Properties

Label 432.2.y.e.37.2
Level $432$
Weight $2$
Character 432.37
Analytic conductor $3.450$
Analytic rank $0$
Dimension $72$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [432,2,Mod(37,432)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(432, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([0, 3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("432.37");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 432 = 2^{4} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 432.y (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.44953736732\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(18\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 144)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 37.2
Character \(\chi\) \(=\) 432.37
Dual form 432.2.y.e.397.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.30266 - 0.550520i) q^{2} +(1.39386 + 1.43428i) q^{4} +(-2.73721 + 0.733432i) q^{5} +(-1.14487 + 0.660988i) q^{7} +(-1.02612 - 2.63573i) q^{8} +O(q^{10})\) \(q+(-1.30266 - 0.550520i) q^{2} +(1.39386 + 1.43428i) q^{4} +(-2.73721 + 0.733432i) q^{5} +(-1.14487 + 0.660988i) q^{7} +(-1.02612 - 2.63573i) q^{8} +(3.96942 + 0.551472i) q^{10} +(0.343957 - 1.28367i) q^{11} +(-0.902174 - 3.36696i) q^{13} +(1.85526 - 0.230773i) q^{14} +(-0.114331 + 3.99837i) q^{16} +7.60772 q^{17} +(4.32297 - 4.32297i) q^{19} +(-4.86722 - 2.90363i) q^{20} +(-1.15474 + 1.48283i) q^{22} +(3.46087 + 1.99814i) q^{23} +(2.62424 - 1.51511i) q^{25} +(-0.678350 + 4.88267i) q^{26} +(-2.54382 - 0.720737i) q^{28} +(3.54658 + 0.950303i) q^{29} +(0.569129 - 0.985760i) q^{31} +(2.35011 - 5.14558i) q^{32} +(-9.91029 - 4.18820i) q^{34} +(2.64894 - 2.64894i) q^{35} +(2.26014 + 2.26014i) q^{37} +(-8.01124 + 3.25149i) q^{38} +(4.74184 + 6.46194i) q^{40} +(1.42311 + 0.821634i) q^{41} +(1.65438 - 6.17424i) q^{43} +(2.32057 - 1.29591i) q^{44} +(-3.40833 - 4.50817i) q^{46} +(-4.58731 - 7.94546i) q^{47} +(-2.62619 + 4.54869i) q^{49} +(-4.25260 + 0.528975i) q^{50} +(3.57167 - 5.98703i) q^{52} +(-7.72215 - 7.72215i) q^{53} +3.76593i q^{55} +(2.91696 + 2.33930i) q^{56} +(-4.09683 - 3.19038i) q^{58} +(4.80982 - 1.28879i) q^{59} +(9.92979 + 2.66068i) q^{61} +(-1.28406 + 0.970795i) q^{62} +(-5.89415 + 5.40916i) q^{64} +(4.93887 + 8.55438i) q^{65} +(-3.73189 - 13.9276i) q^{67} +(10.6041 + 10.9116i) q^{68} +(-4.90897 + 1.99238i) q^{70} -7.87498i q^{71} +0.577222i q^{73} +(-1.69995 - 4.18846i) q^{74} +(12.2259 + 0.174761i) q^{76} +(0.454704 + 1.69698i) q^{77} +(0.716890 + 1.24169i) q^{79} +(-2.61958 - 11.0282i) q^{80} +(-1.40151 - 1.85376i) q^{82} +(-3.30414 - 0.885341i) q^{83} +(-20.8239 + 5.57975i) q^{85} +(-5.55414 + 7.13218i) q^{86} +(-3.73634 + 0.410620i) q^{88} +16.2114i q^{89} +(3.25839 + 3.25839i) q^{91} +(1.95807 + 7.74898i) q^{92} +(1.60159 + 12.8757i) q^{94} +(-8.66225 + 15.0035i) q^{95} +(-0.648931 - 1.12398i) q^{97} +(5.92518 - 4.47964i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q - 4 q^{2} - 2 q^{4} - 4 q^{5} + 8 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 72 q - 4 q^{2} - 2 q^{4} - 4 q^{5} + 8 q^{8} - 20 q^{10} + 2 q^{11} - 16 q^{13} + 4 q^{14} - 10 q^{16} + 16 q^{17} + 28 q^{19} - 12 q^{20} - 8 q^{22} + 4 q^{26} - 16 q^{28} - 4 q^{29} + 28 q^{31} + 46 q^{32} - 14 q^{34} + 16 q^{35} + 16 q^{37} - 2 q^{38} - 10 q^{40} - 10 q^{43} - 60 q^{44} + 20 q^{46} + 56 q^{47} + 4 q^{49} + 36 q^{50} + 6 q^{52} + 8 q^{53} - 52 q^{56} - 14 q^{58} + 14 q^{59} - 32 q^{61} - 16 q^{62} - 44 q^{64} + 64 q^{65} - 18 q^{67} - 16 q^{68} + 14 q^{70} - 38 q^{74} + 10 q^{76} + 36 q^{77} + 44 q^{79} - 144 q^{80} - 88 q^{82} - 20 q^{83} - 8 q^{85} - 76 q^{86} - 42 q^{88} - 80 q^{91} + 68 q^{92} + 20 q^{94} - 48 q^{95} + 40 q^{97} - 88 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/432\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(325\) \(353\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.30266 0.550520i −0.921121 0.389276i
\(3\) 0 0
\(4\) 1.39386 + 1.43428i 0.696928 + 0.717141i
\(5\) −2.73721 + 0.733432i −1.22412 + 0.328001i −0.812286 0.583260i \(-0.801777\pi\)
−0.411830 + 0.911261i \(0.635110\pi\)
\(6\) 0 0
\(7\) −1.14487 + 0.660988i −0.432718 + 0.249830i −0.700504 0.713648i \(-0.747041\pi\)
0.267786 + 0.963479i \(0.413708\pi\)
\(8\) −1.02612 2.63573i −0.362789 0.931871i
\(9\) 0 0
\(10\) 3.96942 + 0.551472i 1.25524 + 0.174391i
\(11\) 0.343957 1.28367i 0.103707 0.387040i −0.894488 0.447092i \(-0.852460\pi\)
0.998195 + 0.0600515i \(0.0191265\pi\)
\(12\) 0 0
\(13\) −0.902174 3.36696i −0.250218 0.933827i −0.970689 0.240341i \(-0.922741\pi\)
0.720470 0.693486i \(-0.243926\pi\)
\(14\) 1.85526 0.230773i 0.495839 0.0616768i
\(15\) 0 0
\(16\) −0.114331 + 3.99837i −0.0285827 + 0.999591i
\(17\) 7.60772 1.84514 0.922572 0.385825i \(-0.126083\pi\)
0.922572 + 0.385825i \(0.126083\pi\)
\(18\) 0 0
\(19\) 4.32297 4.32297i 0.991757 0.991757i −0.00820954 0.999966i \(-0.502613\pi\)
0.999966 + 0.00820954i \(0.00261321\pi\)
\(20\) −4.86722 2.90363i −1.08834 0.649271i
\(21\) 0 0
\(22\) −1.15474 + 1.48283i −0.246192 + 0.316140i
\(23\) 3.46087 + 1.99814i 0.721642 + 0.416640i 0.815357 0.578959i \(-0.196541\pi\)
−0.0937148 + 0.995599i \(0.529874\pi\)
\(24\) 0 0
\(25\) 2.62424 1.51511i 0.524849 0.303021i
\(26\) −0.678350 + 4.88267i −0.133035 + 0.957571i
\(27\) 0 0
\(28\) −2.54382 0.720737i −0.480737 0.136207i
\(29\) 3.54658 + 0.950303i 0.658583 + 0.176467i 0.572606 0.819830i \(-0.305932\pi\)
0.0859765 + 0.996297i \(0.472599\pi\)
\(30\) 0 0
\(31\) 0.569129 0.985760i 0.102219 0.177048i −0.810380 0.585905i \(-0.800739\pi\)
0.912598 + 0.408857i \(0.134073\pi\)
\(32\) 2.35011 5.14558i 0.415445 0.909618i
\(33\) 0 0
\(34\) −9.91029 4.18820i −1.69960 0.718271i
\(35\) 2.64894 2.64894i 0.447753 0.447753i
\(36\) 0 0
\(37\) 2.26014 + 2.26014i 0.371565 + 0.371565i 0.868047 0.496482i \(-0.165375\pi\)
−0.496482 + 0.868047i \(0.665375\pi\)
\(38\) −8.01124 + 3.25149i −1.29960 + 0.527461i
\(39\) 0 0
\(40\) 4.74184 + 6.46194i 0.749750 + 1.02172i
\(41\) 1.42311 + 0.821634i 0.222253 + 0.128318i 0.606993 0.794707i \(-0.292376\pi\)
−0.384740 + 0.923025i \(0.625709\pi\)
\(42\) 0 0
\(43\) 1.65438 6.17424i 0.252291 0.941563i −0.717287 0.696778i \(-0.754616\pi\)
0.969578 0.244784i \(-0.0787172\pi\)
\(44\) 2.32057 1.29591i 0.349839 0.195366i
\(45\) 0 0
\(46\) −3.40833 4.50817i −0.502531 0.664694i
\(47\) −4.58731 7.94546i −0.669129 1.15896i −0.978148 0.207909i \(-0.933334\pi\)
0.309020 0.951056i \(-0.399999\pi\)
\(48\) 0 0
\(49\) −2.62619 + 4.54869i −0.375170 + 0.649813i
\(50\) −4.25260 + 0.528975i −0.601408 + 0.0748084i
\(51\) 0 0
\(52\) 3.57167 5.98703i 0.495301 0.830252i
\(53\) −7.72215 7.72215i −1.06072 1.06072i −0.998033 0.0626852i \(-0.980034\pi\)
−0.0626852 0.998033i \(-0.519966\pi\)
\(54\) 0 0
\(55\) 3.76593i 0.507798i
\(56\) 2.91696 + 2.33930i 0.389795 + 0.312602i
\(57\) 0 0
\(58\) −4.09683 3.19038i −0.537940 0.418918i
\(59\) 4.80982 1.28879i 0.626185 0.167786i 0.0682473 0.997668i \(-0.478259\pi\)
0.557938 + 0.829883i \(0.311593\pi\)
\(60\) 0 0
\(61\) 9.92979 + 2.66068i 1.27138 + 0.340665i 0.830559 0.556931i \(-0.188021\pi\)
0.440820 + 0.897596i \(0.354688\pi\)
\(62\) −1.28406 + 0.970795i −0.163076 + 0.123291i
\(63\) 0 0
\(64\) −5.89415 + 5.40916i −0.736768 + 0.676145i
\(65\) 4.93887 + 8.55438i 0.612592 + 1.06104i
\(66\) 0 0
\(67\) −3.73189 13.9276i −0.455923 1.70153i −0.685359 0.728205i \(-0.740355\pi\)
0.229436 0.973324i \(-0.426312\pi\)
\(68\) 10.6041 + 10.9116i 1.28593 + 1.32323i
\(69\) 0 0
\(70\) −4.90897 + 1.99238i −0.586734 + 0.238135i
\(71\) 7.87498i 0.934588i −0.884102 0.467294i \(-0.845229\pi\)
0.884102 0.467294i \(-0.154771\pi\)
\(72\) 0 0
\(73\) 0.577222i 0.0675588i 0.999429 + 0.0337794i \(0.0107544\pi\)
−0.999429 + 0.0337794i \(0.989246\pi\)
\(74\) −1.69995 4.18846i −0.197615 0.486898i
\(75\) 0 0
\(76\) 12.2259 + 0.174761i 1.40241 + 0.0200464i
\(77\) 0.454704 + 1.69698i 0.0518183 + 0.193389i
\(78\) 0 0
\(79\) 0.716890 + 1.24169i 0.0806564 + 0.139701i 0.903532 0.428521i \(-0.140965\pi\)
−0.822876 + 0.568221i \(0.807632\pi\)
\(80\) −2.61958 11.0282i −0.292878 1.23299i
\(81\) 0 0
\(82\) −1.40151 1.85376i −0.154771 0.204714i
\(83\) −3.30414 0.885341i −0.362676 0.0971788i 0.0728790 0.997341i \(-0.476781\pi\)
−0.435555 + 0.900162i \(0.643448\pi\)
\(84\) 0 0
\(85\) −20.8239 + 5.57975i −2.25867 + 0.605208i
\(86\) −5.55414 + 7.13218i −0.598919 + 0.769082i
\(87\) 0 0
\(88\) −3.73634 + 0.410620i −0.398295 + 0.0437723i
\(89\) 16.2114i 1.71841i 0.511635 + 0.859203i \(0.329040\pi\)
−0.511635 + 0.859203i \(0.670960\pi\)
\(90\) 0 0
\(91\) 3.25839 + 3.25839i 0.341572 + 0.341572i
\(92\) 1.95807 + 7.74898i 0.204143 + 0.807887i
\(93\) 0 0
\(94\) 1.60159 + 12.8757i 0.165191 + 1.32802i
\(95\) −8.66225 + 15.0035i −0.888728 + 1.53932i
\(96\) 0 0
\(97\) −0.648931 1.12398i −0.0658889 0.114123i 0.831199 0.555975i \(-0.187655\pi\)
−0.897088 + 0.441852i \(0.854322\pi\)
\(98\) 5.92518 4.47964i 0.598534 0.452512i
\(99\) 0 0
\(100\) 5.83091 + 1.65206i 0.583091 + 0.165206i
\(101\) −2.60956 + 9.73900i −0.259661 + 0.969067i 0.705777 + 0.708434i \(0.250598\pi\)
−0.965438 + 0.260633i \(0.916069\pi\)
\(102\) 0 0
\(103\) 8.04850 + 4.64680i 0.793042 + 0.457863i 0.841033 0.540985i \(-0.181948\pi\)
−0.0479901 + 0.998848i \(0.515282\pi\)
\(104\) −7.94866 + 5.83280i −0.779430 + 0.571953i
\(105\) 0 0
\(106\) 5.80815 + 14.3105i 0.564138 + 1.38996i
\(107\) −1.89502 1.89502i −0.183199 0.183199i 0.609549 0.792748i \(-0.291350\pi\)
−0.792748 + 0.609549i \(0.791350\pi\)
\(108\) 0 0
\(109\) −8.63272 + 8.63272i −0.826864 + 0.826864i −0.987082 0.160217i \(-0.948780\pi\)
0.160217 + 0.987082i \(0.448780\pi\)
\(110\) 2.07322 4.90573i 0.197674 0.467743i
\(111\) 0 0
\(112\) −2.51198 4.65316i −0.237360 0.439682i
\(113\) 1.70180 2.94761i 0.160092 0.277288i −0.774809 0.632195i \(-0.782154\pi\)
0.934902 + 0.354907i \(0.115488\pi\)
\(114\) 0 0
\(115\) −10.9386 2.93099i −1.02003 0.273317i
\(116\) 3.58042 + 6.41138i 0.332433 + 0.595281i
\(117\) 0 0
\(118\) −6.97507 0.969047i −0.642108 0.0892080i
\(119\) −8.70982 + 5.02862i −0.798428 + 0.460972i
\(120\) 0 0
\(121\) 7.99679 + 4.61695i 0.726981 + 0.419722i
\(122\) −11.4704 8.93251i −1.03848 0.808711i
\(123\) 0 0
\(124\) 2.20714 0.557716i 0.198207 0.0500844i
\(125\) 3.94700 3.94700i 0.353031 0.353031i
\(126\) 0 0
\(127\) −5.24504 −0.465422 −0.232711 0.972546i \(-0.574760\pi\)
−0.232711 + 0.972546i \(0.574760\pi\)
\(128\) 10.6559 3.80147i 0.941860 0.336006i
\(129\) 0 0
\(130\) −1.72433 13.8624i −0.151233 1.21581i
\(131\) −1.68026 6.27080i −0.146805 0.547883i −0.999668 0.0257490i \(-0.991803\pi\)
0.852864 0.522134i \(-0.174864\pi\)
\(132\) 0 0
\(133\) −2.09178 + 7.80665i −0.181381 + 0.676922i
\(134\) −2.80603 + 20.1975i −0.242404 + 1.74479i
\(135\) 0 0
\(136\) −7.80646 20.0519i −0.669398 1.71944i
\(137\) 6.16622 3.56007i 0.526816 0.304157i −0.212903 0.977073i \(-0.568292\pi\)
0.739719 + 0.672916i \(0.234958\pi\)
\(138\) 0 0
\(139\) 4.07133 1.09091i 0.345326 0.0925298i −0.0819876 0.996633i \(-0.526127\pi\)
0.427313 + 0.904104i \(0.359460\pi\)
\(140\) 7.49157 + 0.107086i 0.633154 + 0.00905045i
\(141\) 0 0
\(142\) −4.33533 + 10.2584i −0.363813 + 0.860869i
\(143\) −4.63236 −0.387378
\(144\) 0 0
\(145\) −10.4047 −0.864063
\(146\) 0.317772 0.751925i 0.0262990 0.0622298i
\(147\) 0 0
\(148\) −0.0913688 + 6.39200i −0.00751047 + 0.525419i
\(149\) 8.40971 2.25338i 0.688950 0.184604i 0.102674 0.994715i \(-0.467260\pi\)
0.586276 + 0.810111i \(0.300593\pi\)
\(150\) 0 0
\(151\) 17.8103 10.2828i 1.44938 0.836803i 0.450940 0.892554i \(-0.351089\pi\)
0.998445 + 0.0557515i \(0.0177554\pi\)
\(152\) −15.8301 6.95828i −1.28399 0.564391i
\(153\) 0 0
\(154\) 0.341894 2.46091i 0.0275506 0.198306i
\(155\) −0.834834 + 3.11564i −0.0670555 + 0.250255i
\(156\) 0 0
\(157\) −2.38710 8.90879i −0.190512 0.710999i −0.993383 0.114847i \(-0.963362\pi\)
0.802872 0.596152i \(-0.203304\pi\)
\(158\) −0.250290 2.01216i −0.0199120 0.160079i
\(159\) 0 0
\(160\) −2.65881 + 15.8081i −0.210198 + 1.24974i
\(161\) −5.28298 −0.416357
\(162\) 0 0
\(163\) −10.4053 + 10.4053i −0.815004 + 0.815004i −0.985379 0.170375i \(-0.945502\pi\)
0.170375 + 0.985379i \(0.445502\pi\)
\(164\) 0.805158 + 3.18638i 0.0628723 + 0.248815i
\(165\) 0 0
\(166\) 3.81678 + 2.97229i 0.296239 + 0.230695i
\(167\) 5.95392 + 3.43750i 0.460728 + 0.266001i 0.712350 0.701824i \(-0.247631\pi\)
−0.251622 + 0.967826i \(0.580964\pi\)
\(168\) 0 0
\(169\) 0.735830 0.424832i 0.0566023 0.0326794i
\(170\) 30.1983 + 4.19544i 2.31610 + 0.321776i
\(171\) 0 0
\(172\) 11.1616 6.23315i 0.851062 0.475273i
\(173\) 3.07494 + 0.823927i 0.233783 + 0.0626420i 0.373808 0.927506i \(-0.378052\pi\)
−0.140025 + 0.990148i \(0.544718\pi\)
\(174\) 0 0
\(175\) −2.00294 + 3.46919i −0.151408 + 0.262246i
\(176\) 5.09324 + 1.52203i 0.383918 + 0.114727i
\(177\) 0 0
\(178\) 8.92470 21.1180i 0.668934 1.58286i
\(179\) 3.73648 3.73648i 0.279278 0.279278i −0.553543 0.832821i \(-0.686725\pi\)
0.832821 + 0.553543i \(0.186725\pi\)
\(180\) 0 0
\(181\) 0.169132 + 0.169132i 0.0125715 + 0.0125715i 0.713365 0.700793i \(-0.247170\pi\)
−0.700793 + 0.713365i \(0.747170\pi\)
\(182\) −2.45077 6.03839i −0.181663 0.447595i
\(183\) 0 0
\(184\) 1.71527 11.1723i 0.126451 0.823630i
\(185\) −7.84414 4.52882i −0.576713 0.332965i
\(186\) 0 0
\(187\) 2.61673 9.76578i 0.191354 0.714145i
\(188\) 5.00198 17.6543i 0.364807 1.28757i
\(189\) 0 0
\(190\) 19.5437 14.7757i 1.41785 1.07194i
\(191\) −11.0451 19.1306i −0.799194 1.38424i −0.920142 0.391586i \(-0.871927\pi\)
0.120947 0.992659i \(-0.461407\pi\)
\(192\) 0 0
\(193\) 7.90683 13.6950i 0.569146 0.985790i −0.427505 0.904013i \(-0.640607\pi\)
0.996651 0.0817767i \(-0.0260594\pi\)
\(194\) 0.226564 + 1.82142i 0.0162663 + 0.130770i
\(195\) 0 0
\(196\) −10.1846 + 2.57353i −0.727474 + 0.183823i
\(197\) −1.19611 1.19611i −0.0852196 0.0852196i 0.663212 0.748432i \(-0.269193\pi\)
−0.748432 + 0.663212i \(0.769193\pi\)
\(198\) 0 0
\(199\) 6.39170i 0.453095i 0.974000 + 0.226548i \(0.0727439\pi\)
−0.974000 + 0.226548i \(0.927256\pi\)
\(200\) −6.68621 5.36211i −0.472786 0.379158i
\(201\) 0 0
\(202\) 8.76088 11.2500i 0.616414 0.791548i
\(203\) −4.68849 + 1.25628i −0.329068 + 0.0881734i
\(204\) 0 0
\(205\) −4.49796 1.20523i −0.314151 0.0841766i
\(206\) −7.92632 10.4841i −0.552253 0.730460i
\(207\) 0 0
\(208\) 13.5655 3.22228i 0.940597 0.223425i
\(209\) −4.06233 7.03617i −0.280997 0.486702i
\(210\) 0 0
\(211\) 0.539586 + 2.01376i 0.0371466 + 0.138633i 0.982009 0.188835i \(-0.0604712\pi\)
−0.944862 + 0.327468i \(0.893805\pi\)
\(212\) 0.312176 21.8393i 0.0214404 1.49993i
\(213\) 0 0
\(214\) 1.42533 + 3.51182i 0.0974333 + 0.240063i
\(215\) 18.1135i 1.23533i
\(216\) 0 0
\(217\) 1.50475i 0.102149i
\(218\) 15.9980 6.49303i 1.08352 0.439764i
\(219\) 0 0
\(220\) −5.40140 + 5.24916i −0.364163 + 0.353898i
\(221\) −6.86349 25.6149i −0.461688 1.72304i
\(222\) 0 0
\(223\) 13.6496 + 23.6417i 0.914042 + 1.58317i 0.808297 + 0.588775i \(0.200389\pi\)
0.105745 + 0.994393i \(0.466277\pi\)
\(224\) 0.710603 + 7.44439i 0.0474792 + 0.497399i
\(225\) 0 0
\(226\) −3.83959 + 2.90286i −0.255406 + 0.193095i
\(227\) −2.80787 0.752368i −0.186365 0.0499364i 0.164429 0.986389i \(-0.447422\pi\)
−0.350794 + 0.936452i \(0.614088\pi\)
\(228\) 0 0
\(229\) −6.48583 + 1.73787i −0.428596 + 0.114842i −0.466667 0.884433i \(-0.654545\pi\)
0.0380710 + 0.999275i \(0.487879\pi\)
\(230\) 12.6357 + 9.84002i 0.833177 + 0.648832i
\(231\) 0 0
\(232\) −1.13448 10.3229i −0.0744824 0.677735i
\(233\) 11.8159i 0.774086i 0.922062 + 0.387043i \(0.126503\pi\)
−0.922062 + 0.387043i \(0.873497\pi\)
\(234\) 0 0
\(235\) 18.3839 + 18.3839i 1.19923 + 1.19923i
\(236\) 8.55268 + 5.10226i 0.556732 + 0.332129i
\(237\) 0 0
\(238\) 14.1143 1.75566i 0.914894 0.113803i
\(239\) 1.75364 3.03739i 0.113433 0.196472i −0.803719 0.595009i \(-0.797148\pi\)
0.917152 + 0.398537i \(0.130482\pi\)
\(240\) 0 0
\(241\) −4.35635 7.54543i −0.280617 0.486044i 0.690920 0.722932i \(-0.257206\pi\)
−0.971537 + 0.236888i \(0.923873\pi\)
\(242\) −7.87539 10.4167i −0.506249 0.669611i
\(243\) 0 0
\(244\) 10.0245 + 17.9507i 0.641755 + 1.14918i
\(245\) 3.85226 14.3768i 0.246112 0.918502i
\(246\) 0 0
\(247\) −18.4553 10.6552i −1.17428 0.677973i
\(248\) −3.18219 0.488559i −0.202069 0.0310235i
\(249\) 0 0
\(250\) −7.31451 + 2.96871i −0.462610 + 0.187758i
\(251\) 9.70213 + 9.70213i 0.612393 + 0.612393i 0.943569 0.331176i \(-0.107445\pi\)
−0.331176 + 0.943569i \(0.607445\pi\)
\(252\) 0 0
\(253\) 3.75533 3.75533i 0.236096 0.236096i
\(254\) 6.83251 + 2.88750i 0.428710 + 0.181178i
\(255\) 0 0
\(256\) −15.9739 0.914271i −0.998366 0.0571420i
\(257\) 9.26857 16.0536i 0.578158 1.00140i −0.417533 0.908662i \(-0.637105\pi\)
0.995691 0.0927366i \(-0.0295615\pi\)
\(258\) 0 0
\(259\) −4.08149 1.09363i −0.253611 0.0679550i
\(260\) −5.38531 + 19.0073i −0.333983 + 1.17878i
\(261\) 0 0
\(262\) −1.26339 + 9.09375i −0.0780528 + 0.561814i
\(263\) −3.42692 + 1.97853i −0.211313 + 0.122002i −0.601922 0.798555i \(-0.705598\pi\)
0.390608 + 0.920557i \(0.372265\pi\)
\(264\) 0 0
\(265\) 26.8008 + 15.4734i 1.64636 + 0.950525i
\(266\) 7.02260 9.01785i 0.430583 0.552920i
\(267\) 0 0
\(268\) 14.7744 24.7657i 0.902491 1.51280i
\(269\) −17.6742 + 17.6742i −1.07762 + 1.07762i −0.0808951 + 0.996723i \(0.525778\pi\)
−0.996723 + 0.0808951i \(0.974222\pi\)
\(270\) 0 0
\(271\) −26.9563 −1.63748 −0.818738 0.574167i \(-0.805326\pi\)
−0.818738 + 0.574167i \(0.805326\pi\)
\(272\) −0.869796 + 30.4185i −0.0527391 + 1.84439i
\(273\) 0 0
\(274\) −9.99239 + 1.24294i −0.603662 + 0.0750888i
\(275\) −1.04226 3.88979i −0.0628509 0.234563i
\(276\) 0 0
\(277\) 2.47723 9.24514i 0.148842 0.555487i −0.850712 0.525632i \(-0.823829\pi\)
0.999554 0.0298548i \(-0.00950449\pi\)
\(278\) −5.90414 0.820261i −0.354107 0.0491960i
\(279\) 0 0
\(280\) −9.70003 4.26376i −0.579688 0.254808i
\(281\) −8.51476 + 4.91600i −0.507948 + 0.293264i −0.731990 0.681316i \(-0.761408\pi\)
0.224042 + 0.974580i \(0.428075\pi\)
\(282\) 0 0
\(283\) −30.0988 + 8.06496i −1.78919 + 0.479412i −0.992208 0.124591i \(-0.960238\pi\)
−0.796982 + 0.604003i \(0.793572\pi\)
\(284\) 11.2949 10.9766i 0.670231 0.651341i
\(285\) 0 0
\(286\) 6.03440 + 2.55021i 0.356822 + 0.150797i
\(287\) −2.17236 −0.128231
\(288\) 0 0
\(289\) 40.8774 2.40456
\(290\) 13.5538 + 5.72799i 0.795906 + 0.336359i
\(291\) 0 0
\(292\) −0.827900 + 0.804565i −0.0484492 + 0.0470836i
\(293\) −30.6204 + 8.20472i −1.78886 + 0.479325i −0.992152 0.125035i \(-0.960096\pi\)
−0.796711 + 0.604360i \(0.793429\pi\)
\(294\) 0 0
\(295\) −12.2202 + 7.05535i −0.711489 + 0.410778i
\(296\) 3.63794 8.27631i 0.211451 0.481051i
\(297\) 0 0
\(298\) −12.1955 1.69433i −0.706468 0.0981496i
\(299\) 3.60533 13.4553i 0.208502 0.778139i
\(300\) 0 0
\(301\) 2.18706 + 8.16220i 0.126060 + 0.470462i
\(302\) −28.8617 + 3.59007i −1.66081 + 0.206586i
\(303\) 0 0
\(304\) 16.7906 + 17.7791i 0.963005 + 1.01970i
\(305\) −29.1313 −1.66805
\(306\) 0 0
\(307\) 17.2513 17.2513i 0.984581 0.984581i −0.0153018 0.999883i \(-0.504871\pi\)
0.999883 + 0.0153018i \(0.00487090\pi\)
\(308\) −1.80015 + 3.01752i −0.102573 + 0.171939i
\(309\) 0 0
\(310\) 2.80273 3.59904i 0.159184 0.204412i
\(311\) 8.53625 + 4.92841i 0.484046 + 0.279464i 0.722101 0.691787i \(-0.243176\pi\)
−0.238055 + 0.971252i \(0.576510\pi\)
\(312\) 0 0
\(313\) −8.45774 + 4.88308i −0.478060 + 0.276008i −0.719608 0.694381i \(-0.755678\pi\)
0.241548 + 0.970389i \(0.422345\pi\)
\(314\) −1.79488 + 12.9193i −0.101291 + 0.729078i
\(315\) 0 0
\(316\) −0.781692 + 2.75896i −0.0439736 + 0.155204i
\(317\) 12.8098 + 3.43237i 0.719469 + 0.192781i 0.599935 0.800049i \(-0.295193\pi\)
0.119534 + 0.992830i \(0.461860\pi\)
\(318\) 0 0
\(319\) 2.43974 4.22576i 0.136599 0.236597i
\(320\) 12.1662 19.1289i 0.680113 1.06934i
\(321\) 0 0
\(322\) 6.88194 + 2.90838i 0.383515 + 0.162078i
\(323\) 32.8879 32.8879i 1.82993 1.82993i
\(324\) 0 0
\(325\) −7.46883 7.46883i −0.414296 0.414296i
\(326\) 19.2829 7.82624i 1.06798 0.433456i
\(327\) 0 0
\(328\) 0.705318 4.59404i 0.0389447 0.253663i
\(329\) 10.5037 + 6.06432i 0.579089 + 0.334337i
\(330\) 0 0
\(331\) 0.274151 1.02314i 0.0150687 0.0562371i −0.957982 0.286828i \(-0.907399\pi\)
0.973051 + 0.230591i \(0.0740659\pi\)
\(332\) −3.33566 5.97311i −0.183068 0.327817i
\(333\) 0 0
\(334\) −5.86353 7.75565i −0.320838 0.424370i
\(335\) 20.4299 + 35.3857i 1.11621 + 1.93332i
\(336\) 0 0
\(337\) −2.50387 + 4.33683i −0.136395 + 0.236242i −0.926129 0.377206i \(-0.876885\pi\)
0.789735 + 0.613448i \(0.210218\pi\)
\(338\) −1.19242 + 0.148323i −0.0648589 + 0.00806771i
\(339\) 0 0
\(340\) −37.0284 22.0900i −2.00815 1.19800i
\(341\) −1.06963 1.06963i −0.0579238 0.0579238i
\(342\) 0 0
\(343\) 16.1974i 0.874575i
\(344\) −17.9712 + 1.97502i −0.968944 + 0.106486i
\(345\) 0 0
\(346\) −3.55201 2.76611i −0.190958 0.148707i
\(347\) −5.88711 + 1.57745i −0.316036 + 0.0846817i −0.413350 0.910572i \(-0.635642\pi\)
0.0973140 + 0.995254i \(0.468975\pi\)
\(348\) 0 0
\(349\) −5.42227 1.45289i −0.290247 0.0777715i 0.110758 0.993847i \(-0.464672\pi\)
−0.401005 + 0.916076i \(0.631339\pi\)
\(350\) 4.51901 3.41652i 0.241551 0.182621i
\(351\) 0 0
\(352\) −5.79687 4.78662i −0.308974 0.255128i
\(353\) 5.06146 + 8.76671i 0.269395 + 0.466605i 0.968706 0.248212i \(-0.0798431\pi\)
−0.699311 + 0.714817i \(0.746510\pi\)
\(354\) 0 0
\(355\) 5.77576 + 21.5554i 0.306546 + 1.14404i
\(356\) −23.2517 + 22.5964i −1.23234 + 1.19761i
\(357\) 0 0
\(358\) −6.92438 + 2.81037i −0.365965 + 0.148532i
\(359\) 5.28081i 0.278710i 0.990242 + 0.139355i \(0.0445030\pi\)
−0.990242 + 0.139355i \(0.955497\pi\)
\(360\) 0 0
\(361\) 18.3761i 0.967163i
\(362\) −0.127212 0.313433i −0.00668610 0.0164737i
\(363\) 0 0
\(364\) −0.131724 + 9.21518i −0.00690421 + 0.483006i
\(365\) −0.423353 1.57998i −0.0221593 0.0826997i
\(366\) 0 0
\(367\) 5.01941 + 8.69388i 0.262011 + 0.453817i 0.966776 0.255624i \(-0.0822810\pi\)
−0.704765 + 0.709441i \(0.748948\pi\)
\(368\) −8.38496 + 13.6094i −0.437096 + 0.709438i
\(369\) 0 0
\(370\) 7.72506 + 10.2179i 0.401607 + 0.531202i
\(371\) 13.9451 + 3.73657i 0.723992 + 0.193993i
\(372\) 0 0
\(373\) 25.1865 6.74869i 1.30411 0.349434i 0.461105 0.887346i \(-0.347453\pi\)
0.843001 + 0.537912i \(0.180787\pi\)
\(374\) −8.78497 + 11.2809i −0.454260 + 0.583324i
\(375\) 0 0
\(376\) −16.2349 + 20.2439i −0.837253 + 1.04400i
\(377\) 12.7985i 0.659157i
\(378\) 0 0
\(379\) −11.3259 11.3259i −0.581771 0.581771i 0.353619 0.935390i \(-0.384951\pi\)
−0.935390 + 0.353619i \(0.884951\pi\)
\(380\) −33.5931 + 8.48855i −1.72329 + 0.435453i
\(381\) 0 0
\(382\) 3.85621 + 31.0013i 0.197301 + 1.58616i
\(383\) −2.50076 + 4.33145i −0.127783 + 0.221327i −0.922817 0.385238i \(-0.874119\pi\)
0.795034 + 0.606564i \(0.207453\pi\)
\(384\) 0 0
\(385\) −2.48924 4.31148i −0.126863 0.219733i
\(386\) −17.8393 + 13.4871i −0.907997 + 0.686477i
\(387\) 0 0
\(388\) 0.707590 2.49742i 0.0359224 0.126787i
\(389\) 3.45749 12.9035i 0.175302 0.654235i −0.821198 0.570643i \(-0.806694\pi\)
0.996500 0.0835921i \(-0.0266393\pi\)
\(390\) 0 0
\(391\) 26.3294 + 15.2013i 1.33153 + 0.768761i
\(392\) 14.6839 + 2.25441i 0.741650 + 0.113865i
\(393\) 0 0
\(394\) 0.899647 + 2.21662i 0.0453236 + 0.111671i
\(395\) −2.87297 2.87297i −0.144555 0.144555i
\(396\) 0 0
\(397\) −18.7165 + 18.7165i −0.939356 + 0.939356i −0.998263 0.0589078i \(-0.981238\pi\)
0.0589078 + 0.998263i \(0.481238\pi\)
\(398\) 3.51876 8.32622i 0.176379 0.417356i
\(399\) 0 0
\(400\) 5.75792 + 10.6659i 0.287896 + 0.533295i
\(401\) −6.66124 + 11.5376i −0.332647 + 0.576161i −0.983030 0.183445i \(-0.941275\pi\)
0.650383 + 0.759606i \(0.274608\pi\)
\(402\) 0 0
\(403\) −3.83247 1.02691i −0.190909 0.0511538i
\(404\) −17.6058 + 9.83193i −0.875923 + 0.489157i
\(405\) 0 0
\(406\) 6.79913 + 0.944602i 0.337435 + 0.0468798i
\(407\) 3.67866 2.12388i 0.182345 0.105277i
\(408\) 0 0
\(409\) −10.6037 6.12206i −0.524320 0.302717i 0.214380 0.976750i \(-0.431227\pi\)
−0.738701 + 0.674034i \(0.764560\pi\)
\(410\) 5.19582 + 4.04622i 0.256604 + 0.199829i
\(411\) 0 0
\(412\) 4.55362 + 18.0208i 0.224341 + 0.887821i
\(413\) −4.65472 + 4.65472i −0.229044 + 0.229044i
\(414\) 0 0
\(415\) 9.69344 0.475832
\(416\) −19.4452 3.27053i −0.953378 0.160351i
\(417\) 0 0
\(418\) 1.41830 + 11.4021i 0.0693712 + 0.557697i
\(419\) 8.58573 + 32.0424i 0.419440 + 1.56537i 0.775772 + 0.631013i \(0.217361\pi\)
−0.356332 + 0.934360i \(0.615973\pi\)
\(420\) 0 0
\(421\) 6.61930 24.7035i 0.322605 1.20398i −0.594093 0.804396i \(-0.702489\pi\)
0.916698 0.399581i \(-0.130844\pi\)
\(422\) 0.405718 2.92030i 0.0197500 0.142158i
\(423\) 0 0
\(424\) −12.4296 + 28.2774i −0.603636 + 1.37327i
\(425\) 19.9645 11.5265i 0.968421 0.559118i
\(426\) 0 0
\(427\) −13.1269 + 3.51736i −0.635258 + 0.170217i
\(428\) 0.0766084 5.35938i 0.00370300 0.259056i
\(429\) 0 0
\(430\) 9.97186 23.5958i 0.480886 1.13789i
\(431\) 10.3041 0.496332 0.248166 0.968717i \(-0.420172\pi\)
0.248166 + 0.968717i \(0.420172\pi\)
\(432\) 0 0
\(433\) −11.7692 −0.565591 −0.282795 0.959180i \(-0.591262\pi\)
−0.282795 + 0.959180i \(0.591262\pi\)
\(434\) 0.828394 1.96018i 0.0397642 0.0940916i
\(435\) 0 0
\(436\) −24.4145 0.348987i −1.16924 0.0167135i
\(437\) 23.5991 6.32337i 1.12890 0.302488i
\(438\) 0 0
\(439\) −23.9893 + 13.8502i −1.14494 + 0.661034i −0.947650 0.319310i \(-0.896549\pi\)
−0.197294 + 0.980344i \(0.563215\pi\)
\(440\) 9.92597 3.86430i 0.473202 0.184223i
\(441\) 0 0
\(442\) −5.16070 + 37.1460i −0.245469 + 1.76686i
\(443\) −6.50677 + 24.2836i −0.309146 + 1.15375i 0.620172 + 0.784466i \(0.287063\pi\)
−0.929317 + 0.369282i \(0.879604\pi\)
\(444\) 0 0
\(445\) −11.8900 44.3739i −0.563638 2.10353i
\(446\) −4.76552 38.3115i −0.225654 1.81410i
\(447\) 0 0
\(448\) 3.17261 10.0887i 0.149892 0.476648i
\(449\) 20.0988 0.948522 0.474261 0.880384i \(-0.342715\pi\)
0.474261 + 0.880384i \(0.342715\pi\)
\(450\) 0 0
\(451\) 1.54419 1.54419i 0.0727133 0.0727133i
\(452\) 6.59977 1.66768i 0.310427 0.0784409i
\(453\) 0 0
\(454\) 3.24352 + 2.52587i 0.152226 + 0.118545i
\(455\) −11.3087 6.52907i −0.530159 0.306088i
\(456\) 0 0
\(457\) −20.8270 + 12.0245i −0.974244 + 0.562480i −0.900527 0.434799i \(-0.856819\pi\)
−0.0737167 + 0.997279i \(0.523486\pi\)
\(458\) 9.40558 + 1.30672i 0.439494 + 0.0610589i
\(459\) 0 0
\(460\) −11.0430 19.7744i −0.514882 0.921988i
\(461\) 3.90967 + 1.04759i 0.182092 + 0.0487913i 0.348713 0.937230i \(-0.386619\pi\)
−0.166621 + 0.986021i \(0.553286\pi\)
\(462\) 0 0
\(463\) 5.16489 8.94585i 0.240033 0.415749i −0.720691 0.693257i \(-0.756175\pi\)
0.960723 + 0.277508i \(0.0895085\pi\)
\(464\) −4.20514 + 14.0719i −0.195219 + 0.653270i
\(465\) 0 0
\(466\) 6.50489 15.3921i 0.301333 0.713027i
\(467\) −11.8966 + 11.8966i −0.550509 + 0.550509i −0.926588 0.376079i \(-0.877272\pi\)
0.376079 + 0.926588i \(0.377272\pi\)
\(468\) 0 0
\(469\) 13.4785 + 13.4785i 0.622380 + 0.622380i
\(470\) −13.8273 34.0687i −0.637805 1.57147i
\(471\) 0 0
\(472\) −8.33236 11.3549i −0.383528 0.522653i
\(473\) −7.35663 4.24735i −0.338258 0.195293i
\(474\) 0 0
\(475\) 4.79476 17.8943i 0.219999 0.821046i
\(476\) −19.3527 5.48317i −0.887029 0.251321i
\(477\) 0 0
\(478\) −3.95654 + 2.99128i −0.180968 + 0.136818i
\(479\) 7.47878 + 12.9536i 0.341714 + 0.591866i 0.984751 0.173969i \(-0.0556593\pi\)
−0.643037 + 0.765835i \(0.722326\pi\)
\(480\) 0 0
\(481\) 5.57077 9.64886i 0.254005 0.439950i
\(482\) 1.52095 + 12.2274i 0.0692774 + 0.556943i
\(483\) 0 0
\(484\) 4.52436 + 17.9050i 0.205653 + 0.813864i
\(485\) 2.60062 + 2.60062i 0.118088 + 0.118088i
\(486\) 0 0
\(487\) 27.0362i 1.22513i −0.790420 0.612565i \(-0.790138\pi\)
0.790420 0.612565i \(-0.209862\pi\)
\(488\) −3.17635 28.9024i −0.143787 1.30835i
\(489\) 0 0
\(490\) −12.9329 + 16.6074i −0.584250 + 0.750246i
\(491\) −5.41853 + 1.45189i −0.244535 + 0.0655229i −0.379005 0.925395i \(-0.623734\pi\)
0.134470 + 0.990918i \(0.457067\pi\)
\(492\) 0 0
\(493\) 26.9814 + 7.22964i 1.21518 + 0.325607i
\(494\) 18.1752 + 24.0401i 0.817739 + 1.08162i
\(495\) 0 0
\(496\) 3.87636 + 2.38829i 0.174054 + 0.107237i
\(497\) 5.20527 + 9.01579i 0.233488 + 0.404413i
\(498\) 0 0
\(499\) 5.68146 + 21.2035i 0.254337 + 0.949198i 0.968458 + 0.249176i \(0.0801598\pi\)
−0.714121 + 0.700022i \(0.753174\pi\)
\(500\) 11.1627 + 0.159562i 0.499210 + 0.00713583i
\(501\) 0 0
\(502\) −7.29738 17.9798i −0.325698 0.802478i
\(503\) 23.1955i 1.03423i −0.855915 0.517117i \(-0.827005\pi\)
0.855915 0.517117i \(-0.172995\pi\)
\(504\) 0 0
\(505\) 28.5716i 1.27142i
\(506\) −6.95932 + 2.82454i −0.309379 + 0.125566i
\(507\) 0 0
\(508\) −7.31083 7.52286i −0.324366 0.333773i
\(509\) 3.37049 + 12.5788i 0.149394 + 0.557547i 0.999520 + 0.0309681i \(0.00985902\pi\)
−0.850126 + 0.526579i \(0.823474\pi\)
\(510\) 0 0
\(511\) −0.381537 0.660842i −0.0168782 0.0292339i
\(512\) 20.3052 + 9.98491i 0.897372 + 0.441275i
\(513\) 0 0
\(514\) −20.9117 + 15.8099i −0.922374 + 0.697346i
\(515\) −25.4385 6.81623i −1.12095 0.300359i
\(516\) 0 0
\(517\) −11.7772 + 3.15568i −0.517959 + 0.138787i
\(518\) 4.71473 + 3.67157i 0.207154 + 0.161320i
\(519\) 0 0
\(520\) 17.4791 21.7954i 0.766511 0.955790i
\(521\) 21.4547i 0.939949i −0.882680 0.469974i \(-0.844263\pi\)
0.882680 0.469974i \(-0.155737\pi\)
\(522\) 0 0
\(523\) 2.07495 + 2.07495i 0.0907314 + 0.0907314i 0.751016 0.660284i \(-0.229564\pi\)
−0.660284 + 0.751016i \(0.729564\pi\)
\(524\) 6.65206 11.1506i 0.290597 0.487114i
\(525\) 0 0
\(526\) 5.55334 0.690773i 0.242137 0.0301191i
\(527\) 4.32977 7.49939i 0.188608 0.326678i
\(528\) 0 0
\(529\) −3.51490 6.08799i −0.152822 0.264695i
\(530\) −26.3939 34.9110i −1.14648 1.51644i
\(531\) 0 0
\(532\) −14.1126 + 7.88113i −0.611858 + 0.341690i
\(533\) 1.48251 5.53282i 0.0642148 0.239653i
\(534\) 0 0
\(535\) 6.57693 + 3.79719i 0.284346 + 0.164167i
\(536\) −32.8801 + 24.1277i −1.42020 + 1.04216i
\(537\) 0 0
\(538\) 32.7536 13.2935i 1.41211 0.573125i
\(539\) 4.93571 + 4.93571i 0.212596 + 0.212596i
\(540\) 0 0
\(541\) 22.7947 22.7947i 0.980022 0.980022i −0.0197819 0.999804i \(-0.506297\pi\)
0.999804 + 0.0197819i \(0.00629719\pi\)
\(542\) 35.1149 + 14.8399i 1.50831 + 0.637430i
\(543\) 0 0
\(544\) 17.8790 39.1461i 0.766556 1.67838i
\(545\) 17.2980 29.9610i 0.740965 1.28339i
\(546\) 0 0
\(547\) 13.3804 + 3.58528i 0.572106 + 0.153295i 0.533262 0.845950i \(-0.320966\pi\)
0.0388438 + 0.999245i \(0.487633\pi\)
\(548\) 13.7010 + 3.88188i 0.585276 + 0.165826i
\(549\) 0 0
\(550\) −0.783685 + 5.64086i −0.0334164 + 0.240527i
\(551\) 19.4399 11.2236i 0.828166 0.478142i
\(552\) 0 0
\(553\) −1.64148 0.947711i −0.0698030 0.0403008i
\(554\) −8.31663 + 10.6795i −0.353340 + 0.453730i
\(555\) 0 0
\(556\) 7.23952 + 4.31887i 0.307024 + 0.183161i
\(557\) 8.62660 8.62660i 0.365521 0.365521i −0.500320 0.865841i \(-0.666784\pi\)
0.865841 + 0.500320i \(0.166784\pi\)
\(558\) 0 0
\(559\) −22.2810 −0.942384
\(560\) 10.2886 + 10.8943i 0.434772 + 0.460368i
\(561\) 0 0
\(562\) 13.7982 1.71634i 0.582042 0.0723995i
\(563\) 5.46409 + 20.3923i 0.230284 + 0.859432i 0.980218 + 0.197920i \(0.0634185\pi\)
−0.749934 + 0.661513i \(0.769915\pi\)
\(564\) 0 0
\(565\) −2.49631 + 9.31636i −0.105021 + 0.391942i
\(566\) 43.6485 + 6.06409i 1.83468 + 0.254893i
\(567\) 0 0
\(568\) −20.7563 + 8.08069i −0.870916 + 0.339058i
\(569\) −21.4776 + 12.4001i −0.900389 + 0.519840i −0.877326 0.479894i \(-0.840675\pi\)
−0.0230625 + 0.999734i \(0.507342\pi\)
\(570\) 0 0
\(571\) 17.7063 4.74438i 0.740985 0.198546i 0.131469 0.991320i \(-0.458031\pi\)
0.609516 + 0.792774i \(0.291364\pi\)
\(572\) −6.45685 6.64412i −0.269974 0.277804i
\(573\) 0 0
\(574\) 2.82985 + 1.19593i 0.118116 + 0.0499171i
\(575\) 12.1096 0.505004
\(576\) 0 0
\(577\) −23.4462 −0.976078 −0.488039 0.872822i \(-0.662288\pi\)
−0.488039 + 0.872822i \(0.662288\pi\)
\(578\) −53.2495 22.5038i −2.21489 0.936036i
\(579\) 0 0
\(580\) −14.5026 14.9233i −0.602189 0.619655i
\(581\) 4.36800 1.17040i 0.181215 0.0485564i
\(582\) 0 0
\(583\) −12.5688 + 7.25657i −0.520545 + 0.300537i
\(584\) 1.52140 0.592301i 0.0629561 0.0245096i
\(585\) 0 0
\(586\) 44.4049 + 6.16917i 1.83435 + 0.254846i
\(587\) −4.33159 + 16.1657i −0.178784 + 0.667230i 0.817092 + 0.576507i \(0.195585\pi\)
−0.995876 + 0.0907235i \(0.971082\pi\)
\(588\) 0 0
\(589\) −1.80108 6.72173i −0.0742123 0.276964i
\(590\) 19.8029 2.46326i 0.815274 0.101411i
\(591\) 0 0
\(592\) −9.29528 + 8.77848i −0.382034 + 0.360793i
\(593\) −6.18675 −0.254059 −0.127030 0.991899i \(-0.540544\pi\)
−0.127030 + 0.991899i \(0.540544\pi\)
\(594\) 0 0
\(595\) 20.1524 20.1524i 0.826168 0.826168i
\(596\) 14.9539 + 8.92102i 0.612536 + 0.365419i
\(597\) 0 0
\(598\) −12.1039 + 15.5429i −0.494967 + 0.635596i
\(599\) −7.98730 4.61147i −0.326352 0.188420i 0.327868 0.944723i \(-0.393670\pi\)
−0.654220 + 0.756304i \(0.727003\pi\)
\(600\) 0 0
\(601\) −15.0097 + 8.66586i −0.612259 + 0.353488i −0.773849 0.633370i \(-0.781671\pi\)
0.161590 + 0.986858i \(0.448338\pi\)
\(602\) 1.64446 11.8366i 0.0670232 0.482424i
\(603\) 0 0
\(604\) 39.5735 + 11.2123i 1.61022 + 0.456222i
\(605\) −25.2751 6.77243i −1.02758 0.275339i
\(606\) 0 0
\(607\) 11.8418 20.5106i 0.480643 0.832498i −0.519110 0.854707i \(-0.673737\pi\)
0.999753 + 0.0222090i \(0.00706992\pi\)
\(608\) −12.0847 32.4036i −0.490099 1.31414i
\(609\) 0 0
\(610\) 37.9482 + 16.0374i 1.53648 + 0.649333i
\(611\) −22.6135 + 22.6135i −0.914844 + 0.914844i
\(612\) 0 0
\(613\) 15.4110 + 15.4110i 0.622445 + 0.622445i 0.946156 0.323711i \(-0.104930\pi\)
−0.323711 + 0.946156i \(0.604930\pi\)
\(614\) −31.9697 + 12.9754i −1.29019 + 0.523644i
\(615\) 0 0
\(616\) 4.00619 2.93978i 0.161414 0.118447i
\(617\) 11.9979 + 6.92700i 0.483018 + 0.278870i 0.721673 0.692234i \(-0.243373\pi\)
−0.238655 + 0.971104i \(0.576707\pi\)
\(618\) 0 0
\(619\) −10.3518 + 38.6333i −0.416072 + 1.55280i 0.366606 + 0.930376i \(0.380520\pi\)
−0.782678 + 0.622427i \(0.786147\pi\)
\(620\) −5.63235 + 3.14537i −0.226201 + 0.126321i
\(621\) 0 0
\(622\) −8.40666 11.1194i −0.337076 0.445848i
\(623\) −10.7156 18.5599i −0.429310 0.743586i
\(624\) 0 0
\(625\) −15.4844 + 26.8198i −0.619377 + 1.07279i
\(626\) 13.7058 1.70485i 0.547794 0.0681394i
\(627\) 0 0
\(628\) 9.45044 15.8414i 0.377114 0.632139i
\(629\) 17.1945 + 17.1945i 0.685591 + 0.685591i
\(630\) 0 0
\(631\) 16.7956i 0.668624i 0.942462 + 0.334312i \(0.108504\pi\)
−0.942462 + 0.334312i \(0.891496\pi\)
\(632\) 2.53714 3.16365i 0.100922 0.125843i
\(633\) 0 0
\(634\) −14.7972 11.5233i −0.587673 0.457647i
\(635\) 14.3567 3.84688i 0.569730 0.152659i
\(636\) 0 0
\(637\) 17.6845 + 4.73856i 0.700687 + 0.187749i
\(638\) −5.50452 + 4.16161i −0.217926 + 0.164760i
\(639\) 0 0
\(640\) −26.3793 + 18.2208i −1.04274 + 0.720240i
\(641\) −20.0246 34.6837i −0.790925 1.36992i −0.925395 0.379005i \(-0.876266\pi\)
0.134470 0.990918i \(-0.457067\pi\)
\(642\) 0 0
\(643\) −0.289008 1.07859i −0.0113974 0.0425356i 0.959993 0.280024i \(-0.0903425\pi\)
−0.971390 + 0.237489i \(0.923676\pi\)
\(644\) −7.36371 7.57728i −0.290171 0.298587i
\(645\) 0 0
\(646\) −60.9473 + 24.7364i −2.39794 + 0.973241i
\(647\) 31.9272i 1.25519i −0.778541 0.627594i \(-0.784040\pi\)
0.778541 0.627594i \(-0.215960\pi\)
\(648\) 0 0
\(649\) 6.61750i 0.259759i
\(650\) 5.61762 + 13.8411i 0.220341 + 0.542893i
\(651\) 0 0
\(652\) −29.4275 0.420645i −1.15247 0.0164737i
\(653\) 3.36682 + 12.5651i 0.131754 + 0.491712i 0.999990 0.00443888i \(-0.00141294\pi\)
−0.868236 + 0.496151i \(0.834746\pi\)
\(654\) 0 0
\(655\) 9.19841 + 15.9321i 0.359412 + 0.622519i
\(656\) −3.44790 + 5.59619i −0.134618 + 0.218494i
\(657\) 0 0
\(658\) −10.3443 13.6823i −0.403261 0.533390i
\(659\) −15.4883 4.15007i −0.603337 0.161664i −0.0557954 0.998442i \(-0.517769\pi\)
−0.547541 + 0.836779i \(0.684436\pi\)
\(660\) 0 0
\(661\) 21.9923 5.89283i 0.855403 0.229204i 0.195637 0.980676i \(-0.437322\pi\)
0.659765 + 0.751472i \(0.270656\pi\)
\(662\) −0.920387 + 1.18189i −0.0357719 + 0.0459353i
\(663\) 0 0
\(664\) 1.05693 + 9.61729i 0.0410169 + 0.373223i
\(665\) 22.9026i 0.888124i
\(666\) 0 0
\(667\) 10.3754 + 10.3754i 0.401738 + 0.401738i
\(668\) 3.36857 + 13.3310i 0.130334 + 0.515791i
\(669\) 0 0
\(670\) −7.13277 57.3426i −0.275563 2.21534i
\(671\) 6.83085 11.8314i 0.263702 0.456745i
\(672\) 0 0
\(673\) 16.3212 + 28.2692i 0.629136 + 1.08970i 0.987725 + 0.156201i \(0.0499246\pi\)
−0.358589 + 0.933496i \(0.616742\pi\)
\(674\) 5.64921 4.27100i 0.217599 0.164513i
\(675\) 0 0
\(676\) 1.63497 + 0.463234i 0.0628835 + 0.0178167i
\(677\) −3.84993 + 14.3681i −0.147965 + 0.552212i 0.851641 + 0.524126i \(0.175608\pi\)
−0.999606 + 0.0280861i \(0.991059\pi\)
\(678\) 0 0
\(679\) 1.48588 + 0.857871i 0.0570227 + 0.0329221i
\(680\) 36.0746 + 49.1607i 1.38340 + 1.88523i
\(681\) 0 0
\(682\) 0.804514 + 1.98222i 0.0308065 + 0.0759031i
\(683\) −21.4912 21.4912i −0.822338 0.822338i 0.164105 0.986443i \(-0.447526\pi\)
−0.986443 + 0.164105i \(0.947526\pi\)
\(684\) 0 0
\(685\) −14.2671 + 14.2671i −0.545120 + 0.545120i
\(686\) −8.91697 + 21.0997i −0.340451 + 0.805590i
\(687\) 0 0
\(688\) 24.4977 + 7.32073i 0.933967 + 0.279100i
\(689\) −19.0334 + 32.9669i −0.725116 + 1.25594i
\(690\) 0 0
\(691\) −8.83775 2.36807i −0.336204 0.0900855i 0.0867676 0.996229i \(-0.472346\pi\)
−0.422971 + 0.906143i \(0.639013\pi\)
\(692\) 3.10428 + 5.55876i 0.118007 + 0.211312i
\(693\) 0 0
\(694\) 8.53733 + 1.18609i 0.324072 + 0.0450234i
\(695\) −10.3440 + 5.97209i −0.392369 + 0.226534i
\(696\) 0 0
\(697\) 10.8266 + 6.25077i 0.410088 + 0.236765i
\(698\) 6.26354 + 4.87769i 0.237078 + 0.184623i
\(699\) 0 0
\(700\) −7.76760 + 1.96277i −0.293588 + 0.0741858i
\(701\) 4.05144 4.05144i 0.153021 0.153021i −0.626445 0.779466i \(-0.715491\pi\)
0.779466 + 0.626445i \(0.215491\pi\)
\(702\) 0 0
\(703\) 19.5411 0.737005
\(704\) 4.91623 + 9.42664i 0.185287 + 0.355280i
\(705\) 0 0
\(706\) −1.76713 14.2065i −0.0665067 0.534669i
\(707\) −3.44978 12.8747i −0.129742 0.484204i
\(708\) 0 0
\(709\) −1.00775 + 3.76098i −0.0378469 + 0.141247i −0.982264 0.187503i \(-0.939961\pi\)
0.944417 + 0.328750i \(0.106627\pi\)
\(710\) 4.34283 31.2591i 0.162983 1.17313i
\(711\) 0 0
\(712\) 42.7289 16.6349i 1.60133 0.623419i
\(713\) 3.93936 2.27439i 0.147530 0.0851767i
\(714\) 0 0
\(715\) 12.6797 3.39752i 0.474195 0.127060i
\(716\) 10.5673 + 0.151051i 0.394918 + 0.00564506i
\(717\) 0 0
\(718\) 2.90719 6.87911i 0.108495 0.256726i
\(719\) 37.0063 1.38010 0.690050 0.723761i \(-0.257588\pi\)
0.690050 + 0.723761i \(0.257588\pi\)
\(720\) 0 0
\(721\) −12.2859 −0.457552
\(722\) −10.1164 + 23.9378i −0.376494 + 0.890874i
\(723\) 0 0
\(724\) −0.00683737 + 0.478330i −0.000254109 + 0.0177770i
\(725\) 10.7469 2.87962i 0.399129 0.106946i
\(726\) 0 0
\(727\) 28.4066 16.4006i 1.05354 0.608264i 0.129905 0.991526i \(-0.458533\pi\)
0.923640 + 0.383262i \(0.125199\pi\)
\(728\) 5.24473 11.9317i 0.194383 0.442220i
\(729\) 0 0
\(730\) −0.318322 + 2.29124i −0.0117816 + 0.0848025i
\(731\) 12.5861 46.9719i 0.465513 1.73732i
\(732\) 0 0
\(733\) 10.9743 + 40.9566i 0.405345 + 1.51277i 0.803419 + 0.595413i \(0.203012\pi\)
−0.398075 + 0.917353i \(0.630322\pi\)
\(734\) −1.75245 14.0885i −0.0646840 0.520015i
\(735\) 0 0
\(736\) 18.4150 13.1123i 0.678786 0.483327i
\(737\) −19.1620 −0.705842
\(738\) 0 0
\(739\) −15.3761 + 15.3761i −0.565620 + 0.565620i −0.930898 0.365278i \(-0.880974\pi\)
0.365278 + 0.930898i \(0.380974\pi\)
\(740\) −4.43800 17.5632i −0.163144 0.645637i
\(741\) 0 0
\(742\) −16.1087 12.5445i −0.591367 0.460524i
\(743\) −40.4824 23.3725i −1.48516 0.857456i −0.485299 0.874348i \(-0.661289\pi\)
−0.999857 + 0.0168926i \(0.994623\pi\)
\(744\) 0 0
\(745\) −21.3664 + 12.3359i −0.782805 + 0.451952i
\(746\) −36.5247 5.07438i −1.33727 0.185786i
\(747\) 0 0
\(748\) 17.6542 9.85896i 0.645503 0.360479i
\(749\) 3.42213 + 0.916958i 0.125042 + 0.0335049i
\(750\) 0 0
\(751\) 25.7074 44.5265i 0.938077 1.62480i 0.169023 0.985612i \(-0.445939\pi\)
0.769054 0.639184i \(-0.220728\pi\)
\(752\) 32.2933 17.4334i 1.17762 0.635729i
\(753\) 0 0
\(754\) −7.04584 + 16.6721i −0.256594 + 0.607164i
\(755\) −41.2088 + 41.2088i −1.49974 + 1.49974i
\(756\) 0 0
\(757\) 25.4143 + 25.4143i 0.923698 + 0.923698i 0.997289 0.0735910i \(-0.0234459\pi\)
−0.0735910 + 0.997289i \(0.523446\pi\)
\(758\) 8.51866 + 20.9889i 0.309412 + 0.762351i
\(759\) 0 0
\(760\) 48.4336 + 7.43596i 1.75687 + 0.269731i
\(761\) −20.2336 11.6819i −0.733467 0.423467i 0.0862220 0.996276i \(-0.472521\pi\)
−0.819689 + 0.572808i \(0.805854\pi\)
\(762\) 0 0
\(763\) 4.17717 15.5894i 0.151224 0.564375i
\(764\) 12.0435 42.5071i 0.435718 1.53785i
\(765\) 0 0
\(766\) 5.64219 4.26569i 0.203861 0.154126i
\(767\) −8.67859 15.0318i −0.313366 0.542765i
\(768\) 0 0
\(769\) −12.7645 + 22.1087i −0.460299 + 0.797261i −0.998976 0.0452513i \(-0.985591\pi\)
0.538677 + 0.842513i \(0.318924\pi\)
\(770\) 0.869076 + 6.98678i 0.0313193 + 0.251786i
\(771\) 0 0
\(772\) 30.6635 7.74828i 1.10360 0.278867i
\(773\) 19.2256 + 19.2256i 0.691496 + 0.691496i 0.962561 0.271065i \(-0.0873758\pi\)
−0.271065 + 0.962561i \(0.587376\pi\)
\(774\) 0 0
\(775\) 3.44916i 0.123898i
\(776\) −2.29663 + 2.86375i −0.0824441 + 0.102803i
\(777\) 0 0
\(778\) −11.6076 + 14.9055i −0.416152 + 0.534389i
\(779\) 9.70397 2.60017i 0.347681 0.0931608i
\(780\) 0 0
\(781\) −10.1088 2.70866i −0.361723 0.0969234i
\(782\) −25.9297 34.2969i −0.927243 1.22646i
\(783\) 0 0
\(784\) −17.8871 11.0205i −0.638824 0.393590i
\(785\) 13.0680 + 22.6344i 0.466416 + 0.807857i
\(786\) 0 0
\(787\) 5.16260 + 19.2671i 0.184027 + 0.686797i 0.994837 + 0.101488i \(0.0323603\pi\)
−0.810810 + 0.585309i \(0.800973\pi\)
\(788\) 0.0483542 3.38277i 0.00172255 0.120506i
\(789\) 0 0
\(790\) 2.16088 + 5.32413i 0.0768807 + 0.189424i
\(791\) 4.49949i 0.159983i
\(792\) 0 0
\(793\) 35.8336i 1.27249i
\(794\) 34.6851 14.0775i 1.23093 0.499591i
\(795\) 0 0
\(796\) −9.16750 + 8.90911i −0.324933 + 0.315775i
\(797\) 3.02171 + 11.2772i 0.107035 + 0.399458i 0.998568 0.0534965i \(-0.0170366\pi\)
−0.891534 + 0.452955i \(0.850370\pi\)
\(798\) 0 0
\(799\) −34.8990 60.4469i −1.23464 2.13846i
\(800\) −1.62883 17.0639i −0.0575880 0.603301i
\(801\) 0 0
\(802\) 15.0290 11.3625i 0.530694 0.401222i
\(803\) 0.740961 + 0.198540i 0.0261479 + 0.00700632i
\(804\) 0 0
\(805\) 14.4606 3.87471i 0.509669 0.136565i
\(806\) 4.42708 + 3.44756i 0.155937 + 0.121435i
\(807\) 0 0
\(808\) 28.3471 3.11532i 0.997248 0.109597i
\(809\) 13.1110i 0.460958i 0.973077 + 0.230479i \(0.0740292\pi\)
−0.973077 + 0.230479i \(0.925971\pi\)
\(810\) 0 0
\(811\) −34.1945 34.1945i −1.20073 1.20073i −0.973944 0.226789i \(-0.927177\pi\)
−0.226789 0.973944i \(-0.572823\pi\)
\(812\) −8.33694 4.97355i −0.292569 0.174537i
\(813\) 0 0
\(814\) −5.96129 + 0.741517i −0.208943 + 0.0259902i
\(815\) 20.8498 36.1129i 0.730337 1.26498i
\(816\) 0 0
\(817\) −19.5392 33.8429i −0.683590 1.18401i
\(818\) 10.4428 + 13.8125i 0.365122 + 0.482944i
\(819\) 0 0
\(820\) −4.54088 8.13126i −0.158574 0.283956i
\(821\) −6.39631 + 23.8714i −0.223233 + 0.833116i 0.759872 + 0.650073i \(0.225262\pi\)
−0.983105 + 0.183044i \(0.941405\pi\)
\(822\) 0 0
\(823\) −16.2152 9.36184i −0.565226 0.326333i 0.190014 0.981781i \(-0.439147\pi\)
−0.755240 + 0.655448i \(0.772480\pi\)
\(824\) 3.98897 25.9819i 0.138962 0.905121i
\(825\) 0 0
\(826\) 8.62605 3.50101i 0.300139 0.121816i
\(827\) 24.1212 + 24.1212i 0.838775 + 0.838775i 0.988698 0.149923i \(-0.0479025\pi\)
−0.149923 + 0.988698i \(0.547902\pi\)
\(828\) 0 0
\(829\) −20.8683 + 20.8683i −0.724787 + 0.724787i −0.969576 0.244789i \(-0.921281\pi\)
0.244789 + 0.969576i \(0.421281\pi\)
\(830\) −12.6273 5.33643i −0.438299 0.185230i
\(831\) 0 0
\(832\) 23.5300 + 14.9653i 0.815755 + 0.518830i
\(833\) −19.9793 + 34.6052i −0.692242 + 1.19900i
\(834\) 0 0
\(835\) −18.8183 5.04234i −0.651233 0.174497i
\(836\) 4.42954 15.6339i 0.153199 0.540711i
\(837\) 0 0
\(838\) 6.45566 46.4670i 0.223007 1.60518i
\(839\) 5.01977 2.89816i 0.173302 0.100056i −0.410840 0.911707i \(-0.634765\pi\)
0.584142 + 0.811652i \(0.301431\pi\)
\(840\) 0 0
\(841\) −13.4396 7.75936i −0.463435 0.267564i
\(842\) −22.2225 + 28.5363i −0.765838 + 0.983426i
\(843\) 0 0
\(844\) −2.13620 + 3.58081i −0.0735309 + 0.123257i
\(845\) −1.70253 + 1.70253i −0.0585689 + 0.0585689i
\(846\) 0 0
\(847\) −12.2070 −0.419437
\(848\) 31.7588 29.9931i 1.09060 1.02997i
\(849\) 0 0
\(850\) −32.3526 + 4.02430i −1.10968 + 0.138032i
\(851\) 3.30600 + 12.3381i 0.113328 + 0.422946i
\(852\) 0 0
\(853\) −0.461332 + 1.72171i −0.0157957 + 0.0589504i −0.973374 0.229223i \(-0.926381\pi\)
0.957578 + 0.288174i \(0.0930481\pi\)
\(854\) 19.0363 + 2.64472i 0.651410 + 0.0905004i
\(855\) 0 0
\(856\) −3.05024 + 6.93929i −0.104255 + 0.237180i
\(857\) −12.6918 + 7.32760i −0.433543 + 0.250306i −0.700855 0.713304i \(-0.747198\pi\)
0.267312 + 0.963610i \(0.413865\pi\)
\(858\) 0 0
\(859\) −51.3859 + 13.7688i −1.75327 + 0.469786i −0.985318 0.170727i \(-0.945388\pi\)
−0.767947 + 0.640513i \(0.778722\pi\)
\(860\) −25.9799 + 25.2477i −0.885908 + 0.860938i
\(861\) 0 0
\(862\) −13.4228 5.67262i −0.457182 0.193210i
\(863\) −23.9467 −0.815157 −0.407578 0.913170i \(-0.633627\pi\)
−0.407578 + 0.913170i \(0.633627\pi\)
\(864\) 0 0
\(865\) −9.02103 −0.306724
\(866\) 15.3313 + 6.47917i 0.520978 + 0.220171i
\(867\) 0 0
\(868\) −2.15824 + 2.09740i −0.0732553 + 0.0711905i
\(869\) 1.84049 0.493159i 0.0624345 0.0167293i
\(870\) 0 0
\(871\) −43.5269 + 25.1303i −1.47485 + 0.851507i
\(872\) 31.6117 + 13.8953i 1.07051 + 0.470554i
\(873\) 0 0
\(874\) −34.2228 4.75457i −1.15760 0.160826i
\(875\) −1.90986 + 7.12771i −0.0645652 + 0.240961i
\(876\) 0 0
\(877\) 10.6447 + 39.7266i 0.359446 + 1.34147i 0.874796 + 0.484492i \(0.160996\pi\)
−0.515349 + 0.856980i \(0.672338\pi\)
\(878\) 38.8747 4.83557i 1.31196 0.163193i
\(879\) 0 0
\(880\) −15.0576 0.430561i −0.507590 0.0145142i
\(881\) 41.2335 1.38919 0.694597 0.719399i \(-0.255583\pi\)
0.694597 + 0.719399i \(0.255583\pi\)
\(882\) 0 0
\(883\) −11.9719 + 11.9719i −0.402885 + 0.402885i −0.879248 0.476364i \(-0.841955\pi\)
0.476364 + 0.879248i \(0.341955\pi\)
\(884\) 27.1723 45.5477i 0.913902 1.53193i
\(885\) 0 0
\(886\) 21.8447 28.0512i 0.733887 0.942398i
\(887\) 26.7452 + 15.4413i 0.898016 + 0.518470i 0.876556 0.481300i \(-0.159835\pi\)
0.0214599 + 0.999770i \(0.493169\pi\)
\(888\) 0 0
\(889\) 6.00486 3.46691i 0.201397 0.116276i
\(890\) −8.94013 + 64.3499i −0.299674 + 2.15701i
\(891\) 0 0
\(892\) −14.8834 + 52.5305i −0.498333 + 1.75885i
\(893\) −54.1788 14.5172i −1.81302 0.485798i
\(894\) 0 0
\(895\) −7.48706 + 12.9680i −0.250265 + 0.433471i
\(896\) −9.68688 + 11.3956i −0.323616 + 0.380701i
\(897\) 0 0
\(898\) −26.1820 11.0648i −0.873704 0.369237i
\(899\) 2.95523 2.95523i 0.0985624 0.0985624i
\(900\) 0 0
\(901\) −58.7480 58.7480i −1.95718 1.95718i
\(902\) −2.86167 + 1.16145i −0.0952833 + 0.0386722i
\(903\) 0 0
\(904\) −9.51536 1.46088i −0.316476 0.0485883i
\(905\) −0.586997 0.338903i −0.0195125 0.0112655i
\(906\) 0 0
\(907\) 7.16365 26.7351i 0.237865 0.887725i −0.738971 0.673737i \(-0.764688\pi\)
0.976836 0.213988i \(-0.0686453\pi\)
\(908\) −2.83466 5.07598i −0.0940717 0.168452i
\(909\) 0 0
\(910\) 11.1370 + 14.7308i 0.369188 + 0.488322i
\(911\) 4.83009 + 8.36596i 0.160028 + 0.277177i 0.934878 0.354968i \(-0.115508\pi\)
−0.774850 + 0.632145i \(0.782175\pi\)
\(912\) 0 0
\(913\) −2.27297 + 3.93689i −0.0752242 + 0.130292i
\(914\) 33.7502 4.19814i 1.11636 0.138862i
\(915\) 0 0
\(916\) −11.5329 6.88017i −0.381058 0.227327i
\(917\) 6.06859 + 6.06859i 0.200403 + 0.200403i
\(918\) 0 0
\(919\) 12.5574i 0.414229i 0.978317 + 0.207115i \(0.0664073\pi\)
−0.978317 + 0.207115i \(0.933593\pi\)
\(920\) 3.49905 + 31.8388i 0.115360 + 1.04969i
\(921\) 0 0
\(922\) −4.51626 3.51701i −0.148735 0.115827i
\(923\) −26.5147 + 7.10460i −0.872743 + 0.233851i
\(924\) 0 0
\(925\) 9.35553 + 2.50681i 0.307608 + 0.0824233i
\(926\) −11.6530 + 8.81005i −0.382941 + 0.289516i
\(927\) 0 0
\(928\) 13.2247 16.0159i 0.434122 0.525747i
\(929\) −4.50031 7.79477i −0.147650 0.255738i 0.782708 0.622389i \(-0.213838\pi\)
−0.930359 + 0.366651i \(0.880504\pi\)
\(930\) 0 0
\(931\) 8.31092 + 31.0168i 0.272379 + 1.01653i
\(932\) −16.9473 + 16.4697i −0.555129 + 0.539482i
\(933\) 0 0
\(934\) 22.0466 8.94793i 0.721385 0.292785i
\(935\) 28.6501i 0.936960i
\(936\) 0 0
\(937\) 59.2265i 1.93485i 0.253166 + 0.967423i \(0.418528\pi\)
−0.253166 + 0.967423i \(0.581472\pi\)
\(938\) −10.1378 24.9781i −0.331009 0.815565i
\(939\) 0 0
\(940\) −0.743188 + 51.9921i −0.0242401 + 1.69580i
\(941\) 2.95446 + 11.0262i 0.0963126 + 0.359443i 0.997215 0.0745778i \(-0.0237609\pi\)
−0.900903 + 0.434021i \(0.857094\pi\)
\(942\) 0 0
\(943\) 3.28347 + 5.68714i 0.106925 + 0.185199i
\(944\) 4.60313 + 19.3788i 0.149819 + 0.630725i
\(945\) 0 0
\(946\) 7.24495 + 9.58283i 0.235554 + 0.311565i
\(947\) −8.32058 2.22949i −0.270382 0.0724488i 0.121080 0.992643i \(-0.461364\pi\)
−0.391463 + 0.920194i \(0.628031\pi\)
\(948\) 0 0
\(949\) 1.94348 0.520755i 0.0630882 0.0169044i
\(950\) −16.0971 + 20.6706i −0.522259 + 0.670642i
\(951\) 0 0
\(952\) 22.1914 + 17.7968i 0.719228 + 0.576796i
\(953\) 43.5260i 1.40995i −0.709234 0.704973i \(-0.750959\pi\)
0.709234 0.704973i \(-0.249041\pi\)
\(954\) 0 0
\(955\) 44.2637 + 44.2637i 1.43234 + 1.43234i
\(956\) 6.80079 1.71847i 0.219953 0.0555794i
\(957\) 0 0
\(958\) −2.61109 20.9914i −0.0843606 0.678201i
\(959\) −4.70633 + 8.15160i −0.151975 + 0.263229i
\(960\) 0 0
\(961\) 14.8522 + 25.7247i 0.479103 + 0.829830i
\(962\) −12.5687 + 9.50238i −0.405232 + 0.306369i
\(963\) 0 0
\(964\) 4.75014 16.7655i 0.152992 0.539980i
\(965\) −11.5982 + 43.2852i −0.373361 + 1.39340i
\(966\) 0 0
\(967\) −26.2267 15.1420i −0.843393 0.486933i 0.0150229 0.999887i \(-0.495218\pi\)
−0.858416 + 0.512954i \(0.828551\pi\)
\(968\) 3.96334 25.8149i 0.127387 0.829723i
\(969\) 0 0
\(970\) −1.95604 4.81942i −0.0628045 0.154742i
\(971\) −9.06755 9.06755i −0.290992 0.290992i 0.546480 0.837472i \(-0.315967\pi\)
−0.837472 + 0.546480i \(0.815967\pi\)
\(972\) 0 0
\(973\) −3.94005 + 3.94005i −0.126312 + 0.126312i
\(974\) −14.8840 + 35.2191i −0.476914 + 1.12849i
\(975\) 0 0
\(976\) −11.7736 + 39.3987i −0.376865 + 1.26112i
\(977\) −10.4475 + 18.0956i −0.334246 + 0.578931i −0.983340 0.181778i \(-0.941815\pi\)
0.649094 + 0.760708i \(0.275148\pi\)
\(978\) 0 0
\(979\) 20.8100 + 5.57603i 0.665092 + 0.178211i
\(980\) 25.9899 14.5140i 0.830218 0.463633i
\(981\) 0 0
\(982\) 7.85781 + 1.09168i 0.250753 + 0.0348371i
\(983\) 1.14158 0.659092i 0.0364108 0.0210218i −0.481684 0.876345i \(-0.659975\pi\)
0.518095 + 0.855323i \(0.326641\pi\)
\(984\) 0 0
\(985\) 4.15128 + 2.39674i 0.132271 + 0.0763665i
\(986\) −31.1676 24.2716i −0.992577 0.772964i
\(987\) 0 0
\(988\) −10.4415 41.3219i −0.332189 1.31463i
\(989\) 18.0626 18.0626i 0.574357 0.574357i
\(990\) 0 0
\(991\) 2.51185 0.0797914 0.0398957 0.999204i \(-0.487297\pi\)
0.0398957 + 0.999204i \(0.487297\pi\)
\(992\) −3.73479 5.24514i −0.118580 0.166533i
\(993\) 0 0
\(994\) −1.81734 14.6101i −0.0576424 0.463405i
\(995\) −4.68788 17.4954i −0.148616 0.554641i
\(996\) 0 0
\(997\) 11.9030 44.4227i 0.376973 1.40688i −0.473468 0.880811i \(-0.656998\pi\)
0.850441 0.526071i \(-0.176335\pi\)
\(998\) 4.27192 30.7487i 0.135225 0.973334i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 432.2.y.e.37.2 72
3.2 odd 2 144.2.x.e.85.17 yes 72
4.3 odd 2 1728.2.bc.e.1009.5 72
9.2 odd 6 144.2.x.e.133.7 yes 72
9.7 even 3 inner 432.2.y.e.181.12 72
12.11 even 2 576.2.bb.e.49.18 72
16.3 odd 4 1728.2.bc.e.145.14 72
16.13 even 4 inner 432.2.y.e.253.12 72
36.7 odd 6 1728.2.bc.e.1585.14 72
36.11 even 6 576.2.bb.e.241.11 72
48.29 odd 4 144.2.x.e.13.7 72
48.35 even 4 576.2.bb.e.337.11 72
144.29 odd 12 144.2.x.e.61.17 yes 72
144.61 even 12 inner 432.2.y.e.397.2 72
144.83 even 12 576.2.bb.e.529.18 72
144.115 odd 12 1728.2.bc.e.721.5 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
144.2.x.e.13.7 72 48.29 odd 4
144.2.x.e.61.17 yes 72 144.29 odd 12
144.2.x.e.85.17 yes 72 3.2 odd 2
144.2.x.e.133.7 yes 72 9.2 odd 6
432.2.y.e.37.2 72 1.1 even 1 trivial
432.2.y.e.181.12 72 9.7 even 3 inner
432.2.y.e.253.12 72 16.13 even 4 inner
432.2.y.e.397.2 72 144.61 even 12 inner
576.2.bb.e.49.18 72 12.11 even 2
576.2.bb.e.241.11 72 36.11 even 6
576.2.bb.e.337.11 72 48.35 even 4
576.2.bb.e.529.18 72 144.83 even 12
1728.2.bc.e.145.14 72 16.3 odd 4
1728.2.bc.e.721.5 72 144.115 odd 12
1728.2.bc.e.1009.5 72 4.3 odd 2
1728.2.bc.e.1585.14 72 36.7 odd 6