Properties

Label 1734.2.a.s.1.1
Level $1734$
Weight $2$
Character 1734.1
Self dual yes
Analytic conductor $13.846$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1734,2,Mod(1,1734)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1734, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1734.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1734 = 2 \cdot 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1734.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.8460597105\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{18})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(1.87939\) of defining polynomial
Character \(\chi\) \(=\) 1734.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} +0.120615 q^{5} +1.00000 q^{6} -0.305407 q^{7} +1.00000 q^{8} +1.00000 q^{9} +0.120615 q^{10} -1.41147 q^{11} +1.00000 q^{12} +5.75877 q^{13} -0.305407 q^{14} +0.120615 q^{15} +1.00000 q^{16} +1.00000 q^{18} +1.30541 q^{19} +0.120615 q^{20} -0.305407 q^{21} -1.41147 q^{22} +4.12836 q^{23} +1.00000 q^{24} -4.98545 q^{25} +5.75877 q^{26} +1.00000 q^{27} -0.305407 q^{28} +8.35504 q^{29} +0.120615 q^{30} -5.61587 q^{31} +1.00000 q^{32} -1.41147 q^{33} -0.0368366 q^{35} +1.00000 q^{36} -2.93582 q^{37} +1.30541 q^{38} +5.75877 q^{39} +0.120615 q^{40} -4.36959 q^{41} -0.305407 q^{42} +6.00000 q^{43} -1.41147 q^{44} +0.120615 q^{45} +4.12836 q^{46} +13.4338 q^{47} +1.00000 q^{48} -6.90673 q^{49} -4.98545 q^{50} +5.75877 q^{52} +7.53983 q^{53} +1.00000 q^{54} -0.170245 q^{55} -0.305407 q^{56} +1.30541 q^{57} +8.35504 q^{58} +3.26857 q^{59} +0.120615 q^{60} -14.9513 q^{61} -5.61587 q^{62} -0.305407 q^{63} +1.00000 q^{64} +0.694593 q^{65} -1.41147 q^{66} +13.1480 q^{67} +4.12836 q^{69} -0.0368366 q^{70} -8.36959 q^{71} +1.00000 q^{72} +7.37464 q^{73} -2.93582 q^{74} -4.98545 q^{75} +1.30541 q^{76} +0.431074 q^{77} +5.75877 q^{78} -2.21894 q^{79} +0.120615 q^{80} +1.00000 q^{81} -4.36959 q^{82} -6.75877 q^{83} -0.305407 q^{84} +6.00000 q^{86} +8.35504 q^{87} -1.41147 q^{88} -5.88713 q^{89} +0.120615 q^{90} -1.75877 q^{91} +4.12836 q^{92} -5.61587 q^{93} +13.4338 q^{94} +0.157451 q^{95} +1.00000 q^{96} +1.08647 q^{97} -6.90673 q^{98} -1.41147 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{2} + 3 q^{3} + 3 q^{4} + 6 q^{5} + 3 q^{6} - 3 q^{7} + 3 q^{8} + 3 q^{9} + 6 q^{10} + 6 q^{11} + 3 q^{12} + 6 q^{13} - 3 q^{14} + 6 q^{15} + 3 q^{16} + 3 q^{18} + 6 q^{19} + 6 q^{20} - 3 q^{21}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 1.00000 0.577350
\(4\) 1.00000 0.500000
\(5\) 0.120615 0.0539406 0.0269703 0.999636i \(-0.491414\pi\)
0.0269703 + 0.999636i \(0.491414\pi\)
\(6\) 1.00000 0.408248
\(7\) −0.305407 −0.115433 −0.0577166 0.998333i \(-0.518382\pi\)
−0.0577166 + 0.998333i \(0.518382\pi\)
\(8\) 1.00000 0.353553
\(9\) 1.00000 0.333333
\(10\) 0.120615 0.0381417
\(11\) −1.41147 −0.425575 −0.212788 0.977098i \(-0.568254\pi\)
−0.212788 + 0.977098i \(0.568254\pi\)
\(12\) 1.00000 0.288675
\(13\) 5.75877 1.59720 0.798598 0.601865i \(-0.205576\pi\)
0.798598 + 0.601865i \(0.205576\pi\)
\(14\) −0.305407 −0.0816235
\(15\) 0.120615 0.0311426
\(16\) 1.00000 0.250000
\(17\) 0 0
\(18\) 1.00000 0.235702
\(19\) 1.30541 0.299481 0.149740 0.988725i \(-0.452156\pi\)
0.149740 + 0.988725i \(0.452156\pi\)
\(20\) 0.120615 0.0269703
\(21\) −0.305407 −0.0666453
\(22\) −1.41147 −0.300927
\(23\) 4.12836 0.860822 0.430411 0.902633i \(-0.358369\pi\)
0.430411 + 0.902633i \(0.358369\pi\)
\(24\) 1.00000 0.204124
\(25\) −4.98545 −0.997090
\(26\) 5.75877 1.12939
\(27\) 1.00000 0.192450
\(28\) −0.305407 −0.0577166
\(29\) 8.35504 1.55149 0.775746 0.631046i \(-0.217374\pi\)
0.775746 + 0.631046i \(0.217374\pi\)
\(30\) 0.120615 0.0220211
\(31\) −5.61587 −1.00864 −0.504320 0.863517i \(-0.668257\pi\)
−0.504320 + 0.863517i \(0.668257\pi\)
\(32\) 1.00000 0.176777
\(33\) −1.41147 −0.245706
\(34\) 0 0
\(35\) −0.0368366 −0.00622653
\(36\) 1.00000 0.166667
\(37\) −2.93582 −0.482646 −0.241323 0.970445i \(-0.577581\pi\)
−0.241323 + 0.970445i \(0.577581\pi\)
\(38\) 1.30541 0.211765
\(39\) 5.75877 0.922141
\(40\) 0.120615 0.0190709
\(41\) −4.36959 −0.682415 −0.341207 0.939988i \(-0.610836\pi\)
−0.341207 + 0.939988i \(0.610836\pi\)
\(42\) −0.305407 −0.0471254
\(43\) 6.00000 0.914991 0.457496 0.889212i \(-0.348747\pi\)
0.457496 + 0.889212i \(0.348747\pi\)
\(44\) −1.41147 −0.212788
\(45\) 0.120615 0.0179802
\(46\) 4.12836 0.608693
\(47\) 13.4338 1.95952 0.979758 0.200186i \(-0.0641547\pi\)
0.979758 + 0.200186i \(0.0641547\pi\)
\(48\) 1.00000 0.144338
\(49\) −6.90673 −0.986675
\(50\) −4.98545 −0.705049
\(51\) 0 0
\(52\) 5.75877 0.798598
\(53\) 7.53983 1.03568 0.517838 0.855479i \(-0.326737\pi\)
0.517838 + 0.855479i \(0.326737\pi\)
\(54\) 1.00000 0.136083
\(55\) −0.170245 −0.0229558
\(56\) −0.305407 −0.0408118
\(57\) 1.30541 0.172905
\(58\) 8.35504 1.09707
\(59\) 3.26857 0.425532 0.212766 0.977103i \(-0.431753\pi\)
0.212766 + 0.977103i \(0.431753\pi\)
\(60\) 0.120615 0.0155713
\(61\) −14.9513 −1.91432 −0.957159 0.289562i \(-0.906490\pi\)
−0.957159 + 0.289562i \(0.906490\pi\)
\(62\) −5.61587 −0.713216
\(63\) −0.305407 −0.0384777
\(64\) 1.00000 0.125000
\(65\) 0.694593 0.0861536
\(66\) −1.41147 −0.173740
\(67\) 13.1480 1.60628 0.803139 0.595791i \(-0.203161\pi\)
0.803139 + 0.595791i \(0.203161\pi\)
\(68\) 0 0
\(69\) 4.12836 0.496996
\(70\) −0.0368366 −0.00440282
\(71\) −8.36959 −0.993287 −0.496644 0.867955i \(-0.665434\pi\)
−0.496644 + 0.867955i \(0.665434\pi\)
\(72\) 1.00000 0.117851
\(73\) 7.37464 0.863136 0.431568 0.902080i \(-0.357960\pi\)
0.431568 + 0.902080i \(0.357960\pi\)
\(74\) −2.93582 −0.341282
\(75\) −4.98545 −0.575670
\(76\) 1.30541 0.149740
\(77\) 0.431074 0.0491255
\(78\) 5.75877 0.652052
\(79\) −2.21894 −0.249650 −0.124825 0.992179i \(-0.539837\pi\)
−0.124825 + 0.992179i \(0.539837\pi\)
\(80\) 0.120615 0.0134851
\(81\) 1.00000 0.111111
\(82\) −4.36959 −0.482540
\(83\) −6.75877 −0.741871 −0.370936 0.928659i \(-0.620963\pi\)
−0.370936 + 0.928659i \(0.620963\pi\)
\(84\) −0.305407 −0.0333227
\(85\) 0 0
\(86\) 6.00000 0.646997
\(87\) 8.35504 0.895754
\(88\) −1.41147 −0.150464
\(89\) −5.88713 −0.624034 −0.312017 0.950077i \(-0.601005\pi\)
−0.312017 + 0.950077i \(0.601005\pi\)
\(90\) 0.120615 0.0127139
\(91\) −1.75877 −0.184369
\(92\) 4.12836 0.430411
\(93\) −5.61587 −0.582338
\(94\) 13.4338 1.38559
\(95\) 0.157451 0.0161542
\(96\) 1.00000 0.102062
\(97\) 1.08647 0.110314 0.0551570 0.998478i \(-0.482434\pi\)
0.0551570 + 0.998478i \(0.482434\pi\)
\(98\) −6.90673 −0.697685
\(99\) −1.41147 −0.141858
\(100\) −4.98545 −0.498545
\(101\) −10.2490 −1.01981 −0.509905 0.860231i \(-0.670320\pi\)
−0.509905 + 0.860231i \(0.670320\pi\)
\(102\) 0 0
\(103\) 1.16250 0.114545 0.0572725 0.998359i \(-0.481760\pi\)
0.0572725 + 0.998359i \(0.481760\pi\)
\(104\) 5.75877 0.564694
\(105\) −0.0368366 −0.00359489
\(106\) 7.53983 0.732333
\(107\) 11.9855 1.15868 0.579339 0.815087i \(-0.303311\pi\)
0.579339 + 0.815087i \(0.303311\pi\)
\(108\) 1.00000 0.0962250
\(109\) 7.60132 0.728074 0.364037 0.931384i \(-0.381398\pi\)
0.364037 + 0.931384i \(0.381398\pi\)
\(110\) −0.170245 −0.0162322
\(111\) −2.93582 −0.278656
\(112\) −0.305407 −0.0288583
\(113\) −19.1925 −1.80548 −0.902741 0.430185i \(-0.858448\pi\)
−0.902741 + 0.430185i \(0.858448\pi\)
\(114\) 1.30541 0.122263
\(115\) 0.497941 0.0464332
\(116\) 8.35504 0.775746
\(117\) 5.75877 0.532399
\(118\) 3.26857 0.300896
\(119\) 0 0
\(120\) 0.120615 0.0110106
\(121\) −9.00774 −0.818886
\(122\) −14.9513 −1.35363
\(123\) −4.36959 −0.393992
\(124\) −5.61587 −0.504320
\(125\) −1.20439 −0.107724
\(126\) −0.305407 −0.0272078
\(127\) −5.69459 −0.505313 −0.252657 0.967556i \(-0.581304\pi\)
−0.252657 + 0.967556i \(0.581304\pi\)
\(128\) 1.00000 0.0883883
\(129\) 6.00000 0.528271
\(130\) 0.694593 0.0609198
\(131\) 6.63041 0.579302 0.289651 0.957132i \(-0.406461\pi\)
0.289651 + 0.957132i \(0.406461\pi\)
\(132\) −1.41147 −0.122853
\(133\) −0.398681 −0.0345700
\(134\) 13.1480 1.13581
\(135\) 0.120615 0.0103809
\(136\) 0 0
\(137\) −18.3405 −1.56693 −0.783467 0.621434i \(-0.786551\pi\)
−0.783467 + 0.621434i \(0.786551\pi\)
\(138\) 4.12836 0.351429
\(139\) −12.9067 −1.09473 −0.547367 0.836893i \(-0.684370\pi\)
−0.547367 + 0.836893i \(0.684370\pi\)
\(140\) −0.0368366 −0.00311326
\(141\) 13.4338 1.13133
\(142\) −8.36959 −0.702360
\(143\) −8.12836 −0.679727
\(144\) 1.00000 0.0833333
\(145\) 1.00774 0.0836883
\(146\) 7.37464 0.610329
\(147\) −6.90673 −0.569657
\(148\) −2.93582 −0.241323
\(149\) 7.49525 0.614035 0.307017 0.951704i \(-0.400669\pi\)
0.307017 + 0.951704i \(0.400669\pi\)
\(150\) −4.98545 −0.407060
\(151\) −12.6040 −1.02570 −0.512850 0.858478i \(-0.671410\pi\)
−0.512850 + 0.858478i \(0.671410\pi\)
\(152\) 1.30541 0.105883
\(153\) 0 0
\(154\) 0.431074 0.0347370
\(155\) −0.677356 −0.0544066
\(156\) 5.75877 0.461071
\(157\) −16.2567 −1.29743 −0.648713 0.761033i \(-0.724693\pi\)
−0.648713 + 0.761033i \(0.724693\pi\)
\(158\) −2.21894 −0.176529
\(159\) 7.53983 0.597947
\(160\) 0.120615 0.00953543
\(161\) −1.26083 −0.0993673
\(162\) 1.00000 0.0785674
\(163\) −15.7588 −1.23432 −0.617161 0.786837i \(-0.711717\pi\)
−0.617161 + 0.786837i \(0.711717\pi\)
\(164\) −4.36959 −0.341207
\(165\) −0.170245 −0.0132535
\(166\) −6.75877 −0.524582
\(167\) 13.1925 1.02087 0.510434 0.859917i \(-0.329485\pi\)
0.510434 + 0.859917i \(0.329485\pi\)
\(168\) −0.305407 −0.0235627
\(169\) 20.1634 1.55103
\(170\) 0 0
\(171\) 1.30541 0.0998270
\(172\) 6.00000 0.457496
\(173\) 20.4020 1.55113 0.775567 0.631265i \(-0.217464\pi\)
0.775567 + 0.631265i \(0.217464\pi\)
\(174\) 8.35504 0.633394
\(175\) 1.52259 0.115097
\(176\) −1.41147 −0.106394
\(177\) 3.26857 0.245681
\(178\) −5.88713 −0.441259
\(179\) −7.66550 −0.572946 −0.286473 0.958088i \(-0.592483\pi\)
−0.286473 + 0.958088i \(0.592483\pi\)
\(180\) 0.120615 0.00899009
\(181\) 7.67499 0.570478 0.285239 0.958456i \(-0.407927\pi\)
0.285239 + 0.958456i \(0.407927\pi\)
\(182\) −1.75877 −0.130369
\(183\) −14.9513 −1.10523
\(184\) 4.12836 0.304346
\(185\) −0.354103 −0.0260342
\(186\) −5.61587 −0.411775
\(187\) 0 0
\(188\) 13.4338 0.979758
\(189\) −0.305407 −0.0222151
\(190\) 0.157451 0.0114227
\(191\) 21.0351 1.52205 0.761023 0.648725i \(-0.224698\pi\)
0.761023 + 0.648725i \(0.224698\pi\)
\(192\) 1.00000 0.0721688
\(193\) −22.8016 −1.64129 −0.820647 0.571435i \(-0.806387\pi\)
−0.820647 + 0.571435i \(0.806387\pi\)
\(194\) 1.08647 0.0780037
\(195\) 0.694593 0.0497408
\(196\) −6.90673 −0.493338
\(197\) 1.15745 0.0824650 0.0412325 0.999150i \(-0.486872\pi\)
0.0412325 + 0.999150i \(0.486872\pi\)
\(198\) −1.41147 −0.100309
\(199\) −7.39693 −0.524354 −0.262177 0.965020i \(-0.584440\pi\)
−0.262177 + 0.965020i \(0.584440\pi\)
\(200\) −4.98545 −0.352525
\(201\) 13.1480 0.927385
\(202\) −10.2490 −0.721115
\(203\) −2.55169 −0.179093
\(204\) 0 0
\(205\) −0.527036 −0.0368098
\(206\) 1.16250 0.0809955
\(207\) 4.12836 0.286941
\(208\) 5.75877 0.399299
\(209\) −1.84255 −0.127452
\(210\) −0.0368366 −0.00254197
\(211\) −20.0155 −1.37792 −0.688961 0.724798i \(-0.741933\pi\)
−0.688961 + 0.724798i \(0.741933\pi\)
\(212\) 7.53983 0.517838
\(213\) −8.36959 −0.573475
\(214\) 11.9855 0.819309
\(215\) 0.723689 0.0493551
\(216\) 1.00000 0.0680414
\(217\) 1.71513 0.116430
\(218\) 7.60132 0.514826
\(219\) 7.37464 0.498332
\(220\) −0.170245 −0.0114779
\(221\) 0 0
\(222\) −2.93582 −0.197039
\(223\) −18.5202 −1.24021 −0.620103 0.784520i \(-0.712909\pi\)
−0.620103 + 0.784520i \(0.712909\pi\)
\(224\) −0.305407 −0.0204059
\(225\) −4.98545 −0.332363
\(226\) −19.1925 −1.27667
\(227\) 26.1480 1.73550 0.867750 0.497000i \(-0.165565\pi\)
0.867750 + 0.497000i \(0.165565\pi\)
\(228\) 1.30541 0.0864527
\(229\) −2.93582 −0.194005 −0.0970023 0.995284i \(-0.530925\pi\)
−0.0970023 + 0.995284i \(0.530925\pi\)
\(230\) 0.497941 0.0328332
\(231\) 0.431074 0.0283626
\(232\) 8.35504 0.548535
\(233\) −1.41828 −0.0929147 −0.0464573 0.998920i \(-0.514793\pi\)
−0.0464573 + 0.998920i \(0.514793\pi\)
\(234\) 5.75877 0.376463
\(235\) 1.62031 0.105697
\(236\) 3.26857 0.212766
\(237\) −2.21894 −0.144136
\(238\) 0 0
\(239\) −23.1634 −1.49832 −0.749159 0.662390i \(-0.769542\pi\)
−0.749159 + 0.662390i \(0.769542\pi\)
\(240\) 0.120615 0.00778565
\(241\) 4.08141 0.262907 0.131453 0.991322i \(-0.458036\pi\)
0.131453 + 0.991322i \(0.458036\pi\)
\(242\) −9.00774 −0.579040
\(243\) 1.00000 0.0641500
\(244\) −14.9513 −0.957159
\(245\) −0.833053 −0.0532218
\(246\) −4.36959 −0.278595
\(247\) 7.51754 0.478330
\(248\) −5.61587 −0.356608
\(249\) −6.75877 −0.428320
\(250\) −1.20439 −0.0761725
\(251\) −14.8530 −0.937512 −0.468756 0.883328i \(-0.655298\pi\)
−0.468756 + 0.883328i \(0.655298\pi\)
\(252\) −0.305407 −0.0192389
\(253\) −5.82707 −0.366345
\(254\) −5.69459 −0.357311
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −4.00000 −0.249513 −0.124757 0.992187i \(-0.539815\pi\)
−0.124757 + 0.992187i \(0.539815\pi\)
\(258\) 6.00000 0.373544
\(259\) 0.896622 0.0557133
\(260\) 0.694593 0.0430768
\(261\) 8.35504 0.517164
\(262\) 6.63041 0.409628
\(263\) 9.88713 0.609666 0.304833 0.952406i \(-0.401399\pi\)
0.304833 + 0.952406i \(0.401399\pi\)
\(264\) −1.41147 −0.0868702
\(265\) 0.909415 0.0558649
\(266\) −0.398681 −0.0244447
\(267\) −5.88713 −0.360286
\(268\) 13.1480 0.803139
\(269\) −17.8803 −1.09018 −0.545091 0.838377i \(-0.683505\pi\)
−0.545091 + 0.838377i \(0.683505\pi\)
\(270\) 0.120615 0.00734038
\(271\) 18.3259 1.11322 0.556611 0.830773i \(-0.312101\pi\)
0.556611 + 0.830773i \(0.312101\pi\)
\(272\) 0 0
\(273\) −1.75877 −0.106446
\(274\) −18.3405 −1.10799
\(275\) 7.03684 0.424337
\(276\) 4.12836 0.248498
\(277\) −14.5817 −0.876131 −0.438065 0.898943i \(-0.644336\pi\)
−0.438065 + 0.898943i \(0.644336\pi\)
\(278\) −12.9067 −0.774094
\(279\) −5.61587 −0.336213
\(280\) −0.0368366 −0.00220141
\(281\) −16.8384 −1.00450 −0.502248 0.864723i \(-0.667494\pi\)
−0.502248 + 0.864723i \(0.667494\pi\)
\(282\) 13.4338 0.799969
\(283\) 30.3114 1.80183 0.900913 0.434000i \(-0.142898\pi\)
0.900913 + 0.434000i \(0.142898\pi\)
\(284\) −8.36959 −0.496644
\(285\) 0.157451 0.00932662
\(286\) −8.12836 −0.480640
\(287\) 1.33450 0.0787732
\(288\) 1.00000 0.0589256
\(289\) 0 0
\(290\) 1.00774 0.0591766
\(291\) 1.08647 0.0636898
\(292\) 7.37464 0.431568
\(293\) −2.47472 −0.144575 −0.0722873 0.997384i \(-0.523030\pi\)
−0.0722873 + 0.997384i \(0.523030\pi\)
\(294\) −6.90673 −0.402808
\(295\) 0.394238 0.0229534
\(296\) −2.93582 −0.170641
\(297\) −1.41147 −0.0819020
\(298\) 7.49525 0.434188
\(299\) 23.7743 1.37490
\(300\) −4.98545 −0.287835
\(301\) −1.83244 −0.105620
\(302\) −12.6040 −0.725279
\(303\) −10.2490 −0.588788
\(304\) 1.30541 0.0748702
\(305\) −1.80335 −0.103259
\(306\) 0 0
\(307\) −18.4243 −1.05153 −0.525764 0.850630i \(-0.676221\pi\)
−0.525764 + 0.850630i \(0.676221\pi\)
\(308\) 0.431074 0.0245627
\(309\) 1.16250 0.0661325
\(310\) −0.677356 −0.0384713
\(311\) −21.5175 −1.22015 −0.610074 0.792345i \(-0.708860\pi\)
−0.610074 + 0.792345i \(0.708860\pi\)
\(312\) 5.75877 0.326026
\(313\) 26.5134 1.49863 0.749314 0.662215i \(-0.230384\pi\)
0.749314 + 0.662215i \(0.230384\pi\)
\(314\) −16.2567 −0.917419
\(315\) −0.0368366 −0.00207551
\(316\) −2.21894 −0.124825
\(317\) 12.8425 0.721309 0.360655 0.932699i \(-0.382553\pi\)
0.360655 + 0.932699i \(0.382553\pi\)
\(318\) 7.53983 0.422813
\(319\) −11.7929 −0.660277
\(320\) 0.120615 0.00674257
\(321\) 11.9855 0.668963
\(322\) −1.26083 −0.0702633
\(323\) 0 0
\(324\) 1.00000 0.0555556
\(325\) −28.7101 −1.59255
\(326\) −15.7588 −0.872798
\(327\) 7.60132 0.420354
\(328\) −4.36959 −0.241270
\(329\) −4.10277 −0.226193
\(330\) −0.170245 −0.00937166
\(331\) 26.4534 1.45401 0.727004 0.686633i \(-0.240912\pi\)
0.727004 + 0.686633i \(0.240912\pi\)
\(332\) −6.75877 −0.370936
\(333\) −2.93582 −0.160882
\(334\) 13.1925 0.721863
\(335\) 1.58584 0.0866436
\(336\) −0.305407 −0.0166613
\(337\) 5.73917 0.312633 0.156316 0.987707i \(-0.450038\pi\)
0.156316 + 0.987707i \(0.450038\pi\)
\(338\) 20.1634 1.09675
\(339\) −19.1925 −1.04240
\(340\) 0 0
\(341\) 7.92665 0.429252
\(342\) 1.30541 0.0705883
\(343\) 4.24722 0.229328
\(344\) 6.00000 0.323498
\(345\) 0.497941 0.0268082
\(346\) 20.4020 1.09682
\(347\) −4.08141 −0.219102 −0.109551 0.993981i \(-0.534941\pi\)
−0.109551 + 0.993981i \(0.534941\pi\)
\(348\) 8.35504 0.447877
\(349\) −7.34461 −0.393148 −0.196574 0.980489i \(-0.562982\pi\)
−0.196574 + 0.980489i \(0.562982\pi\)
\(350\) 1.52259 0.0813860
\(351\) 5.75877 0.307380
\(352\) −1.41147 −0.0752318
\(353\) 12.4243 0.661277 0.330639 0.943757i \(-0.392736\pi\)
0.330639 + 0.943757i \(0.392736\pi\)
\(354\) 3.26857 0.173723
\(355\) −1.00950 −0.0535785
\(356\) −5.88713 −0.312017
\(357\) 0 0
\(358\) −7.66550 −0.405134
\(359\) 6.93582 0.366059 0.183029 0.983107i \(-0.441410\pi\)
0.183029 + 0.983107i \(0.441410\pi\)
\(360\) 0.120615 0.00635696
\(361\) −17.2959 −0.910311
\(362\) 7.67499 0.403389
\(363\) −9.00774 −0.472784
\(364\) −1.75877 −0.0921846
\(365\) 0.889490 0.0465580
\(366\) −14.9513 −0.781517
\(367\) −27.2294 −1.42136 −0.710681 0.703515i \(-0.751613\pi\)
−0.710681 + 0.703515i \(0.751613\pi\)
\(368\) 4.12836 0.215205
\(369\) −4.36959 −0.227472
\(370\) −0.354103 −0.0184090
\(371\) −2.30272 −0.119551
\(372\) −5.61587 −0.291169
\(373\) −26.9668 −1.39629 −0.698144 0.715958i \(-0.745990\pi\)
−0.698144 + 0.715958i \(0.745990\pi\)
\(374\) 0 0
\(375\) −1.20439 −0.0621946
\(376\) 13.4338 0.692793
\(377\) 48.1147 2.47804
\(378\) −0.305407 −0.0157085
\(379\) −13.7297 −0.705246 −0.352623 0.935765i \(-0.614710\pi\)
−0.352623 + 0.935765i \(0.614710\pi\)
\(380\) 0.157451 0.00807709
\(381\) −5.69459 −0.291743
\(382\) 21.0351 1.07625
\(383\) −28.6709 −1.46501 −0.732507 0.680760i \(-0.761650\pi\)
−0.732507 + 0.680760i \(0.761650\pi\)
\(384\) 1.00000 0.0510310
\(385\) 0.0519939 0.00264986
\(386\) −22.8016 −1.16057
\(387\) 6.00000 0.304997
\(388\) 1.08647 0.0551570
\(389\) 1.77332 0.0899108 0.0449554 0.998989i \(-0.485685\pi\)
0.0449554 + 0.998989i \(0.485685\pi\)
\(390\) 0.694593 0.0351721
\(391\) 0 0
\(392\) −6.90673 −0.348842
\(393\) 6.63041 0.334460
\(394\) 1.15745 0.0583116
\(395\) −0.267637 −0.0134663
\(396\) −1.41147 −0.0709292
\(397\) −3.47296 −0.174303 −0.0871515 0.996195i \(-0.527776\pi\)
−0.0871515 + 0.996195i \(0.527776\pi\)
\(398\) −7.39693 −0.370774
\(399\) −0.398681 −0.0199590
\(400\) −4.98545 −0.249273
\(401\) 10.7101 0.534836 0.267418 0.963581i \(-0.413830\pi\)
0.267418 + 0.963581i \(0.413830\pi\)
\(402\) 13.1480 0.655760
\(403\) −32.3405 −1.61099
\(404\) −10.2490 −0.509905
\(405\) 0.120615 0.00599340
\(406\) −2.55169 −0.126638
\(407\) 4.14384 0.205402
\(408\) 0 0
\(409\) 10.8999 0.538966 0.269483 0.963005i \(-0.413147\pi\)
0.269483 + 0.963005i \(0.413147\pi\)
\(410\) −0.527036 −0.0260285
\(411\) −18.3405 −0.904670
\(412\) 1.16250 0.0572725
\(413\) −0.998245 −0.0491204
\(414\) 4.12836 0.202898
\(415\) −0.815207 −0.0400170
\(416\) 5.75877 0.282347
\(417\) −12.9067 −0.632045
\(418\) −1.84255 −0.0901220
\(419\) 28.7469 1.40438 0.702189 0.711990i \(-0.252206\pi\)
0.702189 + 0.711990i \(0.252206\pi\)
\(420\) −0.0368366 −0.00179744
\(421\) −14.5972 −0.711424 −0.355712 0.934596i \(-0.615762\pi\)
−0.355712 + 0.934596i \(0.615762\pi\)
\(422\) −20.0155 −0.974338
\(423\) 13.4338 0.653172
\(424\) 7.53983 0.366166
\(425\) 0 0
\(426\) −8.36959 −0.405508
\(427\) 4.56624 0.220976
\(428\) 11.9855 0.579339
\(429\) −8.12836 −0.392441
\(430\) 0.723689 0.0348994
\(431\) 32.0547 1.54402 0.772010 0.635611i \(-0.219252\pi\)
0.772010 + 0.635611i \(0.219252\pi\)
\(432\) 1.00000 0.0481125
\(433\) 7.84018 0.376775 0.188388 0.982095i \(-0.439674\pi\)
0.188388 + 0.982095i \(0.439674\pi\)
\(434\) 1.71513 0.0823287
\(435\) 1.00774 0.0483175
\(436\) 7.60132 0.364037
\(437\) 5.38919 0.257800
\(438\) 7.37464 0.352374
\(439\) −19.3500 −0.923524 −0.461762 0.887004i \(-0.652783\pi\)
−0.461762 + 0.887004i \(0.652783\pi\)
\(440\) −0.170245 −0.00811609
\(441\) −6.90673 −0.328892
\(442\) 0 0
\(443\) 25.1438 1.19462 0.597310 0.802011i \(-0.296236\pi\)
0.597310 + 0.802011i \(0.296236\pi\)
\(444\) −2.93582 −0.139328
\(445\) −0.710074 −0.0336607
\(446\) −18.5202 −0.876958
\(447\) 7.49525 0.354513
\(448\) −0.305407 −0.0144291
\(449\) 14.3250 0.676039 0.338019 0.941139i \(-0.390243\pi\)
0.338019 + 0.941139i \(0.390243\pi\)
\(450\) −4.98545 −0.235016
\(451\) 6.16756 0.290419
\(452\) −19.1925 −0.902741
\(453\) −12.6040 −0.592188
\(454\) 26.1480 1.22718
\(455\) −0.212134 −0.00994498
\(456\) 1.30541 0.0611313
\(457\) 24.8239 1.16121 0.580606 0.814185i \(-0.302816\pi\)
0.580606 + 0.814185i \(0.302816\pi\)
\(458\) −2.93582 −0.137182
\(459\) 0 0
\(460\) 0.497941 0.0232166
\(461\) −21.2618 −0.990259 −0.495130 0.868819i \(-0.664879\pi\)
−0.495130 + 0.868819i \(0.664879\pi\)
\(462\) 0.431074 0.0200554
\(463\) −0.120615 −0.00560544 −0.00280272 0.999996i \(-0.500892\pi\)
−0.00280272 + 0.999996i \(0.500892\pi\)
\(464\) 8.35504 0.387873
\(465\) −0.677356 −0.0314117
\(466\) −1.41828 −0.0657006
\(467\) −10.5963 −0.490337 −0.245168 0.969481i \(-0.578843\pi\)
−0.245168 + 0.969481i \(0.578843\pi\)
\(468\) 5.75877 0.266199
\(469\) −4.01548 −0.185418
\(470\) 1.62031 0.0747393
\(471\) −16.2567 −0.749070
\(472\) 3.26857 0.150448
\(473\) −8.46884 −0.389398
\(474\) −2.21894 −0.101919
\(475\) −6.50805 −0.298610
\(476\) 0 0
\(477\) 7.53983 0.345225
\(478\) −23.1634 −1.05947
\(479\) −21.6560 −0.989488 −0.494744 0.869039i \(-0.664738\pi\)
−0.494744 + 0.869039i \(0.664738\pi\)
\(480\) 0.120615 0.00550529
\(481\) −16.9067 −0.770880
\(482\) 4.08141 0.185903
\(483\) −1.26083 −0.0573697
\(484\) −9.00774 −0.409443
\(485\) 0.131044 0.00595040
\(486\) 1.00000 0.0453609
\(487\) 10.4320 0.472719 0.236360 0.971666i \(-0.424046\pi\)
0.236360 + 0.971666i \(0.424046\pi\)
\(488\) −14.9513 −0.676814
\(489\) −15.7588 −0.712636
\(490\) −0.833053 −0.0376335
\(491\) 7.43613 0.335588 0.167794 0.985822i \(-0.446336\pi\)
0.167794 + 0.985822i \(0.446336\pi\)
\(492\) −4.36959 −0.196996
\(493\) 0 0
\(494\) 7.51754 0.338230
\(495\) −0.170245 −0.00765193
\(496\) −5.61587 −0.252160
\(497\) 2.55613 0.114658
\(498\) −6.75877 −0.302868
\(499\) −3.47296 −0.155471 −0.0777356 0.996974i \(-0.524769\pi\)
−0.0777356 + 0.996974i \(0.524769\pi\)
\(500\) −1.20439 −0.0538621
\(501\) 13.1925 0.589399
\(502\) −14.8530 −0.662921
\(503\) 21.1581 0.943391 0.471696 0.881761i \(-0.343642\pi\)
0.471696 + 0.881761i \(0.343642\pi\)
\(504\) −0.305407 −0.0136039
\(505\) −1.23618 −0.0550092
\(506\) −5.82707 −0.259045
\(507\) 20.1634 0.895490
\(508\) −5.69459 −0.252657
\(509\) −40.0110 −1.77346 −0.886729 0.462290i \(-0.847028\pi\)
−0.886729 + 0.462290i \(0.847028\pi\)
\(510\) 0 0
\(511\) −2.25227 −0.0996345
\(512\) 1.00000 0.0441942
\(513\) 1.30541 0.0576351
\(514\) −4.00000 −0.176432
\(515\) 0.140215 0.00617862
\(516\) 6.00000 0.264135
\(517\) −18.9614 −0.833922
\(518\) 0.896622 0.0393953
\(519\) 20.4020 0.895547
\(520\) 0.694593 0.0304599
\(521\) 23.8033 1.04284 0.521422 0.853299i \(-0.325402\pi\)
0.521422 + 0.853299i \(0.325402\pi\)
\(522\) 8.35504 0.365690
\(523\) 3.26083 0.142586 0.0712931 0.997455i \(-0.477287\pi\)
0.0712931 + 0.997455i \(0.477287\pi\)
\(524\) 6.63041 0.289651
\(525\) 1.52259 0.0664514
\(526\) 9.88713 0.431099
\(527\) 0 0
\(528\) −1.41147 −0.0614265
\(529\) −5.95668 −0.258986
\(530\) 0.909415 0.0395025
\(531\) 3.26857 0.141844
\(532\) −0.398681 −0.0172850
\(533\) −25.1634 −1.08995
\(534\) −5.88713 −0.254761
\(535\) 1.44562 0.0624997
\(536\) 13.1480 0.567905
\(537\) −7.66550 −0.330791
\(538\) −17.8803 −0.770875
\(539\) 9.74867 0.419905
\(540\) 0.120615 0.00519043
\(541\) 0.340489 0.0146388 0.00731939 0.999973i \(-0.497670\pi\)
0.00731939 + 0.999973i \(0.497670\pi\)
\(542\) 18.3259 0.787167
\(543\) 7.67499 0.329365
\(544\) 0 0
\(545\) 0.916831 0.0392727
\(546\) −1.75877 −0.0752684
\(547\) −39.2181 −1.67685 −0.838423 0.545020i \(-0.816522\pi\)
−0.838423 + 0.545020i \(0.816522\pi\)
\(548\) −18.3405 −0.783467
\(549\) −14.9513 −0.638106
\(550\) 7.03684 0.300052
\(551\) 10.9067 0.464642
\(552\) 4.12836 0.175714
\(553\) 0.677681 0.0288179
\(554\) −14.5817 −0.619518
\(555\) −0.354103 −0.0150309
\(556\) −12.9067 −0.547367
\(557\) −12.6750 −0.537057 −0.268528 0.963272i \(-0.586537\pi\)
−0.268528 + 0.963272i \(0.586537\pi\)
\(558\) −5.61587 −0.237739
\(559\) 34.5526 1.46142
\(560\) −0.0368366 −0.00155663
\(561\) 0 0
\(562\) −16.8384 −0.710286
\(563\) 15.9855 0.673706 0.336853 0.941557i \(-0.390637\pi\)
0.336853 + 0.941557i \(0.390637\pi\)
\(564\) 13.4338 0.565663
\(565\) −2.31490 −0.0973887
\(566\) 30.3114 1.27408
\(567\) −0.305407 −0.0128259
\(568\) −8.36959 −0.351180
\(569\) −11.9864 −0.502495 −0.251248 0.967923i \(-0.580841\pi\)
−0.251248 + 0.967923i \(0.580841\pi\)
\(570\) 0.157451 0.00659491
\(571\) 24.3560 1.01927 0.509633 0.860392i \(-0.329781\pi\)
0.509633 + 0.860392i \(0.329781\pi\)
\(572\) −8.12836 −0.339864
\(573\) 21.0351 0.878753
\(574\) 1.33450 0.0557011
\(575\) −20.5817 −0.858317
\(576\) 1.00000 0.0416667
\(577\) −9.90673 −0.412422 −0.206211 0.978508i \(-0.566113\pi\)
−0.206211 + 0.978508i \(0.566113\pi\)
\(578\) 0 0
\(579\) −22.8016 −0.947602
\(580\) 1.00774 0.0418442
\(581\) 2.06418 0.0856365
\(582\) 1.08647 0.0450355
\(583\) −10.6423 −0.440758
\(584\) 7.37464 0.305165
\(585\) 0.694593 0.0287179
\(586\) −2.47472 −0.102230
\(587\) 18.6186 0.768470 0.384235 0.923235i \(-0.374465\pi\)
0.384235 + 0.923235i \(0.374465\pi\)
\(588\) −6.90673 −0.284829
\(589\) −7.33099 −0.302068
\(590\) 0.394238 0.0162305
\(591\) 1.15745 0.0476112
\(592\) −2.93582 −0.120662
\(593\) −18.8384 −0.773602 −0.386801 0.922163i \(-0.626420\pi\)
−0.386801 + 0.922163i \(0.626420\pi\)
\(594\) −1.41147 −0.0579135
\(595\) 0 0
\(596\) 7.49525 0.307017
\(597\) −7.39693 −0.302736
\(598\) 23.7743 0.972201
\(599\) 14.5270 0.593559 0.296779 0.954946i \(-0.404087\pi\)
0.296779 + 0.954946i \(0.404087\pi\)
\(600\) −4.98545 −0.203530
\(601\) −9.98545 −0.407315 −0.203658 0.979042i \(-0.565283\pi\)
−0.203658 + 0.979042i \(0.565283\pi\)
\(602\) −1.83244 −0.0746848
\(603\) 13.1480 0.535426
\(604\) −12.6040 −0.512850
\(605\) −1.08647 −0.0441711
\(606\) −10.2490 −0.416336
\(607\) −15.2618 −0.619456 −0.309728 0.950825i \(-0.600238\pi\)
−0.309728 + 0.950825i \(0.600238\pi\)
\(608\) 1.30541 0.0529413
\(609\) −2.55169 −0.103400
\(610\) −1.80335 −0.0730154
\(611\) 77.3620 3.12973
\(612\) 0 0
\(613\) 32.1985 1.30049 0.650243 0.759726i \(-0.274667\pi\)
0.650243 + 0.759726i \(0.274667\pi\)
\(614\) −18.4243 −0.743543
\(615\) −0.527036 −0.0212522
\(616\) 0.431074 0.0173685
\(617\) −6.82295 −0.274682 −0.137341 0.990524i \(-0.543856\pi\)
−0.137341 + 0.990524i \(0.543856\pi\)
\(618\) 1.16250 0.0467628
\(619\) 9.98639 0.401387 0.200693 0.979654i \(-0.435681\pi\)
0.200693 + 0.979654i \(0.435681\pi\)
\(620\) −0.677356 −0.0272033
\(621\) 4.12836 0.165665
\(622\) −21.5175 −0.862775
\(623\) 1.79797 0.0720342
\(624\) 5.75877 0.230535
\(625\) 24.7820 0.991280
\(626\) 26.5134 1.05969
\(627\) −1.84255 −0.0735843
\(628\) −16.2567 −0.648713
\(629\) 0 0
\(630\) −0.0368366 −0.00146761
\(631\) 48.0901 1.91444 0.957218 0.289367i \(-0.0934449\pi\)
0.957218 + 0.289367i \(0.0934449\pi\)
\(632\) −2.21894 −0.0882647
\(633\) −20.0155 −0.795544
\(634\) 12.8425 0.510043
\(635\) −0.686852 −0.0272569
\(636\) 7.53983 0.298974
\(637\) −39.7743 −1.57591
\(638\) −11.7929 −0.466886
\(639\) −8.36959 −0.331096
\(640\) 0.120615 0.00476772
\(641\) −38.5918 −1.52429 −0.762143 0.647409i \(-0.775853\pi\)
−0.762143 + 0.647409i \(0.775853\pi\)
\(642\) 11.9855 0.473028
\(643\) 32.3506 1.27578 0.637891 0.770126i \(-0.279807\pi\)
0.637891 + 0.770126i \(0.279807\pi\)
\(644\) −1.26083 −0.0496837
\(645\) 0.723689 0.0284952
\(646\) 0 0
\(647\) 10.9804 0.431684 0.215842 0.976428i \(-0.430750\pi\)
0.215842 + 0.976428i \(0.430750\pi\)
\(648\) 1.00000 0.0392837
\(649\) −4.61350 −0.181096
\(650\) −28.7101 −1.12610
\(651\) 1.71513 0.0672211
\(652\) −15.7588 −0.617161
\(653\) 5.34998 0.209361 0.104681 0.994506i \(-0.466618\pi\)
0.104681 + 0.994506i \(0.466618\pi\)
\(654\) 7.60132 0.297235
\(655\) 0.799726 0.0312479
\(656\) −4.36959 −0.170604
\(657\) 7.37464 0.287712
\(658\) −4.10277 −0.159943
\(659\) −12.9290 −0.503643 −0.251821 0.967774i \(-0.581030\pi\)
−0.251821 + 0.967774i \(0.581030\pi\)
\(660\) −0.170245 −0.00662676
\(661\) −12.3114 −0.478858 −0.239429 0.970914i \(-0.576960\pi\)
−0.239429 + 0.970914i \(0.576960\pi\)
\(662\) 26.4534 1.02814
\(663\) 0 0
\(664\) −6.75877 −0.262291
\(665\) −0.0480868 −0.00186473
\(666\) −2.93582 −0.113761
\(667\) 34.4926 1.33556
\(668\) 13.1925 0.510434
\(669\) −18.5202 −0.716033
\(670\) 1.58584 0.0612662
\(671\) 21.1034 0.814687
\(672\) −0.305407 −0.0117813
\(673\) −11.6459 −0.448916 −0.224458 0.974484i \(-0.572061\pi\)
−0.224458 + 0.974484i \(0.572061\pi\)
\(674\) 5.73917 0.221065
\(675\) −4.98545 −0.191890
\(676\) 20.1634 0.775517
\(677\) 19.3250 0.742720 0.371360 0.928489i \(-0.378892\pi\)
0.371360 + 0.928489i \(0.378892\pi\)
\(678\) −19.1925 −0.737085
\(679\) −0.331815 −0.0127339
\(680\) 0 0
\(681\) 26.1480 1.00199
\(682\) 7.92665 0.303527
\(683\) 34.0624 1.30336 0.651681 0.758493i \(-0.274064\pi\)
0.651681 + 0.758493i \(0.274064\pi\)
\(684\) 1.30541 0.0499135
\(685\) −2.21213 −0.0845213
\(686\) 4.24722 0.162159
\(687\) −2.93582 −0.112009
\(688\) 6.00000 0.228748
\(689\) 43.4201 1.65418
\(690\) 0.497941 0.0189563
\(691\) −26.9905 −1.02677 −0.513384 0.858159i \(-0.671608\pi\)
−0.513384 + 0.858159i \(0.671608\pi\)
\(692\) 20.4020 0.775567
\(693\) 0.431074 0.0163752
\(694\) −4.08141 −0.154928
\(695\) −1.55674 −0.0590506
\(696\) 8.35504 0.316697
\(697\) 0 0
\(698\) −7.34461 −0.277998
\(699\) −1.41828 −0.0536443
\(700\) 1.52259 0.0575486
\(701\) 47.7383 1.80305 0.901526 0.432724i \(-0.142448\pi\)
0.901526 + 0.432724i \(0.142448\pi\)
\(702\) 5.75877 0.217351
\(703\) −3.83244 −0.144543
\(704\) −1.41147 −0.0531969
\(705\) 1.62031 0.0610244
\(706\) 12.4243 0.467593
\(707\) 3.13011 0.117720
\(708\) 3.26857 0.122840
\(709\) 40.5580 1.52319 0.761594 0.648055i \(-0.224417\pi\)
0.761594 + 0.648055i \(0.224417\pi\)
\(710\) −1.00950 −0.0378857
\(711\) −2.21894 −0.0832168
\(712\) −5.88713 −0.220629
\(713\) −23.1843 −0.868259
\(714\) 0 0
\(715\) −0.980400 −0.0366649
\(716\) −7.66550 −0.286473
\(717\) −23.1634 −0.865054
\(718\) 6.93582 0.258843
\(719\) −2.63640 −0.0983212 −0.0491606 0.998791i \(-0.515655\pi\)
−0.0491606 + 0.998791i \(0.515655\pi\)
\(720\) 0.120615 0.00449505
\(721\) −0.355037 −0.0132223
\(722\) −17.2959 −0.643687
\(723\) 4.08141 0.151789
\(724\) 7.67499 0.285239
\(725\) −41.6536 −1.54698
\(726\) −9.00774 −0.334309
\(727\) −18.2645 −0.677391 −0.338696 0.940896i \(-0.609986\pi\)
−0.338696 + 0.940896i \(0.609986\pi\)
\(728\) −1.75877 −0.0651844
\(729\) 1.00000 0.0370370
\(730\) 0.889490 0.0329215
\(731\) 0 0
\(732\) −14.9513 −0.552616
\(733\) 11.4201 0.421813 0.210906 0.977506i \(-0.432358\pi\)
0.210906 + 0.977506i \(0.432358\pi\)
\(734\) −27.2294 −1.00505
\(735\) −0.833053 −0.0307276
\(736\) 4.12836 0.152173
\(737\) −18.5580 −0.683593
\(738\) −4.36959 −0.160847
\(739\) −6.95130 −0.255708 −0.127854 0.991793i \(-0.540809\pi\)
−0.127854 + 0.991793i \(0.540809\pi\)
\(740\) −0.354103 −0.0130171
\(741\) 7.51754 0.276164
\(742\) −2.30272 −0.0845355
\(743\) 36.4742 1.33811 0.669055 0.743213i \(-0.266699\pi\)
0.669055 + 0.743213i \(0.266699\pi\)
\(744\) −5.61587 −0.205888
\(745\) 0.904038 0.0331214
\(746\) −26.9668 −0.987324
\(747\) −6.75877 −0.247290
\(748\) 0 0
\(749\) −3.66044 −0.133750
\(750\) −1.20439 −0.0439782
\(751\) −7.22937 −0.263803 −0.131902 0.991263i \(-0.542108\pi\)
−0.131902 + 0.991263i \(0.542108\pi\)
\(752\) 13.4338 0.489879
\(753\) −14.8530 −0.541273
\(754\) 48.1147 1.75224
\(755\) −1.52023 −0.0553268
\(756\) −0.305407 −0.0111076
\(757\) −21.9608 −0.798179 −0.399089 0.916912i \(-0.630674\pi\)
−0.399089 + 0.916912i \(0.630674\pi\)
\(758\) −13.7297 −0.498684
\(759\) −5.82707 −0.211509
\(760\) 0.157451 0.00571136
\(761\) 40.3013 1.46092 0.730460 0.682955i \(-0.239306\pi\)
0.730460 + 0.682955i \(0.239306\pi\)
\(762\) −5.69459 −0.206293
\(763\) −2.32150 −0.0840439
\(764\) 21.0351 0.761023
\(765\) 0 0
\(766\) −28.6709 −1.03592
\(767\) 18.8229 0.679657
\(768\) 1.00000 0.0360844
\(769\) −29.6382 −1.06878 −0.534390 0.845238i \(-0.679458\pi\)
−0.534390 + 0.845238i \(0.679458\pi\)
\(770\) 0.0519939 0.00187373
\(771\) −4.00000 −0.144056
\(772\) −22.8016 −0.820647
\(773\) −50.0479 −1.80010 −0.900048 0.435790i \(-0.856469\pi\)
−0.900048 + 0.435790i \(0.856469\pi\)
\(774\) 6.00000 0.215666
\(775\) 27.9976 1.00570
\(776\) 1.08647 0.0390019
\(777\) 0.896622 0.0321661
\(778\) 1.77332 0.0635765
\(779\) −5.70409 −0.204370
\(780\) 0.694593 0.0248704
\(781\) 11.8135 0.422719
\(782\) 0 0
\(783\) 8.35504 0.298585
\(784\) −6.90673 −0.246669
\(785\) −1.96080 −0.0699839
\(786\) 6.63041 0.236499
\(787\) 44.8040 1.59709 0.798544 0.601936i \(-0.205604\pi\)
0.798544 + 0.601936i \(0.205604\pi\)
\(788\) 1.15745 0.0412325
\(789\) 9.88713 0.351991
\(790\) −0.267637 −0.00952210
\(791\) 5.86154 0.208412
\(792\) −1.41147 −0.0501545
\(793\) −86.1011 −3.05754
\(794\) −3.47296 −0.123251
\(795\) 0.909415 0.0322536
\(796\) −7.39693 −0.262177
\(797\) −50.1735 −1.77724 −0.888619 0.458646i \(-0.848335\pi\)
−0.888619 + 0.458646i \(0.848335\pi\)
\(798\) −0.398681 −0.0141132
\(799\) 0 0
\(800\) −4.98545 −0.176262
\(801\) −5.88713 −0.208011
\(802\) 10.7101 0.378186
\(803\) −10.4091 −0.367330
\(804\) 13.1480 0.463693
\(805\) −0.152075 −0.00535993
\(806\) −32.3405 −1.13915
\(807\) −17.8803 −0.629417
\(808\) −10.2490 −0.360558
\(809\) 51.3073 1.80387 0.901934 0.431874i \(-0.142148\pi\)
0.901934 + 0.431874i \(0.142148\pi\)
\(810\) 0.120615 0.00423797
\(811\) 28.3250 0.994626 0.497313 0.867571i \(-0.334320\pi\)
0.497313 + 0.867571i \(0.334320\pi\)
\(812\) −2.55169 −0.0895467
\(813\) 18.3259 0.642719
\(814\) 4.14384 0.145241
\(815\) −1.90074 −0.0665800
\(816\) 0 0
\(817\) 7.83244 0.274023
\(818\) 10.8999 0.381107
\(819\) −1.75877 −0.0614564
\(820\) −0.527036 −0.0184049
\(821\) 26.1985 0.914335 0.457167 0.889381i \(-0.348864\pi\)
0.457167 + 0.889381i \(0.348864\pi\)
\(822\) −18.3405 −0.639698
\(823\) 17.0865 0.595597 0.297798 0.954629i \(-0.403748\pi\)
0.297798 + 0.954629i \(0.403748\pi\)
\(824\) 1.16250 0.0404977
\(825\) 7.03684 0.244991
\(826\) −0.998245 −0.0347334
\(827\) 42.8907 1.49146 0.745729 0.666250i \(-0.232102\pi\)
0.745729 + 0.666250i \(0.232102\pi\)
\(828\) 4.12836 0.143470
\(829\) −36.4944 −1.26750 −0.633752 0.773536i \(-0.718486\pi\)
−0.633752 + 0.773536i \(0.718486\pi\)
\(830\) −0.815207 −0.0282963
\(831\) −14.5817 −0.505834
\(832\) 5.75877 0.199649
\(833\) 0 0
\(834\) −12.9067 −0.446923
\(835\) 1.59121 0.0550662
\(836\) −1.84255 −0.0637259
\(837\) −5.61587 −0.194113
\(838\) 28.7469 0.993046
\(839\) −15.4047 −0.531828 −0.265914 0.963997i \(-0.585674\pi\)
−0.265914 + 0.963997i \(0.585674\pi\)
\(840\) −0.0368366 −0.00127098
\(841\) 40.8066 1.40713
\(842\) −14.5972 −0.503053
\(843\) −16.8384 −0.579946
\(844\) −20.0155 −0.688961
\(845\) 2.43201 0.0836636
\(846\) 13.4338 0.461862
\(847\) 2.75103 0.0945265
\(848\) 7.53983 0.258919
\(849\) 30.3114 1.04028
\(850\) 0 0
\(851\) −12.1201 −0.415472
\(852\) −8.36959 −0.286737
\(853\) 26.1676 0.895960 0.447980 0.894044i \(-0.352144\pi\)
0.447980 + 0.894044i \(0.352144\pi\)
\(854\) 4.56624 0.156253
\(855\) 0.157451 0.00538472
\(856\) 11.9855 0.409654
\(857\) 29.8735 1.02046 0.510230 0.860038i \(-0.329560\pi\)
0.510230 + 0.860038i \(0.329560\pi\)
\(858\) −8.12836 −0.277497
\(859\) 40.7648 1.39088 0.695438 0.718586i \(-0.255210\pi\)
0.695438 + 0.718586i \(0.255210\pi\)
\(860\) 0.723689 0.0246776
\(861\) 1.33450 0.0454797
\(862\) 32.0547 1.09179
\(863\) 5.18716 0.176573 0.0882864 0.996095i \(-0.471861\pi\)
0.0882864 + 0.996095i \(0.471861\pi\)
\(864\) 1.00000 0.0340207
\(865\) 2.46078 0.0836690
\(866\) 7.84018 0.266420
\(867\) 0 0
\(868\) 1.71513 0.0582152
\(869\) 3.13198 0.106245
\(870\) 1.00774 0.0341656
\(871\) 75.7161 2.56554
\(872\) 7.60132 0.257413
\(873\) 1.08647 0.0367713
\(874\) 5.38919 0.182292
\(875\) 0.367830 0.0124349
\(876\) 7.37464 0.249166
\(877\) 25.8817 0.873965 0.436982 0.899470i \(-0.356047\pi\)
0.436982 + 0.899470i \(0.356047\pi\)
\(878\) −19.3500 −0.653030
\(879\) −2.47472 −0.0834702
\(880\) −0.170245 −0.00573894
\(881\) −41.6715 −1.40395 −0.701974 0.712203i \(-0.747698\pi\)
−0.701974 + 0.712203i \(0.747698\pi\)
\(882\) −6.90673 −0.232562
\(883\) −49.0215 −1.64970 −0.824852 0.565349i \(-0.808742\pi\)
−0.824852 + 0.565349i \(0.808742\pi\)
\(884\) 0 0
\(885\) 0.394238 0.0132522
\(886\) 25.1438 0.844724
\(887\) −49.5194 −1.66270 −0.831350 0.555750i \(-0.812431\pi\)
−0.831350 + 0.555750i \(0.812431\pi\)
\(888\) −2.93582 −0.0985197
\(889\) 1.73917 0.0583299
\(890\) −0.710074 −0.0238017
\(891\) −1.41147 −0.0472862
\(892\) −18.5202 −0.620103
\(893\) 17.5365 0.586838
\(894\) 7.49525 0.250679
\(895\) −0.924572 −0.0309050
\(896\) −0.305407 −0.0102029
\(897\) 23.7743 0.793799
\(898\) 14.3250 0.478032
\(899\) −46.9208 −1.56490
\(900\) −4.98545 −0.166182
\(901\) 0 0
\(902\) 6.16756 0.205357
\(903\) −1.83244 −0.0609799
\(904\) −19.1925 −0.638334
\(905\) 0.925717 0.0307719
\(906\) −12.6040 −0.418740
\(907\) 19.1189 0.634831 0.317416 0.948287i \(-0.397185\pi\)
0.317416 + 0.948287i \(0.397185\pi\)
\(908\) 26.1480 0.867750
\(909\) −10.2490 −0.339937
\(910\) −0.212134 −0.00703216
\(911\) −33.7606 −1.11854 −0.559270 0.828986i \(-0.688918\pi\)
−0.559270 + 0.828986i \(0.688918\pi\)
\(912\) 1.30541 0.0432264
\(913\) 9.53983 0.315722
\(914\) 24.8239 0.821101
\(915\) −1.80335 −0.0596168
\(916\) −2.93582 −0.0970023
\(917\) −2.02498 −0.0668706
\(918\) 0 0
\(919\) −13.9513 −0.460211 −0.230106 0.973166i \(-0.573907\pi\)
−0.230106 + 0.973166i \(0.573907\pi\)
\(920\) 0.497941 0.0164166
\(921\) −18.4243 −0.607100
\(922\) −21.2618 −0.700219
\(923\) −48.1985 −1.58647
\(924\) 0.431074 0.0141813
\(925\) 14.6364 0.481242
\(926\) −0.120615 −0.00396365
\(927\) 1.16250 0.0381816
\(928\) 8.35504 0.274268
\(929\) −39.8479 −1.30737 −0.653684 0.756768i \(-0.726777\pi\)
−0.653684 + 0.756768i \(0.726777\pi\)
\(930\) −0.677356 −0.0222114
\(931\) −9.01609 −0.295490
\(932\) −1.41828 −0.0464573
\(933\) −21.5175 −0.704453
\(934\) −10.5963 −0.346720
\(935\) 0 0
\(936\) 5.75877 0.188231
\(937\) 34.8907 1.13983 0.569916 0.821703i \(-0.306976\pi\)
0.569916 + 0.821703i \(0.306976\pi\)
\(938\) −4.01548 −0.131110
\(939\) 26.5134 0.865233
\(940\) 1.62031 0.0528487
\(941\) −21.2026 −0.691186 −0.345593 0.938384i \(-0.612322\pi\)
−0.345593 + 0.938384i \(0.612322\pi\)
\(942\) −16.2567 −0.529672
\(943\) −18.0392 −0.587437
\(944\) 3.26857 0.106383
\(945\) −0.0368366 −0.00119830
\(946\) −8.46884 −0.275346
\(947\) 43.2695 1.40607 0.703035 0.711155i \(-0.251828\pi\)
0.703035 + 0.711155i \(0.251828\pi\)
\(948\) −2.21894 −0.0720678
\(949\) 42.4688 1.37860
\(950\) −6.50805 −0.211149
\(951\) 12.8425 0.416448
\(952\) 0 0
\(953\) 37.6323 1.21903 0.609515 0.792775i \(-0.291364\pi\)
0.609515 + 0.792775i \(0.291364\pi\)
\(954\) 7.53983 0.244111
\(955\) 2.53714 0.0821000
\(956\) −23.1634 −0.749159
\(957\) −11.7929 −0.381211
\(958\) −21.6560 −0.699674
\(959\) 5.60132 0.180876
\(960\) 0.120615 0.00389282
\(961\) 0.537962 0.0173536
\(962\) −16.9067 −0.545095
\(963\) 11.9855 0.386226
\(964\) 4.08141 0.131453
\(965\) −2.75021 −0.0885323
\(966\) −1.26083 −0.0405665
\(967\) 2.56860 0.0826006 0.0413003 0.999147i \(-0.486850\pi\)
0.0413003 + 0.999147i \(0.486850\pi\)
\(968\) −9.00774 −0.289520
\(969\) 0 0
\(970\) 0.131044 0.00420757
\(971\) 39.9777 1.28295 0.641473 0.767146i \(-0.278324\pi\)
0.641473 + 0.767146i \(0.278324\pi\)
\(972\) 1.00000 0.0320750
\(973\) 3.94181 0.126369
\(974\) 10.4320 0.334263
\(975\) −28.7101 −0.919458
\(976\) −14.9513 −0.478580
\(977\) 57.4938 1.83939 0.919695 0.392633i \(-0.128436\pi\)
0.919695 + 0.392633i \(0.128436\pi\)
\(978\) −15.7588 −0.503910
\(979\) 8.30953 0.265574
\(980\) −0.833053 −0.0266109
\(981\) 7.60132 0.242691
\(982\) 7.43613 0.237296
\(983\) 51.6377 1.64699 0.823493 0.567327i \(-0.192022\pi\)
0.823493 + 0.567327i \(0.192022\pi\)
\(984\) −4.36959 −0.139297
\(985\) 0.139606 0.00444821
\(986\) 0 0
\(987\) −4.10277 −0.130593
\(988\) 7.51754 0.239165
\(989\) 24.7701 0.787644
\(990\) −0.170245 −0.00541073
\(991\) 47.5972 1.51197 0.755987 0.654586i \(-0.227157\pi\)
0.755987 + 0.654586i \(0.227157\pi\)
\(992\) −5.61587 −0.178304
\(993\) 26.4534 0.839472
\(994\) 2.55613 0.0810756
\(995\) −0.892178 −0.0282840
\(996\) −6.75877 −0.214160
\(997\) −1.38919 −0.0439959 −0.0219980 0.999758i \(-0.507003\pi\)
−0.0219980 + 0.999758i \(0.507003\pi\)
\(998\) −3.47296 −0.109935
\(999\) −2.93582 −0.0928853
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1734.2.a.s.1.1 yes 3
3.2 odd 2 5202.2.a.bf.1.3 3
17.2 even 8 1734.2.f.o.1483.6 12
17.4 even 4 1734.2.b.i.577.3 6
17.8 even 8 1734.2.f.o.829.1 12
17.9 even 8 1734.2.f.o.829.6 12
17.13 even 4 1734.2.b.i.577.4 6
17.15 even 8 1734.2.f.o.1483.1 12
17.16 even 2 1734.2.a.r.1.3 3
51.50 odd 2 5202.2.a.bk.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1734.2.a.r.1.3 3 17.16 even 2
1734.2.a.s.1.1 yes 3 1.1 even 1 trivial
1734.2.b.i.577.3 6 17.4 even 4
1734.2.b.i.577.4 6 17.13 even 4
1734.2.f.o.829.1 12 17.8 even 8
1734.2.f.o.829.6 12 17.9 even 8
1734.2.f.o.1483.1 12 17.15 even 8
1734.2.f.o.1483.6 12 17.2 even 8
5202.2.a.bf.1.3 3 3.2 odd 2
5202.2.a.bk.1.1 3 51.50 odd 2