Properties

Label 576.2.y.a.527.9
Level $576$
Weight $2$
Character 576.527
Analytic conductor $4.599$
Analytic rank $0$
Dimension $88$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [576,2,Mod(47,576)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(576, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 9, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("576.47");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 576 = 2^{6} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 576.y (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.59938315643\)
Analytic rank: \(0\)
Dimension: \(88\)
Relative dimension: \(22\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 144)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 527.9
Character \(\chi\) \(=\) 576.527
Dual form 576.2.y.a.47.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.632098 - 1.61259i) q^{3} +(-1.02195 - 3.81396i) q^{5} +(-1.46715 - 2.54117i) q^{7} +(-2.20090 + 2.03863i) q^{9} +O(q^{10})\) \(q+(-0.632098 - 1.61259i) q^{3} +(-1.02195 - 3.81396i) q^{5} +(-1.46715 - 2.54117i) q^{7} +(-2.20090 + 2.03863i) q^{9} +(0.710081 - 2.65006i) q^{11} +(0.628955 + 2.34729i) q^{13} +(-5.50439 + 4.05878i) q^{15} +2.89808i q^{17} +(1.99906 + 1.99906i) q^{19} +(-3.17049 + 3.97218i) q^{21} +(2.07141 + 1.19593i) q^{23} +(-9.17180 + 5.29534i) q^{25} +(4.67867 + 2.26054i) q^{27} +(2.26743 - 8.46218i) q^{29} +(-0.439075 - 0.253500i) q^{31} +(-4.72230 + 0.530027i) q^{33} +(-8.19258 + 8.19258i) q^{35} +(1.36407 + 1.36407i) q^{37} +(3.38766 - 2.49797i) q^{39} +(-0.745739 + 1.29166i) q^{41} +(-4.74478 - 1.27136i) q^{43} +(10.0245 + 6.31078i) q^{45} +(-3.25802 - 5.64306i) q^{47} +(-0.805035 + 1.39436i) q^{49} +(4.67343 - 1.83187i) q^{51} +(5.17979 - 5.17979i) q^{53} -10.8329 q^{55} +(1.96006 - 4.48726i) q^{57} +(-2.48100 + 0.664781i) q^{59} +(-11.1833 - 2.99657i) q^{61} +(8.40956 + 2.60190i) q^{63} +(8.30972 - 4.79762i) q^{65} +(-9.46095 + 2.53505i) q^{67} +(0.619209 - 4.09628i) q^{69} -4.65399i q^{71} -4.91897i q^{73} +(14.3367 + 11.4432i) q^{75} +(-7.77604 + 2.08358i) q^{77} +(-3.61263 + 2.08575i) q^{79} +(0.687950 - 8.97367i) q^{81} +(12.5924 + 3.37411i) q^{83} +(11.0532 - 2.96169i) q^{85} +(-15.0793 + 1.69249i) q^{87} -7.33327 q^{89} +(5.04210 - 5.04210i) q^{91} +(-0.131254 + 0.868286i) q^{93} +(5.58139 - 9.66725i) q^{95} +(2.50134 + 4.33245i) q^{97} +(3.83968 + 7.28011i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 88 q + 4 q^{3} - 6 q^{5} + 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 88 q + 4 q^{3} - 6 q^{5} + 4 q^{7} + 6 q^{11} - 2 q^{13} + 8 q^{19} + 2 q^{21} + 12 q^{23} + 16 q^{27} - 6 q^{29} - 8 q^{33} - 8 q^{37} + 32 q^{39} + 2 q^{43} + 6 q^{45} - 24 q^{49} + 12 q^{51} + 16 q^{55} + 42 q^{59} - 2 q^{61} - 12 q^{65} + 2 q^{67} - 10 q^{69} + 56 q^{75} - 6 q^{77} - 8 q^{81} - 54 q^{83} + 8 q^{85} - 48 q^{87} - 20 q^{91} - 34 q^{93} - 4 q^{97} - 46 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/576\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(325\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.632098 1.61259i −0.364942 0.931030i
\(4\) 0 0
\(5\) −1.02195 3.81396i −0.457029 1.70566i −0.682053 0.731302i \(-0.738913\pi\)
0.225024 0.974353i \(-0.427754\pi\)
\(6\) 0 0
\(7\) −1.46715 2.54117i −0.554529 0.960473i −0.997940 0.0641541i \(-0.979565\pi\)
0.443411 0.896318i \(-0.353768\pi\)
\(8\) 0 0
\(9\) −2.20090 + 2.03863i −0.733634 + 0.679544i
\(10\) 0 0
\(11\) 0.710081 2.65006i 0.214097 0.799022i −0.772385 0.635155i \(-0.780936\pi\)
0.986482 0.163868i \(-0.0523970\pi\)
\(12\) 0 0
\(13\) 0.628955 + 2.34729i 0.174441 + 0.651021i 0.996646 + 0.0818307i \(0.0260767\pi\)
−0.822206 + 0.569191i \(0.807257\pi\)
\(14\) 0 0
\(15\) −5.50439 + 4.05878i −1.42123 + 1.04797i
\(16\) 0 0
\(17\) 2.89808i 0.702889i 0.936209 + 0.351444i \(0.114309\pi\)
−0.936209 + 0.351444i \(0.885691\pi\)
\(18\) 0 0
\(19\) 1.99906 + 1.99906i 0.458615 + 0.458615i 0.898201 0.439586i \(-0.144875\pi\)
−0.439586 + 0.898201i \(0.644875\pi\)
\(20\) 0 0
\(21\) −3.17049 + 3.97218i −0.691858 + 0.866800i
\(22\) 0 0
\(23\) 2.07141 + 1.19593i 0.431918 + 0.249368i 0.700163 0.713983i \(-0.253110\pi\)
−0.268245 + 0.963351i \(0.586444\pi\)
\(24\) 0 0
\(25\) −9.17180 + 5.29534i −1.83436 + 1.05907i
\(26\) 0 0
\(27\) 4.67867 + 2.26054i 0.900410 + 0.435041i
\(28\) 0 0
\(29\) 2.26743 8.46218i 0.421052 1.57139i −0.351344 0.936246i \(-0.614275\pi\)
0.772396 0.635141i \(-0.219058\pi\)
\(30\) 0 0
\(31\) −0.439075 0.253500i −0.0788602 0.0455300i 0.460051 0.887892i \(-0.347831\pi\)
−0.538912 + 0.842362i \(0.681164\pi\)
\(32\) 0 0
\(33\) −4.72230 + 0.530027i −0.822047 + 0.0922658i
\(34\) 0 0
\(35\) −8.19258 + 8.19258i −1.38480 + 1.38480i
\(36\) 0 0
\(37\) 1.36407 + 1.36407i 0.224251 + 0.224251i 0.810286 0.586035i \(-0.199312\pi\)
−0.586035 + 0.810286i \(0.699312\pi\)
\(38\) 0 0
\(39\) 3.38766 2.49797i 0.542460 0.399995i
\(40\) 0 0
\(41\) −0.745739 + 1.29166i −0.116465 + 0.201723i −0.918364 0.395736i \(-0.870490\pi\)
0.801899 + 0.597459i \(0.203823\pi\)
\(42\) 0 0
\(43\) −4.74478 1.27136i −0.723572 0.193881i −0.121807 0.992554i \(-0.538869\pi\)
−0.601765 + 0.798673i \(0.705536\pi\)
\(44\) 0 0
\(45\) 10.0245 + 6.31078i 1.49436 + 0.940756i
\(46\) 0 0
\(47\) −3.25802 5.64306i −0.475231 0.823124i 0.524367 0.851493i \(-0.324302\pi\)
−0.999598 + 0.0283684i \(0.990969\pi\)
\(48\) 0 0
\(49\) −0.805035 + 1.39436i −0.115005 + 0.199195i
\(50\) 0 0
\(51\) 4.67343 1.83187i 0.654411 0.256514i
\(52\) 0 0
\(53\) 5.17979 5.17979i 0.711499 0.711499i −0.255349 0.966849i \(-0.582191\pi\)
0.966849 + 0.255349i \(0.0821905\pi\)
\(54\) 0 0
\(55\) −10.8329 −1.46071
\(56\) 0 0
\(57\) 1.96006 4.48726i 0.259616 0.594352i
\(58\) 0 0
\(59\) −2.48100 + 0.664781i −0.322998 + 0.0865472i −0.416675 0.909056i \(-0.636805\pi\)
0.0936766 + 0.995603i \(0.470138\pi\)
\(60\) 0 0
\(61\) −11.1833 2.99657i −1.43188 0.383671i −0.542198 0.840251i \(-0.682408\pi\)
−0.889682 + 0.456580i \(0.849074\pi\)
\(62\) 0 0
\(63\) 8.40956 + 2.60190i 1.05951 + 0.327809i
\(64\) 0 0
\(65\) 8.30972 4.79762i 1.03069 0.595071i
\(66\) 0 0
\(67\) −9.46095 + 2.53505i −1.15584 + 0.309706i −0.785303 0.619112i \(-0.787493\pi\)
−0.370536 + 0.928818i \(0.620826\pi\)
\(68\) 0 0
\(69\) 0.619209 4.09628i 0.0745440 0.493134i
\(70\) 0 0
\(71\) 4.65399i 0.552327i −0.961111 0.276164i \(-0.910937\pi\)
0.961111 0.276164i \(-0.0890632\pi\)
\(72\) 0 0
\(73\) 4.91897i 0.575722i −0.957672 0.287861i \(-0.907056\pi\)
0.957672 0.287861i \(-0.0929441\pi\)
\(74\) 0 0
\(75\) 14.3367 + 11.4432i 1.65546 + 1.32135i
\(76\) 0 0
\(77\) −7.77604 + 2.08358i −0.886162 + 0.237446i
\(78\) 0 0
\(79\) −3.61263 + 2.08575i −0.406453 + 0.234666i −0.689264 0.724510i \(-0.742066\pi\)
0.282812 + 0.959175i \(0.408733\pi\)
\(80\) 0 0
\(81\) 0.687950 8.97367i 0.0764389 0.997074i
\(82\) 0 0
\(83\) 12.5924 + 3.37411i 1.38219 + 0.370357i 0.871917 0.489654i \(-0.162877\pi\)
0.510275 + 0.860011i \(0.329544\pi\)
\(84\) 0 0
\(85\) 11.0532 2.96169i 1.19889 0.321241i
\(86\) 0 0
\(87\) −15.0793 + 1.69249i −1.61667 + 0.181453i
\(88\) 0 0
\(89\) −7.33327 −0.777325 −0.388662 0.921380i \(-0.627063\pi\)
−0.388662 + 0.921380i \(0.627063\pi\)
\(90\) 0 0
\(91\) 5.04210 5.04210i 0.528556 0.528556i
\(92\) 0 0
\(93\) −0.131254 + 0.868286i −0.0136104 + 0.0900371i
\(94\) 0 0
\(95\) 5.58139 9.66725i 0.572639 0.991839i
\(96\) 0 0
\(97\) 2.50134 + 4.33245i 0.253973 + 0.439893i 0.964616 0.263659i \(-0.0849294\pi\)
−0.710643 + 0.703552i \(0.751596\pi\)
\(98\) 0 0
\(99\) 3.83968 + 7.28011i 0.385902 + 0.731679i
\(100\) 0 0
\(101\) −10.5592 2.82933i −1.05068 0.281529i −0.308147 0.951339i \(-0.599709\pi\)
−0.742533 + 0.669810i \(0.766376\pi\)
\(102\) 0 0
\(103\) 0.321949 0.557632i 0.0317226 0.0549451i −0.849728 0.527221i \(-0.823234\pi\)
0.881451 + 0.472276i \(0.156567\pi\)
\(104\) 0 0
\(105\) 18.3898 + 8.03277i 1.79466 + 0.783918i
\(106\) 0 0
\(107\) 3.74155 + 3.74155i 0.361709 + 0.361709i 0.864442 0.502733i \(-0.167672\pi\)
−0.502733 + 0.864442i \(0.667672\pi\)
\(108\) 0 0
\(109\) 6.00859 6.00859i 0.575518 0.575518i −0.358147 0.933665i \(-0.616591\pi\)
0.933665 + 0.358147i \(0.116591\pi\)
\(110\) 0 0
\(111\) 1.33746 3.06191i 0.126946 0.290623i
\(112\) 0 0
\(113\) 14.4387 + 8.33620i 1.35828 + 0.784204i 0.989392 0.145270i \(-0.0464051\pi\)
0.368889 + 0.929474i \(0.379738\pi\)
\(114\) 0 0
\(115\) 2.44435 9.12244i 0.227937 0.850672i
\(116\) 0 0
\(117\) −6.16953 3.88395i −0.570374 0.359071i
\(118\) 0 0
\(119\) 7.36453 4.25191i 0.675105 0.389772i
\(120\) 0 0
\(121\) 3.00769 + 1.73649i 0.273426 + 0.157863i
\(122\) 0 0
\(123\) 2.55430 + 0.386118i 0.230313 + 0.0348151i
\(124\) 0 0
\(125\) 15.6093 + 15.6093i 1.39613 + 1.39613i
\(126\) 0 0
\(127\) 17.9975i 1.59702i 0.601983 + 0.798509i \(0.294377\pi\)
−0.601983 + 0.798509i \(0.705623\pi\)
\(128\) 0 0
\(129\) 0.948984 + 8.45502i 0.0835533 + 0.744423i
\(130\) 0 0
\(131\) −4.66555 17.4121i −0.407631 1.52130i −0.799151 0.601131i \(-0.794717\pi\)
0.391520 0.920170i \(-0.371949\pi\)
\(132\) 0 0
\(133\) 2.14704 8.01285i 0.186172 0.694802i
\(134\) 0 0
\(135\) 3.84026 20.1544i 0.330517 1.73462i
\(136\) 0 0
\(137\) 0.396155 + 0.686161i 0.0338458 + 0.0586227i 0.882452 0.470402i \(-0.155891\pi\)
−0.848606 + 0.529025i \(0.822558\pi\)
\(138\) 0 0
\(139\) −5.49654 20.5134i −0.466211 1.73992i −0.652844 0.757492i \(-0.726424\pi\)
0.186633 0.982430i \(-0.440242\pi\)
\(140\) 0 0
\(141\) −7.04056 + 8.82082i −0.592922 + 0.742847i
\(142\) 0 0
\(143\) 6.66706 0.557528
\(144\) 0 0
\(145\) −34.5916 −2.87268
\(146\) 0 0
\(147\) 2.75740 + 0.416819i 0.227426 + 0.0343787i
\(148\) 0 0
\(149\) −3.02863 11.3030i −0.248115 0.925977i −0.971792 0.235839i \(-0.924216\pi\)
0.723677 0.690139i \(-0.242450\pi\)
\(150\) 0 0
\(151\) 4.24025 + 7.34432i 0.345066 + 0.597673i 0.985366 0.170453i \(-0.0545230\pi\)
−0.640299 + 0.768125i \(0.721190\pi\)
\(152\) 0 0
\(153\) −5.90813 6.37840i −0.477644 0.515663i
\(154\) 0 0
\(155\) −0.518128 + 1.93368i −0.0416170 + 0.155317i
\(156\) 0 0
\(157\) −0.947242 3.53516i −0.0755981 0.282136i 0.917770 0.397112i \(-0.129988\pi\)
−0.993368 + 0.114976i \(0.963321\pi\)
\(158\) 0 0
\(159\) −11.6270 5.07875i −0.922084 0.402771i
\(160\) 0 0
\(161\) 7.01840i 0.553127i
\(162\) 0 0
\(163\) 3.86060 + 3.86060i 0.302385 + 0.302385i 0.841946 0.539561i \(-0.181410\pi\)
−0.539561 + 0.841946i \(0.681410\pi\)
\(164\) 0 0
\(165\) 6.84745 + 17.4690i 0.533073 + 1.35996i
\(166\) 0 0
\(167\) 5.98224 + 3.45385i 0.462920 + 0.267267i 0.713271 0.700888i \(-0.247213\pi\)
−0.250351 + 0.968155i \(0.580546\pi\)
\(168\) 0 0
\(169\) 6.14414 3.54732i 0.472626 0.272871i
\(170\) 0 0
\(171\) −8.47507 0.324387i −0.648105 0.0248065i
\(172\) 0 0
\(173\) 1.03659 3.86859i 0.0788101 0.294123i −0.915260 0.402863i \(-0.868015\pi\)
0.994070 + 0.108740i \(0.0346816\pi\)
\(174\) 0 0
\(175\) 26.9127 + 15.5381i 2.03441 + 1.17457i
\(176\) 0 0
\(177\) 2.64026 + 3.58063i 0.198454 + 0.269137i
\(178\) 0 0
\(179\) 10.0625 10.0625i 0.752109 0.752109i −0.222764 0.974872i \(-0.571508\pi\)
0.974872 + 0.222764i \(0.0715078\pi\)
\(180\) 0 0
\(181\) 15.0346 + 15.0346i 1.11751 + 1.11751i 0.992106 + 0.125405i \(0.0400229\pi\)
0.125405 + 0.992106i \(0.459977\pi\)
\(182\) 0 0
\(183\) 2.23673 + 19.9283i 0.165344 + 1.47314i
\(184\) 0 0
\(185\) 3.80849 6.59651i 0.280006 0.484985i
\(186\) 0 0
\(187\) 7.68009 + 2.05787i 0.561624 + 0.150487i
\(188\) 0 0
\(189\) −1.11987 15.2058i −0.0814585 1.10606i
\(190\) 0 0
\(191\) −10.9007 18.8806i −0.788749 1.36615i −0.926734 0.375719i \(-0.877396\pi\)
0.137984 0.990434i \(-0.455938\pi\)
\(192\) 0 0
\(193\) −2.34723 + 4.06553i −0.168958 + 0.292643i −0.938054 0.346490i \(-0.887373\pi\)
0.769096 + 0.639133i \(0.220707\pi\)
\(194\) 0 0
\(195\) −12.9892 10.3676i −0.930173 0.742440i
\(196\) 0 0
\(197\) −14.3226 + 14.3226i −1.02044 + 1.02044i −0.0206566 + 0.999787i \(0.506576\pi\)
−0.999787 + 0.0206566i \(0.993424\pi\)
\(198\) 0 0
\(199\) 14.4965 1.02763 0.513816 0.857901i \(-0.328232\pi\)
0.513816 + 0.857901i \(0.328232\pi\)
\(200\) 0 0
\(201\) 10.0683 + 13.6542i 0.710160 + 0.963096i
\(202\) 0 0
\(203\) −24.8305 + 6.65332i −1.74276 + 0.466971i
\(204\) 0 0
\(205\) 5.68844 + 1.52421i 0.397298 + 0.106456i
\(206\) 0 0
\(207\) −6.99702 + 1.59072i −0.486327 + 0.110563i
\(208\) 0 0
\(209\) 6.71710 3.87812i 0.464632 0.268255i
\(210\) 0 0
\(211\) −6.39179 + 1.71268i −0.440029 + 0.117905i −0.472030 0.881582i \(-0.656479\pi\)
0.0320010 + 0.999488i \(0.489812\pi\)
\(212\) 0 0
\(213\) −7.50499 + 2.94178i −0.514234 + 0.201568i
\(214\) 0 0
\(215\) 19.3957i 1.32277i
\(216\) 0 0
\(217\) 1.48769i 0.100991i
\(218\) 0 0
\(219\) −7.93229 + 3.10927i −0.536014 + 0.210105i
\(220\) 0 0
\(221\) −6.80265 + 1.82276i −0.457596 + 0.122612i
\(222\) 0 0
\(223\) 1.59599 0.921443i 0.106875 0.0617044i −0.445610 0.895227i \(-0.647013\pi\)
0.552485 + 0.833523i \(0.313680\pi\)
\(224\) 0 0
\(225\) 9.39099 30.3525i 0.626066 2.02350i
\(226\) 0 0
\(227\) 0.687012 + 0.184084i 0.0455986 + 0.0122181i 0.281546 0.959548i \(-0.409153\pi\)
−0.235948 + 0.971766i \(0.575819\pi\)
\(228\) 0 0
\(229\) −7.40562 + 1.98433i −0.489377 + 0.131128i −0.495066 0.868856i \(-0.664856\pi\)
0.00568843 + 0.999984i \(0.498189\pi\)
\(230\) 0 0
\(231\) 8.27520 + 11.2226i 0.544468 + 0.738390i
\(232\) 0 0
\(233\) −1.36925 −0.0897024 −0.0448512 0.998994i \(-0.514281\pi\)
−0.0448512 + 0.998994i \(0.514281\pi\)
\(234\) 0 0
\(235\) −18.1929 + 18.1929i −1.18677 + 1.18677i
\(236\) 0 0
\(237\) 5.64701 + 4.50730i 0.366812 + 0.292780i
\(238\) 0 0
\(239\) −0.773627 + 1.33996i −0.0500418 + 0.0866749i −0.889961 0.456036i \(-0.849269\pi\)
0.839919 + 0.542711i \(0.182602\pi\)
\(240\) 0 0
\(241\) 3.83660 + 6.64519i 0.247137 + 0.428054i 0.962730 0.270463i \(-0.0871769\pi\)
−0.715593 + 0.698517i \(0.753844\pi\)
\(242\) 0 0
\(243\) −14.9057 + 4.56286i −0.956202 + 0.292707i
\(244\) 0 0
\(245\) 6.14075 + 1.64541i 0.392318 + 0.105121i
\(246\) 0 0
\(247\) −3.43505 + 5.94968i −0.218567 + 0.378569i
\(248\) 0 0
\(249\) −2.51855 22.4391i −0.159606 1.42202i
\(250\) 0 0
\(251\) −5.46632 5.46632i −0.345031 0.345031i 0.513224 0.858255i \(-0.328451\pi\)
−0.858255 + 0.513224i \(0.828451\pi\)
\(252\) 0 0
\(253\) 4.64014 4.64014i 0.291723 0.291723i
\(254\) 0 0
\(255\) −11.7627 15.9522i −0.736609 0.998965i
\(256\) 0 0
\(257\) −20.5918 11.8887i −1.28448 0.741596i −0.306818 0.951768i \(-0.599264\pi\)
−0.977664 + 0.210172i \(0.932598\pi\)
\(258\) 0 0
\(259\) 1.46504 5.46761i 0.0910333 0.339741i
\(260\) 0 0
\(261\) 12.2609 + 23.2469i 0.758929 + 1.43895i
\(262\) 0 0
\(263\) 6.13704 3.54322i 0.378426 0.218484i −0.298707 0.954345i \(-0.596555\pi\)
0.677133 + 0.735860i \(0.263222\pi\)
\(264\) 0 0
\(265\) −25.0490 14.4621i −1.53875 0.888397i
\(266\) 0 0
\(267\) 4.63535 + 11.8256i 0.283679 + 0.723713i
\(268\) 0 0
\(269\) −20.6616 20.6616i −1.25976 1.25976i −0.951207 0.308553i \(-0.900155\pi\)
−0.308553 0.951207i \(-0.599845\pi\)
\(270\) 0 0
\(271\) 16.6901i 1.01385i −0.861989 0.506927i \(-0.830782\pi\)
0.861989 0.506927i \(-0.169218\pi\)
\(272\) 0 0
\(273\) −11.3180 4.94374i −0.684994 0.299209i
\(274\) 0 0
\(275\) 7.52024 + 28.0659i 0.453487 + 1.69244i
\(276\) 0 0
\(277\) −1.20367 + 4.49217i −0.0723217 + 0.269908i −0.992613 0.121326i \(-0.961285\pi\)
0.920291 + 0.391235i \(0.127952\pi\)
\(278\) 0 0
\(279\) 1.48316 0.337184i 0.0887942 0.0201867i
\(280\) 0 0
\(281\) 11.4153 + 19.7719i 0.680979 + 1.17949i 0.974682 + 0.223594i \(0.0717790\pi\)
−0.293703 + 0.955897i \(0.594888\pi\)
\(282\) 0 0
\(283\) −6.68368 24.9438i −0.397303 1.48276i −0.817822 0.575472i \(-0.804818\pi\)
0.420518 0.907284i \(-0.361848\pi\)
\(284\) 0 0
\(285\) −19.1173 2.88985i −1.13241 0.171180i
\(286\) 0 0
\(287\) 4.37643 0.258333
\(288\) 0 0
\(289\) 8.60110 0.505947
\(290\) 0 0
\(291\) 5.40538 6.77217i 0.316869 0.396992i
\(292\) 0 0
\(293\) −0.741431 2.76706i −0.0433149 0.161653i 0.940881 0.338738i \(-0.110000\pi\)
−0.984196 + 0.177085i \(0.943333\pi\)
\(294\) 0 0
\(295\) 5.07090 + 8.78306i 0.295239 + 0.511370i
\(296\) 0 0
\(297\) 9.31280 10.7936i 0.540383 0.626307i
\(298\) 0 0
\(299\) −1.50437 + 5.61438i −0.0869998 + 0.324688i
\(300\) 0 0
\(301\) 3.73054 + 13.9226i 0.215025 + 0.802484i
\(302\) 0 0
\(303\) 2.11190 + 18.8161i 0.121326 + 1.08096i
\(304\) 0 0
\(305\) 45.7152i 2.61764i
\(306\) 0 0
\(307\) 7.67329 + 7.67329i 0.437938 + 0.437938i 0.891317 0.453380i \(-0.149782\pi\)
−0.453380 + 0.891317i \(0.649782\pi\)
\(308\) 0 0
\(309\) −1.10274 0.166694i −0.0627325 0.00948289i
\(310\) 0 0
\(311\) −15.0777 8.70513i −0.854980 0.493623i 0.00734815 0.999973i \(-0.497661\pi\)
−0.862328 + 0.506350i \(0.830994\pi\)
\(312\) 0 0
\(313\) 21.3027 12.2991i 1.20410 0.695189i 0.242638 0.970117i \(-0.421987\pi\)
0.961465 + 0.274928i \(0.0886540\pi\)
\(314\) 0 0
\(315\) 1.32941 34.7328i 0.0749039 1.95697i
\(316\) 0 0
\(317\) −2.14183 + 7.99342i −0.120297 + 0.448955i −0.999629 0.0272552i \(-0.991323\pi\)
0.879331 + 0.476211i \(0.157990\pi\)
\(318\) 0 0
\(319\) −20.8152 12.0177i −1.16543 0.672860i
\(320\) 0 0
\(321\) 3.66857 8.39862i 0.204759 0.468765i
\(322\) 0 0
\(323\) −5.79343 + 5.79343i −0.322355 + 0.322355i
\(324\) 0 0
\(325\) −18.1983 18.1983i −1.00946 1.00946i
\(326\) 0 0
\(327\) −13.4874 5.89138i −0.745856 0.325794i
\(328\) 0 0
\(329\) −9.55998 + 16.5584i −0.527059 + 0.912893i
\(330\) 0 0
\(331\) 25.5364 + 6.84245i 1.40361 + 0.376095i 0.879639 0.475643i \(-0.157784\pi\)
0.523968 + 0.851738i \(0.324451\pi\)
\(332\) 0 0
\(333\) −5.78301 0.221347i −0.316907 0.0121298i
\(334\) 0 0
\(335\) 19.3372 + 33.4930i 1.05650 + 1.82992i
\(336\) 0 0
\(337\) 12.3368 21.3679i 0.672026 1.16398i −0.305302 0.952256i \(-0.598757\pi\)
0.977329 0.211728i \(-0.0679092\pi\)
\(338\) 0 0
\(339\) 4.31619 28.5531i 0.234423 1.55079i
\(340\) 0 0
\(341\) −0.983569 + 0.983569i −0.0532632 + 0.0532632i
\(342\) 0 0
\(343\) −15.8156 −0.853964
\(344\) 0 0
\(345\) −16.2558 + 1.82454i −0.875185 + 0.0982300i
\(346\) 0 0
\(347\) −23.0228 + 6.16895i −1.23593 + 0.331166i −0.816886 0.576799i \(-0.804301\pi\)
−0.419044 + 0.907966i \(0.637635\pi\)
\(348\) 0 0
\(349\) −25.9130 6.94337i −1.38709 0.371670i −0.513400 0.858149i \(-0.671614\pi\)
−0.873692 + 0.486479i \(0.838281\pi\)
\(350\) 0 0
\(351\) −2.36348 + 12.4040i −0.126153 + 0.662075i
\(352\) 0 0
\(353\) 5.54075 3.19895i 0.294904 0.170263i −0.345247 0.938512i \(-0.612205\pi\)
0.640151 + 0.768249i \(0.278872\pi\)
\(354\) 0 0
\(355\) −17.7502 + 4.75614i −0.942080 + 0.252430i
\(356\) 0 0
\(357\) −11.5117 9.18835i −0.609264 0.486299i
\(358\) 0 0
\(359\) 17.2363i 0.909697i 0.890569 + 0.454849i \(0.150307\pi\)
−0.890569 + 0.454849i \(0.849693\pi\)
\(360\) 0 0
\(361\) 11.0076i 0.579345i
\(362\) 0 0
\(363\) 0.899094 5.94781i 0.0471902 0.312179i
\(364\) 0 0
\(365\) −18.7608 + 5.02693i −0.981983 + 0.263121i
\(366\) 0 0
\(367\) −1.26366 + 0.729575i −0.0659625 + 0.0380835i −0.532619 0.846355i \(-0.678792\pi\)
0.466656 + 0.884439i \(0.345459\pi\)
\(368\) 0 0
\(369\) −0.991918 4.36310i −0.0516372 0.227134i
\(370\) 0 0
\(371\) −20.7623 5.56323i −1.07792 0.288829i
\(372\) 0 0
\(373\) 7.77189 2.08247i 0.402413 0.107826i −0.0519349 0.998650i \(-0.516539\pi\)
0.454348 + 0.890824i \(0.349872\pi\)
\(374\) 0 0
\(375\) 15.3048 35.0379i 0.790335 1.80935i
\(376\) 0 0
\(377\) 21.2893 1.09646
\(378\) 0 0
\(379\) 16.4748 16.4748i 0.846255 0.846255i −0.143409 0.989664i \(-0.545806\pi\)
0.989664 + 0.143409i \(0.0458063\pi\)
\(380\) 0 0
\(381\) 29.0226 11.3762i 1.48687 0.582819i
\(382\) 0 0
\(383\) −5.19654 + 9.00067i −0.265531 + 0.459913i −0.967703 0.252095i \(-0.918881\pi\)
0.702172 + 0.712008i \(0.252214\pi\)
\(384\) 0 0
\(385\) 15.8934 + 27.5282i 0.810004 + 1.40297i
\(386\) 0 0
\(387\) 13.0346 6.87473i 0.662588 0.349462i
\(388\) 0 0
\(389\) 23.2989 + 6.24292i 1.18130 + 0.316529i 0.795442 0.606029i \(-0.207239\pi\)
0.385859 + 0.922558i \(0.373905\pi\)
\(390\) 0 0
\(391\) −3.46590 + 6.00311i −0.175278 + 0.303590i
\(392\) 0 0
\(393\) −25.1295 + 18.5298i −1.26761 + 0.934704i
\(394\) 0 0
\(395\) 11.6469 + 11.6469i 0.586019 + 0.586019i
\(396\) 0 0
\(397\) 8.37131 8.37131i 0.420144 0.420144i −0.465109 0.885253i \(-0.653985\pi\)
0.885253 + 0.465109i \(0.153985\pi\)
\(398\) 0 0
\(399\) −14.2786 + 1.60262i −0.714824 + 0.0802312i
\(400\) 0 0
\(401\) −3.16266 1.82596i −0.157936 0.0911842i 0.418949 0.908010i \(-0.362399\pi\)
−0.576885 + 0.816825i \(0.695732\pi\)
\(402\) 0 0
\(403\) 0.318880 1.19008i 0.0158846 0.0592820i
\(404\) 0 0
\(405\) −34.9283 + 6.54681i −1.73560 + 0.325313i
\(406\) 0 0
\(407\) 4.58345 2.64626i 0.227193 0.131170i
\(408\) 0 0
\(409\) 12.1263 + 7.00113i 0.599607 + 0.346184i 0.768887 0.639385i \(-0.220811\pi\)
−0.169280 + 0.985568i \(0.554144\pi\)
\(410\) 0 0
\(411\) 0.856089 1.07256i 0.0422277 0.0529054i
\(412\) 0 0
\(413\) 5.32931 + 5.32931i 0.262238 + 0.262238i
\(414\) 0 0
\(415\) 51.4750i 2.52681i
\(416\) 0 0
\(417\) −29.6053 + 21.8302i −1.44978 + 1.06903i
\(418\) 0 0
\(419\) −0.161107 0.601258i −0.00787057 0.0293734i 0.961879 0.273476i \(-0.0881733\pi\)
−0.969749 + 0.244102i \(0.921507\pi\)
\(420\) 0 0
\(421\) −4.65440 + 17.3705i −0.226842 + 0.846585i 0.754816 + 0.655936i \(0.227726\pi\)
−0.981658 + 0.190649i \(0.938941\pi\)
\(422\) 0 0
\(423\) 18.6747 + 5.77791i 0.907995 + 0.280932i
\(424\) 0 0
\(425\) −15.3463 26.5806i −0.744407 1.28935i
\(426\) 0 0
\(427\) 8.79280 + 32.8152i 0.425514 + 1.58804i
\(428\) 0 0
\(429\) −4.21424 10.7513i −0.203465 0.519075i
\(430\) 0 0
\(431\) 6.34380 0.305570 0.152785 0.988259i \(-0.451176\pi\)
0.152785 + 0.988259i \(0.451176\pi\)
\(432\) 0 0
\(433\) 26.7319 1.28465 0.642327 0.766430i \(-0.277969\pi\)
0.642327 + 0.766430i \(0.277969\pi\)
\(434\) 0 0
\(435\) 21.8653 + 55.7822i 1.04836 + 2.67455i
\(436\) 0 0
\(437\) 1.75013 + 6.53158i 0.0837202 + 0.312448i
\(438\) 0 0
\(439\) −0.347800 0.602407i −0.0165996 0.0287513i 0.857606 0.514307i \(-0.171951\pi\)
−0.874206 + 0.485555i \(0.838617\pi\)
\(440\) 0 0
\(441\) −1.07079 4.71003i −0.0509899 0.224287i
\(442\) 0 0
\(443\) 4.25119 15.8656i 0.201980 0.753800i −0.788369 0.615203i \(-0.789074\pi\)
0.990349 0.138597i \(-0.0442592\pi\)
\(444\) 0 0
\(445\) 7.49422 + 27.9688i 0.355260 + 1.32585i
\(446\) 0 0
\(447\) −16.3127 + 12.0285i −0.771565 + 0.568931i
\(448\) 0 0
\(449\) 12.0759i 0.569896i −0.958543 0.284948i \(-0.908024\pi\)
0.958543 0.284948i \(-0.0919763\pi\)
\(450\) 0 0
\(451\) 2.89343 + 2.89343i 0.136247 + 0.136247i
\(452\) 0 0
\(453\) 9.16314 11.4801i 0.430522 0.539383i
\(454\) 0 0
\(455\) −24.3831 14.0776i −1.14310 0.659969i
\(456\) 0 0
\(457\) 10.6069 6.12391i 0.496171 0.286464i −0.230960 0.972963i \(-0.574187\pi\)
0.727131 + 0.686499i \(0.240853\pi\)
\(458\) 0 0
\(459\) −6.55124 + 13.5592i −0.305786 + 0.632888i
\(460\) 0 0
\(461\) −8.12298 + 30.3154i −0.378325 + 1.41193i 0.470101 + 0.882613i \(0.344217\pi\)
−0.848426 + 0.529314i \(0.822449\pi\)
\(462\) 0 0
\(463\) 30.9163 + 17.8495i 1.43680 + 0.829538i 0.997626 0.0688633i \(-0.0219372\pi\)
0.439176 + 0.898401i \(0.355271\pi\)
\(464\) 0 0
\(465\) 3.44574 0.386747i 0.159793 0.0179350i
\(466\) 0 0
\(467\) −7.64586 + 7.64586i −0.353808 + 0.353808i −0.861524 0.507716i \(-0.830490\pi\)
0.507716 + 0.861524i \(0.330490\pi\)
\(468\) 0 0
\(469\) 20.3226 + 20.3226i 0.938411 + 0.938411i
\(470\) 0 0
\(471\) −5.10201 + 3.76208i −0.235088 + 0.173348i
\(472\) 0 0
\(473\) −6.73836 + 11.6712i −0.309830 + 0.536641i
\(474\) 0 0
\(475\) −28.9206 7.74926i −1.32697 0.355560i
\(476\) 0 0
\(477\) −0.840526 + 21.9599i −0.0384851 + 1.00548i
\(478\) 0 0
\(479\) −3.03628 5.25898i −0.138731 0.240289i 0.788286 0.615310i \(-0.210969\pi\)
−0.927017 + 0.375020i \(0.877636\pi\)
\(480\) 0 0
\(481\) −2.34393 + 4.05980i −0.106874 + 0.185111i
\(482\) 0 0
\(483\) −11.3178 + 4.43632i −0.514978 + 0.201859i
\(484\) 0 0
\(485\) 13.9675 13.9675i 0.634234 0.634234i
\(486\) 0 0
\(487\) 7.15811 0.324365 0.162183 0.986761i \(-0.448147\pi\)
0.162183 + 0.986761i \(0.448147\pi\)
\(488\) 0 0
\(489\) 3.78529 8.66584i 0.171177 0.391883i
\(490\) 0 0
\(491\) 27.0285 7.24226i 1.21978 0.326838i 0.409187 0.912451i \(-0.365813\pi\)
0.810591 + 0.585612i \(0.199146\pi\)
\(492\) 0 0
\(493\) 24.5241 + 6.57122i 1.10451 + 0.295953i
\(494\) 0 0
\(495\) 23.8421 22.0843i 1.07162 0.992614i
\(496\) 0 0
\(497\) −11.8266 + 6.82809i −0.530495 + 0.306282i
\(498\) 0 0
\(499\) 42.8097 11.4708i 1.91643 0.513505i 0.925573 0.378568i \(-0.123584\pi\)
0.990854 0.134937i \(-0.0430832\pi\)
\(500\) 0 0
\(501\) 1.78828 11.8301i 0.0798945 0.528529i
\(502\) 0 0
\(503\) 3.93000i 0.175230i −0.996154 0.0876151i \(-0.972075\pi\)
0.996154 0.0876151i \(-0.0279245\pi\)
\(504\) 0 0
\(505\) 43.1638i 1.92077i
\(506\) 0 0
\(507\) −9.60408 7.66573i −0.426532 0.340447i
\(508\) 0 0
\(509\) 40.4609 10.8415i 1.79340 0.480539i 0.800481 0.599358i \(-0.204577\pi\)
0.992916 + 0.118819i \(0.0379108\pi\)
\(510\) 0 0
\(511\) −12.4999 + 7.21684i −0.552965 + 0.319254i
\(512\) 0 0
\(513\) 4.83397 + 13.8719i 0.213425 + 0.612458i
\(514\) 0 0
\(515\) −2.45580 0.658030i −0.108216 0.0289963i
\(516\) 0 0
\(517\) −17.2679 + 4.62691i −0.759441 + 0.203491i
\(518\) 0 0
\(519\) −6.89368 + 0.773740i −0.302599 + 0.0339634i
\(520\) 0 0
\(521\) 26.1826 1.14708 0.573540 0.819178i \(-0.305570\pi\)
0.573540 + 0.819178i \(0.305570\pi\)
\(522\) 0 0
\(523\) −7.29036 + 7.29036i −0.318785 + 0.318785i −0.848300 0.529515i \(-0.822374\pi\)
0.529515 + 0.848300i \(0.322374\pi\)
\(524\) 0 0
\(525\) 8.04507 53.2208i 0.351116 2.32275i
\(526\) 0 0
\(527\) 0.734665 1.27248i 0.0320025 0.0554300i
\(528\) 0 0
\(529\) −8.63952 14.9641i −0.375631 0.650612i
\(530\) 0 0
\(531\) 4.10519 6.52096i 0.178150 0.282986i
\(532\) 0 0
\(533\) −3.50093 0.938073i −0.151642 0.0406324i
\(534\) 0 0
\(535\) 10.4465 18.0938i 0.451640 0.782263i
\(536\) 0 0
\(537\) −22.5873 9.86624i −0.974712 0.425760i
\(538\) 0 0
\(539\) 3.12350 + 3.12350i 0.134539 + 0.134539i
\(540\) 0 0
\(541\) 13.6906 13.6906i 0.588607 0.588607i −0.348647 0.937254i \(-0.613359\pi\)
0.937254 + 0.348647i \(0.113359\pi\)
\(542\) 0 0
\(543\) 14.7413 33.7479i 0.632609 1.44826i
\(544\) 0 0
\(545\) −29.0570 16.7761i −1.24466 0.718607i
\(546\) 0 0
\(547\) 7.77408 29.0133i 0.332396 1.24052i −0.574269 0.818666i \(-0.694714\pi\)
0.906665 0.421851i \(-0.138620\pi\)
\(548\) 0 0
\(549\) 30.7224 16.2036i 1.31120 0.691552i
\(550\) 0 0
\(551\) 21.4491 12.3836i 0.913762 0.527561i
\(552\) 0 0
\(553\) 10.6005 + 6.12021i 0.450780 + 0.260258i
\(554\) 0 0
\(555\) −13.0448 1.97191i −0.553721 0.0837027i
\(556\) 0 0
\(557\) 1.85284 + 1.85284i 0.0785074 + 0.0785074i 0.745270 0.666763i \(-0.232321\pi\)
−0.666763 + 0.745270i \(0.732321\pi\)
\(558\) 0 0
\(559\) 11.9370i 0.504882i
\(560\) 0 0
\(561\) −1.53606 13.6856i −0.0648526 0.577808i
\(562\) 0 0
\(563\) −7.00420 26.1400i −0.295192 1.10167i −0.941065 0.338226i \(-0.890173\pi\)
0.645873 0.763445i \(-0.276494\pi\)
\(564\) 0 0
\(565\) 17.0383 63.5879i 0.716808 2.67516i
\(566\) 0 0
\(567\) −23.8130 + 11.4175i −1.00005 + 0.479489i
\(568\) 0 0
\(569\) −5.84691 10.1271i −0.245115 0.424552i 0.717049 0.697023i \(-0.245492\pi\)
−0.962164 + 0.272471i \(0.912159\pi\)
\(570\) 0 0
\(571\) 11.8200 + 44.1127i 0.494650 + 1.84606i 0.531982 + 0.846756i \(0.321447\pi\)
−0.0373319 + 0.999303i \(0.511886\pi\)
\(572\) 0 0
\(573\) −23.5564 + 29.5128i −0.984082 + 1.23292i
\(574\) 0 0
\(575\) −25.3314 −1.05639
\(576\) 0 0
\(577\) −32.6884 −1.36083 −0.680417 0.732825i \(-0.738202\pi\)
−0.680417 + 0.732825i \(0.738202\pi\)
\(578\) 0 0
\(579\) 8.03972 + 1.21532i 0.334119 + 0.0505068i
\(580\) 0 0
\(581\) −9.90064 36.9497i −0.410748 1.53293i
\(582\) 0 0
\(583\) −10.0487 17.4048i −0.416174 0.720834i
\(584\) 0 0
\(585\) −8.50830 + 27.4996i −0.351775 + 1.13697i
\(586\) 0 0
\(587\) −7.58567 + 28.3101i −0.313094 + 1.16848i 0.612657 + 0.790349i \(0.290101\pi\)
−0.925751 + 0.378134i \(0.876566\pi\)
\(588\) 0 0
\(589\) −0.370975 1.38450i −0.0152858 0.0570472i
\(590\) 0 0
\(591\) 32.1498 + 14.0432i 1.32247 + 0.577661i
\(592\) 0 0
\(593\) 43.9681i 1.80555i −0.430111 0.902776i \(-0.641526\pi\)
0.430111 0.902776i \(-0.358474\pi\)
\(594\) 0 0
\(595\) −23.7428 23.7428i −0.973360 0.973360i
\(596\) 0 0
\(597\) −9.16323 23.3770i −0.375026 0.956756i
\(598\) 0 0
\(599\) −2.81411 1.62473i −0.114982 0.0663846i 0.441406 0.897307i \(-0.354480\pi\)
−0.556388 + 0.830923i \(0.687813\pi\)
\(600\) 0 0
\(601\) −12.6206 + 7.28651i −0.514806 + 0.297223i −0.734807 0.678276i \(-0.762727\pi\)
0.220001 + 0.975500i \(0.429394\pi\)
\(602\) 0 0
\(603\) 15.6546 24.8668i 0.637504 1.01266i
\(604\) 0 0
\(605\) 3.54920 13.2458i 0.144296 0.538519i
\(606\) 0 0
\(607\) 32.0317 + 18.4935i 1.30013 + 0.750629i 0.980426 0.196889i \(-0.0630838\pi\)
0.319702 + 0.947518i \(0.396417\pi\)
\(608\) 0 0
\(609\) 26.4244 + 35.8359i 1.07077 + 1.45214i
\(610\) 0 0
\(611\) 11.1967 11.1967i 0.452972 0.452972i
\(612\) 0 0
\(613\) 3.34985 + 3.34985i 0.135299 + 0.135299i 0.771513 0.636214i \(-0.219500\pi\)
−0.636214 + 0.771513i \(0.719500\pi\)
\(614\) 0 0
\(615\) −1.13772 10.1366i −0.0458774 0.408747i
\(616\) 0 0
\(617\) 4.04358 7.00369i 0.162789 0.281958i −0.773079 0.634309i \(-0.781285\pi\)
0.935868 + 0.352352i \(0.114618\pi\)
\(618\) 0 0
\(619\) 43.5499 + 11.6692i 1.75042 + 0.469023i 0.984715 0.174171i \(-0.0557246\pi\)
0.765703 + 0.643194i \(0.222391\pi\)
\(620\) 0 0
\(621\) 6.98798 + 10.2778i 0.280418 + 0.412436i
\(622\) 0 0
\(623\) 10.7590 + 18.6351i 0.431049 + 0.746599i
\(624\) 0 0
\(625\) 17.1046 29.6260i 0.684182 1.18504i
\(626\) 0 0
\(627\) −10.4997 8.38059i −0.419318 0.334689i
\(628\) 0 0
\(629\) −3.95318 + 3.95318i −0.157624 + 0.157624i
\(630\) 0 0
\(631\) 3.49919 0.139300 0.0696502 0.997571i \(-0.477812\pi\)
0.0696502 + 0.997571i \(0.477812\pi\)
\(632\) 0 0
\(633\) 6.80209 + 9.22477i 0.270359 + 0.366652i
\(634\) 0 0
\(635\) 68.6417 18.3925i 2.72396 0.729883i
\(636\) 0 0
\(637\) −3.77930 1.01266i −0.149741 0.0401231i
\(638\) 0 0
\(639\) 9.48779 + 10.2430i 0.375331 + 0.405206i
\(640\) 0 0
\(641\) 4.01739 2.31944i 0.158677 0.0916125i −0.418559 0.908190i \(-0.637465\pi\)
0.577236 + 0.816577i \(0.304131\pi\)
\(642\) 0 0
\(643\) −39.7595 + 10.6535i −1.56796 + 0.420134i −0.935173 0.354190i \(-0.884757\pi\)
−0.632789 + 0.774324i \(0.718090\pi\)
\(644\) 0 0
\(645\) 31.2773 12.2600i 1.23154 0.482736i
\(646\) 0 0
\(647\) 2.08960i 0.0821505i −0.999156 0.0410752i \(-0.986922\pi\)
0.999156 0.0410752i \(-0.0130783\pi\)
\(648\) 0 0
\(649\) 7.04684i 0.276613i
\(650\) 0 0
\(651\) 2.39903 0.940365i 0.0940255 0.0368558i
\(652\) 0 0
\(653\) 17.7442 4.75454i 0.694383 0.186059i 0.105670 0.994401i \(-0.466301\pi\)
0.588713 + 0.808342i \(0.299635\pi\)
\(654\) 0 0
\(655\) −61.6410 + 35.5885i −2.40851 + 1.39056i
\(656\) 0 0
\(657\) 10.0280 + 10.8262i 0.391228 + 0.422369i
\(658\) 0 0
\(659\) 29.2626 + 7.84088i 1.13991 + 0.305437i 0.778914 0.627131i \(-0.215771\pi\)
0.360994 + 0.932568i \(0.382438\pi\)
\(660\) 0 0
\(661\) −46.6546 + 12.5011i −1.81465 + 0.486235i −0.996103 0.0881985i \(-0.971889\pi\)
−0.818551 + 0.574434i \(0.805222\pi\)
\(662\) 0 0
\(663\) 7.23932 + 9.81773i 0.281152 + 0.381289i
\(664\) 0 0
\(665\) −32.7549 −1.27018
\(666\) 0 0
\(667\) 14.8169 14.8169i 0.573714 0.573714i
\(668\) 0 0
\(669\) −2.49473 1.99123i −0.0964519 0.0769854i
\(670\) 0 0
\(671\) −15.8822 + 27.5087i −0.613124 + 1.06196i
\(672\) 0 0
\(673\) 8.92590 + 15.4601i 0.344068 + 0.595944i 0.985184 0.171500i \(-0.0548615\pi\)
−0.641116 + 0.767444i \(0.721528\pi\)
\(674\) 0 0
\(675\) −54.8822 + 4.04192i −2.11241 + 0.155574i
\(676\) 0 0
\(677\) 2.14611 + 0.575049i 0.0824818 + 0.0221009i 0.299824 0.953995i \(-0.403072\pi\)
−0.217342 + 0.976095i \(0.569739\pi\)
\(678\) 0 0
\(679\) 7.33966 12.7127i 0.281670 0.487867i
\(680\) 0 0
\(681\) −0.137406 1.22423i −0.00526543 0.0469126i
\(682\) 0 0
\(683\) 0.857818 + 0.857818i 0.0328235 + 0.0328235i 0.723328 0.690505i \(-0.242611\pi\)
−0.690505 + 0.723328i \(0.742611\pi\)
\(684\) 0 0
\(685\) 2.21214 2.21214i 0.0845216 0.0845216i
\(686\) 0 0
\(687\) 7.88099 + 10.6879i 0.300679 + 0.407771i
\(688\) 0 0
\(689\) 15.4163 + 8.90063i 0.587316 + 0.339087i
\(690\) 0 0
\(691\) −10.1497 + 37.8791i −0.386112 + 1.44099i 0.450295 + 0.892880i \(0.351319\pi\)
−0.836407 + 0.548109i \(0.815348\pi\)
\(692\) 0 0
\(693\) 12.8667 20.4383i 0.488764 0.776386i
\(694\) 0 0
\(695\) −72.6201 + 41.9272i −2.75464 + 1.59039i
\(696\) 0 0
\(697\) −3.74334 2.16122i −0.141789 0.0818619i
\(698\) 0 0
\(699\) 0.865499 + 2.20804i 0.0327362 + 0.0835156i
\(700\) 0 0
\(701\) 14.3403 + 14.3403i 0.541627 + 0.541627i 0.924006 0.382379i \(-0.124895\pi\)
−0.382379 + 0.924006i \(0.624895\pi\)
\(702\) 0 0
\(703\) 5.45369i 0.205690i
\(704\) 0 0
\(705\) 40.8374 + 17.8380i 1.53802 + 0.671817i
\(706\) 0 0
\(707\) 8.30208 + 30.9838i 0.312232 + 1.16527i
\(708\) 0 0
\(709\) 1.14194 4.26177i 0.0428864 0.160054i −0.941162 0.337956i \(-0.890264\pi\)
0.984048 + 0.177902i \(0.0569311\pi\)
\(710\) 0 0
\(711\) 3.69896 11.9554i 0.138722 0.448361i
\(712\) 0 0
\(713\) −0.606335 1.05020i −0.0227074 0.0393304i
\(714\) 0 0
\(715\) −6.81339 25.4279i −0.254806 0.950951i
\(716\) 0 0
\(717\) 2.64982 + 0.400557i 0.0989593 + 0.0149591i
\(718\) 0 0
\(719\) −49.2509 −1.83675 −0.918374 0.395714i \(-0.870497\pi\)
−0.918374 + 0.395714i \(0.870497\pi\)
\(720\) 0 0
\(721\) −1.88938 −0.0703644
\(722\) 0 0
\(723\) 8.29086 10.3873i 0.308340 0.386307i
\(724\) 0 0
\(725\) 24.0137 + 89.6203i 0.891846 + 3.32841i
\(726\) 0 0
\(727\) 2.18154 + 3.77855i 0.0809090 + 0.140139i 0.903641 0.428291i \(-0.140884\pi\)
−0.822732 + 0.568430i \(0.807551\pi\)
\(728\) 0 0
\(729\) 16.7799 + 21.1527i 0.621478 + 0.783432i
\(730\) 0 0
\(731\) 3.68451 13.7508i 0.136277 0.508591i
\(732\) 0 0
\(733\) −8.23445 30.7314i −0.304146 1.13509i −0.933678 0.358114i \(-0.883420\pi\)
0.629532 0.776975i \(-0.283247\pi\)
\(734\) 0 0
\(735\) −1.22818 10.9426i −0.0453023 0.403623i
\(736\) 0 0
\(737\) 26.8722i 0.989849i
\(738\) 0 0
\(739\) 32.4463 + 32.4463i 1.19356 + 1.19356i 0.976061 + 0.217495i \(0.0697887\pi\)
0.217495 + 0.976061i \(0.430211\pi\)
\(740\) 0 0
\(741\) 11.7657 + 1.77855i 0.432224 + 0.0653366i
\(742\) 0 0
\(743\) 10.8406 + 6.25880i 0.397702 + 0.229613i 0.685492 0.728080i \(-0.259587\pi\)
−0.287790 + 0.957693i \(0.592921\pi\)
\(744\) 0 0
\(745\) −40.0141 + 23.1021i −1.46600 + 0.846397i
\(746\) 0 0
\(747\) −34.5932 + 18.2451i −1.26570 + 0.667554i
\(748\) 0 0
\(749\) 4.01852 14.9973i 0.146834 0.547990i
\(750\) 0 0
\(751\) −34.0479 19.6575i −1.24242 0.717314i −0.272837 0.962060i \(-0.587962\pi\)
−0.969587 + 0.244747i \(0.921295\pi\)
\(752\) 0 0
\(753\) −5.35969 + 12.2702i −0.195318 + 0.447151i
\(754\) 0 0
\(755\) 23.6777 23.6777i 0.861718 0.861718i
\(756\) 0 0
\(757\) −25.3026 25.3026i −0.919640 0.919640i 0.0773631 0.997003i \(-0.475350\pi\)
−0.997003 + 0.0773631i \(0.975350\pi\)
\(758\) 0 0
\(759\) −10.4157 4.54963i −0.378065 0.165141i
\(760\) 0 0
\(761\) −11.0907 + 19.2097i −0.402039 + 0.696352i −0.993972 0.109635i \(-0.965032\pi\)
0.591933 + 0.805987i \(0.298365\pi\)
\(762\) 0 0
\(763\) −24.0843 6.45338i −0.871911 0.233628i
\(764\) 0 0
\(765\) −18.2892 + 29.0518i −0.661247 + 1.05037i
\(766\) 0 0
\(767\) −3.12087 5.40551i −0.112688 0.195182i
\(768\) 0 0
\(769\) 0.792978 1.37348i 0.0285955 0.0495289i −0.851374 0.524560i \(-0.824230\pi\)
0.879969 + 0.475031i \(0.157563\pi\)
\(770\) 0 0
\(771\) −6.15555 + 40.7210i −0.221687 + 1.46653i
\(772\) 0 0
\(773\) 0.198602 0.198602i 0.00714323 0.00714323i −0.703526 0.710669i \(-0.748392\pi\)
0.710669 + 0.703526i \(0.248392\pi\)
\(774\) 0 0
\(775\) 5.36948 0.192877
\(776\) 0 0
\(777\) −9.74308 + 1.09355i −0.349531 + 0.0392310i
\(778\) 0 0
\(779\) −4.07287 + 1.09132i −0.145926 + 0.0391007i
\(780\) 0 0
\(781\) −12.3334 3.30471i −0.441322 0.118252i
\(782\) 0 0
\(783\) 29.7377 34.4661i 1.06274 1.23172i
\(784\) 0 0
\(785\) −12.5149 + 7.22549i −0.446676 + 0.257889i
\(786\) 0 0
\(787\) −14.0581 + 3.76684i −0.501116 + 0.134274i −0.500518 0.865726i \(-0.666857\pi\)
−0.000597888 1.00000i \(0.500190\pi\)
\(788\) 0 0
\(789\) −9.59298 7.65687i −0.341519 0.272592i
\(790\) 0 0
\(791\) 48.9217i 1.73946i
\(792\) 0 0
\(793\) 28.1353i 0.999112i
\(794\) 0 0
\(795\) −7.48795 + 49.5353i −0.265570 + 1.75683i
\(796\) 0 0
\(797\) −11.6520 + 3.12214i −0.412734 + 0.110592i −0.459210 0.888328i \(-0.651868\pi\)
0.0464762 + 0.998919i \(0.485201\pi\)
\(798\) 0 0
\(799\) 16.3541 9.44202i 0.578565 0.334035i
\(800\) 0 0
\(801\) 16.1398 14.9498i 0.570272 0.528227i
\(802\) 0 0
\(803\) −13.0355 3.49286i −0.460015 0.123261i
\(804\) 0 0
\(805\) −26.7679 + 7.17244i −0.943445 + 0.252795i
\(806\) 0 0
\(807\) −20.2586 + 46.3789i −0.713135 + 1.63261i
\(808\) 0 0
\(809\) 5.40097 0.189888 0.0949441 0.995483i \(-0.469733\pi\)
0.0949441 + 0.995483i \(0.469733\pi\)
\(810\) 0 0
\(811\) −19.4041 + 19.4041i −0.681371 + 0.681371i −0.960309 0.278938i \(-0.910018\pi\)
0.278938 + 0.960309i \(0.410018\pi\)
\(812\) 0 0
\(813\) −26.9144 + 10.5498i −0.943928 + 0.369998i
\(814\) 0 0
\(815\) 10.7788 18.6695i 0.377566 0.653964i
\(816\) 0 0
\(817\) −6.94356 12.0266i −0.242924 0.420758i
\(818\) 0 0
\(819\) −0.818183 + 21.3762i −0.0285896 + 0.746944i
\(820\) 0 0
\(821\) −20.6449 5.53178i −0.720512 0.193061i −0.120112 0.992760i \(-0.538325\pi\)
−0.600400 + 0.799700i \(0.704992\pi\)
\(822\) 0 0
\(823\) 15.8047 27.3746i 0.550918 0.954217i −0.447291 0.894389i \(-0.647611\pi\)
0.998209 0.0598289i \(-0.0190555\pi\)
\(824\) 0 0
\(825\) 40.5053 29.8675i 1.41021 1.03985i
\(826\) 0 0
\(827\) −11.4058 11.4058i −0.396617 0.396617i 0.480421 0.877038i \(-0.340484\pi\)
−0.877038 + 0.480421i \(0.840484\pi\)
\(828\) 0 0
\(829\) −15.8083 + 15.8083i −0.549043 + 0.549043i −0.926164 0.377121i \(-0.876914\pi\)
0.377121 + 0.926164i \(0.376914\pi\)
\(830\) 0 0
\(831\) 8.00487 0.898459i 0.277686 0.0311672i
\(832\) 0 0
\(833\) −4.04098 2.33306i −0.140012 0.0808357i
\(834\) 0 0
\(835\) 7.05931 26.3457i 0.244297 0.911730i
\(836\) 0 0
\(837\) −1.48124 2.17859i −0.0511992 0.0753031i
\(838\) 0 0
\(839\) 28.2922 16.3345i 0.976755 0.563930i 0.0754662 0.997148i \(-0.475956\pi\)
0.901289 + 0.433219i \(0.142622\pi\)
\(840\) 0 0
\(841\) −41.3525 23.8749i −1.42595 0.823272i
\(842\) 0 0
\(843\) 24.6684 30.9060i 0.849624 1.06446i
\(844\) 0 0
\(845\) −19.8083 19.8083i −0.681428 0.681428i
\(846\) 0 0
\(847\) 10.1907i 0.350158i
\(848\) 0 0
\(849\) −35.9994 + 26.5450i −1.23550 + 0.911021i
\(850\) 0 0
\(851\) 1.19421 + 4.45686i 0.0409371 + 0.152779i
\(852\) 0 0
\(853\) −10.3756 + 38.7224i −0.355255 + 1.32583i 0.524907 + 0.851159i \(0.324100\pi\)
−0.880163 + 0.474672i \(0.842567\pi\)
\(854\) 0 0
\(855\) 7.42388 + 32.6551i 0.253891 + 1.11678i
\(856\) 0 0
\(857\) 0.0140657 + 0.0243624i 0.000480474 + 0.000832205i 0.866266 0.499584i \(-0.166514\pi\)
−0.865785 + 0.500416i \(0.833180\pi\)
\(858\) 0 0
\(859\) 3.15104 + 11.7598i 0.107512 + 0.401240i 0.998618 0.0525549i \(-0.0167364\pi\)
−0.891106 + 0.453795i \(0.850070\pi\)
\(860\) 0 0
\(861\) −2.76634 7.05740i −0.0942765 0.240516i
\(862\) 0 0
\(863\) 40.1140 1.36550 0.682748 0.730654i \(-0.260785\pi\)
0.682748 + 0.730654i \(0.260785\pi\)
\(864\) 0 0
\(865\) −15.8140 −0.537692
\(866\) 0 0
\(867\) −5.43674 13.8701i −0.184642 0.471052i
\(868\) 0 0
\(869\) 2.96211 + 11.0547i 0.100483 + 0.375006i
\(870\) 0 0
\(871\) −11.9010 20.6132i −0.403251 0.698451i
\(872\) 0 0
\(873\) −14.3375 4.43598i −0.485250 0.150135i
\(874\) 0 0
\(875\) 16.7647 62.5669i 0.566752 2.11515i
\(876\) 0 0
\(877\) 12.2948 + 45.8849i 0.415167 + 1.54942i 0.784501 + 0.620127i \(0.212919\pi\)
−0.369334 + 0.929297i \(0.620414\pi\)
\(878\) 0 0
\(879\) −3.99348 + 2.94468i −0.134697 + 0.0993216i
\(880\) 0 0
\(881\) 20.6694i 0.696371i −0.937426 0.348186i \(-0.886798\pi\)
0.937426 0.348186i \(-0.113202\pi\)
\(882\) 0 0
\(883\) 37.7611 + 37.7611i 1.27076 + 1.27076i 0.945688 + 0.325075i \(0.105390\pi\)
0.325075 + 0.945688i \(0.394610\pi\)
\(884\) 0 0
\(885\) 10.9582 13.7291i 0.368355 0.461497i
\(886\) 0 0
\(887\) 24.4908 + 14.1398i 0.822322 + 0.474768i 0.851216 0.524815i \(-0.175865\pi\)
−0.0288948 + 0.999582i \(0.509199\pi\)
\(888\) 0 0
\(889\) 45.7347 26.4049i 1.53389 0.885593i
\(890\) 0 0
\(891\) −23.2922 8.19514i −0.780319 0.274547i
\(892\) 0 0
\(893\) 4.76782 17.7937i 0.159549 0.595445i
\(894\) 0 0
\(895\) −48.6615 28.0947i −1.62657 0.939103i
\(896\) 0 0
\(897\) 10.0046 1.12291i 0.334044 0.0374928i
\(898\) 0 0
\(899\) −3.14074 + 3.14074i −0.104750 + 0.104750i
\(900\) 0 0
\(901\) 15.0115 + 15.0115i 0.500105 + 0.500105i
\(902\) 0 0
\(903\) 20.0934 14.8163i 0.668665 0.493055i
\(904\) 0 0
\(905\) 41.9767 72.7058i 1.39535 2.41682i
\(906\) 0 0
\(907\) −34.0430 9.12179i −1.13038 0.302884i −0.355302 0.934751i \(-0.615622\pi\)
−0.775077 + 0.631867i \(0.782289\pi\)
\(908\) 0 0
\(909\) 29.0078 15.2993i 0.962126 0.507444i
\(910\) 0 0
\(911\) −8.81619 15.2701i −0.292093 0.505921i 0.682211 0.731155i \(-0.261018\pi\)
−0.974305 + 0.225235i \(0.927685\pi\)
\(912\) 0 0
\(913\) 17.8832 30.9746i 0.591847 1.02511i
\(914\) 0 0
\(915\) 73.7199 28.8965i 2.43710 0.955288i
\(916\) 0 0
\(917\) −37.4020 + 37.4020i −1.23512 + 1.23512i
\(918\) 0 0
\(919\) −40.6483 −1.34086 −0.670431 0.741972i \(-0.733891\pi\)
−0.670431 + 0.741972i \(0.733891\pi\)
\(920\) 0 0
\(921\) 7.52361 17.2242i 0.247911 0.567555i
\(922\) 0 0
\(923\) 10.9243 2.92715i 0.359577 0.0963483i
\(924\) 0 0
\(925\) −19.7341 5.28775i −0.648855 0.173860i
\(926\) 0 0
\(927\) 0.428229 + 1.88363i 0.0140649 + 0.0618665i
\(928\) 0 0
\(929\) −46.7331 + 26.9814i −1.53326 + 0.885230i −0.534055 + 0.845450i \(0.679333\pi\)
−0.999208 + 0.0397807i \(0.987334\pi\)
\(930\) 0 0
\(931\) −4.39672 + 1.17810i −0.144097 + 0.0386106i
\(932\) 0 0
\(933\) −4.50721 + 29.8167i −0.147560 + 0.976156i
\(934\) 0 0
\(935\) 31.3946i 1.02671i
\(936\) 0 0
\(937\) 47.0464i 1.53694i 0.639886 + 0.768470i \(0.278982\pi\)
−0.639886 + 0.768470i \(0.721018\pi\)
\(938\) 0 0
\(939\) −33.2989 26.5784i −1.08667 0.867352i
\(940\) 0 0
\(941\) 2.40748 0.645083i 0.0784816 0.0210291i −0.219365 0.975643i \(-0.570398\pi\)
0.297846 + 0.954614i \(0.403732\pi\)
\(942\) 0 0
\(943\) −3.08946 + 1.78370i −0.100607 + 0.0580853i
\(944\) 0 0
\(945\) −56.8501 + 19.8107i −1.84933 + 0.644443i
\(946\) 0 0
\(947\) −50.2676 13.4692i −1.63348 0.437689i −0.678557 0.734548i \(-0.737394\pi\)
−0.954921 + 0.296859i \(0.904061\pi\)
\(948\) 0 0
\(949\) 11.5462 3.09381i 0.374807 0.100429i
\(950\) 0 0
\(951\) 14.2440 1.59873i 0.461893 0.0518424i
\(952\) 0 0
\(953\) −61.2734 −1.98484 −0.992420 0.122896i \(-0.960782\pi\)
−0.992420 + 0.122896i \(0.960782\pi\)
\(954\) 0 0
\(955\) −60.8700 + 60.8700i −1.96971 + 1.96971i
\(956\) 0 0
\(957\) −6.22233 + 41.1628i −0.201139 + 1.33060i
\(958\) 0 0
\(959\) 1.16244 2.01340i 0.0375370 0.0650160i
\(960\) 0 0
\(961\) −15.3715 26.6242i −0.495854 0.858844i
\(962\) 0 0
\(963\) −15.8624 0.607142i −0.511160 0.0195649i
\(964\) 0 0
\(965\) 17.9045 + 4.79750i 0.576367 + 0.154437i
\(966\) 0 0
\(967\) 3.75805 6.50913i 0.120851 0.209319i −0.799253 0.600995i \(-0.794771\pi\)
0.920103 + 0.391676i \(0.128104\pi\)
\(968\) 0 0
\(969\) 13.0045 + 5.68042i 0.417763 + 0.182481i
\(970\) 0 0
\(971\) −20.5494 20.5494i −0.659461 0.659461i 0.295791 0.955253i \(-0.404417\pi\)
−0.955253 + 0.295791i \(0.904417\pi\)
\(972\) 0 0
\(973\) −44.0638 + 44.0638i −1.41262 + 1.41262i
\(974\) 0 0
\(975\) −17.8434 + 40.8496i −0.571445 + 1.30824i
\(976\) 0 0
\(977\) 48.8661 + 28.2129i 1.56337 + 0.902610i 0.996913 + 0.0785154i \(0.0250180\pi\)
0.566453 + 0.824094i \(0.308315\pi\)
\(978\) 0 0
\(979\) −5.20721 + 19.4336i −0.166423 + 0.621100i
\(980\) 0 0
\(981\) −0.975015 + 25.4736i −0.0311298 + 0.813310i
\(982\) 0 0
\(983\) −5.17882 + 2.98999i −0.165179 + 0.0953660i −0.580311 0.814395i \(-0.697069\pi\)
0.415132 + 0.909761i \(0.363735\pi\)
\(984\) 0 0
\(985\) 69.2628 + 39.9889i 2.20690 + 1.27415i
\(986\) 0 0
\(987\) 32.7447 + 4.94982i 1.04228 + 0.157555i
\(988\) 0 0
\(989\) −8.30792 8.30792i −0.264176 0.264176i
\(990\) 0 0
\(991\) 20.2358i 0.642812i 0.946942 + 0.321406i \(0.104155\pi\)
−0.946942 + 0.321406i \(0.895845\pi\)
\(992\) 0 0
\(993\) −5.10742 45.5049i −0.162079 1.44405i
\(994\) 0 0
\(995\) −14.8147 55.2892i −0.469657 1.75278i
\(996\) 0 0
\(997\) −0.173576 + 0.647795i −0.00549721 + 0.0205159i −0.968620 0.248547i \(-0.920047\pi\)
0.963123 + 0.269062i \(0.0867138\pi\)
\(998\) 0 0
\(999\) 3.29849 + 9.46555i 0.104360 + 0.299477i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 576.2.y.a.527.9 88
3.2 odd 2 1728.2.z.a.719.22 88
4.3 odd 2 144.2.u.a.59.18 yes 88
9.2 odd 6 inner 576.2.y.a.335.3 88
9.7 even 3 1728.2.z.a.143.22 88
12.11 even 2 432.2.v.a.395.5 88
16.3 odd 4 inner 576.2.y.a.239.3 88
16.13 even 4 144.2.u.a.131.20 yes 88
36.7 odd 6 432.2.v.a.251.3 88
36.11 even 6 144.2.u.a.11.20 88
48.29 odd 4 432.2.v.a.179.3 88
48.35 even 4 1728.2.z.a.1583.22 88
144.29 odd 12 144.2.u.a.83.18 yes 88
144.61 even 12 432.2.v.a.35.5 88
144.83 even 12 inner 576.2.y.a.47.9 88
144.115 odd 12 1728.2.z.a.1007.22 88
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
144.2.u.a.11.20 88 36.11 even 6
144.2.u.a.59.18 yes 88 4.3 odd 2
144.2.u.a.83.18 yes 88 144.29 odd 12
144.2.u.a.131.20 yes 88 16.13 even 4
432.2.v.a.35.5 88 144.61 even 12
432.2.v.a.179.3 88 48.29 odd 4
432.2.v.a.251.3 88 36.7 odd 6
432.2.v.a.395.5 88 12.11 even 2
576.2.y.a.47.9 88 144.83 even 12 inner
576.2.y.a.239.3 88 16.3 odd 4 inner
576.2.y.a.335.3 88 9.2 odd 6 inner
576.2.y.a.527.9 88 1.1 even 1 trivial
1728.2.z.a.143.22 88 9.7 even 3
1728.2.z.a.719.22 88 3.2 odd 2
1728.2.z.a.1007.22 88 144.115 odd 12
1728.2.z.a.1583.22 88 48.35 even 4