Properties

Label 345.1.p.a.59.1
Level $345$
Weight $1$
Character 345.59
Analytic conductor $0.172$
Analytic rank $0$
Dimension $10$
Projective image $D_{11}$
CM discriminant -15
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [345,1,Mod(29,345)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(345, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([11, 11, 18]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("345.29");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 345 = 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 345.p (of order \(22\), degree \(10\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.172177429358\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\Q(\zeta_{22})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{11}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{11} - \cdots)\)

Embedding invariants

Embedding label 59.1
Root \(-0.841254 + 0.540641i\) of defining polynomial
Character \(\chi\) \(=\) 345.59
Dual form 345.1.p.a.269.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.10181 - 1.27155i) q^{2} +(0.841254 + 0.540641i) q^{3} +(-0.260554 + 1.81219i) q^{4} +(0.415415 - 0.909632i) q^{5} +(-0.239446 - 1.66538i) q^{6} +(1.17597 - 0.755750i) q^{8} +(0.415415 + 0.909632i) q^{9} +(-1.61435 + 0.474017i) q^{10} +(-1.19894 + 1.38365i) q^{12} +(0.841254 - 0.540641i) q^{15} +(-0.500000 - 0.146813i) q^{16} +(0.0405070 + 0.281733i) q^{17} +(0.698939 - 1.53046i) q^{18} +(0.273100 - 1.89945i) q^{19} +(1.54019 + 0.989821i) q^{20} +(-0.654861 + 0.755750i) q^{23} +1.39788 q^{24} +(-0.654861 - 0.755750i) q^{25} +(-0.142315 + 0.989821i) q^{27} +(-1.61435 - 0.474017i) q^{30} +(-1.61435 + 1.03748i) q^{31} +(-0.216476 - 0.474017i) q^{32} +(0.313607 - 0.361922i) q^{34} +(-1.75667 + 0.515804i) q^{36} +(-2.71616 + 1.74557i) q^{38} +(-0.198939 - 1.38365i) q^{40} +1.00000 q^{45} +1.68251 q^{46} -1.30972 q^{47} +(-0.341254 - 0.393828i) q^{48} +(0.841254 + 0.540641i) q^{49} +(-0.239446 + 1.66538i) q^{50} +(-0.118239 + 0.258908i) q^{51} +(1.25667 + 0.368991i) q^{53} +(1.41542 - 0.909632i) q^{54} +(1.25667 - 1.45027i) q^{57} +(0.760554 + 1.66538i) q^{60} +(-1.10181 + 0.708089i) q^{61} +(3.09792 + 0.909632i) q^{62} +(-0.580699 + 1.27155i) q^{64} -0.521109 q^{68} +(-0.959493 + 0.281733i) q^{69} +(1.17597 + 0.755750i) q^{72} +(-0.142315 - 0.989821i) q^{75} +(3.37102 + 0.989821i) q^{76} +(-0.797176 + 0.234072i) q^{79} +(-0.341254 + 0.393828i) q^{80} +(-0.654861 + 0.755750i) q^{81} +(0.698939 + 1.53046i) q^{83} +(0.273100 + 0.0801894i) q^{85} +(-1.10181 - 1.27155i) q^{90} +(-1.19894 - 1.38365i) q^{92} -1.91899 q^{93} +(1.44306 + 1.66538i) q^{94} +(-1.61435 - 1.03748i) q^{95} +(0.0741615 - 0.515804i) q^{96} +(-0.239446 - 1.66538i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 2 q^{2} - q^{3} - 3 q^{4} - q^{5} - 2 q^{6} + 7 q^{8} - q^{9} - 2 q^{10} - 3 q^{12} - q^{15} - 5 q^{16} + 9 q^{17} - 2 q^{18} - 2 q^{19} - 3 q^{20} - q^{23} - 4 q^{24} - q^{25} - q^{27} - 2 q^{30}+ \cdots - 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/345\mathbb{Z}\right)^\times\).

\(n\) \(116\) \(166\) \(277\)
\(\chi(n)\) \(-1\) \(e\left(\frac{7}{11}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.10181 1.27155i −1.10181 1.27155i −0.959493 0.281733i \(-0.909091\pi\)
−0.142315 0.989821i \(-0.545455\pi\)
\(3\) 0.841254 + 0.540641i 0.841254 + 0.540641i
\(4\) −0.260554 + 1.81219i −0.260554 + 1.81219i
\(5\) 0.415415 0.909632i 0.415415 0.909632i
\(6\) −0.239446 1.66538i −0.239446 1.66538i
\(7\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(8\) 1.17597 0.755750i 1.17597 0.755750i
\(9\) 0.415415 + 0.909632i 0.415415 + 0.909632i
\(10\) −1.61435 + 0.474017i −1.61435 + 0.474017i
\(11\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(12\) −1.19894 + 1.38365i −1.19894 + 1.38365i
\(13\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(14\) 0 0
\(15\) 0.841254 0.540641i 0.841254 0.540641i
\(16\) −0.500000 0.146813i −0.500000 0.146813i
\(17\) 0.0405070 + 0.281733i 0.0405070 + 0.281733i 1.00000 \(0\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(18\) 0.698939 1.53046i 0.698939 1.53046i
\(19\) 0.273100 1.89945i 0.273100 1.89945i −0.142315 0.989821i \(-0.545455\pi\)
0.415415 0.909632i \(-0.363636\pi\)
\(20\) 1.54019 + 0.989821i 1.54019 + 0.989821i
\(21\) 0 0
\(22\) 0 0
\(23\) −0.654861 + 0.755750i −0.654861 + 0.755750i
\(24\) 1.39788 1.39788
\(25\) −0.654861 0.755750i −0.654861 0.755750i
\(26\) 0 0
\(27\) −0.142315 + 0.989821i −0.142315 + 0.989821i
\(28\) 0 0
\(29\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(30\) −1.61435 0.474017i −1.61435 0.474017i
\(31\) −1.61435 + 1.03748i −1.61435 + 1.03748i −0.654861 + 0.755750i \(0.727273\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(32\) −0.216476 0.474017i −0.216476 0.474017i
\(33\) 0 0
\(34\) 0.313607 0.361922i 0.313607 0.361922i
\(35\) 0 0
\(36\) −1.75667 + 0.515804i −1.75667 + 0.515804i
\(37\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(38\) −2.71616 + 1.74557i −2.71616 + 1.74557i
\(39\) 0 0
\(40\) −0.198939 1.38365i −0.198939 1.38365i
\(41\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(42\) 0 0
\(43\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(44\) 0 0
\(45\) 1.00000 1.00000
\(46\) 1.68251 1.68251
\(47\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(48\) −0.341254 0.393828i −0.341254 0.393828i
\(49\) 0.841254 + 0.540641i 0.841254 + 0.540641i
\(50\) −0.239446 + 1.66538i −0.239446 + 1.66538i
\(51\) −0.118239 + 0.258908i −0.118239 + 0.258908i
\(52\) 0 0
\(53\) 1.25667 + 0.368991i 1.25667 + 0.368991i 0.841254 0.540641i \(-0.181818\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(54\) 1.41542 0.909632i 1.41542 0.909632i
\(55\) 0 0
\(56\) 0 0
\(57\) 1.25667 1.45027i 1.25667 1.45027i
\(58\) 0 0
\(59\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(60\) 0.760554 + 1.66538i 0.760554 + 1.66538i
\(61\) −1.10181 + 0.708089i −1.10181 + 0.708089i −0.959493 0.281733i \(-0.909091\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(62\) 3.09792 + 0.909632i 3.09792 + 0.909632i
\(63\) 0 0
\(64\) −0.580699 + 1.27155i −0.580699 + 1.27155i
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(68\) −0.521109 −0.521109
\(69\) −0.959493 + 0.281733i −0.959493 + 0.281733i
\(70\) 0 0
\(71\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(72\) 1.17597 + 0.755750i 1.17597 + 0.755750i
\(73\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(74\) 0 0
\(75\) −0.142315 0.989821i −0.142315 0.989821i
\(76\) 3.37102 + 0.989821i 3.37102 + 0.989821i
\(77\) 0 0
\(78\) 0 0
\(79\) −0.797176 + 0.234072i −0.797176 + 0.234072i −0.654861 0.755750i \(-0.727273\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(80\) −0.341254 + 0.393828i −0.341254 + 0.393828i
\(81\) −0.654861 + 0.755750i −0.654861 + 0.755750i
\(82\) 0 0
\(83\) 0.698939 + 1.53046i 0.698939 + 1.53046i 0.841254 + 0.540641i \(0.181818\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(84\) 0 0
\(85\) 0.273100 + 0.0801894i 0.273100 + 0.0801894i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(90\) −1.10181 1.27155i −1.10181 1.27155i
\(91\) 0 0
\(92\) −1.19894 1.38365i −1.19894 1.38365i
\(93\) −1.91899 −1.91899
\(94\) 1.44306 + 1.66538i 1.44306 + 1.66538i
\(95\) −1.61435 1.03748i −1.61435 1.03748i
\(96\) 0.0741615 0.515804i 0.0741615 0.515804i
\(97\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(98\) −0.239446 1.66538i −0.239446 1.66538i
\(99\) 0 0
\(100\) 1.54019 0.989821i 1.54019 0.989821i
\(101\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(102\) 0.459493 0.134919i 0.459493 0.134919i
\(103\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −0.915415 2.00448i −0.915415 2.00448i
\(107\) 0.698939 0.449181i 0.698939 0.449181i −0.142315 0.989821i \(-0.545455\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(108\) −1.75667 0.515804i −1.75667 0.515804i
\(109\) −0.118239 0.822373i −0.118239 0.822373i −0.959493 0.281733i \(-0.909091\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1.10181 1.27155i −1.10181 1.27155i −0.959493 0.281733i \(-0.909091\pi\)
−0.142315 0.989821i \(-0.545455\pi\)
\(114\) −3.22871 −3.22871
\(115\) 0.415415 + 0.909632i 0.415415 + 0.909632i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0.580699 1.27155i 0.580699 1.27155i
\(121\) −0.142315 0.989821i −0.142315 0.989821i
\(122\) 2.11435 + 0.620830i 2.11435 + 0.620830i
\(123\) 0 0
\(124\) −1.45949 3.19584i −1.45949 3.19584i
\(125\) −0.959493 + 0.281733i −0.959493 + 0.281733i
\(126\) 0 0
\(127\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(128\) 1.75667 0.515804i 1.75667 0.515804i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0.841254 + 0.540641i 0.841254 + 0.540641i
\(136\) 0.260554 + 0.300696i 0.260554 + 0.300696i
\(137\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(138\) 1.41542 + 0.909632i 1.41542 + 0.909632i
\(139\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(140\) 0 0
\(141\) −1.10181 0.708089i −1.10181 0.708089i
\(142\) 0 0
\(143\) 0 0
\(144\) −0.0741615 0.515804i −0.0741615 0.515804i
\(145\) 0 0
\(146\) 0 0
\(147\) 0.415415 + 0.909632i 0.415415 + 0.909632i
\(148\) 0 0
\(149\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(150\) −1.10181 + 1.27155i −1.10181 + 1.27155i
\(151\) 0.273100 0.0801894i 0.273100 0.0801894i −0.142315 0.989821i \(-0.545455\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(152\) −1.11435 2.44009i −1.11435 2.44009i
\(153\) −0.239446 + 0.153882i −0.239446 + 0.153882i
\(154\) 0 0
\(155\) 0.273100 + 1.89945i 0.273100 + 1.89945i
\(156\) 0 0
\(157\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(158\) 1.17597 + 0.755750i 1.17597 + 0.755750i
\(159\) 0.857685 + 0.989821i 0.857685 + 0.989821i
\(160\) −0.521109 −0.521109
\(161\) 0 0
\(162\) 1.68251 1.68251
\(163\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 1.17597 2.57501i 1.17597 2.57501i
\(167\) −0.118239 0.822373i −0.118239 0.822373i −0.959493 0.281733i \(-0.909091\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(168\) 0 0
\(169\) 0.841254 0.540641i 0.841254 0.540641i
\(170\) −0.198939 0.435615i −0.198939 0.435615i
\(171\) 1.84125 0.540641i 1.84125 0.540641i
\(172\) 0 0
\(173\) 0.857685 0.989821i 0.857685 0.989821i −0.142315 0.989821i \(-0.545455\pi\)
1.00000 \(0\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(180\) −0.260554 + 1.81219i −0.260554 + 1.81219i
\(181\) −0.239446 0.153882i −0.239446 0.153882i 0.415415 0.909632i \(-0.363636\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(182\) 0 0
\(183\) −1.30972 −1.30972
\(184\) −0.198939 + 1.38365i −0.198939 + 1.38365i
\(185\) 0 0
\(186\) 2.11435 + 2.44009i 2.11435 + 2.44009i
\(187\) 0 0
\(188\) 0.341254 2.37347i 0.341254 2.37347i
\(189\) 0 0
\(190\) 0.459493 + 3.19584i 0.459493 + 3.19584i
\(191\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(192\) −1.17597 + 0.755750i −1.17597 + 0.755750i
\(193\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −1.19894 + 1.38365i −1.19894 + 1.38365i
\(197\) −0.797176 + 0.234072i −0.797176 + 0.234072i −0.654861 0.755750i \(-0.727273\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(198\) 0 0
\(199\) 1.41542 0.909632i 1.41542 0.909632i 0.415415 0.909632i \(-0.363636\pi\)
1.00000 \(0\)
\(200\) −1.34125 0.393828i −1.34125 0.393828i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) −0.438384 0.281733i −0.438384 0.281733i
\(205\) 0 0
\(206\) 0 0
\(207\) −0.959493 0.281733i −0.959493 0.281733i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0.0405070 0.281733i 0.0405070 0.281733i −0.959493 0.281733i \(-0.909091\pi\)
1.00000 \(0\)
\(212\) −0.996114 + 2.18119i −0.996114 + 2.18119i
\(213\) 0 0
\(214\) −1.34125 0.393828i −1.34125 0.393828i
\(215\) 0 0
\(216\) 0.580699 + 1.27155i 0.580699 + 1.27155i
\(217\) 0 0
\(218\) −0.915415 + 1.05645i −0.915415 + 1.05645i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(224\) 0 0
\(225\) 0.415415 0.909632i 0.415415 0.909632i
\(226\) −0.402869 + 2.80202i −0.402869 + 2.80202i
\(227\) −1.10181 0.708089i −1.10181 0.708089i −0.142315 0.989821i \(-0.545455\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(228\) 2.30075 + 2.65520i 2.30075 + 2.65520i
\(229\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(230\) 0.698939 1.53046i 0.698939 1.53046i
\(231\) 0 0
\(232\) 0 0
\(233\) 0.698939 + 0.449181i 0.698939 + 0.449181i 0.841254 0.540641i \(-0.181818\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(234\) 0 0
\(235\) −0.544078 + 1.19136i −0.544078 + 1.19136i
\(236\) 0 0
\(237\) −0.797176 0.234072i −0.797176 0.234072i
\(238\) 0 0
\(239\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(240\) −0.500000 + 0.146813i −0.500000 + 0.146813i
\(241\) 0.186393 0.215109i 0.186393 0.215109i −0.654861 0.755750i \(-0.727273\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(242\) −1.10181 + 1.27155i −1.10181 + 1.27155i
\(243\) −0.959493 + 0.281733i −0.959493 + 0.281733i
\(244\) −0.996114 2.18119i −0.996114 2.18119i
\(245\) 0.841254 0.540641i 0.841254 0.540641i
\(246\) 0 0
\(247\) 0 0
\(248\) −1.11435 + 2.44009i −1.11435 + 2.44009i
\(249\) −0.239446 + 1.66538i −0.239446 + 1.66538i
\(250\) 1.41542 + 0.909632i 1.41542 + 0.909632i
\(251\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0.186393 + 0.215109i 0.186393 + 0.215109i
\(256\) −1.41542 0.909632i −1.41542 0.909632i
\(257\) 0.0405070 0.281733i 0.0405070 0.281733i −0.959493 0.281733i \(-0.909091\pi\)
1.00000 \(0\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 1.84125 0.540641i 1.84125 0.540641i 0.841254 0.540641i \(-0.181818\pi\)
1.00000 \(0\)
\(264\) 0 0
\(265\) 0.857685 0.989821i 0.857685 0.989821i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(270\) −0.239446 1.66538i −0.239446 1.66538i
\(271\) −0.544078 + 1.19136i −0.544078 + 1.19136i 0.415415 + 0.909632i \(0.363636\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(272\) 0.0211086 0.146813i 0.0211086 0.146813i
\(273\) 0 0
\(274\) −0.915415 1.05645i −0.915415 1.05645i
\(275\) 0 0
\(276\) −0.260554 1.81219i −0.260554 1.81219i
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 1.44306 + 1.66538i 1.44306 + 1.66538i
\(279\) −1.61435 1.03748i −1.61435 1.03748i
\(280\) 0 0
\(281\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(282\) 0.313607 + 2.18119i 0.313607 + 2.18119i
\(283\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(284\) 0 0
\(285\) −0.797176 1.74557i −0.797176 1.74557i
\(286\) 0 0
\(287\) 0 0
\(288\) 0.341254 0.393828i 0.341254 0.393828i
\(289\) 0.881761 0.258908i 0.881761 0.258908i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −0.239446 1.66538i −0.239446 1.66538i −0.654861 0.755750i \(-0.727273\pi\)
0.415415 0.909632i \(-0.363636\pi\)
\(294\) 0.698939 1.53046i 0.698939 1.53046i
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 1.83083 1.83083
\(301\) 0 0
\(302\) −0.402869 0.258908i −0.402869 0.258908i
\(303\) 0 0
\(304\) −0.415415 + 0.909632i −0.415415 + 0.909632i
\(305\) 0.186393 + 1.29639i 0.186393 + 1.29639i
\(306\) 0.459493 + 0.134919i 0.459493 + 0.134919i
\(307\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 2.11435 2.44009i 2.11435 2.44009i
\(311\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(312\) 0 0
\(313\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −0.216476 1.50563i −0.216476 1.50563i
\(317\) −0.118239 + 0.258908i −0.118239 + 0.258908i −0.959493 0.281733i \(-0.909091\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(318\) 0.313607 2.18119i 0.313607 2.18119i
\(319\) 0 0
\(320\) 0.915415 + 1.05645i 0.915415 + 1.05645i
\(321\) 0.830830 0.830830
\(322\) 0 0
\(323\) 0.546200 0.546200
\(324\) −1.19894 1.38365i −1.19894 1.38365i
\(325\) 0 0
\(326\) 0 0
\(327\) 0.345139 0.755750i 0.345139 0.755750i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0.698939 + 1.53046i 0.698939 + 1.53046i 0.841254 + 0.540641i \(0.181818\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(332\) −2.95561 + 0.867845i −2.95561 + 0.867845i
\(333\) 0 0
\(334\) −0.915415 + 1.05645i −0.915415 + 1.05645i
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(338\) −1.61435 0.474017i −1.61435 0.474017i
\(339\) −0.239446 1.66538i −0.239446 1.66538i
\(340\) −0.216476 + 0.474017i −0.216476 + 0.474017i
\(341\) 0 0
\(342\) −2.71616 1.74557i −2.71616 1.74557i
\(343\) 0 0
\(344\) 0 0
\(345\) −0.142315 + 0.989821i −0.142315 + 0.989821i
\(346\) −2.20362 −2.20362
\(347\) 1.25667 + 1.45027i 1.25667 + 1.45027i 0.841254 + 0.540641i \(0.181818\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(348\) 0 0
\(349\) −0.239446 + 1.66538i −0.239446 + 1.66538i 0.415415 + 0.909632i \(0.363636\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −1.61435 + 1.03748i −1.61435 + 1.03748i −0.654861 + 0.755750i \(0.727273\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(360\) 1.17597 0.755750i 1.17597 0.755750i
\(361\) −2.57385 0.755750i −2.57385 0.755750i
\(362\) 0.0681534 + 0.474017i 0.0681534 + 0.474017i
\(363\) 0.415415 0.909632i 0.415415 0.909632i
\(364\) 0 0
\(365\) 0 0
\(366\) 1.44306 + 1.66538i 1.44306 + 1.66538i
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 0.438384 0.281733i 0.438384 0.281733i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0.500000 3.47758i 0.500000 3.47758i
\(373\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(374\) 0 0
\(375\) −0.959493 0.281733i −0.959493 0.281733i
\(376\) −1.54019 + 0.989821i −1.54019 + 0.989821i
\(377\) 0 0
\(378\) 0 0
\(379\) −1.10181 + 1.27155i −1.10181 + 1.27155i −0.142315 + 0.989821i \(0.545455\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(380\) 2.30075 2.65520i 2.30075 2.65520i
\(381\) 0 0
\(382\) 0 0
\(383\) 1.41542 0.909632i 1.41542 0.909632i 0.415415 0.909632i \(-0.363636\pi\)
1.00000 \(0\)
\(384\) 1.75667 + 0.515804i 1.75667 + 0.515804i
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(390\) 0 0
\(391\) −0.239446 0.153882i −0.239446 0.153882i
\(392\) 1.39788 1.39788
\(393\) 0 0
\(394\) 1.17597 + 0.755750i 1.17597 + 0.755750i
\(395\) −0.118239 + 0.822373i −0.118239 + 0.822373i
\(396\) 0 0
\(397\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(398\) −2.71616 0.797537i −2.71616 0.797537i
\(399\) 0 0
\(400\) 0.216476 + 0.474017i 0.216476 + 0.474017i
\(401\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0.415415 + 0.909632i 0.415415 + 0.909632i
\(406\) 0 0
\(407\) 0 0
\(408\) 0.0566239 + 0.393828i 0.0566239 + 0.393828i
\(409\) −0.118239 + 0.258908i −0.118239 + 0.258908i −0.959493 0.281733i \(-0.909091\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(410\) 0 0
\(411\) 0.698939 + 0.449181i 0.698939 + 0.449181i
\(412\) 0 0
\(413\) 0 0
\(414\) 0.698939 + 1.53046i 0.698939 + 1.53046i
\(415\) 1.68251 1.68251
\(416\) 0 0
\(417\) −1.10181 0.708089i −1.10181 0.708089i
\(418\) 0 0
\(419\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(420\) 0 0
\(421\) 1.84125 + 0.540641i 1.84125 + 0.540641i 1.00000 \(0\)
0.841254 + 0.540641i \(0.181818\pi\)
\(422\) −0.402869 + 0.258908i −0.402869 + 0.258908i
\(423\) −0.544078 1.19136i −0.544078 1.19136i
\(424\) 1.75667 0.515804i 1.75667 0.515804i
\(425\) 0.186393 0.215109i 0.186393 0.215109i
\(426\) 0 0
\(427\) 0 0
\(428\) 0.631891 + 1.38365i 0.631891 + 1.38365i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(432\) 0.216476 0.474017i 0.216476 0.474017i
\(433\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 1.52111 1.52111
\(437\) 1.25667 + 1.45027i 1.25667 + 1.45027i
\(438\) 0 0
\(439\) −1.10181 1.27155i −1.10181 1.27155i −0.959493 0.281733i \(-0.909091\pi\)
−0.142315 0.989821i \(-0.545455\pi\)
\(440\) 0 0
\(441\) −0.142315 + 0.989821i −0.142315 + 0.989821i
\(442\) 0 0
\(443\) 0.0405070 + 0.281733i 0.0405070 + 0.281733i 1.00000 \(0\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(450\) −1.61435 + 0.474017i −1.61435 + 0.474017i
\(451\) 0 0
\(452\) 2.59138 1.66538i 2.59138 1.66538i
\(453\) 0.273100 + 0.0801894i 0.273100 + 0.0801894i
\(454\) 0.313607 + 2.18119i 0.313607 + 2.18119i
\(455\) 0 0
\(456\) 0.381761 2.65520i 0.381761 2.65520i
\(457\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(458\) −1.85380 2.13940i −1.85380 2.13940i
\(459\) −0.284630 −0.284630
\(460\) −1.75667 + 0.515804i −1.75667 + 0.515804i
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(464\) 0 0
\(465\) −0.797176 + 1.74557i −0.797176 + 1.74557i
\(466\) −0.198939 1.38365i −0.198939 1.38365i
\(467\) 0.273100 + 0.0801894i 0.273100 + 0.0801894i 0.415415 0.909632i \(-0.363636\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 2.11435 0.620830i 2.11435 0.620830i
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0.580699 + 1.27155i 0.580699 + 1.27155i
\(475\) −1.61435 + 1.03748i −1.61435 + 1.03748i
\(476\) 0 0
\(477\) 0.186393 + 1.29639i 0.186393 + 1.29639i
\(478\) 0 0
\(479\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(480\) −0.438384 0.281733i −0.438384 0.281733i
\(481\) 0 0
\(482\) −0.478891 −0.478891
\(483\) 0 0
\(484\) 1.83083 1.83083
\(485\) 0 0
\(486\) 1.41542 + 0.909632i 1.41542 + 0.909632i
\(487\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(488\) −0.760554 + 1.66538i −0.760554 + 1.66538i
\(489\) 0 0
\(490\) −1.61435 0.474017i −1.61435 0.474017i
\(491\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0.959493 0.281733i 0.959493 0.281733i
\(497\) 0 0
\(498\) 2.38145 1.53046i 2.38145 1.53046i
\(499\) −0.797176 0.234072i −0.797176 0.234072i −0.142315 0.989821i \(-0.545455\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(500\) −0.260554 1.81219i −0.260554 1.81219i
\(501\) 0.345139 0.755750i 0.345139 0.755750i
\(502\) 0 0
\(503\) −1.61435 1.03748i −1.61435 1.03748i −0.959493 0.281733i \(-0.909091\pi\)
−0.654861 0.755750i \(-0.727273\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 1.00000 1.00000
\(508\) 0 0
\(509\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(510\) 0.0681534 0.474017i 0.0681534 0.474017i
\(511\) 0 0
\(512\) 0.142315 + 0.989821i 0.142315 + 0.989821i
\(513\) 1.84125 + 0.540641i 1.84125 + 0.540641i
\(514\) −0.402869 + 0.258908i −0.402869 + 0.258908i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 1.25667 0.368991i 1.25667 0.368991i
\(520\) 0 0
\(521\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(522\) 0 0
\(523\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −2.71616 1.74557i −2.71616 1.74557i
\(527\) −0.357685 0.412791i −0.357685 0.412791i
\(528\) 0 0
\(529\) −0.142315 0.989821i −0.142315 0.989821i
\(530\) −2.20362 −2.20362
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −0.118239 0.822373i −0.118239 0.822373i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) −1.19894 + 1.38365i −1.19894 + 1.38365i
\(541\) 1.25667 1.45027i 1.25667 1.45027i 0.415415 0.909632i \(-0.363636\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(542\) 2.11435 0.620830i 2.11435 0.620830i
\(543\) −0.118239 0.258908i −0.118239 0.258908i
\(544\) 0.124777 0.0801894i 0.124777 0.0801894i
\(545\) −0.797176 0.234072i −0.797176 0.234072i
\(546\) 0 0
\(547\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(548\) −0.216476 + 1.50563i −0.216476 + 1.50563i
\(549\) −1.10181 0.708089i −1.10181 0.708089i
\(550\) 0 0
\(551\) 0 0
\(552\) −0.915415 + 1.05645i −0.915415 + 1.05645i
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0.341254 2.37347i 0.341254 2.37347i
\(557\) −0.797176 + 1.74557i −0.797176 + 1.74557i −0.142315 + 0.989821i \(0.545455\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(558\) 0.459493 + 3.19584i 0.459493 + 3.19584i
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0.857685 0.989821i 0.857685 0.989821i −0.142315 0.989821i \(-0.545455\pi\)
1.00000 \(0\)
\(564\) 1.57028 1.81219i 1.57028 1.81219i
\(565\) −1.61435 + 0.474017i −1.61435 + 0.474017i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(570\) −1.34125 + 2.93694i −1.34125 + 2.93694i
\(571\) 0.186393 1.29639i 0.186393 1.29639i −0.654861 0.755750i \(-0.727273\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 1.00000 1.00000
\(576\) −1.39788 −1.39788
\(577\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(578\) −1.30075 0.835939i −1.30075 0.835939i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) −1.85380 + 2.13940i −1.85380 + 2.13940i
\(587\) 1.25667 1.45027i 1.25667 1.45027i 0.415415 0.909632i \(-0.363636\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(588\) −1.75667 + 0.515804i −1.75667 + 0.515804i
\(589\) 1.52977 + 3.34973i 1.52977 + 3.34973i
\(590\) 0 0
\(591\) −0.797176 0.234072i −0.797176 0.234072i
\(592\) 0 0
\(593\) −0.797176 + 1.74557i −0.797176 + 1.74557i −0.142315 + 0.989821i \(0.545455\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 1.68251 1.68251
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) −0.915415 1.05645i −0.915415 1.05645i
\(601\) 0.698939 + 0.449181i 0.698939 + 0.449181i 0.841254 0.540641i \(-0.181818\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0.0741615 + 0.515804i 0.0741615 + 0.515804i
\(605\) −0.959493 0.281733i −0.959493 0.281733i
\(606\) 0 0
\(607\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(608\) −0.959493 + 0.281733i −0.959493 + 0.281733i
\(609\) 0 0
\(610\) 1.44306 1.66538i 1.44306 1.66538i
\(611\) 0 0
\(612\) −0.216476 0.474017i −0.216476 0.474017i
\(613\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0.186393 1.29639i 0.186393 1.29639i −0.654861 0.755750i \(-0.727273\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(618\) 0 0
\(619\) −0.544078 0.627899i −0.544078 0.627899i 0.415415 0.909632i \(-0.363636\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(620\) −3.51334 −3.51334
\(621\) −0.654861 0.755750i −0.654861 0.755750i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −0.142315 + 0.989821i −0.142315 + 0.989821i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0.273100 0.0801894i 0.273100 0.0801894i −0.142315 0.989821i \(-0.545455\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(632\) −0.760554 + 0.877726i −0.760554 + 0.877726i
\(633\) 0.186393 0.215109i 0.186393 0.215109i
\(634\) 0.459493 0.134919i 0.459493 0.134919i
\(635\) 0 0
\(636\) −2.01722 + 1.29639i −2.01722 + 1.29639i
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0.260554 1.81219i 0.260554 1.81219i
\(641\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(642\) −0.915415 1.05645i −0.915415 1.05645i
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −0.601808 0.694523i −0.601808 0.694523i
\(647\) −0.239446 0.153882i −0.239446 0.153882i 0.415415 0.909632i \(-0.363636\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(648\) −0.198939 + 1.38365i −0.198939 + 1.38365i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0.345139 + 0.755750i 0.345139 + 0.755750i 1.00000 \(0\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(654\) −1.34125 + 0.393828i −1.34125 + 0.393828i
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(660\) 0 0
\(661\) 0.273100 + 1.89945i 0.273100 + 1.89945i 0.415415 + 0.909632i \(0.363636\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(662\) 1.17597 2.57501i 1.17597 2.57501i
\(663\) 0 0
\(664\) 1.97858 + 1.27155i 1.97858 + 1.27155i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 1.52111 1.52111
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(674\) 0 0
\(675\) 0.841254 0.540641i 0.841254 0.540641i
\(676\) 0.760554 + 1.66538i 0.760554 + 1.66538i
\(677\) −0.797176 + 0.234072i −0.797176 + 0.234072i −0.654861 0.755750i \(-0.727273\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(678\) −1.85380 + 2.13940i −1.85380 + 2.13940i
\(679\) 0 0
\(680\) 0.381761 0.112095i 0.381761 0.112095i
\(681\) −0.544078 1.19136i −0.544078 1.19136i
\(682\) 0 0
\(683\) 1.25667 + 0.368991i 1.25667 + 0.368991i 0.841254 0.540641i \(-0.181818\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(684\) 0.500000 + 3.47758i 0.500000 + 3.47758i
\(685\) 0.345139 0.755750i 0.345139 0.755750i
\(686\) 0 0
\(687\) 1.41542 + 0.909632i 1.41542 + 0.909632i
\(688\) 0 0
\(689\) 0 0
\(690\) 1.41542 0.909632i 1.41542 0.909632i
\(691\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(692\) 1.57028 + 1.81219i 1.57028 + 1.81219i
\(693\) 0 0
\(694\) 0.459493 3.19584i 0.459493 3.19584i
\(695\) −0.544078 + 1.19136i −0.544078 + 1.19136i
\(696\) 0 0
\(697\) 0 0
\(698\) 2.38145 1.53046i 2.38145 1.53046i
\(699\) 0.345139 + 0.755750i 0.345139 + 0.755750i
\(700\) 0 0
\(701\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) −1.10181 + 0.708089i −1.10181 + 0.708089i
\(706\) 3.09792 + 0.909632i 3.09792 + 0.909632i
\(707\) 0 0
\(708\) 0 0
\(709\) 0.0405070 0.281733i 0.0405070 0.281733i −0.959493 0.281733i \(-0.909091\pi\)
1.00000 \(0\)
\(710\) 0 0
\(711\) −0.544078 0.627899i −0.544078 0.627899i
\(712\) 0 0
\(713\) 0.273100 1.89945i 0.273100 1.89945i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(720\) −0.500000 0.146813i −0.500000 0.146813i
\(721\) 0 0
\(722\) 1.87491 + 4.10548i 1.87491 + 4.10548i
\(723\) 0.273100 0.0801894i 0.273100 0.0801894i
\(724\) 0.341254 0.393828i 0.341254 0.393828i
\(725\) 0 0
\(726\) −1.61435 + 0.474017i −1.61435 + 0.474017i
\(727\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(728\) 0 0
\(729\) −0.959493 0.281733i −0.959493 0.281733i
\(730\) 0 0
\(731\) 0 0
\(732\) 0.341254 2.37347i 0.341254 2.37347i
\(733\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(734\) 0 0
\(735\) 1.00000 1.00000
\(736\) 0.500000 + 0.146813i 0.500000 + 0.146813i
\(737\) 0 0
\(738\) 0 0
\(739\) 1.41542 + 0.909632i 1.41542 + 0.909632i 1.00000 \(0\)
0.415415 + 0.909632i \(0.363636\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −1.61435 0.474017i −1.61435 0.474017i −0.654861 0.755750i \(-0.727273\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(744\) −2.25667 + 1.45027i −2.25667 + 1.45027i
\(745\) 0 0
\(746\) 0 0
\(747\) −1.10181 + 1.27155i −1.10181 + 1.27155i
\(748\) 0 0
\(749\) 0 0
\(750\) 0.698939 + 1.53046i 0.698939 + 1.53046i
\(751\) −0.239446 + 0.153882i −0.239446 + 0.153882i −0.654861 0.755750i \(-0.727273\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(752\) 0.654861 + 0.192284i 0.654861 + 0.192284i
\(753\) 0 0
\(754\) 0 0
\(755\) 0.0405070 0.281733i 0.0405070 0.281733i
\(756\) 0 0
\(757\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(758\) 2.83083 2.83083
\(759\) 0 0
\(760\) −2.68251 −2.68251
\(761\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0.0405070 + 0.281733i 0.0405070 + 0.281733i
\(766\) −2.71616 0.797537i −2.71616 0.797537i
\(767\) 0 0
\(768\) −0.698939 1.53046i −0.698939 1.53046i
\(769\) −1.91899 + 0.563465i −1.91899 + 0.563465i −0.959493 + 0.281733i \(0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(770\) 0 0
\(771\) 0.186393 0.215109i 0.186393 0.215109i
\(772\) 0 0
\(773\) −0.797176 1.74557i −0.797176 1.74557i −0.654861 0.755750i \(-0.727273\pi\)
−0.142315 0.989821i \(-0.545455\pi\)
\(774\) 0 0
\(775\) 1.84125 + 0.540641i 1.84125 + 0.540641i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0.0681534 + 0.474017i 0.0681534 + 0.474017i
\(783\) 0 0
\(784\) −0.341254 0.393828i −0.341254 0.393828i
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(788\) −0.216476 1.50563i −0.216476 1.50563i
\(789\) 1.84125 + 0.540641i 1.84125 + 0.540641i
\(790\) 1.17597 0.755750i 1.17597 0.755750i
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 1.25667 0.368991i 1.25667 0.368991i
\(796\) 1.27964 + 2.80202i 1.27964 + 2.80202i
\(797\) −1.61435 + 1.03748i −1.61435 + 1.03748i −0.654861 + 0.755750i \(0.727273\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(798\) 0 0
\(799\) −0.0530529 0.368991i −0.0530529 0.368991i
\(800\) −0.216476 + 0.474017i −0.216476 + 0.474017i
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(810\) 0.698939 1.53046i 0.698939 1.53046i
\(811\) −0.118239 0.822373i −0.118239 0.822373i −0.959493 0.281733i \(-0.909091\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(812\) 0 0
\(813\) −1.10181 + 0.708089i −1.10181 + 0.708089i
\(814\) 0 0
\(815\) 0 0
\(816\) 0.0971309 0.112095i 0.0971309 0.112095i
\(817\) 0 0
\(818\) 0.459493 0.134919i 0.459493 0.134919i
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(822\) −0.198939 1.38365i −0.198939 1.38365i
\(823\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(828\) 0.760554 1.66538i 0.760554 1.66538i
\(829\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(830\) −1.85380 2.13940i −1.85380 2.13940i
\(831\) 0 0
\(832\) 0 0
\(833\) −0.118239 + 0.258908i −0.118239 + 0.258908i
\(834\) 0.313607 + 2.18119i 0.313607 + 2.18119i
\(835\) −0.797176 0.234072i −0.797176 0.234072i
\(836\) 0 0
\(837\) −0.797176 1.74557i −0.797176 1.74557i
\(838\) 0 0
\(839\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(840\) 0 0
\(841\) −0.959493 + 0.281733i −0.959493 + 0.281733i
\(842\) −1.34125 2.93694i −1.34125 2.93694i
\(843\) 0 0
\(844\) 0.500000 + 0.146813i 0.500000 + 0.146813i
\(845\) −0.142315 0.989821i −0.142315 0.989821i
\(846\) −0.915415 + 2.00448i −0.915415 + 2.00448i
\(847\) 0 0
\(848\) −0.574161 0.368991i −0.574161 0.368991i
\(849\) 0 0
\(850\) −0.478891 −0.478891
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(854\) 0 0
\(855\) 0.273100 1.89945i 0.273100 1.89945i
\(856\) 0.482462 1.05645i 0.482462 1.05645i
\(857\) 0.273100 + 1.89945i 0.273100 + 1.89945i 0.415415 + 0.909632i \(0.363636\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(858\) 0 0
\(859\) −0.239446 + 0.153882i −0.239446 + 0.153882i −0.654861 0.755750i \(-0.727273\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −0.544078 + 0.627899i −0.544078 + 0.627899i −0.959493 0.281733i \(-0.909091\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(864\) 0.500000 0.146813i 0.500000 0.146813i
\(865\) −0.544078 1.19136i −0.544078 1.19136i
\(866\) 0 0
\(867\) 0.881761 + 0.258908i 0.881761 + 0.258908i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) −0.760554 0.877726i −0.760554 0.877726i
\(873\) 0 0
\(874\) 0.459493 3.19584i 0.459493 3.19584i
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(878\) −0.402869 + 2.80202i −0.402869 + 2.80202i
\(879\) 0.698939 1.53046i 0.698939 1.53046i
\(880\) 0 0
\(881\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(882\) 1.41542 0.909632i 1.41542 0.909632i
\(883\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0.313607 0.361922i 0.313607 0.361922i
\(887\) 0.273100 0.0801894i 0.273100 0.0801894i −0.142315 0.989821i \(-0.545455\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −0.357685 + 2.48775i −0.357685 + 2.48775i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 1.54019 + 0.989821i 1.54019 + 0.989821i
\(901\) −0.0530529 + 0.368991i −0.0530529 + 0.368991i
\(902\) 0 0
\(903\) 0 0
\(904\) −2.25667 0.662618i −2.25667 0.662618i
\(905\) −0.239446 + 0.153882i −0.239446 + 0.153882i
\(906\) −0.198939 0.435615i −0.198939 0.435615i
\(907\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(908\) 1.57028 1.81219i 1.57028 1.81219i
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(912\) −0.841254 + 0.540641i −0.841254 + 0.540641i
\(913\) 0 0
\(914\) 0 0
\(915\) −0.544078 + 1.19136i −0.544078 + 1.19136i
\(916\) −0.438384 + 3.04903i −0.438384 + 3.04903i
\(917\) 0 0
\(918\) 0.313607 + 0.361922i 0.313607 + 0.361922i
\(919\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(920\) 1.17597 + 0.755750i 1.17597 + 0.755750i
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(930\) 3.09792 0.909632i 3.09792 0.909632i
\(931\) 1.25667 1.45027i 1.25667 1.45027i
\(932\) −0.996114 + 1.14958i −0.996114 + 1.14958i
\(933\) 0 0
\(934\) −0.198939 0.435615i −0.198939 0.435615i
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −2.01722 1.29639i −2.01722 1.29639i
\(941\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0.186393 1.29639i 0.186393 1.29639i −0.654861 0.755750i \(-0.727273\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(948\) 0.631891 1.38365i 0.631891 1.38365i
\(949\) 0 0
\(950\) 3.09792 + 0.909632i 3.09792 + 0.909632i
\(951\) −0.239446 + 0.153882i −0.239446 + 0.153882i
\(952\) 0 0
\(953\) 1.25667 0.368991i 1.25667 0.368991i 0.415415 0.909632i \(-0.363636\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(954\) 1.44306 1.66538i 1.44306 1.66538i
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0.198939 + 1.38365i 0.198939 + 1.38365i
\(961\) 1.11435 2.44009i 1.11435 2.44009i
\(962\) 0 0
\(963\) 0.698939 + 0.449181i 0.698939 + 0.449181i
\(964\) 0.341254 + 0.393828i 0.341254 + 0.393828i
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) −0.915415 1.05645i −0.915415 1.05645i
\(969\) 0.459493 + 0.295298i 0.459493 + 0.295298i
\(970\) 0 0
\(971\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(972\) −0.260554 1.81219i −0.260554 1.81219i
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0.654861 0.192284i 0.654861 0.192284i
\(977\) −0.544078 + 0.627899i −0.544078 + 0.627899i −0.959493 0.281733i \(-0.909091\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0.760554 + 1.66538i 0.760554 + 1.66538i
\(981\) 0.698939 0.449181i 0.698939 0.449181i
\(982\) 0 0
\(983\) −0.118239 0.822373i −0.118239 0.822373i −0.959493 0.281733i \(-0.909091\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(984\) 0 0
\(985\) −0.118239 + 0.822373i −0.118239 + 0.822373i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −0.544078 0.627899i −0.544078 0.627899i 0.415415 0.909632i \(-0.363636\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(992\) 0.841254 + 0.540641i 0.841254 + 0.540641i
\(993\) −0.239446 + 1.66538i −0.239446 + 1.66538i
\(994\) 0 0
\(995\) −0.239446 1.66538i −0.239446 1.66538i
\(996\) −2.95561 0.867845i −2.95561 0.867845i
\(997\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(998\) 0.580699 + 1.27155i 0.580699 + 1.27155i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 345.1.p.a.59.1 10
3.2 odd 2 345.1.p.b.59.1 yes 10
5.2 odd 4 1725.1.bc.a.1301.2 20
5.3 odd 4 1725.1.bc.a.1301.1 20
5.4 even 2 345.1.p.b.59.1 yes 10
15.2 even 4 1725.1.bc.a.1301.1 20
15.8 even 4 1725.1.bc.a.1301.2 20
15.14 odd 2 CM 345.1.p.a.59.1 10
23.16 even 11 inner 345.1.p.a.269.1 yes 10
69.62 odd 22 345.1.p.b.269.1 yes 10
115.39 even 22 345.1.p.b.269.1 yes 10
115.62 odd 44 1725.1.bc.a.476.1 20
115.108 odd 44 1725.1.bc.a.476.2 20
345.62 even 44 1725.1.bc.a.476.2 20
345.269 odd 22 inner 345.1.p.a.269.1 yes 10
345.338 even 44 1725.1.bc.a.476.1 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
345.1.p.a.59.1 10 1.1 even 1 trivial
345.1.p.a.59.1 10 15.14 odd 2 CM
345.1.p.a.269.1 yes 10 23.16 even 11 inner
345.1.p.a.269.1 yes 10 345.269 odd 22 inner
345.1.p.b.59.1 yes 10 3.2 odd 2
345.1.p.b.59.1 yes 10 5.4 even 2
345.1.p.b.269.1 yes 10 69.62 odd 22
345.1.p.b.269.1 yes 10 115.39 even 22
1725.1.bc.a.476.1 20 115.62 odd 44
1725.1.bc.a.476.1 20 345.338 even 44
1725.1.bc.a.476.2 20 115.108 odd 44
1725.1.bc.a.476.2 20 345.62 even 44
1725.1.bc.a.1301.1 20 5.3 odd 4
1725.1.bc.a.1301.1 20 15.2 even 4
1725.1.bc.a.1301.2 20 5.2 odd 4
1725.1.bc.a.1301.2 20 15.8 even 4