Properties

Label 1728.2.z.a.1583.22
Level $1728$
Weight $2$
Character 1728.1583
Analytic conductor $13.798$
Analytic rank $0$
Dimension $88$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1728,2,Mod(143,1728)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1728, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 3, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1728.143");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1728 = 2^{6} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1728.z (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.7981494693\)
Analytic rank: \(0\)
Dimension: \(88\)
Relative dimension: \(22\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 144)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 1583.22
Character \(\chi\) \(=\) 1728.1583
Dual form 1728.2.z.a.143.22

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.81396 - 1.02195i) q^{5} +(-1.46715 - 2.54117i) q^{7} +O(q^{10})\) \(q+(3.81396 - 1.02195i) q^{5} +(-1.46715 - 2.54117i) q^{7} +(-2.65006 - 0.710081i) q^{11} +(-2.34729 + 0.628955i) q^{13} -2.89808i q^{17} +(1.99906 - 1.99906i) q^{19} +(-2.07141 - 1.19593i) q^{23} +(9.17180 - 5.29534i) q^{25} +(-8.46218 - 2.26743i) q^{29} +(0.439075 + 0.253500i) q^{31} +(-8.19258 - 8.19258i) q^{35} +(1.36407 - 1.36407i) q^{37} +(-0.745739 + 1.29166i) q^{41} +(1.27136 - 4.74478i) q^{43} +(-3.25802 - 5.64306i) q^{47} +(-0.805035 + 1.39436i) q^{49} +(5.17979 + 5.17979i) q^{53} -10.8329 q^{55} +(0.664781 + 2.48100i) q^{59} +(2.99657 - 11.1833i) q^{61} +(-8.30972 + 4.79762i) q^{65} +(2.53505 + 9.46095i) q^{67} +4.65399i q^{71} +4.91897i q^{73} +(2.08358 + 7.77604i) q^{77} +(3.61263 - 2.08575i) q^{79} +(-3.37411 + 12.5924i) q^{83} +(-2.96169 - 11.0532i) q^{85} -7.33327 q^{89} +(5.04210 + 5.04210i) q^{91} +(5.58139 - 9.66725i) q^{95} +(2.50134 + 4.33245i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 88 q + 6 q^{5} + 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 88 q + 6 q^{5} + 4 q^{7} - 6 q^{11} - 2 q^{13} + 8 q^{19} - 12 q^{23} + 6 q^{29} - 8 q^{37} + 2 q^{43} - 24 q^{49} + 16 q^{55} - 42 q^{59} - 2 q^{61} + 12 q^{65} + 2 q^{67} + 6 q^{77} + 54 q^{83} + 8 q^{85} - 20 q^{91} - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1728\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(703\) \(1217\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 3.81396 1.02195i 1.70566 0.457029i 0.731302 0.682053i \(-0.238913\pi\)
0.974353 + 0.225024i \(0.0722462\pi\)
\(6\) 0 0
\(7\) −1.46715 2.54117i −0.554529 0.960473i −0.997940 0.0641541i \(-0.979565\pi\)
0.443411 0.896318i \(-0.353768\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2.65006 0.710081i −0.799022 0.214097i −0.163868 0.986482i \(-0.552397\pi\)
−0.635155 + 0.772385i \(0.719064\pi\)
\(12\) 0 0
\(13\) −2.34729 + 0.628955i −0.651021 + 0.174441i −0.569191 0.822206i \(-0.692743\pi\)
−0.0818307 + 0.996646i \(0.526077\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.89808i 0.702889i −0.936209 0.351444i \(-0.885691\pi\)
0.936209 0.351444i \(-0.114309\pi\)
\(18\) 0 0
\(19\) 1.99906 1.99906i 0.458615 0.458615i −0.439586 0.898201i \(-0.644875\pi\)
0.898201 + 0.439586i \(0.144875\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.07141 1.19593i −0.431918 0.249368i 0.268245 0.963351i \(-0.413556\pi\)
−0.700163 + 0.713983i \(0.746890\pi\)
\(24\) 0 0
\(25\) 9.17180 5.29534i 1.83436 1.05907i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −8.46218 2.26743i −1.57139 0.421052i −0.635141 0.772396i \(-0.719058\pi\)
−0.936246 + 0.351344i \(0.885725\pi\)
\(30\) 0 0
\(31\) 0.439075 + 0.253500i 0.0788602 + 0.0455300i 0.538912 0.842362i \(-0.318836\pi\)
−0.460051 + 0.887892i \(0.652169\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −8.19258 8.19258i −1.38480 1.38480i
\(36\) 0 0
\(37\) 1.36407 1.36407i 0.224251 0.224251i −0.586035 0.810286i \(-0.699312\pi\)
0.810286 + 0.586035i \(0.199312\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −0.745739 + 1.29166i −0.116465 + 0.201723i −0.918364 0.395736i \(-0.870490\pi\)
0.801899 + 0.597459i \(0.203823\pi\)
\(42\) 0 0
\(43\) 1.27136 4.74478i 0.193881 0.723572i −0.798673 0.601765i \(-0.794464\pi\)
0.992554 0.121807i \(-0.0388690\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −3.25802 5.64306i −0.475231 0.823124i 0.524367 0.851493i \(-0.324302\pi\)
−0.999598 + 0.0283684i \(0.990969\pi\)
\(48\) 0 0
\(49\) −0.805035 + 1.39436i −0.115005 + 0.199195i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 5.17979 + 5.17979i 0.711499 + 0.711499i 0.966849 0.255349i \(-0.0821905\pi\)
−0.255349 + 0.966849i \(0.582191\pi\)
\(54\) 0 0
\(55\) −10.8329 −1.46071
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0.664781 + 2.48100i 0.0865472 + 0.322998i 0.995603 0.0936766i \(-0.0298620\pi\)
−0.909056 + 0.416675i \(0.863195\pi\)
\(60\) 0 0
\(61\) 2.99657 11.1833i 0.383671 1.43188i −0.456580 0.889682i \(-0.650926\pi\)
0.840251 0.542198i \(-0.182408\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −8.30972 + 4.79762i −1.03069 + 0.595071i
\(66\) 0 0
\(67\) 2.53505 + 9.46095i 0.309706 + 1.15584i 0.928818 + 0.370536i \(0.120826\pi\)
−0.619112 + 0.785303i \(0.712507\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 4.65399i 0.552327i 0.961111 + 0.276164i \(0.0890632\pi\)
−0.961111 + 0.276164i \(0.910937\pi\)
\(72\) 0 0
\(73\) 4.91897i 0.575722i 0.957672 + 0.287861i \(0.0929441\pi\)
−0.957672 + 0.287861i \(0.907056\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.08358 + 7.77604i 0.237446 + 0.886162i
\(78\) 0 0
\(79\) 3.61263 2.08575i 0.406453 0.234666i −0.282812 0.959175i \(-0.591267\pi\)
0.689264 + 0.724510i \(0.257934\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −3.37411 + 12.5924i −0.370357 + 1.38219i 0.489654 + 0.871917i \(0.337123\pi\)
−0.860011 + 0.510275i \(0.829544\pi\)
\(84\) 0 0
\(85\) −2.96169 11.0532i −0.321241 1.19889i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −7.33327 −0.777325 −0.388662 0.921380i \(-0.627063\pi\)
−0.388662 + 0.921380i \(0.627063\pi\)
\(90\) 0 0
\(91\) 5.04210 + 5.04210i 0.528556 + 0.528556i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 5.58139 9.66725i 0.572639 0.991839i
\(96\) 0 0
\(97\) 2.50134 + 4.33245i 0.253973 + 0.439893i 0.964616 0.263659i \(-0.0849294\pi\)
−0.710643 + 0.703552i \(0.751596\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 2.82933 10.5592i 0.281529 1.05068i −0.669810 0.742533i \(-0.733624\pi\)
0.951339 0.308147i \(-0.0997090\pi\)
\(102\) 0 0
\(103\) 0.321949 0.557632i 0.0317226 0.0549451i −0.849728 0.527221i \(-0.823234\pi\)
0.881451 + 0.472276i \(0.156567\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.74155 3.74155i 0.361709 0.361709i −0.502733 0.864442i \(-0.667672\pi\)
0.864442 + 0.502733i \(0.167672\pi\)
\(108\) 0 0
\(109\) 6.00859 + 6.00859i 0.575518 + 0.575518i 0.933665 0.358147i \(-0.116591\pi\)
−0.358147 + 0.933665i \(0.616591\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −14.4387 8.33620i −1.35828 0.784204i −0.368889 0.929474i \(-0.620262\pi\)
−0.989392 + 0.145270i \(0.953595\pi\)
\(114\) 0 0
\(115\) −9.12244 2.44435i −0.850672 0.227937i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −7.36453 + 4.25191i −0.675105 + 0.389772i
\(120\) 0 0
\(121\) −3.00769 1.73649i −0.273426 0.157863i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 15.6093 15.6093i 1.39613 1.39613i
\(126\) 0 0
\(127\) 17.9975i 1.59702i −0.601983 0.798509i \(-0.705623\pi\)
0.601983 0.798509i \(-0.294377\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 17.4121 4.66555i 1.52130 0.407631i 0.601131 0.799151i \(-0.294717\pi\)
0.920170 + 0.391520i \(0.128051\pi\)
\(132\) 0 0
\(133\) −8.01285 2.14704i −0.694802 0.186172i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0.396155 + 0.686161i 0.0338458 + 0.0586227i 0.882452 0.470402i \(-0.155891\pi\)
−0.848606 + 0.529025i \(0.822558\pi\)
\(138\) 0 0
\(139\) 20.5134 5.49654i 1.73992 0.466211i 0.757492 0.652844i \(-0.226424\pi\)
0.982430 + 0.186633i \(0.0597576\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 6.66706 0.557528
\(144\) 0 0
\(145\) −34.5916 −2.87268
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 11.3030 3.02863i 0.925977 0.248115i 0.235839 0.971792i \(-0.424216\pi\)
0.690139 + 0.723677i \(0.257550\pi\)
\(150\) 0 0
\(151\) 4.24025 + 7.34432i 0.345066 + 0.597673i 0.985366 0.170453i \(-0.0545230\pi\)
−0.640299 + 0.768125i \(0.721190\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1.93368 + 0.518128i 0.155317 + 0.0416170i
\(156\) 0 0
\(157\) 3.53516 0.947242i 0.282136 0.0755981i −0.114976 0.993368i \(-0.536679\pi\)
0.397112 + 0.917770i \(0.370012\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 7.01840i 0.553127i
\(162\) 0 0
\(163\) 3.86060 3.86060i 0.302385 0.302385i −0.539561 0.841946i \(-0.681410\pi\)
0.841946 + 0.539561i \(0.181410\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −5.98224 3.45385i −0.462920 0.267267i 0.250351 0.968155i \(-0.419454\pi\)
−0.713271 + 0.700888i \(0.752787\pi\)
\(168\) 0 0
\(169\) −6.14414 + 3.54732i −0.472626 + 0.272871i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −3.86859 1.03659i −0.294123 0.0788101i 0.108740 0.994070i \(-0.465318\pi\)
−0.402863 + 0.915260i \(0.631985\pi\)
\(174\) 0 0
\(175\) −26.9127 15.5381i −2.03441 1.17457i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 10.0625 + 10.0625i 0.752109 + 0.752109i 0.974872 0.222764i \(-0.0715078\pi\)
−0.222764 + 0.974872i \(0.571508\pi\)
\(180\) 0 0
\(181\) 15.0346 15.0346i 1.11751 1.11751i 0.125405 0.992106i \(-0.459977\pi\)
0.992106 0.125405i \(-0.0400229\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 3.80849 6.59651i 0.280006 0.484985i
\(186\) 0 0
\(187\) −2.05787 + 7.68009i −0.150487 + 0.561624i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −10.9007 18.8806i −0.788749 1.36615i −0.926734 0.375719i \(-0.877396\pi\)
0.137984 0.990434i \(-0.455938\pi\)
\(192\) 0 0
\(193\) −2.34723 + 4.06553i −0.168958 + 0.292643i −0.938054 0.346490i \(-0.887373\pi\)
0.769096 + 0.639133i \(0.220707\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −14.3226 14.3226i −1.02044 1.02044i −0.999787 0.0206566i \(-0.993424\pi\)
−0.0206566 0.999787i \(-0.506576\pi\)
\(198\) 0 0
\(199\) 14.4965 1.02763 0.513816 0.857901i \(-0.328232\pi\)
0.513816 + 0.857901i \(0.328232\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 6.65332 + 24.8305i 0.466971 + 1.74276i
\(204\) 0 0
\(205\) −1.52421 + 5.68844i −0.106456 + 0.397298i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −6.71710 + 3.87812i −0.464632 + 0.268255i
\(210\) 0 0
\(211\) 1.71268 + 6.39179i 0.117905 + 0.440029i 0.999488 0.0320010i \(-0.0101880\pi\)
−0.881582 + 0.472030i \(0.843521\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 19.3957i 1.32277i
\(216\) 0 0
\(217\) 1.48769i 0.100991i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1.82276 + 6.80265i 0.122612 + 0.457596i
\(222\) 0 0
\(223\) −1.59599 + 0.921443i −0.106875 + 0.0617044i −0.552485 0.833523i \(-0.686320\pi\)
0.445610 + 0.895227i \(0.352987\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −0.184084 + 0.687012i −0.0122181 + 0.0455986i −0.971766 0.235948i \(-0.924181\pi\)
0.959548 + 0.281546i \(0.0908473\pi\)
\(228\) 0 0
\(229\) 1.98433 + 7.40562i 0.131128 + 0.489377i 0.999984 0.00568843i \(-0.00181069\pi\)
−0.868856 + 0.495066i \(0.835144\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.36925 −0.0897024 −0.0448512 0.998994i \(-0.514281\pi\)
−0.0448512 + 0.998994i \(0.514281\pi\)
\(234\) 0 0
\(235\) −18.1929 18.1929i −1.18677 1.18677i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −0.773627 + 1.33996i −0.0500418 + 0.0866749i −0.889961 0.456036i \(-0.849269\pi\)
0.839919 + 0.542711i \(0.182602\pi\)
\(240\) 0 0
\(241\) 3.83660 + 6.64519i 0.247137 + 0.428054i 0.962730 0.270463i \(-0.0871769\pi\)
−0.715593 + 0.698517i \(0.753844\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1.64541 + 6.14075i −0.105121 + 0.392318i
\(246\) 0 0
\(247\) −3.43505 + 5.94968i −0.218567 + 0.378569i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −5.46632 + 5.46632i −0.345031 + 0.345031i −0.858255 0.513224i \(-0.828451\pi\)
0.513224 + 0.858255i \(0.328451\pi\)
\(252\) 0 0
\(253\) 4.64014 + 4.64014i 0.291723 + 0.291723i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 20.5918 + 11.8887i 1.28448 + 0.741596i 0.977664 0.210172i \(-0.0674025\pi\)
0.306818 + 0.951768i \(0.400736\pi\)
\(258\) 0 0
\(259\) −5.46761 1.46504i −0.339741 0.0910333i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −6.13704 + 3.54322i −0.378426 + 0.218484i −0.677133 0.735860i \(-0.736778\pi\)
0.298707 + 0.954345i \(0.403445\pi\)
\(264\) 0 0
\(265\) 25.0490 + 14.4621i 1.53875 + 0.888397i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −20.6616 + 20.6616i −1.25976 + 1.25976i −0.308553 + 0.951207i \(0.599845\pi\)
−0.951207 + 0.308553i \(0.900155\pi\)
\(270\) 0 0
\(271\) 16.6901i 1.01385i 0.861989 + 0.506927i \(0.169218\pi\)
−0.861989 + 0.506927i \(0.830782\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −28.0659 + 7.52024i −1.69244 + 0.453487i
\(276\) 0 0
\(277\) 4.49217 + 1.20367i 0.269908 + 0.0723217i 0.391235 0.920291i \(-0.372048\pi\)
−0.121326 + 0.992613i \(0.538715\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 11.4153 + 19.7719i 0.680979 + 1.17949i 0.974682 + 0.223594i \(0.0717790\pi\)
−0.293703 + 0.955897i \(0.594888\pi\)
\(282\) 0 0
\(283\) 24.9438 6.68368i 1.48276 0.397303i 0.575472 0.817822i \(-0.304818\pi\)
0.907284 + 0.420518i \(0.138152\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 4.37643 0.258333
\(288\) 0 0
\(289\) 8.60110 0.505947
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 2.76706 0.741431i 0.161653 0.0433149i −0.177085 0.984196i \(-0.556667\pi\)
0.338738 + 0.940881i \(0.390000\pi\)
\(294\) 0 0
\(295\) 5.07090 + 8.78306i 0.295239 + 0.511370i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 5.61438 + 1.50437i 0.324688 + 0.0869998i
\(300\) 0 0
\(301\) −13.9226 + 3.73054i −0.802484 + 0.215025i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 45.7152i 2.61764i
\(306\) 0 0
\(307\) 7.67329 7.67329i 0.437938 0.437938i −0.453380 0.891317i \(-0.649782\pi\)
0.891317 + 0.453380i \(0.149782\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 15.0777 + 8.70513i 0.854980 + 0.493623i 0.862328 0.506350i \(-0.169006\pi\)
−0.00734815 + 0.999973i \(0.502339\pi\)
\(312\) 0 0
\(313\) −21.3027 + 12.2991i −1.20410 + 0.695189i −0.961465 0.274928i \(-0.911346\pi\)
−0.242638 + 0.970117i \(0.578013\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 7.99342 + 2.14183i 0.448955 + 0.120297i 0.476211 0.879331i \(-0.342010\pi\)
−0.0272552 + 0.999629i \(0.508677\pi\)
\(318\) 0 0
\(319\) 20.8152 + 12.0177i 1.16543 + 0.672860i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −5.79343 5.79343i −0.322355 0.322355i
\(324\) 0 0
\(325\) −18.1983 + 18.1983i −1.00946 + 1.00946i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −9.55998 + 16.5584i −0.527059 + 0.912893i
\(330\) 0 0
\(331\) −6.84245 + 25.5364i −0.376095 + 1.40361i 0.475643 + 0.879639i \(0.342216\pi\)
−0.851738 + 0.523968i \(0.824451\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 19.3372 + 33.4930i 1.05650 + 1.82992i
\(336\) 0 0
\(337\) 12.3368 21.3679i 0.672026 1.16398i −0.305302 0.952256i \(-0.598757\pi\)
0.977329 0.211728i \(-0.0679092\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −0.983569 0.983569i −0.0532632 0.0532632i
\(342\) 0 0
\(343\) −15.8156 −0.853964
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 6.16895 + 23.0228i 0.331166 + 1.23593i 0.907966 + 0.419044i \(0.137635\pi\)
−0.576799 + 0.816886i \(0.695699\pi\)
\(348\) 0 0
\(349\) 6.94337 25.9130i 0.371670 1.38709i −0.486479 0.873692i \(-0.661719\pi\)
0.858149 0.513400i \(-0.171614\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −5.54075 + 3.19895i −0.294904 + 0.170263i −0.640151 0.768249i \(-0.721128\pi\)
0.345247 + 0.938512i \(0.387795\pi\)
\(354\) 0 0
\(355\) 4.75614 + 17.7502i 0.252430 + 0.942080i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 17.2363i 0.909697i −0.890569 0.454849i \(-0.849693\pi\)
0.890569 0.454849i \(-0.150307\pi\)
\(360\) 0 0
\(361\) 11.0076i 0.579345i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 5.02693 + 18.7608i 0.263121 + 0.981983i
\(366\) 0 0
\(367\) 1.26366 0.729575i 0.0659625 0.0380835i −0.466656 0.884439i \(-0.654541\pi\)
0.532619 + 0.846355i \(0.321208\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 5.56323 20.7623i 0.288829 1.07792i
\(372\) 0 0
\(373\) −2.08247 7.77189i −0.107826 0.402413i 0.890824 0.454348i \(-0.150128\pi\)
−0.998650 + 0.0519349i \(0.983461\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 21.2893 1.09646
\(378\) 0 0
\(379\) 16.4748 + 16.4748i 0.846255 + 0.846255i 0.989664 0.143409i \(-0.0458063\pi\)
−0.143409 + 0.989664i \(0.545806\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −5.19654 + 9.00067i −0.265531 + 0.459913i −0.967703 0.252095i \(-0.918881\pi\)
0.702172 + 0.712008i \(0.252214\pi\)
\(384\) 0 0
\(385\) 15.8934 + 27.5282i 0.810004 + 1.40297i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −6.24292 + 23.2989i −0.316529 + 1.18130i 0.606029 + 0.795442i \(0.292761\pi\)
−0.922558 + 0.385859i \(0.873905\pi\)
\(390\) 0 0
\(391\) −3.46590 + 6.00311i −0.175278 + 0.303590i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 11.6469 11.6469i 0.586019 0.586019i
\(396\) 0 0
\(397\) 8.37131 + 8.37131i 0.420144 + 0.420144i 0.885253 0.465109i \(-0.153985\pi\)
−0.465109 + 0.885253i \(0.653985\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 3.16266 + 1.82596i 0.157936 + 0.0911842i 0.576885 0.816825i \(-0.304268\pi\)
−0.418949 + 0.908010i \(0.637601\pi\)
\(402\) 0 0
\(403\) −1.19008 0.318880i −0.0592820 0.0158846i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −4.58345 + 2.64626i −0.227193 + 0.131170i
\(408\) 0 0
\(409\) −12.1263 7.00113i −0.599607 0.346184i 0.169280 0.985568i \(-0.445856\pi\)
−0.768887 + 0.639385i \(0.779189\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 5.32931 5.32931i 0.262238 0.262238i
\(414\) 0 0
\(415\) 51.4750i 2.52681i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0.601258 0.161107i 0.0293734 0.00787057i −0.244102 0.969749i \(-0.578493\pi\)
0.273476 + 0.961879i \(0.411827\pi\)
\(420\) 0 0
\(421\) 17.3705 + 4.65440i 0.846585 + 0.226842i 0.655936 0.754816i \(-0.272274\pi\)
0.190649 + 0.981658i \(0.438941\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −15.3463 26.5806i −0.744407 1.28935i
\(426\) 0 0
\(427\) −32.8152 + 8.79280i −1.58804 + 0.425514i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 6.34380 0.305570 0.152785 0.988259i \(-0.451176\pi\)
0.152785 + 0.988259i \(0.451176\pi\)
\(432\) 0 0
\(433\) 26.7319 1.28465 0.642327 0.766430i \(-0.277969\pi\)
0.642327 + 0.766430i \(0.277969\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −6.53158 + 1.75013i −0.312448 + 0.0837202i
\(438\) 0 0
\(439\) −0.347800 0.602407i −0.0165996 0.0287513i 0.857606 0.514307i \(-0.171951\pi\)
−0.874206 + 0.485555i \(0.838617\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −15.8656 4.25119i −0.753800 0.201980i −0.138597 0.990349i \(-0.544259\pi\)
−0.615203 + 0.788369i \(0.710926\pi\)
\(444\) 0 0
\(445\) −27.9688 + 7.49422i −1.32585 + 0.355260i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 12.0759i 0.569896i 0.958543 + 0.284948i \(0.0919763\pi\)
−0.958543 + 0.284948i \(0.908024\pi\)
\(450\) 0 0
\(451\) 2.89343 2.89343i 0.136247 0.136247i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 24.3831 + 14.0776i 1.14310 + 0.659969i
\(456\) 0 0
\(457\) −10.6069 + 6.12391i −0.496171 + 0.286464i −0.727131 0.686499i \(-0.759147\pi\)
0.230960 + 0.972963i \(0.425813\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 30.3154 + 8.12298i 1.41193 + 0.378325i 0.882613 0.470101i \(-0.155783\pi\)
0.529314 + 0.848426i \(0.322449\pi\)
\(462\) 0 0
\(463\) −30.9163 17.8495i −1.43680 0.829538i −0.439176 0.898401i \(-0.644729\pi\)
−0.997626 + 0.0688633i \(0.978063\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −7.64586 7.64586i −0.353808 0.353808i 0.507716 0.861524i \(-0.330490\pi\)
−0.861524 + 0.507716i \(0.830490\pi\)
\(468\) 0 0
\(469\) 20.3226 20.3226i 0.938411 0.938411i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −6.73836 + 11.6712i −0.309830 + 0.536641i
\(474\) 0 0
\(475\) 7.74926 28.9206i 0.355560 1.32697i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −3.03628 5.25898i −0.138731 0.240289i 0.788286 0.615310i \(-0.210969\pi\)
−0.927017 + 0.375020i \(0.877636\pi\)
\(480\) 0 0
\(481\) −2.34393 + 4.05980i −0.106874 + 0.185111i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 13.9675 + 13.9675i 0.634234 + 0.634234i
\(486\) 0 0
\(487\) 7.15811 0.324365 0.162183 0.986761i \(-0.448147\pi\)
0.162183 + 0.986761i \(0.448147\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −7.24226 27.0285i −0.326838 1.21978i −0.912451 0.409187i \(-0.865813\pi\)
0.585612 0.810591i \(-0.300854\pi\)
\(492\) 0 0
\(493\) −6.57122 + 24.5241i −0.295953 + 1.10451i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 11.8266 6.82809i 0.530495 0.306282i
\(498\) 0 0
\(499\) −11.4708 42.8097i −0.513505 1.91643i −0.378568 0.925573i \(-0.623584\pi\)
−0.134937 0.990854i \(-0.543083\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 3.93000i 0.175230i 0.996154 + 0.0876151i \(0.0279245\pi\)
−0.996154 + 0.0876151i \(0.972075\pi\)
\(504\) 0 0
\(505\) 43.1638i 1.92077i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −10.8415 40.4609i −0.480539 1.79340i −0.599358 0.800481i \(-0.704577\pi\)
0.118819 0.992916i \(-0.462089\pi\)
\(510\) 0 0
\(511\) 12.4999 7.21684i 0.552965 0.319254i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0.658030 2.45580i 0.0289963 0.108216i
\(516\) 0 0
\(517\) 4.62691 + 17.2679i 0.203491 + 0.759441i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 26.1826 1.14708 0.573540 0.819178i \(-0.305570\pi\)
0.573540 + 0.819178i \(0.305570\pi\)
\(522\) 0 0
\(523\) −7.29036 7.29036i −0.318785 0.318785i 0.529515 0.848300i \(-0.322374\pi\)
−0.848300 + 0.529515i \(0.822374\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0.734665 1.27248i 0.0320025 0.0554300i
\(528\) 0 0
\(529\) −8.63952 14.9641i −0.375631 0.650612i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0.938073 3.50093i 0.0406324 0.151642i
\(534\) 0 0
\(535\) 10.4465 18.0938i 0.451640 0.782263i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 3.12350 3.12350i 0.134539 0.134539i
\(540\) 0 0
\(541\) 13.6906 + 13.6906i 0.588607 + 0.588607i 0.937254 0.348647i \(-0.113359\pi\)
−0.348647 + 0.937254i \(0.613359\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 29.0570 + 16.7761i 1.24466 + 0.718607i
\(546\) 0 0
\(547\) −29.0133 7.77408i −1.24052 0.332396i −0.421851 0.906665i \(-0.638620\pi\)
−0.818666 + 0.574269i \(0.805286\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −21.4491 + 12.3836i −0.913762 + 0.527561i
\(552\) 0 0
\(553\) −10.6005 6.12021i −0.450780 0.260258i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 1.85284 1.85284i 0.0785074 0.0785074i −0.666763 0.745270i \(-0.732321\pi\)
0.745270 + 0.666763i \(0.232321\pi\)
\(558\) 0 0
\(559\) 11.9370i 0.504882i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 26.1400 7.00420i 1.10167 0.295192i 0.338226 0.941065i \(-0.390173\pi\)
0.763445 + 0.645873i \(0.223506\pi\)
\(564\) 0 0
\(565\) −63.5879 17.0383i −2.67516 0.716808i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −5.84691 10.1271i −0.245115 0.424552i 0.717049 0.697023i \(-0.245492\pi\)
−0.962164 + 0.272471i \(0.912159\pi\)
\(570\) 0 0
\(571\) −44.1127 + 11.8200i −1.84606 + 0.494650i −0.999303 0.0373319i \(-0.988114\pi\)
−0.846756 + 0.531982i \(0.821447\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −25.3314 −1.05639
\(576\) 0 0
\(577\) −32.6884 −1.36083 −0.680417 0.732825i \(-0.738202\pi\)
−0.680417 + 0.732825i \(0.738202\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 36.9497 9.90064i 1.53293 0.410748i
\(582\) 0 0
\(583\) −10.0487 17.4048i −0.416174 0.720834i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 28.3101 + 7.58567i 1.16848 + 0.313094i 0.790349 0.612657i \(-0.209899\pi\)
0.378134 + 0.925751i \(0.376566\pi\)
\(588\) 0 0
\(589\) 1.38450 0.370975i 0.0570472 0.0152858i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 43.9681i 1.80555i 0.430111 + 0.902776i \(0.358474\pi\)
−0.430111 + 0.902776i \(0.641526\pi\)
\(594\) 0 0
\(595\) −23.7428 + 23.7428i −0.973360 + 0.973360i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 2.81411 + 1.62473i 0.114982 + 0.0663846i 0.556388 0.830923i \(-0.312187\pi\)
−0.441406 + 0.897307i \(0.645520\pi\)
\(600\) 0 0
\(601\) 12.6206 7.28651i 0.514806 0.297223i −0.220001 0.975500i \(-0.570606\pi\)
0.734807 + 0.678276i \(0.237273\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −13.2458 3.54920i −0.538519 0.144296i
\(606\) 0 0
\(607\) −32.0317 18.4935i −1.30013 0.750629i −0.319702 0.947518i \(-0.603583\pi\)
−0.980426 + 0.196889i \(0.936916\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 11.1967 + 11.1967i 0.452972 + 0.452972i
\(612\) 0 0
\(613\) 3.34985 3.34985i 0.135299 0.135299i −0.636214 0.771513i \(-0.719500\pi\)
0.771513 + 0.636214i \(0.219500\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 4.04358 7.00369i 0.162789 0.281958i −0.773079 0.634309i \(-0.781285\pi\)
0.935868 + 0.352352i \(0.114618\pi\)
\(618\) 0 0
\(619\) −11.6692 + 43.5499i −0.469023 + 1.75042i 0.174171 + 0.984715i \(0.444275\pi\)
−0.643194 + 0.765703i \(0.722391\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 10.7590 + 18.6351i 0.431049 + 0.746599i
\(624\) 0 0
\(625\) 17.1046 29.6260i 0.684182 1.18504i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −3.95318 3.95318i −0.157624 0.157624i
\(630\) 0 0
\(631\) 3.49919 0.139300 0.0696502 0.997571i \(-0.477812\pi\)
0.0696502 + 0.997571i \(0.477812\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −18.3925 68.6417i −0.729883 2.72396i
\(636\) 0 0
\(637\) 1.01266 3.77930i 0.0401231 0.149741i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −4.01739 + 2.31944i −0.158677 + 0.0916125i −0.577236 0.816577i \(-0.695869\pi\)
0.418559 + 0.908190i \(0.362535\pi\)
\(642\) 0 0
\(643\) 10.6535 + 39.7595i 0.420134 + 1.56796i 0.774324 + 0.632789i \(0.218090\pi\)
−0.354190 + 0.935173i \(0.615243\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 2.08960i 0.0821505i 0.999156 + 0.0410752i \(0.0130783\pi\)
−0.999156 + 0.0410752i \(0.986922\pi\)
\(648\) 0 0
\(649\) 7.04684i 0.276613i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −4.75454 17.7442i −0.186059 0.694383i −0.994401 0.105670i \(-0.966301\pi\)
0.808342 0.588713i \(-0.200365\pi\)
\(654\) 0 0
\(655\) 61.6410 35.5885i 2.40851 1.39056i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −7.84088 + 29.2626i −0.305437 + 1.13991i 0.627131 + 0.778914i \(0.284229\pi\)
−0.932568 + 0.360994i \(0.882438\pi\)
\(660\) 0 0
\(661\) 12.5011 + 46.6546i 0.486235 + 1.81465i 0.574434 + 0.818551i \(0.305222\pi\)
−0.0881985 + 0.996103i \(0.528111\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −32.7549 −1.27018
\(666\) 0 0
\(667\) 14.8169 + 14.8169i 0.573714 + 0.573714i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −15.8822 + 27.5087i −0.613124 + 1.06196i
\(672\) 0 0
\(673\) 8.92590 + 15.4601i 0.344068 + 0.595944i 0.985184 0.171500i \(-0.0548615\pi\)
−0.641116 + 0.767444i \(0.721528\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −0.575049 + 2.14611i −0.0221009 + 0.0824818i −0.976095 0.217342i \(-0.930261\pi\)
0.953995 + 0.299824i \(0.0969279\pi\)
\(678\) 0 0
\(679\) 7.33966 12.7127i 0.281670 0.487867i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0.857818 0.857818i 0.0328235 0.0328235i −0.690505 0.723328i \(-0.742611\pi\)
0.723328 + 0.690505i \(0.242611\pi\)
\(684\) 0 0
\(685\) 2.21214 + 2.21214i 0.0845216 + 0.0845216i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −15.4163 8.90063i −0.587316 0.339087i
\(690\) 0 0
\(691\) 37.8791 + 10.1497i 1.44099 + 0.386112i 0.892880 0.450295i \(-0.148681\pi\)
0.548109 + 0.836407i \(0.315348\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 72.6201 41.9272i 2.75464 1.59039i
\(696\) 0 0
\(697\) 3.74334 + 2.16122i 0.141789 + 0.0818619i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 14.3403 14.3403i 0.541627 0.541627i −0.382379 0.924006i \(-0.624895\pi\)
0.924006 + 0.382379i \(0.124895\pi\)
\(702\) 0 0
\(703\) 5.45369i 0.205690i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −30.9838 + 8.30208i −1.16527 + 0.312232i
\(708\) 0 0
\(709\) −4.26177 1.14194i −0.160054 0.0428864i 0.177902 0.984048i \(-0.443069\pi\)
−0.337956 + 0.941162i \(0.609736\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −0.606335 1.05020i −0.0227074 0.0393304i
\(714\) 0 0
\(715\) 25.4279 6.81339i 0.950951 0.254806i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −49.2509 −1.83675 −0.918374 0.395714i \(-0.870497\pi\)
−0.918374 + 0.395714i \(0.870497\pi\)
\(720\) 0 0
\(721\) −1.88938 −0.0703644
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −89.6203 + 24.0137i −3.32841 + 0.891846i
\(726\) 0 0
\(727\) 2.18154 + 3.77855i 0.0809090 + 0.140139i 0.903641 0.428291i \(-0.140884\pi\)
−0.822732 + 0.568430i \(0.807551\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −13.7508 3.68451i −0.508591 0.136277i
\(732\) 0 0
\(733\) 30.7314 8.23445i 1.13509 0.304146i 0.358114 0.933678i \(-0.383420\pi\)
0.776975 + 0.629532i \(0.216753\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 26.8722i 0.989849i
\(738\) 0 0
\(739\) 32.4463 32.4463i 1.19356 1.19356i 0.217495 0.976061i \(-0.430211\pi\)
0.976061 0.217495i \(-0.0697887\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −10.8406 6.25880i −0.397702 0.229613i 0.287790 0.957693i \(-0.407079\pi\)
−0.685492 + 0.728080i \(0.740413\pi\)
\(744\) 0 0
\(745\) 40.0141 23.1021i 1.46600 0.846397i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −14.9973 4.01852i −0.547990 0.146834i
\(750\) 0 0
\(751\) 34.0479 + 19.6575i 1.24242 + 0.717314i 0.969587 0.244747i \(-0.0787047\pi\)
0.272837 + 0.962060i \(0.412038\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 23.6777 + 23.6777i 0.861718 + 0.861718i
\(756\) 0 0
\(757\) −25.3026 + 25.3026i −0.919640 + 0.919640i −0.997003 0.0773631i \(-0.975350\pi\)
0.0773631 + 0.997003i \(0.475350\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −11.0907 + 19.2097i −0.402039 + 0.696352i −0.993972 0.109635i \(-0.965032\pi\)
0.591933 + 0.805987i \(0.298365\pi\)
\(762\) 0 0
\(763\) 6.45338 24.0843i 0.233628 0.871911i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −3.12087 5.40551i −0.112688 0.195182i
\(768\) 0 0
\(769\) 0.792978 1.37348i 0.0285955 0.0495289i −0.851374 0.524560i \(-0.824230\pi\)
0.879969 + 0.475031i \(0.157563\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0.198602 + 0.198602i 0.00714323 + 0.00714323i 0.710669 0.703526i \(-0.248392\pi\)
−0.703526 + 0.710669i \(0.748392\pi\)
\(774\) 0 0
\(775\) 5.36948 0.192877
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1.09132 + 4.07287i 0.0391007 + 0.145926i
\(780\) 0 0
\(781\) 3.30471 12.3334i 0.118252 0.441322i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 12.5149 7.22549i 0.446676 0.257889i
\(786\) 0 0
\(787\) 3.76684 + 14.0581i 0.134274 + 0.501116i 1.00000 0.000597888i \(0.000190314\pi\)
−0.865726 + 0.500518i \(0.833143\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 48.9217i 1.73946i
\(792\) 0 0
\(793\) 28.1353i 0.999112i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 3.12214 + 11.6520i 0.110592 + 0.412734i 0.998919 0.0464762i \(-0.0147992\pi\)
−0.888328 + 0.459210i \(0.848132\pi\)
\(798\) 0 0
\(799\) −16.3541 + 9.44202i −0.578565 + 0.334035i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 3.49286 13.0355i 0.123261 0.460015i
\(804\) 0 0
\(805\) 7.17244 + 26.7679i 0.252795 + 0.943445i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 5.40097 0.189888 0.0949441 0.995483i \(-0.469733\pi\)
0.0949441 + 0.995483i \(0.469733\pi\)
\(810\) 0 0
\(811\) −19.4041 19.4041i −0.681371 0.681371i 0.278938 0.960309i \(-0.410018\pi\)
−0.960309 + 0.278938i \(0.910018\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 10.7788 18.6695i 0.377566 0.653964i
\(816\) 0 0
\(817\) −6.94356 12.0266i −0.242924 0.420758i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 5.53178 20.6449i 0.193061 0.720512i −0.799700 0.600400i \(-0.795008\pi\)
0.992760 0.120112i \(-0.0383253\pi\)
\(822\) 0 0
\(823\) 15.8047 27.3746i 0.550918 0.954217i −0.447291 0.894389i \(-0.647611\pi\)
0.998209 0.0598289i \(-0.0190555\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −11.4058 + 11.4058i −0.396617 + 0.396617i −0.877038 0.480421i \(-0.840484\pi\)
0.480421 + 0.877038i \(0.340484\pi\)
\(828\) 0 0
\(829\) −15.8083 15.8083i −0.549043 0.549043i 0.377121 0.926164i \(-0.376914\pi\)
−0.926164 + 0.377121i \(0.876914\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 4.04098 + 2.33306i 0.140012 + 0.0808357i
\(834\) 0 0
\(835\) −26.3457 7.05931i −0.911730 0.244297i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −28.2922 + 16.3345i −0.976755 + 0.563930i −0.901289 0.433219i \(-0.857378\pi\)
−0.0754662 + 0.997148i \(0.524044\pi\)
\(840\) 0 0
\(841\) 41.3525 + 23.8749i 1.42595 + 0.823272i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −19.8083 + 19.8083i −0.681428 + 0.681428i
\(846\) 0 0
\(847\) 10.1907i 0.350158i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −4.45686 + 1.19421i −0.152779 + 0.0409371i
\(852\) 0 0
\(853\) 38.7224 + 10.3756i 1.32583 + 0.355255i 0.851159 0.524907i \(-0.175900\pi\)
0.474672 + 0.880163i \(0.342567\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0.0140657 + 0.0243624i 0.000480474 + 0.000832205i 0.866266 0.499584i \(-0.166514\pi\)
−0.865785 + 0.500416i \(0.833180\pi\)
\(858\) 0 0
\(859\) −11.7598 + 3.15104i −0.401240 + 0.107512i −0.453795 0.891106i \(-0.649930\pi\)
0.0525549 + 0.998618i \(0.483264\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 40.1140 1.36550 0.682748 0.730654i \(-0.260785\pi\)
0.682748 + 0.730654i \(0.260785\pi\)
\(864\) 0 0
\(865\) −15.8140 −0.537692
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −11.0547 + 2.96211i −0.375006 + 0.100483i
\(870\) 0 0
\(871\) −11.9010 20.6132i −0.403251 0.698451i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −62.5669 16.7647i −2.11515 0.566752i
\(876\) 0 0
\(877\) −45.8849 + 12.2948i −1.54942 + 0.415167i −0.929297 0.369334i \(-0.879586\pi\)
−0.620127 + 0.784501i \(0.712919\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 20.6694i 0.696371i 0.937426 + 0.348186i \(0.113202\pi\)
−0.937426 + 0.348186i \(0.886798\pi\)
\(882\) 0 0
\(883\) 37.7611 37.7611i 1.27076 1.27076i 0.325075 0.945688i \(-0.394610\pi\)
0.945688 0.325075i \(-0.105390\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −24.4908 14.1398i −0.822322 0.474768i 0.0288948 0.999582i \(-0.490801\pi\)
−0.851216 + 0.524815i \(0.824135\pi\)
\(888\) 0 0
\(889\) −45.7347 + 26.4049i −1.53389 + 0.885593i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −17.7937 4.76782i −0.595445 0.159549i
\(894\) 0 0
\(895\) 48.6615 + 28.0947i 1.62657 + 0.939103i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −3.14074 3.14074i −0.104750 0.104750i
\(900\) 0 0
\(901\) 15.0115 15.0115i 0.500105 0.500105i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 41.9767 72.7058i 1.39535 2.41682i
\(906\) 0 0
\(907\) 9.12179 34.0430i 0.302884 1.13038i −0.631867 0.775077i \(-0.717711\pi\)
0.934751 0.355302i \(-0.115622\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −8.81619 15.2701i −0.292093 0.505921i 0.682211 0.731155i \(-0.261018\pi\)
−0.974305 + 0.225235i \(0.927685\pi\)
\(912\) 0 0
\(913\) 17.8832 30.9746i 0.591847 1.02511i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −37.4020 37.4020i −1.23512 1.23512i
\(918\) 0 0
\(919\) −40.6483 −1.34086 −0.670431 0.741972i \(-0.733891\pi\)
−0.670431 + 0.741972i \(0.733891\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −2.92715 10.9243i −0.0963483 0.359577i
\(924\) 0 0
\(925\) 5.28775 19.7341i 0.173860 0.648855i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 46.7331 26.9814i 1.53326 0.885230i 0.534055 0.845450i \(-0.320667\pi\)
0.999208 0.0397807i \(-0.0126659\pi\)
\(930\) 0 0
\(931\) 1.17810 + 4.39672i 0.0386106 + 0.144097i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 31.3946i 1.02671i
\(936\) 0 0
\(937\) 47.0464i 1.53694i −0.639886 0.768470i \(-0.721018\pi\)
0.639886 0.768470i \(-0.278982\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −0.645083 2.40748i −0.0210291 0.0784816i 0.954614 0.297846i \(-0.0962683\pi\)
−0.975643 + 0.219365i \(0.929602\pi\)
\(942\) 0 0
\(943\) 3.08946 1.78370i 0.100607 0.0580853i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 13.4692 50.2676i 0.437689 1.63348i −0.296859 0.954921i \(-0.595939\pi\)
0.734548 0.678557i \(-0.237394\pi\)
\(948\) 0 0
\(949\) −3.09381 11.5462i −0.100429 0.374807i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −61.2734 −1.98484 −0.992420 0.122896i \(-0.960782\pi\)
−0.992420 + 0.122896i \(0.960782\pi\)
\(954\) 0 0
\(955\) −60.8700 60.8700i −1.96971 1.96971i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 1.16244 2.01340i 0.0375370 0.0650160i
\(960\) 0 0
\(961\) −15.3715 26.6242i −0.495854 0.858844i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −4.79750 + 17.9045i −0.154437 + 0.576367i
\(966\) 0 0
\(967\) 3.75805 6.50913i 0.120851 0.209319i −0.799253 0.600995i \(-0.794771\pi\)
0.920103 + 0.391676i \(0.128104\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −20.5494 + 20.5494i −0.659461 + 0.659461i −0.955253 0.295791i \(-0.904417\pi\)
0.295791 + 0.955253i \(0.404417\pi\)
\(972\) 0 0
\(973\) −44.0638 44.0638i −1.41262 1.41262i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −48.8661 28.2129i −1.56337 0.902610i −0.996913 0.0785154i \(-0.974982\pi\)
−0.566453 0.824094i \(-0.691685\pi\)
\(978\) 0 0
\(979\) 19.4336 + 5.20721i 0.621100 + 0.166423i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 5.17882 2.98999i 0.165179 0.0953660i −0.415132 0.909761i \(-0.636265\pi\)
0.580311 + 0.814395i \(0.302931\pi\)
\(984\) 0 0
\(985\) −69.2628 39.9889i −2.20690 1.27415i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −8.30792 + 8.30792i −0.264176 + 0.264176i
\(990\) 0 0
\(991\) 20.2358i 0.642812i −0.946942 0.321406i \(-0.895845\pi\)
0.946942 0.321406i \(-0.104155\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 55.2892 14.8147i 1.75278 0.469657i
\(996\) 0 0
\(997\) 0.647795 + 0.173576i 0.0205159 + 0.00549721i 0.269062 0.963123i \(-0.413286\pi\)
−0.248547 + 0.968620i \(0.579953\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1728.2.z.a.1583.22 88
3.2 odd 2 576.2.y.a.239.3 88
4.3 odd 2 432.2.v.a.179.3 88
9.2 odd 6 inner 1728.2.z.a.1007.22 88
9.7 even 3 576.2.y.a.47.9 88
12.11 even 2 144.2.u.a.131.20 yes 88
16.5 even 4 432.2.v.a.395.5 88
16.11 odd 4 inner 1728.2.z.a.719.22 88
36.7 odd 6 144.2.u.a.83.18 yes 88
36.11 even 6 432.2.v.a.35.5 88
48.5 odd 4 144.2.u.a.59.18 yes 88
48.11 even 4 576.2.y.a.527.9 88
144.11 even 12 inner 1728.2.z.a.143.22 88
144.43 odd 12 576.2.y.a.335.3 88
144.101 odd 12 432.2.v.a.251.3 88
144.133 even 12 144.2.u.a.11.20 88
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
144.2.u.a.11.20 88 144.133 even 12
144.2.u.a.59.18 yes 88 48.5 odd 4
144.2.u.a.83.18 yes 88 36.7 odd 6
144.2.u.a.131.20 yes 88 12.11 even 2
432.2.v.a.35.5 88 36.11 even 6
432.2.v.a.179.3 88 4.3 odd 2
432.2.v.a.251.3 88 144.101 odd 12
432.2.v.a.395.5 88 16.5 even 4
576.2.y.a.47.9 88 9.7 even 3
576.2.y.a.239.3 88 3.2 odd 2
576.2.y.a.335.3 88 144.43 odd 12
576.2.y.a.527.9 88 48.11 even 4
1728.2.z.a.143.22 88 144.11 even 12 inner
1728.2.z.a.719.22 88 16.11 odd 4 inner
1728.2.z.a.1007.22 88 9.2 odd 6 inner
1728.2.z.a.1583.22 88 1.1 even 1 trivial