Properties

Label 1728.2.bc.e.1585.14
Level $1728$
Weight $2$
Character 1728.1585
Analytic conductor $13.798$
Analytic rank $0$
Dimension $72$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1728,2,Mod(145,1728)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1728, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([0, 9, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1728.145");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1728 = 2^{6} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1728.bc (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.7981494693\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(18\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 144)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 1585.14
Character \(\chi\) \(=\) 1728.1585
Dual form 1728.2.bc.e.145.14

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.733432 - 2.73721i) q^{5} +(-1.14487 - 0.660988i) q^{7} +O(q^{10})\) \(q+(0.733432 - 2.73721i) q^{5} +(-1.14487 - 0.660988i) q^{7} +(1.28367 - 0.343957i) q^{11} +(3.36696 + 0.902174i) q^{13} +7.60772 q^{17} +(-4.32297 + 4.32297i) q^{19} +(3.46087 - 1.99814i) q^{23} +(-2.62424 - 1.51511i) q^{25} +(-0.950303 - 3.54658i) q^{29} +(-0.569129 - 0.985760i) q^{31} +(-2.64894 + 2.64894i) q^{35} +(2.26014 + 2.26014i) q^{37} +(-1.42311 + 0.821634i) q^{41} +(6.17424 - 1.65438i) q^{43} +(4.58731 - 7.94546i) q^{47} +(-2.62619 - 4.54869i) q^{49} +(-7.72215 - 7.72215i) q^{53} -3.76593i q^{55} +(1.28879 - 4.80982i) q^{59} +(-2.66068 - 9.92979i) q^{61} +(4.93887 - 8.55438i) q^{65} +(-13.9276 - 3.73189i) q^{67} +7.87498i q^{71} +0.577222i q^{73} +(-1.69698 - 0.454704i) q^{77} +(-0.716890 + 1.24169i) q^{79} +(-0.885341 - 3.30414i) q^{83} +(5.57975 - 20.8239i) q^{85} +16.2114i q^{89} +(-3.25839 - 3.25839i) q^{91} +(8.66225 + 15.0035i) q^{95} +(-0.648931 + 1.12398i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q - 4 q^{5}+O(q^{10}) \) Copy content Toggle raw display \( 72 q - 4 q^{5} - 2 q^{11} - 16 q^{13} + 16 q^{17} - 28 q^{19} - 4 q^{29} - 28 q^{31} - 16 q^{35} + 16 q^{37} + 10 q^{43} - 56 q^{47} + 4 q^{49} + 8 q^{53} - 14 q^{59} - 32 q^{61} + 64 q^{65} + 18 q^{67} + 36 q^{77} - 44 q^{79} + 20 q^{83} - 8 q^{85} + 80 q^{91} + 48 q^{95} + 40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1728\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(703\) \(1217\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.733432 2.73721i 0.328001 1.22412i −0.583260 0.812286i \(-0.698223\pi\)
0.911261 0.411830i \(-0.135110\pi\)
\(6\) 0 0
\(7\) −1.14487 0.660988i −0.432718 0.249830i 0.267786 0.963479i \(-0.413708\pi\)
−0.700504 + 0.713648i \(0.747041\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.28367 0.343957i 0.387040 0.103707i −0.0600515 0.998195i \(-0.519126\pi\)
0.447092 + 0.894488i \(0.352460\pi\)
\(12\) 0 0
\(13\) 3.36696 + 0.902174i 0.933827 + 0.250218i 0.693486 0.720470i \(-0.256074\pi\)
0.240341 + 0.970689i \(0.422741\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 7.60772 1.84514 0.922572 0.385825i \(-0.126083\pi\)
0.922572 + 0.385825i \(0.126083\pi\)
\(18\) 0 0
\(19\) −4.32297 + 4.32297i −0.991757 + 0.991757i −0.999966 0.00820954i \(-0.997387\pi\)
0.00820954 + 0.999966i \(0.497387\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.46087 1.99814i 0.721642 0.416640i −0.0937148 0.995599i \(-0.529874\pi\)
0.815357 + 0.578959i \(0.196541\pi\)
\(24\) 0 0
\(25\) −2.62424 1.51511i −0.524849 0.303021i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −0.950303 3.54658i −0.176467 0.658583i −0.996297 0.0859765i \(-0.972599\pi\)
0.819830 0.572606i \(-0.194068\pi\)
\(30\) 0 0
\(31\) −0.569129 0.985760i −0.102219 0.177048i 0.810380 0.585905i \(-0.199261\pi\)
−0.912598 + 0.408857i \(0.865927\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2.64894 + 2.64894i −0.447753 + 0.447753i
\(36\) 0 0
\(37\) 2.26014 + 2.26014i 0.371565 + 0.371565i 0.868047 0.496482i \(-0.165375\pi\)
−0.496482 + 0.868047i \(0.665375\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −1.42311 + 0.821634i −0.222253 + 0.128318i −0.606993 0.794707i \(-0.707624\pi\)
0.384740 + 0.923025i \(0.374291\pi\)
\(42\) 0 0
\(43\) 6.17424 1.65438i 0.941563 0.252291i 0.244784 0.969578i \(-0.421283\pi\)
0.696778 + 0.717287i \(0.254616\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.58731 7.94546i 0.669129 1.15896i −0.309020 0.951056i \(-0.600001\pi\)
0.978148 0.207909i \(-0.0666658\pi\)
\(48\) 0 0
\(49\) −2.62619 4.54869i −0.375170 0.649813i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −7.72215 7.72215i −1.06072 1.06072i −0.998033 0.0626852i \(-0.980034\pi\)
−0.0626852 0.998033i \(-0.519966\pi\)
\(54\) 0 0
\(55\) 3.76593i 0.507798i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 1.28879 4.80982i 0.167786 0.626185i −0.829883 0.557938i \(-0.811593\pi\)
0.997668 0.0682473i \(-0.0217407\pi\)
\(60\) 0 0
\(61\) −2.66068 9.92979i −0.340665 1.27138i −0.897596 0.440820i \(-0.854688\pi\)
0.556931 0.830559i \(-0.311979\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 4.93887 8.55438i 0.612592 1.06104i
\(66\) 0 0
\(67\) −13.9276 3.73189i −1.70153 0.455923i −0.728205 0.685359i \(-0.759645\pi\)
−0.973324 + 0.229436i \(0.926312\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 7.87498i 0.934588i 0.884102 + 0.467294i \(0.154771\pi\)
−0.884102 + 0.467294i \(0.845229\pi\)
\(72\) 0 0
\(73\) 0.577222i 0.0675588i 0.999429 + 0.0337794i \(0.0107544\pi\)
−0.999429 + 0.0337794i \(0.989246\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1.69698 0.454704i −0.193389 0.0518183i
\(78\) 0 0
\(79\) −0.716890 + 1.24169i −0.0806564 + 0.139701i −0.903532 0.428521i \(-0.859035\pi\)
0.822876 + 0.568221i \(0.192368\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −0.885341 3.30414i −0.0971788 0.362676i 0.900162 0.435555i \(-0.143448\pi\)
−0.997341 + 0.0728790i \(0.976781\pi\)
\(84\) 0 0
\(85\) 5.57975 20.8239i 0.605208 2.25867i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 16.2114i 1.71841i 0.511635 + 0.859203i \(0.329040\pi\)
−0.511635 + 0.859203i \(0.670960\pi\)
\(90\) 0 0
\(91\) −3.25839 3.25839i −0.341572 0.341572i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 8.66225 + 15.0035i 0.888728 + 1.53932i
\(96\) 0 0
\(97\) −0.648931 + 1.12398i −0.0658889 + 0.114123i −0.897088 0.441852i \(-0.854322\pi\)
0.831199 + 0.555975i \(0.187655\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 9.73900 2.60956i 0.969067 0.259661i 0.260633 0.965438i \(-0.416069\pi\)
0.708434 + 0.705777i \(0.249402\pi\)
\(102\) 0 0
\(103\) 8.04850 4.64680i 0.793042 0.457863i −0.0479901 0.998848i \(-0.515282\pi\)
0.841033 + 0.540985i \(0.181948\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.89502 + 1.89502i 0.183199 + 0.183199i 0.792748 0.609549i \(-0.208650\pi\)
−0.609549 + 0.792748i \(0.708650\pi\)
\(108\) 0 0
\(109\) −8.63272 + 8.63272i −0.826864 + 0.826864i −0.987082 0.160217i \(-0.948780\pi\)
0.160217 + 0.987082i \(0.448780\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.70180 + 2.94761i 0.160092 + 0.277288i 0.934902 0.354907i \(-0.115488\pi\)
−0.774809 + 0.632195i \(0.782154\pi\)
\(114\) 0 0
\(115\) −2.93099 10.9386i −0.273317 1.02003i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −8.70982 5.02862i −0.798428 0.460972i
\(120\) 0 0
\(121\) −7.99679 + 4.61695i −0.726981 + 0.419722i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 3.94700 3.94700i 0.353031 0.353031i
\(126\) 0 0
\(127\) 5.24504 0.465422 0.232711 0.972546i \(-0.425240\pi\)
0.232711 + 0.972546i \(0.425240\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −6.27080 1.68026i −0.547883 0.146805i −0.0257490 0.999668i \(-0.508197\pi\)
−0.522134 + 0.852864i \(0.674864\pi\)
\(132\) 0 0
\(133\) 7.80665 2.09178i 0.676922 0.181381i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −6.16622 3.56007i −0.526816 0.304157i 0.212903 0.977073i \(-0.431708\pi\)
−0.739719 + 0.672916i \(0.765042\pi\)
\(138\) 0 0
\(139\) 1.09091 4.07133i 0.0925298 0.345326i −0.904104 0.427313i \(-0.859460\pi\)
0.996633 + 0.0819876i \(0.0261268\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 4.63236 0.387378
\(144\) 0 0
\(145\) −10.4047 −0.864063
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −2.25338 + 8.40971i −0.184604 + 0.688950i 0.810111 + 0.586276i \(0.199407\pi\)
−0.994715 + 0.102674i \(0.967260\pi\)
\(150\) 0 0
\(151\) 17.8103 + 10.2828i 1.44938 + 0.836803i 0.998445 0.0557515i \(-0.0177554\pi\)
0.450940 + 0.892554i \(0.351089\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −3.11564 + 0.834834i −0.250255 + 0.0670555i
\(156\) 0 0
\(157\) 8.90879 + 2.38710i 0.710999 + 0.190512i 0.596152 0.802872i \(-0.296696\pi\)
0.114847 + 0.993383i \(0.463362\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −5.28298 −0.416357
\(162\) 0 0
\(163\) 10.4053 10.4053i 0.815004 0.815004i −0.170375 0.985379i \(-0.554498\pi\)
0.985379 + 0.170375i \(0.0544981\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 5.95392 3.43750i 0.460728 0.266001i −0.251622 0.967826i \(-0.580964\pi\)
0.712350 + 0.701824i \(0.247631\pi\)
\(168\) 0 0
\(169\) −0.735830 0.424832i −0.0566023 0.0326794i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −0.823927 3.07494i −0.0626420 0.233783i 0.927506 0.373808i \(-0.121948\pi\)
−0.990148 + 0.140025i \(0.955282\pi\)
\(174\) 0 0
\(175\) 2.00294 + 3.46919i 0.151408 + 0.262246i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −3.73648 + 3.73648i −0.279278 + 0.279278i −0.832821 0.553543i \(-0.813275\pi\)
0.553543 + 0.832821i \(0.313275\pi\)
\(180\) 0 0
\(181\) 0.169132 + 0.169132i 0.0125715 + 0.0125715i 0.713365 0.700793i \(-0.247170\pi\)
−0.700793 + 0.713365i \(0.747170\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 7.84414 4.52882i 0.576713 0.332965i
\(186\) 0 0
\(187\) 9.76578 2.61673i 0.714145 0.191354i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 11.0451 19.1306i 0.799194 1.38424i −0.120947 0.992659i \(-0.538593\pi\)
0.920142 0.391586i \(-0.128073\pi\)
\(192\) 0 0
\(193\) 7.90683 + 13.6950i 0.569146 + 0.985790i 0.996651 + 0.0817767i \(0.0260594\pi\)
−0.427505 + 0.904013i \(0.640607\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1.19611 1.19611i −0.0852196 0.0852196i 0.663212 0.748432i \(-0.269193\pi\)
−0.748432 + 0.663212i \(0.769193\pi\)
\(198\) 0 0
\(199\) 6.39170i 0.453095i −0.974000 0.226548i \(-0.927256\pi\)
0.974000 0.226548i \(-0.0727439\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −1.25628 + 4.68849i −0.0881734 + 0.329068i
\(204\) 0 0
\(205\) 1.20523 + 4.49796i 0.0841766 + 0.314151i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −4.06233 + 7.03617i −0.280997 + 0.486702i
\(210\) 0 0
\(211\) 2.01376 + 0.539586i 0.138633 + 0.0371466i 0.327468 0.944862i \(-0.393805\pi\)
−0.188835 + 0.982009i \(0.560471\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 18.1135i 1.23533i
\(216\) 0 0
\(217\) 1.50475i 0.102149i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 25.6149 + 6.86349i 1.72304 + 0.461688i
\(222\) 0 0
\(223\) −13.6496 + 23.6417i −0.914042 + 1.58317i −0.105745 + 0.994393i \(0.533723\pi\)
−0.808297 + 0.588775i \(0.799611\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −0.752368 2.80787i −0.0499364 0.186365i 0.936452 0.350794i \(-0.114088\pi\)
−0.986389 + 0.164429i \(0.947422\pi\)
\(228\) 0 0
\(229\) 1.73787 6.48583i 0.114842 0.428596i −0.884433 0.466667i \(-0.845455\pi\)
0.999275 + 0.0380710i \(0.0121213\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 11.8159i 0.774086i 0.922062 + 0.387043i \(0.126503\pi\)
−0.922062 + 0.387043i \(0.873497\pi\)
\(234\) 0 0
\(235\) −18.3839 18.3839i −1.19923 1.19923i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −1.75364 3.03739i −0.113433 0.196472i 0.803719 0.595009i \(-0.202852\pi\)
−0.917152 + 0.398537i \(0.869518\pi\)
\(240\) 0 0
\(241\) −4.35635 + 7.54543i −0.280617 + 0.486044i −0.971537 0.236888i \(-0.923873\pi\)
0.690920 + 0.722932i \(0.257206\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −14.3768 + 3.85226i −0.918502 + 0.246112i
\(246\) 0 0
\(247\) −18.4553 + 10.6552i −1.17428 + 0.677973i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −9.70213 9.70213i −0.612393 0.612393i 0.331176 0.943569i \(-0.392555\pi\)
−0.943569 + 0.331176i \(0.892555\pi\)
\(252\) 0 0
\(253\) 3.75533 3.75533i 0.236096 0.236096i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 9.26857 + 16.0536i 0.578158 + 1.00140i 0.995691 + 0.0927366i \(0.0295615\pi\)
−0.417533 + 0.908662i \(0.637105\pi\)
\(258\) 0 0
\(259\) −1.09363 4.08149i −0.0679550 0.253611i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −3.42692 1.97853i −0.211313 0.122002i 0.390608 0.920557i \(-0.372265\pi\)
−0.601922 + 0.798555i \(0.705598\pi\)
\(264\) 0 0
\(265\) −26.8008 + 15.4734i −1.64636 + 0.950525i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −17.6742 + 17.6742i −1.07762 + 1.07762i −0.0808951 + 0.996723i \(0.525778\pi\)
−0.996723 + 0.0808951i \(0.974222\pi\)
\(270\) 0 0
\(271\) 26.9563 1.63748 0.818738 0.574167i \(-0.194674\pi\)
0.818738 + 0.574167i \(0.194674\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −3.88979 1.04226i −0.234563 0.0628509i
\(276\) 0 0
\(277\) −9.24514 + 2.47723i −0.555487 + 0.148842i −0.525632 0.850712i \(-0.676171\pi\)
−0.0298548 + 0.999554i \(0.509504\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 8.51476 + 4.91600i 0.507948 + 0.293264i 0.731990 0.681316i \(-0.238592\pi\)
−0.224042 + 0.974580i \(0.571925\pi\)
\(282\) 0 0
\(283\) −8.06496 + 30.0988i −0.479412 + 1.78919i 0.124591 + 0.992208i \(0.460238\pi\)
−0.604003 + 0.796982i \(0.706428\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 2.17236 0.128231
\(288\) 0 0
\(289\) 40.8774 2.40456
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 8.20472 30.6204i 0.479325 1.78886i −0.125035 0.992152i \(-0.539904\pi\)
0.604360 0.796711i \(-0.293429\pi\)
\(294\) 0 0
\(295\) −12.2202 7.05535i −0.711489 0.410778i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 13.4553 3.60533i 0.778139 0.208502i
\(300\) 0 0
\(301\) −8.16220 2.18706i −0.470462 0.126060i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −29.1313 −1.66805
\(306\) 0 0
\(307\) −17.2513 + 17.2513i −0.984581 + 0.984581i −0.999883 0.0153018i \(-0.995129\pi\)
0.0153018 + 0.999883i \(0.495129\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 8.53625 4.92841i 0.484046 0.279464i −0.238055 0.971252i \(-0.576510\pi\)
0.722101 + 0.691787i \(0.243176\pi\)
\(312\) 0 0
\(313\) 8.45774 + 4.88308i 0.478060 + 0.276008i 0.719608 0.694381i \(-0.244322\pi\)
−0.241548 + 0.970389i \(0.577655\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −3.43237 12.8098i −0.192781 0.719469i −0.992830 0.119534i \(-0.961860\pi\)
0.800049 0.599935i \(-0.204807\pi\)
\(318\) 0 0
\(319\) −2.43974 4.22576i −0.136599 0.236597i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −32.8879 + 32.8879i −1.82993 + 1.82993i
\(324\) 0 0
\(325\) −7.46883 7.46883i −0.414296 0.414296i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −10.5037 + 6.06432i −0.579089 + 0.334337i
\(330\) 0 0
\(331\) 1.02314 0.274151i 0.0562371 0.0150687i −0.230591 0.973051i \(-0.574066\pi\)
0.286828 + 0.957982i \(0.407399\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −20.4299 + 35.3857i −1.11621 + 1.93332i
\(336\) 0 0
\(337\) −2.50387 4.33683i −0.136395 0.236242i 0.789735 0.613448i \(-0.210218\pi\)
−0.926129 + 0.377206i \(0.876885\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −1.06963 1.06963i −0.0579238 0.0579238i
\(342\) 0 0
\(343\) 16.1974i 0.874575i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −1.57745 + 5.88711i −0.0846817 + 0.316036i −0.995254 0.0973140i \(-0.968975\pi\)
0.910572 + 0.413350i \(0.135642\pi\)
\(348\) 0 0
\(349\) 1.45289 + 5.42227i 0.0777715 + 0.290247i 0.993847 0.110758i \(-0.0353277\pi\)
−0.916076 + 0.401005i \(0.868661\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 5.06146 8.76671i 0.269395 0.466605i −0.699311 0.714817i \(-0.746510\pi\)
0.968706 + 0.248212i \(0.0798431\pi\)
\(354\) 0 0
\(355\) 21.5554 + 5.77576i 1.14404 + 0.306546i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 5.28081i 0.278710i −0.990242 0.139355i \(-0.955497\pi\)
0.990242 0.139355i \(-0.0445030\pi\)
\(360\) 0 0
\(361\) 18.3761i 0.967163i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1.57998 + 0.423353i 0.0826997 + 0.0221593i
\(366\) 0 0
\(367\) −5.01941 + 8.69388i −0.262011 + 0.453817i −0.966776 0.255624i \(-0.917719\pi\)
0.704765 + 0.709441i \(0.251052\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 3.73657 + 13.9451i 0.193993 + 0.723992i
\(372\) 0 0
\(373\) −6.74869 + 25.1865i −0.349434 + 1.30411i 0.537912 + 0.843001i \(0.319213\pi\)
−0.887346 + 0.461105i \(0.847453\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 12.7985i 0.659157i
\(378\) 0 0
\(379\) 11.3259 + 11.3259i 0.581771 + 0.581771i 0.935390 0.353619i \(-0.115049\pi\)
−0.353619 + 0.935390i \(0.615049\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 2.50076 + 4.33145i 0.127783 + 0.221327i 0.922817 0.385238i \(-0.125881\pi\)
−0.795034 + 0.606564i \(0.792547\pi\)
\(384\) 0 0
\(385\) −2.48924 + 4.31148i −0.126863 + 0.219733i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −12.9035 + 3.45749i −0.654235 + 0.175302i −0.570643 0.821198i \(-0.693306\pi\)
−0.0835921 + 0.996500i \(0.526639\pi\)
\(390\) 0 0
\(391\) 26.3294 15.2013i 1.33153 0.768761i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 2.87297 + 2.87297i 0.144555 + 0.144555i
\(396\) 0 0
\(397\) −18.7165 + 18.7165i −0.939356 + 0.939356i −0.998263 0.0589078i \(-0.981238\pi\)
0.0589078 + 0.998263i \(0.481238\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −6.66124 11.5376i −0.332647 0.576161i 0.650383 0.759606i \(-0.274608\pi\)
−0.983030 + 0.183445i \(0.941275\pi\)
\(402\) 0 0
\(403\) −1.02691 3.83247i −0.0511538 0.190909i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 3.67866 + 2.12388i 0.182345 + 0.105277i
\(408\) 0 0
\(409\) 10.6037 6.12206i 0.524320 0.302717i −0.214380 0.976750i \(-0.568773\pi\)
0.738701 + 0.674034i \(0.235440\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −4.65472 + 4.65472i −0.229044 + 0.229044i
\(414\) 0 0
\(415\) −9.69344 −0.475832
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 32.0424 + 8.58573i 1.56537 + 0.419440i 0.934360 0.356332i \(-0.115973\pi\)
0.631013 + 0.775772i \(0.282639\pi\)
\(420\) 0 0
\(421\) −24.7035 + 6.61930i −1.20398 + 0.322605i −0.804396 0.594093i \(-0.797511\pi\)
−0.399581 + 0.916698i \(0.630844\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −19.9645 11.5265i −0.968421 0.559118i
\(426\) 0 0
\(427\) −3.51736 + 13.1269i −0.170217 + 0.635258i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −10.3041 −0.496332 −0.248166 0.968717i \(-0.579828\pi\)
−0.248166 + 0.968717i \(0.579828\pi\)
\(432\) 0 0
\(433\) −11.7692 −0.565591 −0.282795 0.959180i \(-0.591262\pi\)
−0.282795 + 0.959180i \(0.591262\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −6.32337 + 23.5991i −0.302488 + 1.12890i
\(438\) 0 0
\(439\) −23.9893 13.8502i −1.14494 0.661034i −0.197294 0.980344i \(-0.563215\pi\)
−0.947650 + 0.319310i \(0.896549\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −24.2836 + 6.50677i −1.15375 + 0.309146i −0.784466 0.620172i \(-0.787063\pi\)
−0.369282 + 0.929317i \(0.620396\pi\)
\(444\) 0 0
\(445\) 44.3739 + 11.8900i 2.10353 + 0.563638i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 20.0988 0.948522 0.474261 0.880384i \(-0.342715\pi\)
0.474261 + 0.880384i \(0.342715\pi\)
\(450\) 0 0
\(451\) −1.54419 + 1.54419i −0.0727133 + 0.0727133i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −11.3087 + 6.52907i −0.530159 + 0.306088i
\(456\) 0 0
\(457\) 20.8270 + 12.0245i 0.974244 + 0.562480i 0.900527 0.434799i \(-0.143181\pi\)
0.0737167 + 0.997279i \(0.476514\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −1.04759 3.90967i −0.0487913 0.182092i 0.937230 0.348713i \(-0.113381\pi\)
−0.986021 + 0.166621i \(0.946714\pi\)
\(462\) 0 0
\(463\) −5.16489 8.94585i −0.240033 0.415749i 0.720691 0.693257i \(-0.243825\pi\)
−0.960723 + 0.277508i \(0.910492\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 11.8966 11.8966i 0.550509 0.550509i −0.376079 0.926588i \(-0.622728\pi\)
0.926588 + 0.376079i \(0.122728\pi\)
\(468\) 0 0
\(469\) 13.4785 + 13.4785i 0.622380 + 0.622380i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 7.35663 4.24735i 0.338258 0.195293i
\(474\) 0 0
\(475\) 17.8943 4.79476i 0.821046 0.219999i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −7.47878 + 12.9536i −0.341714 + 0.591866i −0.984751 0.173969i \(-0.944341\pi\)
0.643037 + 0.765835i \(0.277674\pi\)
\(480\) 0 0
\(481\) 5.57077 + 9.64886i 0.254005 + 0.439950i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.60062 + 2.60062i 0.118088 + 0.118088i
\(486\) 0 0
\(487\) 27.0362i 1.22513i 0.790420 + 0.612565i \(0.209862\pi\)
−0.790420 + 0.612565i \(0.790138\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −1.45189 + 5.41853i −0.0655229 + 0.244535i −0.990918 0.134470i \(-0.957067\pi\)
0.925395 + 0.379005i \(0.123734\pi\)
\(492\) 0 0
\(493\) −7.22964 26.9814i −0.325607 1.21518i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 5.20527 9.01579i 0.233488 0.404413i
\(498\) 0 0
\(499\) 21.2035 + 5.68146i 0.949198 + 0.254337i 0.700022 0.714121i \(-0.253174\pi\)
0.249176 + 0.968458i \(0.419840\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 23.1955i 1.03423i 0.855915 + 0.517117i \(0.172995\pi\)
−0.855915 + 0.517117i \(0.827005\pi\)
\(504\) 0 0
\(505\) 28.5716i 1.27142i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −12.5788 3.37049i −0.557547 0.149394i −0.0309681 0.999520i \(-0.509859\pi\)
−0.526579 + 0.850126i \(0.676526\pi\)
\(510\) 0 0
\(511\) 0.381537 0.660842i 0.0168782 0.0292339i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −6.81623 25.4385i −0.300359 1.12095i
\(516\) 0 0
\(517\) 3.15568 11.7772i 0.138787 0.517959i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 21.4547i 0.939949i −0.882680 0.469974i \(-0.844263\pi\)
0.882680 0.469974i \(-0.155737\pi\)
\(522\) 0 0
\(523\) −2.07495 2.07495i −0.0907314 0.0907314i 0.660284 0.751016i \(-0.270436\pi\)
−0.751016 + 0.660284i \(0.770436\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −4.32977 7.49939i −0.188608 0.326678i
\(528\) 0 0
\(529\) −3.51490 + 6.08799i −0.152822 + 0.264695i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −5.53282 + 1.48251i −0.239653 + 0.0642148i
\(534\) 0 0
\(535\) 6.57693 3.79719i 0.284346 0.164167i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −4.93571 4.93571i −0.212596 0.212596i
\(540\) 0 0
\(541\) 22.7947 22.7947i 0.980022 0.980022i −0.0197819 0.999804i \(-0.506297\pi\)
0.999804 + 0.0197819i \(0.00629719\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 17.2980 + 29.9610i 0.740965 + 1.28339i
\(546\) 0 0
\(547\) 3.58528 + 13.3804i 0.153295 + 0.572106i 0.999245 + 0.0388438i \(0.0123675\pi\)
−0.845950 + 0.533262i \(0.820966\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 19.4399 + 11.2236i 0.828166 + 0.478142i
\(552\) 0 0
\(553\) 1.64148 0.947711i 0.0698030 0.0403008i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 8.62660 8.62660i 0.365521 0.365521i −0.500320 0.865841i \(-0.666784\pi\)
0.865841 + 0.500320i \(0.166784\pi\)
\(558\) 0 0
\(559\) 22.2810 0.942384
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 20.3923 + 5.46409i 0.859432 + 0.230284i 0.661513 0.749934i \(-0.269915\pi\)
0.197920 + 0.980218i \(0.436582\pi\)
\(564\) 0 0
\(565\) 9.31636 2.49631i 0.391942 0.105021i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 21.4776 + 12.4001i 0.900389 + 0.519840i 0.877326 0.479894i \(-0.159325\pi\)
0.0230625 + 0.999734i \(0.492658\pi\)
\(570\) 0 0
\(571\) 4.74438 17.7063i 0.198546 0.740985i −0.792774 0.609516i \(-0.791364\pi\)
0.991320 0.131469i \(-0.0419694\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −12.1096 −0.505004
\(576\) 0 0
\(577\) −23.4462 −0.976078 −0.488039 0.872822i \(-0.662288\pi\)
−0.488039 + 0.872822i \(0.662288\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −1.17040 + 4.36800i −0.0485564 + 0.181215i
\(582\) 0 0
\(583\) −12.5688 7.25657i −0.520545 0.300537i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −16.1657 + 4.33159i −0.667230 + 0.178784i −0.576507 0.817092i \(-0.695585\pi\)
−0.0907235 + 0.995876i \(0.528918\pi\)
\(588\) 0 0
\(589\) 6.72173 + 1.80108i 0.276964 + 0.0742123i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −6.18675 −0.254059 −0.127030 0.991899i \(-0.540544\pi\)
−0.127030 + 0.991899i \(0.540544\pi\)
\(594\) 0 0
\(595\) −20.1524 + 20.1524i −0.826168 + 0.826168i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −7.98730 + 4.61147i −0.326352 + 0.188420i −0.654220 0.756304i \(-0.727003\pi\)
0.327868 + 0.944723i \(0.393670\pi\)
\(600\) 0 0
\(601\) 15.0097 + 8.66586i 0.612259 + 0.353488i 0.773849 0.633370i \(-0.218329\pi\)
−0.161590 + 0.986858i \(0.551662\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 6.77243 + 25.2751i 0.275339 + 1.02758i
\(606\) 0 0
\(607\) −11.8418 20.5106i −0.480643 0.832498i 0.519110 0.854707i \(-0.326263\pi\)
−0.999753 + 0.0222090i \(0.992930\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 22.6135 22.6135i 0.914844 0.914844i
\(612\) 0 0
\(613\) 15.4110 + 15.4110i 0.622445 + 0.622445i 0.946156 0.323711i \(-0.104930\pi\)
−0.323711 + 0.946156i \(0.604930\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −11.9979 + 6.92700i −0.483018 + 0.278870i −0.721673 0.692234i \(-0.756627\pi\)
0.238655 + 0.971104i \(0.423293\pi\)
\(618\) 0 0
\(619\) −38.6333 + 10.3518i −1.55280 + 0.416072i −0.930376 0.366606i \(-0.880520\pi\)
−0.622427 + 0.782678i \(0.713853\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 10.7156 18.5599i 0.429310 0.743586i
\(624\) 0 0
\(625\) −15.4844 26.8198i −0.619377 1.07279i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 17.1945 + 17.1945i 0.685591 + 0.685591i
\(630\) 0 0
\(631\) 16.7956i 0.668624i −0.942462 0.334312i \(-0.891496\pi\)
0.942462 0.334312i \(-0.108504\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 3.84688 14.3567i 0.152659 0.569730i
\(636\) 0 0
\(637\) −4.73856 17.6845i −0.187749 0.700687i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −20.0246 + 34.6837i −0.790925 + 1.36992i 0.134470 + 0.990918i \(0.457067\pi\)
−0.925395 + 0.379005i \(0.876266\pi\)
\(642\) 0 0
\(643\) −1.07859 0.289008i −0.0425356 0.0113974i 0.237489 0.971390i \(-0.423676\pi\)
−0.280024 + 0.959993i \(0.590342\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 31.9272i 1.25519i 0.778541 + 0.627594i \(0.215960\pi\)
−0.778541 + 0.627594i \(0.784040\pi\)
\(648\) 0 0
\(649\) 6.61750i 0.259759i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −12.5651 3.36682i −0.491712 0.131754i 0.00443888 0.999990i \(-0.498587\pi\)
−0.496151 + 0.868236i \(0.665254\pi\)
\(654\) 0 0
\(655\) −9.19841 + 15.9321i −0.359412 + 0.622519i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −4.15007 15.4883i −0.161664 0.603337i −0.998442 0.0557954i \(-0.982231\pi\)
0.836779 0.547541i \(-0.184436\pi\)
\(660\) 0 0
\(661\) −5.89283 + 21.9923i −0.229204 + 0.855403i 0.751472 + 0.659765i \(0.229344\pi\)
−0.980676 + 0.195637i \(0.937322\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 22.9026i 0.888124i
\(666\) 0 0
\(667\) −10.3754 10.3754i −0.401738 0.401738i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −6.83085 11.8314i −0.263702 0.456745i
\(672\) 0 0
\(673\) 16.3212 28.2692i 0.629136 1.08970i −0.358589 0.933496i \(-0.616742\pi\)
0.987725 0.156201i \(-0.0499246\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 14.3681 3.84993i 0.552212 0.147965i 0.0280861 0.999606i \(-0.491059\pi\)
0.524126 + 0.851641i \(0.324392\pi\)
\(678\) 0 0
\(679\) 1.48588 0.857871i 0.0570227 0.0329221i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 21.4912 + 21.4912i 0.822338 + 0.822338i 0.986443 0.164105i \(-0.0524736\pi\)
−0.164105 + 0.986443i \(0.552474\pi\)
\(684\) 0 0
\(685\) −14.2671 + 14.2671i −0.545120 + 0.545120i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −19.0334 32.9669i −0.725116 1.25594i
\(690\) 0 0
\(691\) −2.36807 8.83775i −0.0900855 0.336204i 0.906143 0.422971i \(-0.139013\pi\)
−0.996229 + 0.0867676i \(0.972346\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −10.3440 5.97209i −0.392369 0.226534i
\(696\) 0 0
\(697\) −10.8266 + 6.25077i −0.410088 + 0.236765i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 4.05144 4.05144i 0.153021 0.153021i −0.626445 0.779466i \(-0.715491\pi\)
0.779466 + 0.626445i \(0.215491\pi\)
\(702\) 0 0
\(703\) −19.5411 −0.737005
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −12.8747 3.44978i −0.484204 0.129742i
\(708\) 0 0
\(709\) 3.76098 1.00775i 0.141247 0.0378469i −0.187503 0.982264i \(-0.560039\pi\)
0.328750 + 0.944417i \(0.393373\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −3.93936 2.27439i −0.147530 0.0851767i
\(714\) 0 0
\(715\) 3.39752 12.6797i 0.127060 0.474195i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −37.0063 −1.38010 −0.690050 0.723761i \(-0.742412\pi\)
−0.690050 + 0.723761i \(0.742412\pi\)
\(720\) 0 0
\(721\) −12.2859 −0.457552
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −2.87962 + 10.7469i −0.106946 + 0.399129i
\(726\) 0 0
\(727\) 28.4066 + 16.4006i 1.05354 + 0.608264i 0.923640 0.383262i \(-0.125199\pi\)
0.129905 + 0.991526i \(0.458533\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 46.9719 12.5861i 1.73732 0.465513i
\(732\) 0 0
\(733\) −40.9566 10.9743i −1.51277 0.405345i −0.595413 0.803419i \(-0.703012\pi\)
−0.917353 + 0.398075i \(0.869678\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −19.1620 −0.705842
\(738\) 0 0
\(739\) 15.3761 15.3761i 0.565620 0.565620i −0.365278 0.930898i \(-0.619026\pi\)
0.930898 + 0.365278i \(0.119026\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −40.4824 + 23.3725i −1.48516 + 0.857456i −0.999857 0.0168926i \(-0.994623\pi\)
−0.485299 + 0.874348i \(0.661289\pi\)
\(744\) 0 0
\(745\) 21.3664 + 12.3359i 0.782805 + 0.451952i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −0.916958 3.42213i −0.0335049 0.125042i
\(750\) 0 0
\(751\) −25.7074 44.5265i −0.938077 1.62480i −0.769054 0.639184i \(-0.779272\pi\)
−0.169023 0.985612i \(-0.554061\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 41.2088 41.2088i 1.49974 1.49974i
\(756\) 0 0
\(757\) 25.4143 + 25.4143i 0.923698 + 0.923698i 0.997289 0.0735910i \(-0.0234459\pi\)
−0.0735910 + 0.997289i \(0.523446\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 20.2336 11.6819i 0.733467 0.423467i −0.0862220 0.996276i \(-0.527479\pi\)
0.819689 + 0.572808i \(0.194146\pi\)
\(762\) 0 0
\(763\) 15.5894 4.17717i 0.564375 0.151224i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 8.67859 15.0318i 0.313366 0.542765i
\(768\) 0 0
\(769\) −12.7645 22.1087i −0.460299 0.797261i 0.538677 0.842513i \(-0.318924\pi\)
−0.998976 + 0.0452513i \(0.985591\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 19.2256 + 19.2256i 0.691496 + 0.691496i 0.962561 0.271065i \(-0.0873758\pi\)
−0.271065 + 0.962561i \(0.587376\pi\)
\(774\) 0 0
\(775\) 3.44916i 0.123898i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 2.60017 9.70397i 0.0931608 0.347681i
\(780\) 0 0
\(781\) 2.70866 + 10.1088i 0.0969234 + 0.361723i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 13.0680 22.6344i 0.466416 0.807857i
\(786\) 0 0
\(787\) 19.2671 + 5.16260i 0.686797 + 0.184027i 0.585309 0.810810i \(-0.300973\pi\)
0.101488 + 0.994837i \(0.467640\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 4.49949i 0.159983i
\(792\) 0 0
\(793\) 35.8336i 1.27249i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −11.2772 3.02171i −0.399458 0.107035i 0.0534965 0.998568i \(-0.482963\pi\)
−0.452955 + 0.891534i \(0.649630\pi\)
\(798\) 0 0
\(799\) 34.8990 60.4469i 1.23464 2.13846i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0.198540 + 0.740961i 0.00700632 + 0.0261479i
\(804\) 0 0
\(805\) −3.87471 + 14.4606i −0.136565 + 0.509669i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 13.1110i 0.460958i 0.973077 + 0.230479i \(0.0740292\pi\)
−0.973077 + 0.230479i \(0.925971\pi\)
\(810\) 0 0
\(811\) 34.1945 + 34.1945i 1.20073 + 1.20073i 0.973944 + 0.226789i \(0.0728227\pi\)
0.226789 + 0.973944i \(0.427177\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −20.8498 36.1129i −0.730337 1.26498i
\(816\) 0 0
\(817\) −19.5392 + 33.8429i −0.683590 + 1.18401i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 23.8714 6.39631i 0.833116 0.223233i 0.183044 0.983105i \(-0.441405\pi\)
0.650073 + 0.759872i \(0.274738\pi\)
\(822\) 0 0
\(823\) −16.2152 + 9.36184i −0.565226 + 0.326333i −0.755240 0.655448i \(-0.772480\pi\)
0.190014 + 0.981781i \(0.439147\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −24.1212 24.1212i −0.838775 0.838775i 0.149923 0.988698i \(-0.452098\pi\)
−0.988698 + 0.149923i \(0.952098\pi\)
\(828\) 0 0
\(829\) −20.8683 + 20.8683i −0.724787 + 0.724787i −0.969576 0.244789i \(-0.921281\pi\)
0.244789 + 0.969576i \(0.421281\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −19.9793 34.6052i −0.692242 1.19900i
\(834\) 0 0
\(835\) −5.04234 18.8183i −0.174497 0.651233i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 5.01977 + 2.89816i 0.173302 + 0.100056i 0.584142 0.811652i \(-0.301431\pi\)
−0.410840 + 0.911707i \(0.634765\pi\)
\(840\) 0 0
\(841\) 13.4396 7.75936i 0.463435 0.267564i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −1.70253 + 1.70253i −0.0585689 + 0.0585689i
\(846\) 0 0
\(847\) 12.2070 0.419437
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 12.3381 + 3.30600i 0.422946 + 0.113328i
\(852\) 0 0
\(853\) 1.72171 0.461332i 0.0589504 0.0157957i −0.229223 0.973374i \(-0.573619\pi\)
0.288174 + 0.957578i \(0.406952\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 12.6918 + 7.32760i 0.433543 + 0.250306i 0.700855 0.713304i \(-0.252802\pi\)
−0.267312 + 0.963610i \(0.586135\pi\)
\(858\) 0 0
\(859\) −13.7688 + 51.3859i −0.469786 + 1.75327i 0.170727 + 0.985318i \(0.445388\pi\)
−0.640513 + 0.767947i \(0.721278\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 23.9467 0.815157 0.407578 0.913170i \(-0.366373\pi\)
0.407578 + 0.913170i \(0.366373\pi\)
\(864\) 0 0
\(865\) −9.02103 −0.306724
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −0.493159 + 1.84049i −0.0167293 + 0.0624345i
\(870\) 0 0
\(871\) −43.5269 25.1303i −1.47485 0.851507i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −7.12771 + 1.90986i −0.240961 + 0.0645652i
\(876\) 0 0
\(877\) −39.7266 10.6447i −1.34147 0.359446i −0.484492 0.874796i \(-0.660996\pi\)
−0.856980 + 0.515349i \(0.827662\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 41.2335 1.38919 0.694597 0.719399i \(-0.255583\pi\)
0.694597 + 0.719399i \(0.255583\pi\)
\(882\) 0 0
\(883\) 11.9719 11.9719i 0.402885 0.402885i −0.476364 0.879248i \(-0.658045\pi\)
0.879248 + 0.476364i \(0.158045\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 26.7452 15.4413i 0.898016 0.518470i 0.0214599 0.999770i \(-0.493169\pi\)
0.876556 + 0.481300i \(0.159835\pi\)
\(888\) 0 0
\(889\) −6.00486 3.46691i −0.201397 0.116276i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 14.5172 + 54.1788i 0.485798 + 1.81302i
\(894\) 0 0
\(895\) 7.48706 + 12.9680i 0.250265 + 0.433471i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −2.95523 + 2.95523i −0.0985624 + 0.0985624i
\(900\) 0 0
\(901\) −58.7480 58.7480i −1.95718 1.95718i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0.586997 0.338903i 0.0195125 0.0112655i
\(906\) 0 0
\(907\) 26.7351 7.16365i 0.887725 0.237865i 0.213988 0.976836i \(-0.431355\pi\)
0.673737 + 0.738971i \(0.264688\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −4.83009 + 8.36596i −0.160028 + 0.277177i −0.934878 0.354968i \(-0.884492\pi\)
0.774850 + 0.632145i \(0.217825\pi\)
\(912\) 0 0
\(913\) −2.27297 3.93689i −0.0752242 0.130292i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 6.06859 + 6.06859i 0.200403 + 0.200403i
\(918\) 0 0
\(919\) 12.5574i 0.414229i −0.978317 0.207115i \(-0.933593\pi\)
0.978317 0.207115i \(-0.0664073\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −7.10460 + 26.5147i −0.233851 + 0.872743i
\(924\) 0 0
\(925\) −2.50681 9.35553i −0.0824233 0.307608i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −4.50031 + 7.79477i −0.147650 + 0.255738i −0.930359 0.366651i \(-0.880504\pi\)
0.782708 + 0.622389i \(0.213838\pi\)
\(930\) 0 0
\(931\) 31.0168 + 8.31092i 1.01653 + 0.272379i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 28.6501i 0.936960i
\(936\) 0 0
\(937\) 59.2265i 1.93485i 0.253166 + 0.967423i \(0.418528\pi\)
−0.253166 + 0.967423i \(0.581472\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −11.0262 2.95446i −0.359443 0.0963126i 0.0745778 0.997215i \(-0.476239\pi\)
−0.434021 + 0.900903i \(0.642906\pi\)
\(942\) 0 0
\(943\) −3.28347 + 5.68714i −0.106925 + 0.185199i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −2.22949 8.32058i −0.0724488 0.270382i 0.920194 0.391463i \(-0.128031\pi\)
−0.992643 + 0.121080i \(0.961364\pi\)
\(948\) 0 0
\(949\) −0.520755 + 1.94348i −0.0169044 + 0.0630882i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 43.5260i 1.40995i −0.709234 0.704973i \(-0.750959\pi\)
0.709234 0.704973i \(-0.249041\pi\)
\(954\) 0 0
\(955\) −44.2637 44.2637i −1.43234 1.43234i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 4.70633 + 8.15160i 0.151975 + 0.263229i
\(960\) 0 0
\(961\) 14.8522 25.7247i 0.479103 0.829830i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 43.2852 11.5982i 1.39340 0.373361i
\(966\) 0 0
\(967\) −26.2267 + 15.1420i −0.843393 + 0.486933i −0.858416 0.512954i \(-0.828551\pi\)
0.0150229 + 0.999887i \(0.495218\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 9.06755 + 9.06755i 0.290992 + 0.290992i 0.837472 0.546480i \(-0.184033\pi\)
−0.546480 + 0.837472i \(0.684033\pi\)
\(972\) 0 0
\(973\) −3.94005 + 3.94005i −0.126312 + 0.126312i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −10.4475 18.0956i −0.334246 0.578931i 0.649094 0.760708i \(-0.275148\pi\)
−0.983340 + 0.181778i \(0.941815\pi\)
\(978\) 0 0
\(979\) 5.57603 + 20.8100i 0.178211 + 0.665092i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 1.14158 + 0.659092i 0.0364108 + 0.0210218i 0.518095 0.855323i \(-0.326641\pi\)
−0.481684 + 0.876345i \(0.659975\pi\)
\(984\) 0 0
\(985\) −4.15128 + 2.39674i −0.132271 + 0.0763665i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 18.0626 18.0626i 0.574357 0.574357i
\(990\) 0 0
\(991\) −2.51185 −0.0797914 −0.0398957 0.999204i \(-0.512703\pi\)
−0.0398957 + 0.999204i \(0.512703\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −17.4954 4.68788i −0.554641 0.148616i
\(996\) 0 0
\(997\) −44.4227 + 11.9030i −1.40688 + 0.376973i −0.880811 0.473468i \(-0.843002\pi\)
−0.526071 + 0.850441i \(0.676335\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1728.2.bc.e.1585.14 72
3.2 odd 2 576.2.bb.e.241.11 72
4.3 odd 2 432.2.y.e.181.12 72
9.4 even 3 inner 1728.2.bc.e.1009.5 72
9.5 odd 6 576.2.bb.e.49.18 72
12.11 even 2 144.2.x.e.133.7 yes 72
16.3 odd 4 432.2.y.e.397.2 72
16.13 even 4 inner 1728.2.bc.e.721.5 72
36.23 even 6 144.2.x.e.85.17 yes 72
36.31 odd 6 432.2.y.e.37.2 72
48.29 odd 4 576.2.bb.e.529.18 72
48.35 even 4 144.2.x.e.61.17 yes 72
144.13 even 12 inner 1728.2.bc.e.145.14 72
144.67 odd 12 432.2.y.e.253.12 72
144.77 odd 12 576.2.bb.e.337.11 72
144.131 even 12 144.2.x.e.13.7 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
144.2.x.e.13.7 72 144.131 even 12
144.2.x.e.61.17 yes 72 48.35 even 4
144.2.x.e.85.17 yes 72 36.23 even 6
144.2.x.e.133.7 yes 72 12.11 even 2
432.2.y.e.37.2 72 36.31 odd 6
432.2.y.e.181.12 72 4.3 odd 2
432.2.y.e.253.12 72 144.67 odd 12
432.2.y.e.397.2 72 16.3 odd 4
576.2.bb.e.49.18 72 9.5 odd 6
576.2.bb.e.241.11 72 3.2 odd 2
576.2.bb.e.337.11 72 144.77 odd 12
576.2.bb.e.529.18 72 48.29 odd 4
1728.2.bc.e.145.14 72 144.13 even 12 inner
1728.2.bc.e.721.5 72 16.13 even 4 inner
1728.2.bc.e.1009.5 72 9.4 even 3 inner
1728.2.bc.e.1585.14 72 1.1 even 1 trivial