Properties

Label 1725.1.bc.a.476.1
Level $1725$
Weight $1$
Character 1725.476
Analytic conductor $0.861$
Analytic rank $0$
Dimension $20$
Projective image $D_{11}$
CM discriminant -15
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1725,1,Mod(26,1725)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1725, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([11, 0, 16]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1725.26");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1725 = 3 \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1725.bc (of order \(22\), degree \(10\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.860887146792\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(2\) over \(\Q(\zeta_{22})\)
Coefficient field: \(\Q(\zeta_{44})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - x^{18} + x^{16} - x^{14} + x^{12} - x^{10} + x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 345)
Projective image: \(D_{11}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{11} - \cdots)\)

Embedding invariants

Embedding label 476.1
Root \(-0.540641 + 0.841254i\) of defining polynomial
Character \(\chi\) \(=\) 1725.476
Dual form 1725.1.bc.a.1301.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.27155 - 1.10181i) q^{2} +(-0.540641 - 0.841254i) q^{3} +(0.260554 + 1.81219i) q^{4} +(-0.239446 + 1.66538i) q^{6} +(0.755750 - 1.17597i) q^{8} +(-0.415415 + 0.909632i) q^{9} +(1.38365 - 1.19894i) q^{12} +(-0.500000 + 0.146813i) q^{16} +(0.281733 + 0.0405070i) q^{17} +(1.53046 - 0.698939i) q^{18} +(-0.273100 - 1.89945i) q^{19} +(-0.755750 + 0.654861i) q^{23} -1.39788 q^{24} +(0.989821 - 0.142315i) q^{27} +(-1.61435 - 1.03748i) q^{31} +(-0.474017 - 0.216476i) q^{32} +(-0.313607 - 0.361922i) q^{34} +(-1.75667 - 0.515804i) q^{36} +(-1.74557 + 2.71616i) q^{38} +1.68251 q^{46} -1.30972i q^{47} +(0.393828 + 0.341254i) q^{48} +(-0.841254 + 0.540641i) q^{49} +(-0.118239 - 0.258908i) q^{51} +(-0.368991 - 1.25667i) q^{53} +(-1.41542 - 0.909632i) q^{54} +(-1.45027 + 1.25667i) q^{57} +(-1.10181 - 0.708089i) q^{61} +(0.909632 + 3.09792i) q^{62} +(0.580699 + 1.27155i) q^{64} +0.521109i q^{68} +(0.959493 + 0.281733i) q^{69} +(0.755750 + 1.17597i) q^{72} +(3.37102 - 0.989821i) q^{76} +(0.797176 + 0.234072i) q^{79} +(-0.654861 - 0.755750i) q^{81} +(-1.53046 - 0.698939i) q^{83} +(-1.38365 - 1.19894i) q^{92} +1.91899i q^{93} +(-1.44306 + 1.66538i) q^{94} +(0.0741615 + 0.515804i) q^{96} +(1.66538 + 0.239446i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 6 q^{4} - 4 q^{6} + 2 q^{9} - 10 q^{16} + 4 q^{19} + 8 q^{24} - 4 q^{31} - 14 q^{34} - 6 q^{36} - 4 q^{46} + 2 q^{49} - 4 q^{51} - 18 q^{54} - 4 q^{61} - 8 q^{64} + 2 q^{69} + 10 q^{76} + 4 q^{79}+ \cdots + 10 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1725\mathbb{Z}\right)^\times\).

\(n\) \(277\) \(1151\) \(1201\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{4}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.27155 1.10181i −1.27155 1.10181i −0.989821 0.142315i \(-0.954545\pi\)
−0.281733 0.959493i \(-0.590909\pi\)
\(3\) −0.540641 0.841254i −0.540641 0.841254i
\(4\) 0.260554 + 1.81219i 0.260554 + 1.81219i
\(5\) 0 0
\(6\) −0.239446 + 1.66538i −0.239446 + 1.66538i
\(7\) 0 0 −0.281733 0.959493i \(-0.590909\pi\)
0.281733 + 0.959493i \(0.409091\pi\)
\(8\) 0.755750 1.17597i 0.755750 1.17597i
\(9\) −0.415415 + 0.909632i −0.415415 + 0.909632i
\(10\) 0 0
\(11\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(12\) 1.38365 1.19894i 1.38365 1.19894i
\(13\) 0 0 0.281733 0.959493i \(-0.409091\pi\)
−0.281733 + 0.959493i \(0.590909\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.500000 + 0.146813i −0.500000 + 0.146813i
\(17\) 0.281733 + 0.0405070i 0.281733 + 0.0405070i 0.281733 0.959493i \(-0.409091\pi\)
1.00000i \(0.5\pi\)
\(18\) 1.53046 0.698939i 1.53046 0.698939i
\(19\) −0.273100 1.89945i −0.273100 1.89945i −0.415415 0.909632i \(-0.636364\pi\)
0.142315 0.989821i \(-0.454545\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.755750 + 0.654861i −0.755750 + 0.654861i
\(24\) −1.39788 −1.39788
\(25\) 0 0
\(26\) 0 0
\(27\) 0.989821 0.142315i 0.989821 0.142315i
\(28\) 0 0
\(29\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(30\) 0 0
\(31\) −1.61435 1.03748i −1.61435 1.03748i −0.959493 0.281733i \(-0.909091\pi\)
−0.654861 0.755750i \(-0.727273\pi\)
\(32\) −0.474017 0.216476i −0.474017 0.216476i
\(33\) 0 0
\(34\) −0.313607 0.361922i −0.313607 0.361922i
\(35\) 0 0
\(36\) −1.75667 0.515804i −1.75667 0.515804i
\(37\) 0 0 −0.909632 0.415415i \(-0.863636\pi\)
0.909632 + 0.415415i \(0.136364\pi\)
\(38\) −1.74557 + 2.71616i −1.74557 + 2.71616i
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(42\) 0 0
\(43\) 0 0 −0.540641 0.841254i \(-0.681818\pi\)
0.540641 + 0.841254i \(0.318182\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 1.68251 1.68251
\(47\) 1.30972i 1.30972i −0.755750 0.654861i \(-0.772727\pi\)
0.755750 0.654861i \(-0.227273\pi\)
\(48\) 0.393828 + 0.341254i 0.393828 + 0.341254i
\(49\) −0.841254 + 0.540641i −0.841254 + 0.540641i
\(50\) 0 0
\(51\) −0.118239 0.258908i −0.118239 0.258908i
\(52\) 0 0
\(53\) −0.368991 1.25667i −0.368991 1.25667i −0.909632 0.415415i \(-0.863636\pi\)
0.540641 0.841254i \(-0.318182\pi\)
\(54\) −1.41542 0.909632i −1.41542 0.909632i
\(55\) 0 0
\(56\) 0 0
\(57\) −1.45027 + 1.25667i −1.45027 + 1.25667i
\(58\) 0 0
\(59\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(60\) 0 0
\(61\) −1.10181 0.708089i −1.10181 0.708089i −0.142315 0.989821i \(-0.545455\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(62\) 0.909632 + 3.09792i 0.909632 + 3.09792i
\(63\) 0 0
\(64\) 0.580699 + 1.27155i 0.580699 + 1.27155i
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 −0.755750 0.654861i \(-0.772727\pi\)
0.755750 + 0.654861i \(0.227273\pi\)
\(68\) 0.521109i 0.521109i
\(69\) 0.959493 + 0.281733i 0.959493 + 0.281733i
\(70\) 0 0
\(71\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(72\) 0.755750 + 1.17597i 0.755750 + 1.17597i
\(73\) 0 0 0.989821 0.142315i \(-0.0454545\pi\)
−0.989821 + 0.142315i \(0.954545\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 3.37102 0.989821i 3.37102 0.989821i
\(77\) 0 0
\(78\) 0 0
\(79\) 0.797176 + 0.234072i 0.797176 + 0.234072i 0.654861 0.755750i \(-0.272727\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(80\) 0 0
\(81\) −0.654861 0.755750i −0.654861 0.755750i
\(82\) 0 0
\(83\) −1.53046 0.698939i −1.53046 0.698939i −0.540641 0.841254i \(-0.681818\pi\)
−0.989821 + 0.142315i \(0.954545\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −1.38365 1.19894i −1.38365 1.19894i
\(93\) 1.91899i 1.91899i
\(94\) −1.44306 + 1.66538i −1.44306 + 1.66538i
\(95\) 0 0
\(96\) 0.0741615 + 0.515804i 0.0741615 + 0.515804i
\(97\) 0 0 0.909632 0.415415i \(-0.136364\pi\)
−0.909632 + 0.415415i \(0.863636\pi\)
\(98\) 1.66538 + 0.239446i 1.66538 + 0.239446i
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(102\) −0.134919 + 0.459493i −0.134919 + 0.459493i
\(103\) 0 0 0.755750 0.654861i \(-0.227273\pi\)
−0.755750 + 0.654861i \(0.772727\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −0.915415 + 2.00448i −0.915415 + 2.00448i
\(107\) −0.449181 + 0.698939i −0.449181 + 0.698939i −0.989821 0.142315i \(-0.954545\pi\)
0.540641 + 0.841254i \(0.318182\pi\)
\(108\) 0.515804 + 1.75667i 0.515804 + 1.75667i
\(109\) 0.118239 0.822373i 0.118239 0.822373i −0.841254 0.540641i \(-0.818182\pi\)
0.959493 0.281733i \(-0.0909091\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.27155 + 1.10181i 1.27155 + 1.10181i 0.989821 + 0.142315i \(0.0454545\pi\)
0.281733 + 0.959493i \(0.409091\pi\)
\(114\) 3.22871 3.22871
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −0.142315 + 0.989821i −0.142315 + 0.989821i
\(122\) 0.620830 + 2.11435i 0.620830 + 2.11435i
\(123\) 0 0
\(124\) 1.45949 3.19584i 1.45949 3.19584i
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 0.755750 0.654861i \(-0.227273\pi\)
−0.755750 + 0.654861i \(0.772727\pi\)
\(128\) 0.515804 1.75667i 0.515804 1.75667i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0.260554 0.300696i 0.260554 0.300696i
\(137\) 0.830830i 0.830830i 0.909632 + 0.415415i \(0.136364\pi\)
−0.909632 + 0.415415i \(0.863636\pi\)
\(138\) −0.909632 1.41542i −0.909632 1.41542i
\(139\) 1.30972 1.30972 0.654861 0.755750i \(-0.272727\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(140\) 0 0
\(141\) −1.10181 + 0.708089i −1.10181 + 0.708089i
\(142\) 0 0
\(143\) 0 0
\(144\) 0.0741615 0.515804i 0.0741615 0.515804i
\(145\) 0 0
\(146\) 0 0
\(147\) 0.909632 + 0.415415i 0.909632 + 0.415415i
\(148\) 0 0
\(149\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(150\) 0 0
\(151\) 0.273100 + 0.0801894i 0.273100 + 0.0801894i 0.415415 0.909632i \(-0.363636\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(152\) −2.44009 1.11435i −2.44009 1.11435i
\(153\) −0.153882 + 0.239446i −0.153882 + 0.239446i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 0.989821 0.142315i \(-0.0454545\pi\)
−0.989821 + 0.142315i \(0.954545\pi\)
\(158\) −0.755750 1.17597i −0.755750 1.17597i
\(159\) −0.857685 + 0.989821i −0.857685 + 0.989821i
\(160\) 0 0
\(161\) 0 0
\(162\) 1.68251i 1.68251i
\(163\) 0 0 −0.755750 0.654861i \(-0.772727\pi\)
0.755750 + 0.654861i \(0.227273\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 1.17597 + 2.57501i 1.17597 + 2.57501i
\(167\) −0.822373 0.118239i −0.822373 0.118239i −0.281733 0.959493i \(-0.590909\pi\)
−0.540641 + 0.841254i \(0.681818\pi\)
\(168\) 0 0
\(169\) −0.841254 0.540641i −0.841254 0.540641i
\(170\) 0 0
\(171\) 1.84125 + 0.540641i 1.84125 + 0.540641i
\(172\) 0 0
\(173\) 0.989821 0.857685i 0.989821 0.857685i 1.00000i \(-0.5\pi\)
0.989821 + 0.142315i \(0.0454545\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(180\) 0 0
\(181\) −0.239446 + 0.153882i −0.239446 + 0.153882i −0.654861 0.755750i \(-0.727273\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(182\) 0 0
\(183\) 1.30972i 1.30972i
\(184\) 0.198939 + 1.38365i 0.198939 + 1.38365i
\(185\) 0 0
\(186\) 2.11435 2.44009i 2.11435 2.44009i
\(187\) 0 0
\(188\) 2.37347 0.341254i 2.37347 0.341254i
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(192\) 0.755750 1.17597i 0.755750 1.17597i
\(193\) 0 0 −0.909632 0.415415i \(-0.863636\pi\)
0.909632 + 0.415415i \(0.136364\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −1.19894 1.38365i −1.19894 1.38365i
\(197\) 0.234072 0.797176i 0.234072 0.797176i −0.755750 0.654861i \(-0.772727\pi\)
0.989821 0.142315i \(-0.0454545\pi\)
\(198\) 0 0
\(199\) −1.41542 0.909632i −1.41542 0.909632i −0.415415 0.909632i \(-0.636364\pi\)
−1.00000 \(\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0.438384 0.281733i 0.438384 0.281733i
\(205\) 0 0
\(206\) 0 0
\(207\) −0.281733 0.959493i −0.281733 0.959493i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0.0405070 + 0.281733i 0.0405070 + 0.281733i 1.00000 \(0\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(212\) 2.18119 0.996114i 2.18119 0.996114i
\(213\) 0 0
\(214\) 1.34125 0.393828i 1.34125 0.393828i
\(215\) 0 0
\(216\) 0.580699 1.27155i 0.580699 1.27155i
\(217\) 0 0
\(218\) −1.05645 + 0.915415i −1.05645 + 0.915415i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 −0.281733 0.959493i \(-0.590909\pi\)
0.281733 + 0.959493i \(0.409091\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −0.402869 2.80202i −0.402869 2.80202i
\(227\) −0.708089 1.10181i −0.708089 1.10181i −0.989821 0.142315i \(-0.954545\pi\)
0.281733 0.959493i \(-0.409091\pi\)
\(228\) −2.65520 2.30075i −2.65520 2.30075i
\(229\) −1.68251 −1.68251 −0.841254 0.540641i \(-0.818182\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −0.449181 0.698939i −0.449181 0.698939i 0.540641 0.841254i \(-0.318182\pi\)
−0.989821 + 0.142315i \(0.954545\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −0.234072 0.797176i −0.234072 0.797176i
\(238\) 0 0
\(239\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(240\) 0 0
\(241\) 0.186393 + 0.215109i 0.186393 + 0.215109i 0.841254 0.540641i \(-0.181818\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(242\) 1.27155 1.10181i 1.27155 1.10181i
\(243\) −0.281733 + 0.959493i −0.281733 + 0.959493i
\(244\) 0.996114 2.18119i 0.996114 2.18119i
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) −2.44009 + 1.11435i −2.44009 + 1.11435i
\(249\) 0.239446 + 1.66538i 0.239446 + 1.66538i
\(250\) 0 0
\(251\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −1.41542 + 0.909632i −1.41542 + 0.909632i
\(257\) −0.281733 + 0.0405070i −0.281733 + 0.0405070i −0.281733 0.959493i \(-0.590909\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0.540641 1.84125i 0.540641 1.84125i 1.00000i \(-0.5\pi\)
0.540641 0.841254i \(-0.318182\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(270\) 0 0
\(271\) −0.544078 1.19136i −0.544078 1.19136i −0.959493 0.281733i \(-0.909091\pi\)
0.415415 0.909632i \(-0.363636\pi\)
\(272\) −0.146813 + 0.0211086i −0.146813 + 0.0211086i
\(273\) 0 0
\(274\) 0.915415 1.05645i 0.915415 1.05645i
\(275\) 0 0
\(276\) −0.260554 + 1.81219i −0.260554 + 1.81219i
\(277\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(278\) −1.66538 1.44306i −1.66538 1.44306i
\(279\) 1.61435 1.03748i 1.61435 1.03748i
\(280\) 0 0
\(281\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(282\) 2.18119 + 0.313607i 2.18119 + 0.313607i
\(283\) 0 0 −0.281733 0.959493i \(-0.590909\pi\)
0.281733 + 0.959493i \(0.409091\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0.393828 0.341254i 0.393828 0.341254i
\(289\) −0.881761 0.258908i −0.881761 0.258908i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1.66538 + 0.239446i 1.66538 + 0.239446i 0.909632 0.415415i \(-0.136364\pi\)
0.755750 + 0.654861i \(0.227273\pi\)
\(294\) −0.698939 1.53046i −0.698939 1.53046i
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) −0.258908 0.402869i −0.258908 0.402869i
\(303\) 0 0
\(304\) 0.415415 + 0.909632i 0.415415 + 0.909632i
\(305\) 0 0
\(306\) 0.459493 0.134919i 0.459493 0.134919i
\(307\) 0 0 0.540641 0.841254i \(-0.318182\pi\)
−0.540641 + 0.841254i \(0.681818\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(312\) 0 0
\(313\) 0 0 −0.909632 0.415415i \(-0.863636\pi\)
0.909632 + 0.415415i \(0.136364\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −0.216476 + 1.50563i −0.216476 + 1.50563i
\(317\) 0.258908 0.118239i 0.258908 0.118239i −0.281733 0.959493i \(-0.590909\pi\)
0.540641 + 0.841254i \(0.318182\pi\)
\(318\) 2.18119 0.313607i 2.18119 0.313607i
\(319\) 0 0
\(320\) 0 0
\(321\) 0.830830 0.830830
\(322\) 0 0
\(323\) 0.546200i 0.546200i
\(324\) 1.19894 1.38365i 1.19894 1.38365i
\(325\) 0 0
\(326\) 0 0
\(327\) −0.755750 + 0.345139i −0.755750 + 0.345139i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0.698939 1.53046i 0.698939 1.53046i −0.142315 0.989821i \(-0.545455\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(332\) 0.867845 2.95561i 0.867845 2.95561i
\(333\) 0 0
\(334\) 0.915415 + 1.05645i 0.915415 + 1.05645i
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 0.540641 0.841254i \(-0.318182\pi\)
−0.540641 + 0.841254i \(0.681818\pi\)
\(338\) 0.474017 + 1.61435i 0.474017 + 1.61435i
\(339\) 0.239446 1.66538i 0.239446 1.66538i
\(340\) 0 0
\(341\) 0 0
\(342\) −1.74557 2.71616i −1.74557 2.71616i
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) −2.20362 −2.20362
\(347\) 1.45027 + 1.25667i 1.45027 + 1.25667i 0.909632 + 0.415415i \(0.136364\pi\)
0.540641 + 0.841254i \(0.318182\pi\)
\(348\) 0 0
\(349\) 0.239446 + 1.66538i 0.239446 + 1.66538i 0.654861 + 0.755750i \(0.272727\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −1.03748 + 1.61435i −1.03748 + 1.61435i −0.281733 + 0.959493i \(0.590909\pi\)
−0.755750 + 0.654861i \(0.772727\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(360\) 0 0
\(361\) −2.57385 + 0.755750i −2.57385 + 0.755750i
\(362\) 0.474017 + 0.0681534i 0.474017 + 0.0681534i
\(363\) 0.909632 0.415415i 0.909632 0.415415i
\(364\) 0 0
\(365\) 0 0
\(366\) 1.44306 1.66538i 1.44306 1.66538i
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 0.281733 0.438384i 0.281733 0.438384i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) −3.47758 + 0.500000i −3.47758 + 0.500000i
\(373\) 0 0 0.909632 0.415415i \(-0.136364\pi\)
−0.909632 + 0.415415i \(0.863636\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −1.54019 0.989821i −1.54019 0.989821i
\(377\) 0 0
\(378\) 0 0
\(379\) 1.10181 + 1.27155i 1.10181 + 1.27155i 0.959493 + 0.281733i \(0.0909091\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0.909632 1.41542i 0.909632 1.41542i 1.00000i \(-0.5\pi\)
0.909632 0.415415i \(-0.136364\pi\)
\(384\) −1.75667 + 0.515804i −1.75667 + 0.515804i
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(390\) 0 0
\(391\) −0.239446 + 0.153882i −0.239446 + 0.153882i
\(392\) 1.39788i 1.39788i
\(393\) 0 0
\(394\) −1.17597 + 0.755750i −1.17597 + 0.755750i
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 −0.989821 0.142315i \(-0.954545\pi\)
0.989821 + 0.142315i \(0.0454545\pi\)
\(398\) 0.797537 + 2.71616i 0.797537 + 2.71616i
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) −0.393828 0.0566239i −0.393828 0.0566239i
\(409\) 0.118239 + 0.258908i 0.118239 + 0.258908i 0.959493 0.281733i \(-0.0909091\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(410\) 0 0
\(411\) 0.698939 0.449181i 0.698939 0.449181i
\(412\) 0 0
\(413\) 0 0
\(414\) −0.698939 + 1.53046i −0.698939 + 1.53046i
\(415\) 0 0
\(416\) 0 0
\(417\) −0.708089 1.10181i −0.708089 1.10181i
\(418\) 0 0
\(419\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(420\) 0 0
\(421\) 1.84125 0.540641i 1.84125 0.540641i 0.841254 0.540641i \(-0.181818\pi\)
1.00000 \(0\)
\(422\) 0.258908 0.402869i 0.258908 0.402869i
\(423\) 1.19136 + 0.544078i 1.19136 + 0.544078i
\(424\) −1.75667 0.515804i −1.75667 0.515804i
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) −1.38365 0.631891i −1.38365 0.631891i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(432\) −0.474017 + 0.216476i −0.474017 + 0.216476i
\(433\) 0 0 0.989821 0.142315i \(-0.0454545\pi\)
−0.989821 + 0.142315i \(0.954545\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 1.52111 1.52111
\(437\) 1.45027 + 1.25667i 1.45027 + 1.25667i
\(438\) 0 0
\(439\) 1.10181 1.27155i 1.10181 1.27155i 0.142315 0.989821i \(-0.454545\pi\)
0.959493 0.281733i \(-0.0909091\pi\)
\(440\) 0 0
\(441\) −0.142315 0.989821i −0.142315 0.989821i
\(442\) 0 0
\(443\) −0.281733 0.0405070i −0.281733 0.0405070i 1.00000i \(-0.5\pi\)
−0.281733 + 0.959493i \(0.590909\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −1.66538 + 2.59138i −1.66538 + 2.59138i
\(453\) −0.0801894 0.273100i −0.0801894 0.273100i
\(454\) −0.313607 + 2.18119i −0.313607 + 2.18119i
\(455\) 0 0
\(456\) 0.381761 + 2.65520i 0.381761 + 2.65520i
\(457\) 0 0 −0.540641 0.841254i \(-0.681818\pi\)
0.540641 + 0.841254i \(0.318182\pi\)
\(458\) 2.13940 + 1.85380i 2.13940 + 1.85380i
\(459\) 0.284630 0.284630
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 0 0 −0.540641 0.841254i \(-0.681818\pi\)
0.540641 + 0.841254i \(0.318182\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −0.198939 + 1.38365i −0.198939 + 1.38365i
\(467\) 0.0801894 + 0.273100i 0.0801894 + 0.273100i 0.989821 0.142315i \(-0.0454545\pi\)
−0.909632 + 0.415415i \(0.863636\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) −0.580699 + 1.27155i −0.580699 + 1.27155i
\(475\) 0 0
\(476\) 0 0
\(477\) 1.29639 + 0.186393i 1.29639 + 0.186393i
\(478\) 0 0
\(479\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0.478891i 0.478891i
\(483\) 0 0
\(484\) −1.83083 −1.83083
\(485\) 0 0
\(486\) 1.41542 0.909632i 1.41542 0.909632i
\(487\) 0 0 0.989821 0.142315i \(-0.0454545\pi\)
−0.989821 + 0.142315i \(0.954545\pi\)
\(488\) −1.66538 + 0.760554i −1.66538 + 0.760554i
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0.959493 + 0.281733i 0.959493 + 0.281733i
\(497\) 0 0
\(498\) 1.53046 2.38145i 1.53046 2.38145i
\(499\) 0.797176 0.234072i 0.797176 0.234072i 0.142315 0.989821i \(-0.454545\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(500\) 0 0
\(501\) 0.345139 + 0.755750i 0.345139 + 0.755750i
\(502\) 0 0
\(503\) 1.03748 + 1.61435i 1.03748 + 1.61435i 0.755750 + 0.654861i \(0.227273\pi\)
0.281733 + 0.959493i \(0.409091\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 1.00000i 1.00000i
\(508\) 0 0
\(509\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0.989821 + 0.142315i 0.989821 + 0.142315i
\(513\) −0.540641 1.84125i −0.540641 1.84125i
\(514\) 0.402869 + 0.258908i 0.402869 + 0.258908i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −1.25667 0.368991i −1.25667 0.368991i
\(520\) 0 0
\(521\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(522\) 0 0
\(523\) 0 0 −0.989821 0.142315i \(-0.954545\pi\)
0.989821 + 0.142315i \(0.0454545\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −2.71616 + 1.74557i −2.71616 + 1.74557i
\(527\) −0.412791 0.357685i −0.412791 0.357685i
\(528\) 0 0
\(529\) 0.142315 0.989821i 0.142315 0.989821i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 1.25667 + 1.45027i 1.25667 + 1.45027i 0.841254 + 0.540641i \(0.181818\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(542\) −0.620830 + 2.11435i −0.620830 + 2.11435i
\(543\) 0.258908 + 0.118239i 0.258908 + 0.118239i
\(544\) −0.124777 0.0801894i −0.124777 0.0801894i
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 0.909632 0.415415i \(-0.136364\pi\)
−0.909632 + 0.415415i \(0.863636\pi\)
\(548\) −1.50563 + 0.216476i −1.50563 + 0.216476i
\(549\) 1.10181 0.708089i 1.10181 0.708089i
\(550\) 0 0
\(551\) 0 0
\(552\) 1.05645 0.915415i 1.05645 0.915415i
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0.341254 + 2.37347i 0.341254 + 2.37347i
\(557\) 1.74557 0.797176i 1.74557 0.797176i 0.755750 0.654861i \(-0.227273\pi\)
0.989821 0.142315i \(-0.0454545\pi\)
\(558\) −3.19584 0.459493i −3.19584 0.459493i
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0.989821 0.857685i 0.989821 0.857685i 1.00000i \(-0.5\pi\)
0.989821 + 0.142315i \(0.0454545\pi\)
\(564\) −1.57028 1.81219i −1.57028 1.81219i
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(570\) 0 0
\(571\) 0.186393 + 1.29639i 0.186393 + 1.29639i 0.841254 + 0.540641i \(0.181818\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −1.39788 −1.39788
\(577\) 0 0 −0.755750 0.654861i \(-0.772727\pi\)
0.755750 + 0.654861i \(0.227273\pi\)
\(578\) 0.835939 + 1.30075i 0.835939 + 1.30075i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) −1.85380 2.13940i −1.85380 2.13940i
\(587\) −1.45027 + 1.25667i −1.45027 + 1.25667i −0.540641 + 0.841254i \(0.681818\pi\)
−0.909632 + 0.415415i \(0.863636\pi\)
\(588\) −0.515804 + 1.75667i −0.515804 + 1.75667i
\(589\) −1.52977 + 3.34973i −1.52977 + 3.34973i
\(590\) 0 0
\(591\) −0.797176 + 0.234072i −0.797176 + 0.234072i
\(592\) 0 0
\(593\) −1.74557 + 0.797176i −1.74557 + 0.797176i −0.755750 + 0.654861i \(0.772727\pi\)
−0.989821 + 0.142315i \(0.954545\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 1.68251i 1.68251i
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) 0.698939 0.449181i 0.698939 0.449181i −0.142315 0.989821i \(-0.545455\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −0.0741615 + 0.515804i −0.0741615 + 0.515804i
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 −0.909632 0.415415i \(-0.863636\pi\)
0.909632 + 0.415415i \(0.136364\pi\)
\(608\) −0.281733 + 0.959493i −0.281733 + 0.959493i
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) −0.474017 0.216476i −0.474017 0.216476i
\(613\) 0 0 0.540641 0.841254i \(-0.318182\pi\)
−0.540641 + 0.841254i \(0.681818\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −1.29639 + 0.186393i −1.29639 + 0.186393i −0.755750 0.654861i \(-0.772727\pi\)
−0.540641 + 0.841254i \(0.681818\pi\)
\(618\) 0 0
\(619\) 0.544078 0.627899i 0.544078 0.627899i −0.415415 0.909632i \(-0.636364\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(620\) 0 0
\(621\) −0.654861 + 0.755750i −0.654861 + 0.755750i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0.273100 + 0.0801894i 0.273100 + 0.0801894i 0.415415 0.909632i \(-0.363636\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(632\) 0.877726 0.760554i 0.877726 0.760554i
\(633\) 0.215109 0.186393i 0.215109 0.186393i
\(634\) −0.459493 0.134919i −0.459493 0.134919i
\(635\) 0 0
\(636\) −2.01722 1.29639i −2.01722 1.29639i
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(642\) −1.05645 0.915415i −1.05645 0.915415i
\(643\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −0.601808 + 0.694523i −0.601808 + 0.694523i
\(647\) −0.153882 0.239446i −0.153882 0.239446i 0.755750 0.654861i \(-0.227273\pi\)
−0.909632 + 0.415415i \(0.863636\pi\)
\(648\) −1.38365 + 0.198939i −1.38365 + 0.198939i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −0.755750 0.345139i −0.755750 0.345139i 1.00000i \(-0.5\pi\)
−0.755750 + 0.654861i \(0.772727\pi\)
\(654\) 1.34125 + 0.393828i 1.34125 + 0.393828i
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(660\) 0 0
\(661\) 0.273100 1.89945i 0.273100 1.89945i −0.142315 0.989821i \(-0.545455\pi\)
0.415415 0.909632i \(-0.363636\pi\)
\(662\) −2.57501 + 1.17597i −2.57501 + 1.17597i
\(663\) 0 0
\(664\) −1.97858 + 1.27155i −1.97858 + 1.27155i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 1.52111i 1.52111i
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 −0.989821 0.142315i \(-0.954545\pi\)
0.989821 + 0.142315i \(0.0454545\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0.760554 1.66538i 0.760554 1.66538i
\(677\) 0.234072 0.797176i 0.234072 0.797176i −0.755750 0.654861i \(-0.772727\pi\)
0.989821 0.142315i \(-0.0454545\pi\)
\(678\) −2.13940 + 1.85380i −2.13940 + 1.85380i
\(679\) 0 0
\(680\) 0 0
\(681\) −0.544078 + 1.19136i −0.544078 + 1.19136i
\(682\) 0 0
\(683\) −0.368991 1.25667i −0.368991 1.25667i −0.909632 0.415415i \(-0.863636\pi\)
0.540641 0.841254i \(-0.318182\pi\)
\(684\) −0.500000 + 3.47758i −0.500000 + 3.47758i
\(685\) 0 0
\(686\) 0 0
\(687\) 0.909632 + 1.41542i 0.909632 + 1.41542i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(692\) 1.81219 + 1.57028i 1.81219 + 1.57028i
\(693\) 0 0
\(694\) −0.459493 3.19584i −0.459493 3.19584i
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 1.53046 2.38145i 1.53046 2.38145i
\(699\) −0.345139 + 0.755750i −0.345139 + 0.755750i
\(700\) 0 0
\(701\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 3.09792 0.909632i 3.09792 0.909632i
\(707\) 0 0
\(708\) 0 0
\(709\) −0.0405070 0.281733i −0.0405070 0.281733i 0.959493 0.281733i \(-0.0909091\pi\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) −0.544078 + 0.627899i −0.544078 + 0.627899i
\(712\) 0 0
\(713\) 1.89945 0.273100i 1.89945 0.273100i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 4.10548 + 1.87491i 4.10548 + 1.87491i
\(723\) 0.0801894 0.273100i 0.0801894 0.273100i
\(724\) −0.341254 0.393828i −0.341254 0.393828i
\(725\) 0 0
\(726\) −1.61435 0.474017i −1.61435 0.474017i
\(727\) 0 0 −0.909632 0.415415i \(-0.863636\pi\)
0.909632 + 0.415415i \(0.136364\pi\)
\(728\) 0 0
\(729\) 0.959493 0.281733i 0.959493 0.281733i
\(730\) 0 0
\(731\) 0 0
\(732\) −2.37347 + 0.341254i −2.37347 + 0.341254i
\(733\) 0 0 −0.540641 0.841254i \(-0.681818\pi\)
0.540641 + 0.841254i \(0.318182\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0.500000 0.146813i 0.500000 0.146813i
\(737\) 0 0
\(738\) 0 0
\(739\) −1.41542 + 0.909632i −1.41542 + 0.909632i −0.415415 + 0.909632i \(0.636364\pi\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0.474017 + 1.61435i 0.474017 + 1.61435i 0.755750 + 0.654861i \(0.227273\pi\)
−0.281733 + 0.959493i \(0.590909\pi\)
\(744\) 2.25667 + 1.45027i 2.25667 + 1.45027i
\(745\) 0 0
\(746\) 0 0
\(747\) 1.27155 1.10181i 1.27155 1.10181i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −0.239446 0.153882i −0.239446 0.153882i 0.415415 0.909632i \(-0.363636\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(752\) 0.192284 + 0.654861i 0.192284 + 0.654861i
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 −0.755750 0.654861i \(-0.772727\pi\)
0.755750 + 0.654861i \(0.227273\pi\)
\(758\) 2.83083i 2.83083i
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) −2.71616 + 0.797537i −2.71616 + 0.797537i
\(767\) 0 0
\(768\) 1.53046 + 0.698939i 1.53046 + 0.698939i
\(769\) 1.91899 + 0.563465i 1.91899 + 0.563465i 0.959493 + 0.281733i \(0.0909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(770\) 0 0
\(771\) 0.186393 + 0.215109i 0.186393 + 0.215109i
\(772\) 0 0
\(773\) 1.74557 + 0.797176i 1.74557 + 0.797176i 0.989821 + 0.142315i \(0.0454545\pi\)
0.755750 + 0.654861i \(0.227273\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0.474017 + 0.0681534i 0.474017 + 0.0681534i
\(783\) 0 0
\(784\) 0.341254 0.393828i 0.341254 0.393828i
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 0.909632 0.415415i \(-0.136364\pi\)
−0.909632 + 0.415415i \(0.863636\pi\)
\(788\) 1.50563 + 0.216476i 1.50563 + 0.216476i
\(789\) −1.84125 + 0.540641i −1.84125 + 0.540641i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 1.27964 2.80202i 1.27964 2.80202i
\(797\) 1.03748 1.61435i 1.03748 1.61435i 0.281733 0.959493i \(-0.409091\pi\)
0.755750 0.654861i \(-0.227273\pi\)
\(798\) 0 0
\(799\) 0.0530529 0.368991i 0.0530529 0.368991i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(810\) 0 0
\(811\) −0.118239 + 0.822373i −0.118239 + 0.822373i 0.841254 + 0.540641i \(0.181818\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(812\) 0 0
\(813\) −0.708089 + 1.10181i −0.708089 + 1.10181i
\(814\) 0 0
\(815\) 0 0
\(816\) 0.0971309 + 0.112095i 0.0971309 + 0.112095i
\(817\) 0 0
\(818\) 0.134919 0.459493i 0.134919 0.459493i
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(822\) −1.38365 0.198939i −1.38365 0.198939i
\(823\) 0 0 0.909632 0.415415i \(-0.136364\pi\)
−0.909632 + 0.415415i \(0.863636\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1.91899i 1.91899i −0.281733 0.959493i \(-0.590909\pi\)
0.281733 0.959493i \(-0.409091\pi\)
\(828\) 1.66538 0.760554i 1.66538 0.760554i
\(829\) −0.830830 −0.830830 −0.415415 0.909632i \(-0.636364\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −0.258908 + 0.118239i −0.258908 + 0.118239i
\(834\) −0.313607 + 2.18119i −0.313607 + 2.18119i
\(835\) 0 0
\(836\) 0 0
\(837\) −1.74557 0.797176i −1.74557 0.797176i
\(838\) 0 0
\(839\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(840\) 0 0
\(841\) −0.959493 0.281733i −0.959493 0.281733i
\(842\) −2.93694 1.34125i −2.93694 1.34125i
\(843\) 0 0
\(844\) −0.500000 + 0.146813i −0.500000 + 0.146813i
\(845\) 0 0
\(846\) −0.915415 2.00448i −0.915415 2.00448i
\(847\) 0 0
\(848\) 0.368991 + 0.574161i 0.368991 + 0.574161i
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 −0.755750 0.654861i \(-0.772727\pi\)
0.755750 + 0.654861i \(0.227273\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0.482462 + 1.05645i 0.482462 + 1.05645i
\(857\) 1.89945 + 0.273100i 1.89945 + 0.273100i 0.989821 0.142315i \(-0.0454545\pi\)
0.909632 + 0.415415i \(0.136364\pi\)
\(858\) 0 0
\(859\) 0.239446 + 0.153882i 0.239446 + 0.153882i 0.654861 0.755750i \(-0.272727\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −0.627899 + 0.544078i −0.627899 + 0.544078i −0.909632 0.415415i \(-0.863636\pi\)
0.281733 + 0.959493i \(0.409091\pi\)
\(864\) −0.500000 0.146813i −0.500000 0.146813i
\(865\) 0 0
\(866\) 0 0
\(867\) 0.258908 + 0.881761i 0.258908 + 0.881761i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) −0.877726 0.760554i −0.877726 0.760554i
\(873\) 0 0
\(874\) −0.459493 3.19584i −0.459493 3.19584i
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 −0.540641 0.841254i \(-0.681818\pi\)
0.540641 + 0.841254i \(0.318182\pi\)
\(878\) −2.80202 + 0.402869i −2.80202 + 0.402869i
\(879\) −0.698939 1.53046i −0.698939 1.53046i
\(880\) 0 0
\(881\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(882\) −0.909632 + 1.41542i −0.909632 + 1.41542i
\(883\) 0 0 −0.909632 0.415415i \(-0.863636\pi\)
0.909632 + 0.415415i \(0.136364\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0.313607 + 0.361922i 0.313607 + 0.361922i
\(887\) −0.0801894 + 0.273100i −0.0801894 + 0.273100i −0.989821 0.142315i \(-0.954545\pi\)
0.909632 + 0.415415i \(0.136364\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −2.48775 + 0.357685i −2.48775 + 0.357685i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) −0.0530529 0.368991i −0.0530529 0.368991i
\(902\) 0 0
\(903\) 0 0
\(904\) 2.25667 0.662618i 2.25667 0.662618i
\(905\) 0 0
\(906\) −0.198939 + 0.435615i −0.198939 + 0.435615i
\(907\) 0 0 0.281733 0.959493i \(-0.409091\pi\)
−0.281733 + 0.959493i \(0.590909\pi\)
\(908\) 1.81219 1.57028i 1.81219 1.57028i
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(912\) 0.540641 0.841254i 0.540641 0.841254i
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) −0.438384 3.04903i −0.438384 3.04903i
\(917\) 0 0
\(918\) −0.361922 0.313607i −0.361922 0.313607i
\(919\) 0.284630 0.284630 0.142315 0.989821i \(-0.454545\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(930\) 0 0
\(931\) 1.25667 + 1.45027i 1.25667 + 1.45027i
\(932\) 1.14958 0.996114i 1.14958 0.996114i
\(933\) 0 0
\(934\) 0.198939 0.435615i 0.198939 0.435615i
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 −0.989821 0.142315i \(-0.954545\pi\)
0.989821 + 0.142315i \(0.0454545\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1.29639 + 0.186393i −1.29639 + 0.186393i −0.755750 0.654861i \(-0.772727\pi\)
−0.540641 + 0.841254i \(0.681818\pi\)
\(948\) 1.38365 0.631891i 1.38365 0.631891i
\(949\) 0 0
\(950\) 0 0
\(951\) −0.239446 0.153882i −0.239446 0.153882i
\(952\) 0 0
\(953\) 0.368991 1.25667i 0.368991 1.25667i −0.540641 0.841254i \(-0.681818\pi\)
0.909632 0.415415i \(-0.136364\pi\)
\(954\) −1.44306 1.66538i −1.44306 1.66538i
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 1.11435 + 2.44009i 1.11435 + 2.44009i
\(962\) 0 0
\(963\) −0.449181 0.698939i −0.449181 0.698939i
\(964\) −0.341254 + 0.393828i −0.341254 + 0.393828i
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) 1.05645 + 0.915415i 1.05645 + 0.915415i
\(969\) −0.459493 + 0.295298i −0.459493 + 0.295298i
\(970\) 0 0
\(971\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(972\) −1.81219 0.260554i −1.81219 0.260554i
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0.654861 + 0.192284i 0.654861 + 0.192284i
\(977\) 0.627899 0.544078i 0.627899 0.544078i −0.281733 0.959493i \(-0.590909\pi\)
0.909632 + 0.415415i \(0.136364\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0.698939 + 0.449181i 0.698939 + 0.449181i
\(982\) 0 0
\(983\) 0.822373 + 0.118239i 0.822373 + 0.118239i 0.540641 0.841254i \(-0.318182\pi\)
0.281733 + 0.959493i \(0.409091\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −0.544078 + 0.627899i −0.544078 + 0.627899i −0.959493 0.281733i \(-0.909091\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(992\) 0.540641 + 0.841254i 0.540641 + 0.841254i
\(993\) −1.66538 + 0.239446i −1.66538 + 0.239446i
\(994\) 0 0
\(995\) 0 0
\(996\) −2.95561 + 0.867845i −2.95561 + 0.867845i
\(997\) 0 0 0.540641 0.841254i \(-0.318182\pi\)
−0.540641 + 0.841254i \(0.681818\pi\)
\(998\) −1.27155 0.580699i −1.27155 0.580699i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1725.1.bc.a.476.1 20
3.2 odd 2 inner 1725.1.bc.a.476.2 20
5.2 odd 4 345.1.p.b.269.1 yes 10
5.3 odd 4 345.1.p.a.269.1 yes 10
5.4 even 2 inner 1725.1.bc.a.476.2 20
15.2 even 4 345.1.p.a.269.1 yes 10
15.8 even 4 345.1.p.b.269.1 yes 10
15.14 odd 2 CM 1725.1.bc.a.476.1 20
23.13 even 11 inner 1725.1.bc.a.1301.2 20
69.59 odd 22 inner 1725.1.bc.a.1301.1 20
115.13 odd 44 345.1.p.a.59.1 10
115.59 even 22 inner 1725.1.bc.a.1301.1 20
115.82 odd 44 345.1.p.b.59.1 yes 10
345.59 odd 22 inner 1725.1.bc.a.1301.2 20
345.128 even 44 345.1.p.b.59.1 yes 10
345.197 even 44 345.1.p.a.59.1 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
345.1.p.a.59.1 10 115.13 odd 44
345.1.p.a.59.1 10 345.197 even 44
345.1.p.a.269.1 yes 10 5.3 odd 4
345.1.p.a.269.1 yes 10 15.2 even 4
345.1.p.b.59.1 yes 10 115.82 odd 44
345.1.p.b.59.1 yes 10 345.128 even 44
345.1.p.b.269.1 yes 10 5.2 odd 4
345.1.p.b.269.1 yes 10 15.8 even 4
1725.1.bc.a.476.1 20 1.1 even 1 trivial
1725.1.bc.a.476.1 20 15.14 odd 2 CM
1725.1.bc.a.476.2 20 3.2 odd 2 inner
1725.1.bc.a.476.2 20 5.4 even 2 inner
1725.1.bc.a.1301.1 20 69.59 odd 22 inner
1725.1.bc.a.1301.1 20 115.59 even 22 inner
1725.1.bc.a.1301.2 20 23.13 even 11 inner
1725.1.bc.a.1301.2 20 345.59 odd 22 inner