −0.500000 + 0.146813i
845845 0 0
846846 −0.915415 2.00448i −0.915415 2.00448i
847847 0 0
848848 0.368991 + 0.574161i 0.368991 + 0.574161i
849849 0 0
850850 0 0
851851 0 0
852852 0 0
853853 0 0 −0.755750 0.654861i 0.772727π-0.772727\pi
0.755750 + 0.654861i 0.227273π0.227273\pi
854854 0 0
855855 0 0
856856 0.482462 + 1.05645i 0.482462 + 1.05645i
857857 1.89945 + 0.273100i 1.89945 + 0.273100i 0.989821 0.142315i 0.0454545π-0.0454545\pi
0.909632 + 0.415415i 0.136364π0.136364\pi
858858 0 0
859859 0.239446 + 0.153882i 0.239446 + 0.153882i 0.654861 0.755750i 0.272727π-0.272727\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
860860 0 0
861861 0 0
862862 0 0
863863 −0.627899 + 0.544078i −0.627899 + 0.544078i −0.909632 0.415415i 0.863636π-0.863636\pi
0.281733 + 0.959493i 0.409091π0.409091\pi
864864 −0.500000 0.146813i −0.500000 0.146813i
865865 0 0
866866 0 0
867867 0.258908 + 0.881761i 0.258908 + 0.881761i
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 −0.877726 0.760554i −0.877726 0.760554i
873873 0 0
874874 −0.459493 3.19584i −0.459493 3.19584i
875875 0 0
876876 0 0
877877 0 0 −0.540641 0.841254i 0.681818π-0.681818\pi
0.540641 + 0.841254i 0.318182π0.318182\pi
878878 −2.80202 + 0.402869i −2.80202 + 0.402869i
879879 −0.698939 1.53046i −0.698939 1.53046i
880880 0 0
881881 0 0 0.959493 0.281733i 0.0909091π-0.0909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
882882 −0.909632 + 1.41542i −0.909632 + 1.41542i
883883 0 0 −0.909632 0.415415i 0.863636π-0.863636\pi
0.909632 + 0.415415i 0.136364π0.136364\pi
884884 0 0
885885 0 0
886886 0.313607 + 0.361922i 0.313607 + 0.361922i
887887 −0.0801894 + 0.273100i −0.0801894 + 0.273100i −0.989821 0.142315i 0.954545π-0.954545\pi
0.909632 + 0.415415i 0.136364π0.136364\pi
888888 0 0
889889 0 0
890890 0 0
891891 0 0
892892 0 0
893893 −2.48775 + 0.357685i −2.48775 + 0.357685i
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 0 0
901901 −0.0530529 0.368991i −0.0530529 0.368991i
902902 0 0
903903 0 0
904904 2.25667 0.662618i 2.25667 0.662618i
905905 0 0
906906 −0.198939 + 0.435615i −0.198939 + 0.435615i
907907 0 0 0.281733 0.959493i 0.409091π-0.409091\pi
−0.281733 + 0.959493i 0.590909π0.590909\pi
908908 1.81219 1.57028i 1.81219 1.57028i
909909 0 0
910910 0 0
911911 0 0 0.415415 0.909632i 0.363636π-0.363636\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
912912 0.540641 0.841254i 0.540641 0.841254i
913913 0 0
914914 0 0
915915 0 0
916916 −0.438384 3.04903i −0.438384 3.04903i
917917 0 0
918918 −0.361922 0.313607i −0.361922 0.313607i
919919 0.284630 0.284630 0.142315 0.989821i 0.454545π-0.454545\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
920920 0 0
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 0 0
926926 0 0
927927 0 0
928928 0 0
929929 0 0 0.415415 0.909632i 0.363636π-0.363636\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
930930 0 0
931931 1.25667 + 1.45027i 1.25667 + 1.45027i
932932 1.14958 0.996114i 1.14958 0.996114i
933933 0 0
934934 0.198939 0.435615i 0.198939 0.435615i
935935 0 0
936936 0 0
937937 0 0 −0.989821 0.142315i 0.954545π-0.954545\pi
0.989821 + 0.142315i 0.0454545π0.0454545\pi
938938 0 0
939939 0 0
940940 0 0
941941 0 0 0.654861 0.755750i 0.272727π-0.272727\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 −1.29639 + 0.186393i −1.29639 + 0.186393i −0.755750 0.654861i 0.772727π-0.772727\pi
−0.540641 + 0.841254i 0.681818π0.681818\pi
948948 1.38365 0.631891i 1.38365 0.631891i
949949 0 0
950950 0 0
951951 −0.239446 0.153882i −0.239446 0.153882i
952952 0 0
953953 0.368991 1.25667i 0.368991 1.25667i −0.540641 0.841254i 0.681818π-0.681818\pi
0.909632 0.415415i 0.136364π-0.136364\pi
954954 −1.44306 1.66538i −1.44306 1.66538i
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 1.11435 + 2.44009i 1.11435 + 2.44009i
962962 0 0
963963 −0.449181 0.698939i −0.449181 0.698939i
964964 −0.341254 + 0.393828i −0.341254 + 0.393828i
965965 0 0
966966 0 0
967967 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
968968 1.05645 + 0.915415i 1.05645 + 0.915415i
969969 −0.459493 + 0.295298i −0.459493 + 0.295298i
970970 0 0
971971 0 0 −0.415415 0.909632i 0.636364π-0.636364\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
972972 −1.81219 0.260554i −1.81219 0.260554i
973973 0 0
974974 0 0
975975 0 0
976976 0.654861 + 0.192284i 0.654861 + 0.192284i
977977 0.627899 0.544078i 0.627899 0.544078i −0.281733 0.959493i 0.590909π-0.590909\pi
0.909632 + 0.415415i 0.136364π0.136364\pi
978978 0 0
979979 0 0
980980 0 0
981981 0.698939 + 0.449181i 0.698939 + 0.449181i
982982 0 0
983983 0.822373 + 0.118239i 0.822373 + 0.118239i 0.540641 0.841254i 0.318182π-0.318182\pi
0.281733 + 0.959493i 0.409091π0.409091\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 −0.544078 + 0.627899i −0.544078 + 0.627899i −0.959493 0.281733i 0.909091π-0.909091\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
992992 0.540641 + 0.841254i 0.540641 + 0.841254i
993993 −1.66538 + 0.239446i −1.66538 + 0.239446i
994994 0 0
995995 0 0
996996 −2.95561 + 0.867845i −2.95561 + 0.867845i
997997 0 0 0.540641 0.841254i 0.318182π-0.318182\pi
−0.540641 + 0.841254i 0.681818π0.681818\pi
998998 −1.27155 0.580699i −1.27155 0.580699i
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1725.1.bc.a.476.1 20
3.2 odd 2 inner 1725.1.bc.a.476.2 20
5.2 odd 4 345.1.p.b.269.1 yes 10
5.3 odd 4 345.1.p.a.269.1 yes 10
5.4 even 2 inner 1725.1.bc.a.476.2 20
15.2 even 4 345.1.p.a.269.1 yes 10
15.8 even 4 345.1.p.b.269.1 yes 10
15.14 odd 2 CM 1725.1.bc.a.476.1 20
23.13 even 11 inner 1725.1.bc.a.1301.2 20
69.59 odd 22 inner 1725.1.bc.a.1301.1 20
115.13 odd 44 345.1.p.a.59.1 10
115.59 even 22 inner 1725.1.bc.a.1301.1 20
115.82 odd 44 345.1.p.b.59.1 yes 10
345.59 odd 22 inner 1725.1.bc.a.1301.2 20
345.128 even 44 345.1.p.b.59.1 yes 10
345.197 even 44 345.1.p.a.59.1 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
345.1.p.a.59.1 10 115.13 odd 44
345.1.p.a.59.1 10 345.197 even 44
345.1.p.a.269.1 yes 10 5.3 odd 4
345.1.p.a.269.1 yes 10 15.2 even 4
345.1.p.b.59.1 yes 10 115.82 odd 44
345.1.p.b.59.1 yes 10 345.128 even 44
345.1.p.b.269.1 yes 10 5.2 odd 4
345.1.p.b.269.1 yes 10 15.8 even 4
1725.1.bc.a.476.1 20 1.1 even 1 trivial
1725.1.bc.a.476.1 20 15.14 odd 2 CM
1725.1.bc.a.476.2 20 3.2 odd 2 inner
1725.1.bc.a.476.2 20 5.4 even 2 inner
1725.1.bc.a.1301.1 20 69.59 odd 22 inner
1725.1.bc.a.1301.1 20 115.59 even 22 inner
1725.1.bc.a.1301.2 20 23.13 even 11 inner
1725.1.bc.a.1301.2 20 345.59 odd 22 inner