Properties

Label 1734.2.a.s.1.1
Level 17341734
Weight 22
Character 1734.1
Self dual yes
Analytic conductor 13.84613.846
Analytic rank 00
Dimension 33
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1734,2,Mod(1,1734)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1734, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1734.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1734=23172 1734 = 2 \cdot 3 \cdot 17^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1734.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 13.846059710513.8460597105
Analytic rank: 00
Dimension: 33
Coefficient field: Q(ζ18)+\Q(\zeta_{18})^+
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x33x1 x^{3} - 3x - 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.1
Root 1.879391.87939 of defining polynomial
Character χ\chi == 1734.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+1.00000q2+1.00000q3+1.00000q4+0.120615q5+1.00000q60.305407q7+1.00000q8+1.00000q9+0.120615q101.41147q11+1.00000q12+5.75877q130.305407q14+0.120615q15+1.00000q16+1.00000q18+1.30541q19+0.120615q200.305407q211.41147q22+4.12836q23+1.00000q244.98545q25+5.75877q26+1.00000q270.305407q28+8.35504q29+0.120615q305.61587q31+1.00000q321.41147q330.0368366q35+1.00000q362.93582q37+1.30541q38+5.75877q39+0.120615q404.36959q410.305407q42+6.00000q431.41147q44+0.120615q45+4.12836q46+13.4338q47+1.00000q486.90673q494.98545q50+5.75877q52+7.53983q53+1.00000q540.170245q550.305407q56+1.30541q57+8.35504q58+3.26857q59+0.120615q6014.9513q615.61587q620.305407q63+1.00000q64+0.694593q651.41147q66+13.1480q67+4.12836q690.0368366q708.36959q71+1.00000q72+7.37464q732.93582q744.98545q75+1.30541q76+0.431074q77+5.75877q782.21894q79+0.120615q80+1.00000q814.36959q826.75877q830.305407q84+6.00000q86+8.35504q871.41147q885.88713q89+0.120615q901.75877q91+4.12836q925.61587q93+13.4338q94+0.157451q95+1.00000q96+1.08647q976.90673q981.41147q99+O(q100)q+1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} +0.120615 q^{5} +1.00000 q^{6} -0.305407 q^{7} +1.00000 q^{8} +1.00000 q^{9} +0.120615 q^{10} -1.41147 q^{11} +1.00000 q^{12} +5.75877 q^{13} -0.305407 q^{14} +0.120615 q^{15} +1.00000 q^{16} +1.00000 q^{18} +1.30541 q^{19} +0.120615 q^{20} -0.305407 q^{21} -1.41147 q^{22} +4.12836 q^{23} +1.00000 q^{24} -4.98545 q^{25} +5.75877 q^{26} +1.00000 q^{27} -0.305407 q^{28} +8.35504 q^{29} +0.120615 q^{30} -5.61587 q^{31} +1.00000 q^{32} -1.41147 q^{33} -0.0368366 q^{35} +1.00000 q^{36} -2.93582 q^{37} +1.30541 q^{38} +5.75877 q^{39} +0.120615 q^{40} -4.36959 q^{41} -0.305407 q^{42} +6.00000 q^{43} -1.41147 q^{44} +0.120615 q^{45} +4.12836 q^{46} +13.4338 q^{47} +1.00000 q^{48} -6.90673 q^{49} -4.98545 q^{50} +5.75877 q^{52} +7.53983 q^{53} +1.00000 q^{54} -0.170245 q^{55} -0.305407 q^{56} +1.30541 q^{57} +8.35504 q^{58} +3.26857 q^{59} +0.120615 q^{60} -14.9513 q^{61} -5.61587 q^{62} -0.305407 q^{63} +1.00000 q^{64} +0.694593 q^{65} -1.41147 q^{66} +13.1480 q^{67} +4.12836 q^{69} -0.0368366 q^{70} -8.36959 q^{71} +1.00000 q^{72} +7.37464 q^{73} -2.93582 q^{74} -4.98545 q^{75} +1.30541 q^{76} +0.431074 q^{77} +5.75877 q^{78} -2.21894 q^{79} +0.120615 q^{80} +1.00000 q^{81} -4.36959 q^{82} -6.75877 q^{83} -0.305407 q^{84} +6.00000 q^{86} +8.35504 q^{87} -1.41147 q^{88} -5.88713 q^{89} +0.120615 q^{90} -1.75877 q^{91} +4.12836 q^{92} -5.61587 q^{93} +13.4338 q^{94} +0.157451 q^{95} +1.00000 q^{96} +1.08647 q^{97} -6.90673 q^{98} -1.41147 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 3q+3q2+3q3+3q4+6q5+3q63q7+3q8+3q9+6q10+6q11+3q12+6q133q14+6q15+3q16+3q18+6q19+6q203q21++6q99+O(q100) 3 q + 3 q^{2} + 3 q^{3} + 3 q^{4} + 6 q^{5} + 3 q^{6} - 3 q^{7} + 3 q^{8} + 3 q^{9} + 6 q^{10} + 6 q^{11} + 3 q^{12} + 6 q^{13} - 3 q^{14} + 6 q^{15} + 3 q^{16} + 3 q^{18} + 6 q^{19} + 6 q^{20} - 3 q^{21}+ \cdots + 6 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 1.00000 0.707107
33 1.00000 0.577350
44 1.00000 0.500000
55 0.120615 0.0539406 0.0269703 0.999636i 0.491414π-0.491414\pi
0.0269703 + 0.999636i 0.491414π0.491414\pi
66 1.00000 0.408248
77 −0.305407 −0.115433 −0.0577166 0.998333i 0.518382π-0.518382\pi
−0.0577166 + 0.998333i 0.518382π0.518382\pi
88 1.00000 0.353553
99 1.00000 0.333333
1010 0.120615 0.0381417
1111 −1.41147 −0.425575 −0.212788 0.977098i 0.568254π-0.568254\pi
−0.212788 + 0.977098i 0.568254π0.568254\pi
1212 1.00000 0.288675
1313 5.75877 1.59720 0.798598 0.601865i 0.205576π-0.205576\pi
0.798598 + 0.601865i 0.205576π0.205576\pi
1414 −0.305407 −0.0816235
1515 0.120615 0.0311426
1616 1.00000 0.250000
1717 0 0
1818 1.00000 0.235702
1919 1.30541 0.299481 0.149740 0.988725i 0.452156π-0.452156\pi
0.149740 + 0.988725i 0.452156π0.452156\pi
2020 0.120615 0.0269703
2121 −0.305407 −0.0666453
2222 −1.41147 −0.300927
2323 4.12836 0.860822 0.430411 0.902633i 0.358369π-0.358369\pi
0.430411 + 0.902633i 0.358369π0.358369\pi
2424 1.00000 0.204124
2525 −4.98545 −0.997090
2626 5.75877 1.12939
2727 1.00000 0.192450
2828 −0.305407 −0.0577166
2929 8.35504 1.55149 0.775746 0.631046i 0.217374π-0.217374\pi
0.775746 + 0.631046i 0.217374π0.217374\pi
3030 0.120615 0.0220211
3131 −5.61587 −1.00864 −0.504320 0.863517i 0.668257π-0.668257\pi
−0.504320 + 0.863517i 0.668257π0.668257\pi
3232 1.00000 0.176777
3333 −1.41147 −0.245706
3434 0 0
3535 −0.0368366 −0.00622653
3636 1.00000 0.166667
3737 −2.93582 −0.482646 −0.241323 0.970445i 0.577581π-0.577581\pi
−0.241323 + 0.970445i 0.577581π0.577581\pi
3838 1.30541 0.211765
3939 5.75877 0.922141
4040 0.120615 0.0190709
4141 −4.36959 −0.682415 −0.341207 0.939988i 0.610836π-0.610836\pi
−0.341207 + 0.939988i 0.610836π0.610836\pi
4242 −0.305407 −0.0471254
4343 6.00000 0.914991 0.457496 0.889212i 0.348747π-0.348747\pi
0.457496 + 0.889212i 0.348747π0.348747\pi
4444 −1.41147 −0.212788
4545 0.120615 0.0179802
4646 4.12836 0.608693
4747 13.4338 1.95952 0.979758 0.200186i 0.0641547π-0.0641547\pi
0.979758 + 0.200186i 0.0641547π0.0641547\pi
4848 1.00000 0.144338
4949 −6.90673 −0.986675
5050 −4.98545 −0.705049
5151 0 0
5252 5.75877 0.798598
5353 7.53983 1.03568 0.517838 0.855479i 0.326737π-0.326737\pi
0.517838 + 0.855479i 0.326737π0.326737\pi
5454 1.00000 0.136083
5555 −0.170245 −0.0229558
5656 −0.305407 −0.0408118
5757 1.30541 0.172905
5858 8.35504 1.09707
5959 3.26857 0.425532 0.212766 0.977103i 0.431753π-0.431753\pi
0.212766 + 0.977103i 0.431753π0.431753\pi
6060 0.120615 0.0155713
6161 −14.9513 −1.91432 −0.957159 0.289562i 0.906490π-0.906490\pi
−0.957159 + 0.289562i 0.906490π0.906490\pi
6262 −5.61587 −0.713216
6363 −0.305407 −0.0384777
6464 1.00000 0.125000
6565 0.694593 0.0861536
6666 −1.41147 −0.173740
6767 13.1480 1.60628 0.803139 0.595791i 0.203161π-0.203161\pi
0.803139 + 0.595791i 0.203161π0.203161\pi
6868 0 0
6969 4.12836 0.496996
7070 −0.0368366 −0.00440282
7171 −8.36959 −0.993287 −0.496644 0.867955i 0.665434π-0.665434\pi
−0.496644 + 0.867955i 0.665434π0.665434\pi
7272 1.00000 0.117851
7373 7.37464 0.863136 0.431568 0.902080i 0.357960π-0.357960\pi
0.431568 + 0.902080i 0.357960π0.357960\pi
7474 −2.93582 −0.341282
7575 −4.98545 −0.575670
7676 1.30541 0.149740
7777 0.431074 0.0491255
7878 5.75877 0.652052
7979 −2.21894 −0.249650 −0.124825 0.992179i 0.539837π-0.539837\pi
−0.124825 + 0.992179i 0.539837π0.539837\pi
8080 0.120615 0.0134851
8181 1.00000 0.111111
8282 −4.36959 −0.482540
8383 −6.75877 −0.741871 −0.370936 0.928659i 0.620963π-0.620963\pi
−0.370936 + 0.928659i 0.620963π0.620963\pi
8484 −0.305407 −0.0333227
8585 0 0
8686 6.00000 0.646997
8787 8.35504 0.895754
8888 −1.41147 −0.150464
8989 −5.88713 −0.624034 −0.312017 0.950077i 0.601005π-0.601005\pi
−0.312017 + 0.950077i 0.601005π0.601005\pi
9090 0.120615 0.0127139
9191 −1.75877 −0.184369
9292 4.12836 0.430411
9393 −5.61587 −0.582338
9494 13.4338 1.38559
9595 0.157451 0.0161542
9696 1.00000 0.102062
9797 1.08647 0.110314 0.0551570 0.998478i 0.482434π-0.482434\pi
0.0551570 + 0.998478i 0.482434π0.482434\pi
9898 −6.90673 −0.697685
9999 −1.41147 −0.141858
100100 −4.98545 −0.498545
101101 −10.2490 −1.01981 −0.509905 0.860231i 0.670320π-0.670320\pi
−0.509905 + 0.860231i 0.670320π0.670320\pi
102102 0 0
103103 1.16250 0.114545 0.0572725 0.998359i 0.481760π-0.481760\pi
0.0572725 + 0.998359i 0.481760π0.481760\pi
104104 5.75877 0.564694
105105 −0.0368366 −0.00359489
106106 7.53983 0.732333
107107 11.9855 1.15868 0.579339 0.815087i 0.303311π-0.303311\pi
0.579339 + 0.815087i 0.303311π0.303311\pi
108108 1.00000 0.0962250
109109 7.60132 0.728074 0.364037 0.931384i 0.381398π-0.381398\pi
0.364037 + 0.931384i 0.381398π0.381398\pi
110110 −0.170245 −0.0162322
111111 −2.93582 −0.278656
112112 −0.305407 −0.0288583
113113 −19.1925 −1.80548 −0.902741 0.430185i 0.858448π-0.858448\pi
−0.902741 + 0.430185i 0.858448π0.858448\pi
114114 1.30541 0.122263
115115 0.497941 0.0464332
116116 8.35504 0.775746
117117 5.75877 0.532399
118118 3.26857 0.300896
119119 0 0
120120 0.120615 0.0110106
121121 −9.00774 −0.818886
122122 −14.9513 −1.35363
123123 −4.36959 −0.393992
124124 −5.61587 −0.504320
125125 −1.20439 −0.107724
126126 −0.305407 −0.0272078
127127 −5.69459 −0.505313 −0.252657 0.967556i 0.581304π-0.581304\pi
−0.252657 + 0.967556i 0.581304π0.581304\pi
128128 1.00000 0.0883883
129129 6.00000 0.528271
130130 0.694593 0.0609198
131131 6.63041 0.579302 0.289651 0.957132i 0.406461π-0.406461\pi
0.289651 + 0.957132i 0.406461π0.406461\pi
132132 −1.41147 −0.122853
133133 −0.398681 −0.0345700
134134 13.1480 1.13581
135135 0.120615 0.0103809
136136 0 0
137137 −18.3405 −1.56693 −0.783467 0.621434i 0.786551π-0.786551\pi
−0.783467 + 0.621434i 0.786551π0.786551\pi
138138 4.12836 0.351429
139139 −12.9067 −1.09473 −0.547367 0.836893i 0.684370π-0.684370\pi
−0.547367 + 0.836893i 0.684370π0.684370\pi
140140 −0.0368366 −0.00311326
141141 13.4338 1.13133
142142 −8.36959 −0.702360
143143 −8.12836 −0.679727
144144 1.00000 0.0833333
145145 1.00774 0.0836883
146146 7.37464 0.610329
147147 −6.90673 −0.569657
148148 −2.93582 −0.241323
149149 7.49525 0.614035 0.307017 0.951704i 0.400669π-0.400669\pi
0.307017 + 0.951704i 0.400669π0.400669\pi
150150 −4.98545 −0.407060
151151 −12.6040 −1.02570 −0.512850 0.858478i 0.671410π-0.671410\pi
−0.512850 + 0.858478i 0.671410π0.671410\pi
152152 1.30541 0.105883
153153 0 0
154154 0.431074 0.0347370
155155 −0.677356 −0.0544066
156156 5.75877 0.461071
157157 −16.2567 −1.29743 −0.648713 0.761033i 0.724693π-0.724693\pi
−0.648713 + 0.761033i 0.724693π0.724693\pi
158158 −2.21894 −0.176529
159159 7.53983 0.597947
160160 0.120615 0.00953543
161161 −1.26083 −0.0993673
162162 1.00000 0.0785674
163163 −15.7588 −1.23432 −0.617161 0.786837i 0.711717π-0.711717\pi
−0.617161 + 0.786837i 0.711717π0.711717\pi
164164 −4.36959 −0.341207
165165 −0.170245 −0.0132535
166166 −6.75877 −0.524582
167167 13.1925 1.02087 0.510434 0.859917i 0.329485π-0.329485\pi
0.510434 + 0.859917i 0.329485π0.329485\pi
168168 −0.305407 −0.0235627
169169 20.1634 1.55103
170170 0 0
171171 1.30541 0.0998270
172172 6.00000 0.457496
173173 20.4020 1.55113 0.775567 0.631265i 0.217464π-0.217464\pi
0.775567 + 0.631265i 0.217464π0.217464\pi
174174 8.35504 0.633394
175175 1.52259 0.115097
176176 −1.41147 −0.106394
177177 3.26857 0.245681
178178 −5.88713 −0.441259
179179 −7.66550 −0.572946 −0.286473 0.958088i 0.592483π-0.592483\pi
−0.286473 + 0.958088i 0.592483π0.592483\pi
180180 0.120615 0.00899009
181181 7.67499 0.570478 0.285239 0.958456i 0.407927π-0.407927\pi
0.285239 + 0.958456i 0.407927π0.407927\pi
182182 −1.75877 −0.130369
183183 −14.9513 −1.10523
184184 4.12836 0.304346
185185 −0.354103 −0.0260342
186186 −5.61587 −0.411775
187187 0 0
188188 13.4338 0.979758
189189 −0.305407 −0.0222151
190190 0.157451 0.0114227
191191 21.0351 1.52205 0.761023 0.648725i 0.224698π-0.224698\pi
0.761023 + 0.648725i 0.224698π0.224698\pi
192192 1.00000 0.0721688
193193 −22.8016 −1.64129 −0.820647 0.571435i 0.806387π-0.806387\pi
−0.820647 + 0.571435i 0.806387π0.806387\pi
194194 1.08647 0.0780037
195195 0.694593 0.0497408
196196 −6.90673 −0.493338
197197 1.15745 0.0824650 0.0412325 0.999150i 0.486872π-0.486872\pi
0.0412325 + 0.999150i 0.486872π0.486872\pi
198198 −1.41147 −0.100309
199199 −7.39693 −0.524354 −0.262177 0.965020i 0.584440π-0.584440\pi
−0.262177 + 0.965020i 0.584440π0.584440\pi
200200 −4.98545 −0.352525
201201 13.1480 0.927385
202202 −10.2490 −0.721115
203203 −2.55169 −0.179093
204204 0 0
205205 −0.527036 −0.0368098
206206 1.16250 0.0809955
207207 4.12836 0.286941
208208 5.75877 0.399299
209209 −1.84255 −0.127452
210210 −0.0368366 −0.00254197
211211 −20.0155 −1.37792 −0.688961 0.724798i 0.741933π-0.741933\pi
−0.688961 + 0.724798i 0.741933π0.741933\pi
212212 7.53983 0.517838
213213 −8.36959 −0.573475
214214 11.9855 0.819309
215215 0.723689 0.0493551
216216 1.00000 0.0680414
217217 1.71513 0.116430
218218 7.60132 0.514826
219219 7.37464 0.498332
220220 −0.170245 −0.0114779
221221 0 0
222222 −2.93582 −0.197039
223223 −18.5202 −1.24021 −0.620103 0.784520i 0.712909π-0.712909\pi
−0.620103 + 0.784520i 0.712909π0.712909\pi
224224 −0.305407 −0.0204059
225225 −4.98545 −0.332363
226226 −19.1925 −1.27667
227227 26.1480 1.73550 0.867750 0.497000i 0.165565π-0.165565\pi
0.867750 + 0.497000i 0.165565π0.165565\pi
228228 1.30541 0.0864527
229229 −2.93582 −0.194005 −0.0970023 0.995284i 0.530925π-0.530925\pi
−0.0970023 + 0.995284i 0.530925π0.530925\pi
230230 0.497941 0.0328332
231231 0.431074 0.0283626
232232 8.35504 0.548535
233233 −1.41828 −0.0929147 −0.0464573 0.998920i 0.514793π-0.514793\pi
−0.0464573 + 0.998920i 0.514793π0.514793\pi
234234 5.75877 0.376463
235235 1.62031 0.105697
236236 3.26857 0.212766
237237 −2.21894 −0.144136
238238 0 0
239239 −23.1634 −1.49832 −0.749159 0.662390i 0.769542π-0.769542\pi
−0.749159 + 0.662390i 0.769542π0.769542\pi
240240 0.120615 0.00778565
241241 4.08141 0.262907 0.131453 0.991322i 0.458036π-0.458036\pi
0.131453 + 0.991322i 0.458036π0.458036\pi
242242 −9.00774 −0.579040
243243 1.00000 0.0641500
244244 −14.9513 −0.957159
245245 −0.833053 −0.0532218
246246 −4.36959 −0.278595
247247 7.51754 0.478330
248248 −5.61587 −0.356608
249249 −6.75877 −0.428320
250250 −1.20439 −0.0761725
251251 −14.8530 −0.937512 −0.468756 0.883328i 0.655298π-0.655298\pi
−0.468756 + 0.883328i 0.655298π0.655298\pi
252252 −0.305407 −0.0192389
253253 −5.82707 −0.366345
254254 −5.69459 −0.357311
255255 0 0
256256 1.00000 0.0625000
257257 −4.00000 −0.249513 −0.124757 0.992187i 0.539815π-0.539815\pi
−0.124757 + 0.992187i 0.539815π0.539815\pi
258258 6.00000 0.373544
259259 0.896622 0.0557133
260260 0.694593 0.0430768
261261 8.35504 0.517164
262262 6.63041 0.409628
263263 9.88713 0.609666 0.304833 0.952406i 0.401399π-0.401399\pi
0.304833 + 0.952406i 0.401399π0.401399\pi
264264 −1.41147 −0.0868702
265265 0.909415 0.0558649
266266 −0.398681 −0.0244447
267267 −5.88713 −0.360286
268268 13.1480 0.803139
269269 −17.8803 −1.09018 −0.545091 0.838377i 0.683505π-0.683505\pi
−0.545091 + 0.838377i 0.683505π0.683505\pi
270270 0.120615 0.00734038
271271 18.3259 1.11322 0.556611 0.830773i 0.312101π-0.312101\pi
0.556611 + 0.830773i 0.312101π0.312101\pi
272272 0 0
273273 −1.75877 −0.106446
274274 −18.3405 −1.10799
275275 7.03684 0.424337
276276 4.12836 0.248498
277277 −14.5817 −0.876131 −0.438065 0.898943i 0.644336π-0.644336\pi
−0.438065 + 0.898943i 0.644336π0.644336\pi
278278 −12.9067 −0.774094
279279 −5.61587 −0.336213
280280 −0.0368366 −0.00220141
281281 −16.8384 −1.00450 −0.502248 0.864723i 0.667494π-0.667494\pi
−0.502248 + 0.864723i 0.667494π0.667494\pi
282282 13.4338 0.799969
283283 30.3114 1.80183 0.900913 0.434000i 0.142898π-0.142898\pi
0.900913 + 0.434000i 0.142898π0.142898\pi
284284 −8.36959 −0.496644
285285 0.157451 0.00932662
286286 −8.12836 −0.480640
287287 1.33450 0.0787732
288288 1.00000 0.0589256
289289 0 0
290290 1.00774 0.0591766
291291 1.08647 0.0636898
292292 7.37464 0.431568
293293 −2.47472 −0.144575 −0.0722873 0.997384i 0.523030π-0.523030\pi
−0.0722873 + 0.997384i 0.523030π0.523030\pi
294294 −6.90673 −0.402808
295295 0.394238 0.0229534
296296 −2.93582 −0.170641
297297 −1.41147 −0.0819020
298298 7.49525 0.434188
299299 23.7743 1.37490
300300 −4.98545 −0.287835
301301 −1.83244 −0.105620
302302 −12.6040 −0.725279
303303 −10.2490 −0.588788
304304 1.30541 0.0748702
305305 −1.80335 −0.103259
306306 0 0
307307 −18.4243 −1.05153 −0.525764 0.850630i 0.676221π-0.676221\pi
−0.525764 + 0.850630i 0.676221π0.676221\pi
308308 0.431074 0.0245627
309309 1.16250 0.0661325
310310 −0.677356 −0.0384713
311311 −21.5175 −1.22015 −0.610074 0.792345i 0.708860π-0.708860\pi
−0.610074 + 0.792345i 0.708860π0.708860\pi
312312 5.75877 0.326026
313313 26.5134 1.49863 0.749314 0.662215i 0.230384π-0.230384\pi
0.749314 + 0.662215i 0.230384π0.230384\pi
314314 −16.2567 −0.917419
315315 −0.0368366 −0.00207551
316316 −2.21894 −0.124825
317317 12.8425 0.721309 0.360655 0.932699i 0.382553π-0.382553\pi
0.360655 + 0.932699i 0.382553π0.382553\pi
318318 7.53983 0.422813
319319 −11.7929 −0.660277
320320 0.120615 0.00674257
321321 11.9855 0.668963
322322 −1.26083 −0.0702633
323323 0 0
324324 1.00000 0.0555556
325325 −28.7101 −1.59255
326326 −15.7588 −0.872798
327327 7.60132 0.420354
328328 −4.36959 −0.241270
329329 −4.10277 −0.226193
330330 −0.170245 −0.00937166
331331 26.4534 1.45401 0.727004 0.686633i 0.240912π-0.240912\pi
0.727004 + 0.686633i 0.240912π0.240912\pi
332332 −6.75877 −0.370936
333333 −2.93582 −0.160882
334334 13.1925 0.721863
335335 1.58584 0.0866436
336336 −0.305407 −0.0166613
337337 5.73917 0.312633 0.156316 0.987707i 0.450038π-0.450038\pi
0.156316 + 0.987707i 0.450038π0.450038\pi
338338 20.1634 1.09675
339339 −19.1925 −1.04240
340340 0 0
341341 7.92665 0.429252
342342 1.30541 0.0705883
343343 4.24722 0.229328
344344 6.00000 0.323498
345345 0.497941 0.0268082
346346 20.4020 1.09682
347347 −4.08141 −0.219102 −0.109551 0.993981i 0.534941π-0.534941\pi
−0.109551 + 0.993981i 0.534941π0.534941\pi
348348 8.35504 0.447877
349349 −7.34461 −0.393148 −0.196574 0.980489i 0.562982π-0.562982\pi
−0.196574 + 0.980489i 0.562982π0.562982\pi
350350 1.52259 0.0813860
351351 5.75877 0.307380
352352 −1.41147 −0.0752318
353353 12.4243 0.661277 0.330639 0.943757i 0.392736π-0.392736\pi
0.330639 + 0.943757i 0.392736π0.392736\pi
354354 3.26857 0.173723
355355 −1.00950 −0.0535785
356356 −5.88713 −0.312017
357357 0 0
358358 −7.66550 −0.405134
359359 6.93582 0.366059 0.183029 0.983107i 0.441410π-0.441410\pi
0.183029 + 0.983107i 0.441410π0.441410\pi
360360 0.120615 0.00635696
361361 −17.2959 −0.910311
362362 7.67499 0.403389
363363 −9.00774 −0.472784
364364 −1.75877 −0.0921846
365365 0.889490 0.0465580
366366 −14.9513 −0.781517
367367 −27.2294 −1.42136 −0.710681 0.703515i 0.751613π-0.751613\pi
−0.710681 + 0.703515i 0.751613π0.751613\pi
368368 4.12836 0.215205
369369 −4.36959 −0.227472
370370 −0.354103 −0.0184090
371371 −2.30272 −0.119551
372372 −5.61587 −0.291169
373373 −26.9668 −1.39629 −0.698144 0.715958i 0.745990π-0.745990\pi
−0.698144 + 0.715958i 0.745990π0.745990\pi
374374 0 0
375375 −1.20439 −0.0621946
376376 13.4338 0.692793
377377 48.1147 2.47804
378378 −0.305407 −0.0157085
379379 −13.7297 −0.705246 −0.352623 0.935765i 0.614710π-0.614710\pi
−0.352623 + 0.935765i 0.614710π0.614710\pi
380380 0.157451 0.00807709
381381 −5.69459 −0.291743
382382 21.0351 1.07625
383383 −28.6709 −1.46501 −0.732507 0.680760i 0.761650π-0.761650\pi
−0.732507 + 0.680760i 0.761650π0.761650\pi
384384 1.00000 0.0510310
385385 0.0519939 0.00264986
386386 −22.8016 −1.16057
387387 6.00000 0.304997
388388 1.08647 0.0551570
389389 1.77332 0.0899108 0.0449554 0.998989i 0.485685π-0.485685\pi
0.0449554 + 0.998989i 0.485685π0.485685\pi
390390 0.694593 0.0351721
391391 0 0
392392 −6.90673 −0.348842
393393 6.63041 0.334460
394394 1.15745 0.0583116
395395 −0.267637 −0.0134663
396396 −1.41147 −0.0709292
397397 −3.47296 −0.174303 −0.0871515 0.996195i 0.527776π-0.527776\pi
−0.0871515 + 0.996195i 0.527776π0.527776\pi
398398 −7.39693 −0.370774
399399 −0.398681 −0.0199590
400400 −4.98545 −0.249273
401401 10.7101 0.534836 0.267418 0.963581i 0.413830π-0.413830\pi
0.267418 + 0.963581i 0.413830π0.413830\pi
402402 13.1480 0.655760
403403 −32.3405 −1.61099
404404 −10.2490 −0.509905
405405 0.120615 0.00599340
406406 −2.55169 −0.126638
407407 4.14384 0.205402
408408 0 0
409409 10.8999 0.538966 0.269483 0.963005i 0.413147π-0.413147\pi
0.269483 + 0.963005i 0.413147π0.413147\pi
410410 −0.527036 −0.0260285
411411 −18.3405 −0.904670
412412 1.16250 0.0572725
413413 −0.998245 −0.0491204
414414 4.12836 0.202898
415415 −0.815207 −0.0400170
416416 5.75877 0.282347
417417 −12.9067 −0.632045
418418 −1.84255 −0.0901220
419419 28.7469 1.40438 0.702189 0.711990i 0.252206π-0.252206\pi
0.702189 + 0.711990i 0.252206π0.252206\pi
420420 −0.0368366 −0.00179744
421421 −14.5972 −0.711424 −0.355712 0.934596i 0.615762π-0.615762\pi
−0.355712 + 0.934596i 0.615762π0.615762\pi
422422 −20.0155 −0.974338
423423 13.4338 0.653172
424424 7.53983 0.366166
425425 0 0
426426 −8.36959 −0.405508
427427 4.56624 0.220976
428428 11.9855 0.579339
429429 −8.12836 −0.392441
430430 0.723689 0.0348994
431431 32.0547 1.54402 0.772010 0.635611i 0.219252π-0.219252\pi
0.772010 + 0.635611i 0.219252π0.219252\pi
432432 1.00000 0.0481125
433433 7.84018 0.376775 0.188388 0.982095i 0.439674π-0.439674\pi
0.188388 + 0.982095i 0.439674π0.439674\pi
434434 1.71513 0.0823287
435435 1.00774 0.0483175
436436 7.60132 0.364037
437437 5.38919 0.257800
438438 7.37464 0.352374
439439 −19.3500 −0.923524 −0.461762 0.887004i 0.652783π-0.652783\pi
−0.461762 + 0.887004i 0.652783π0.652783\pi
440440 −0.170245 −0.00811609
441441 −6.90673 −0.328892
442442 0 0
443443 25.1438 1.19462 0.597310 0.802011i 0.296236π-0.296236\pi
0.597310 + 0.802011i 0.296236π0.296236\pi
444444 −2.93582 −0.139328
445445 −0.710074 −0.0336607
446446 −18.5202 −0.876958
447447 7.49525 0.354513
448448 −0.305407 −0.0144291
449449 14.3250 0.676039 0.338019 0.941139i 0.390243π-0.390243\pi
0.338019 + 0.941139i 0.390243π0.390243\pi
450450 −4.98545 −0.235016
451451 6.16756 0.290419
452452 −19.1925 −0.902741
453453 −12.6040 −0.592188
454454 26.1480 1.22718
455455 −0.212134 −0.00994498
456456 1.30541 0.0611313
457457 24.8239 1.16121 0.580606 0.814185i 0.302816π-0.302816\pi
0.580606 + 0.814185i 0.302816π0.302816\pi
458458 −2.93582 −0.137182
459459 0 0
460460 0.497941 0.0232166
461461 −21.2618 −0.990259 −0.495130 0.868819i 0.664879π-0.664879\pi
−0.495130 + 0.868819i 0.664879π0.664879\pi
462462 0.431074 0.0200554
463463 −0.120615 −0.00560544 −0.00280272 0.999996i 0.500892π-0.500892\pi
−0.00280272 + 0.999996i 0.500892π0.500892\pi
464464 8.35504 0.387873
465465 −0.677356 −0.0314117
466466 −1.41828 −0.0657006
467467 −10.5963 −0.490337 −0.245168 0.969481i 0.578843π-0.578843\pi
−0.245168 + 0.969481i 0.578843π0.578843\pi
468468 5.75877 0.266199
469469 −4.01548 −0.185418
470470 1.62031 0.0747393
471471 −16.2567 −0.749070
472472 3.26857 0.150448
473473 −8.46884 −0.389398
474474 −2.21894 −0.101919
475475 −6.50805 −0.298610
476476 0 0
477477 7.53983 0.345225
478478 −23.1634 −1.05947
479479 −21.6560 −0.989488 −0.494744 0.869039i 0.664738π-0.664738\pi
−0.494744 + 0.869039i 0.664738π0.664738\pi
480480 0.120615 0.00550529
481481 −16.9067 −0.770880
482482 4.08141 0.185903
483483 −1.26083 −0.0573697
484484 −9.00774 −0.409443
485485 0.131044 0.00595040
486486 1.00000 0.0453609
487487 10.4320 0.472719 0.236360 0.971666i 0.424046π-0.424046\pi
0.236360 + 0.971666i 0.424046π0.424046\pi
488488 −14.9513 −0.676814
489489 −15.7588 −0.712636
490490 −0.833053 −0.0376335
491491 7.43613 0.335588 0.167794 0.985822i 0.446336π-0.446336\pi
0.167794 + 0.985822i 0.446336π0.446336\pi
492492 −4.36959 −0.196996
493493 0 0
494494 7.51754 0.338230
495495 −0.170245 −0.00765193
496496 −5.61587 −0.252160
497497 2.55613 0.114658
498498 −6.75877 −0.302868
499499 −3.47296 −0.155471 −0.0777356 0.996974i 0.524769π-0.524769\pi
−0.0777356 + 0.996974i 0.524769π0.524769\pi
500500 −1.20439 −0.0538621
501501 13.1925 0.589399
502502 −14.8530 −0.662921
503503 21.1581 0.943391 0.471696 0.881761i 0.343642π-0.343642\pi
0.471696 + 0.881761i 0.343642π0.343642\pi
504504 −0.305407 −0.0136039
505505 −1.23618 −0.0550092
506506 −5.82707 −0.259045
507507 20.1634 0.895490
508508 −5.69459 −0.252657
509509 −40.0110 −1.77346 −0.886729 0.462290i 0.847028π-0.847028\pi
−0.886729 + 0.462290i 0.847028π0.847028\pi
510510 0 0
511511 −2.25227 −0.0996345
512512 1.00000 0.0441942
513513 1.30541 0.0576351
514514 −4.00000 −0.176432
515515 0.140215 0.00617862
516516 6.00000 0.264135
517517 −18.9614 −0.833922
518518 0.896622 0.0393953
519519 20.4020 0.895547
520520 0.694593 0.0304599
521521 23.8033 1.04284 0.521422 0.853299i 0.325402π-0.325402\pi
0.521422 + 0.853299i 0.325402π0.325402\pi
522522 8.35504 0.365690
523523 3.26083 0.142586 0.0712931 0.997455i 0.477287π-0.477287\pi
0.0712931 + 0.997455i 0.477287π0.477287\pi
524524 6.63041 0.289651
525525 1.52259 0.0664514
526526 9.88713 0.431099
527527 0 0
528528 −1.41147 −0.0614265
529529 −5.95668 −0.258986
530530 0.909415 0.0395025
531531 3.26857 0.141844
532532 −0.398681 −0.0172850
533533 −25.1634 −1.08995
534534 −5.88713 −0.254761
535535 1.44562 0.0624997
536536 13.1480 0.567905
537537 −7.66550 −0.330791
538538 −17.8803 −0.770875
539539 9.74867 0.419905
540540 0.120615 0.00519043
541541 0.340489 0.0146388 0.00731939 0.999973i 0.497670π-0.497670\pi
0.00731939 + 0.999973i 0.497670π0.497670\pi
542542 18.3259 0.787167
543543 7.67499 0.329365
544544 0 0
545545 0.916831 0.0392727
546546 −1.75877 −0.0752684
547547 −39.2181 −1.67685 −0.838423 0.545020i 0.816522π-0.816522\pi
−0.838423 + 0.545020i 0.816522π0.816522\pi
548548 −18.3405 −0.783467
549549 −14.9513 −0.638106
550550 7.03684 0.300052
551551 10.9067 0.464642
552552 4.12836 0.175714
553553 0.677681 0.0288179
554554 −14.5817 −0.619518
555555 −0.354103 −0.0150309
556556 −12.9067 −0.547367
557557 −12.6750 −0.537057 −0.268528 0.963272i 0.586537π-0.586537\pi
−0.268528 + 0.963272i 0.586537π0.586537\pi
558558 −5.61587 −0.237739
559559 34.5526 1.46142
560560 −0.0368366 −0.00155663
561561 0 0
562562 −16.8384 −0.710286
563563 15.9855 0.673706 0.336853 0.941557i 0.390637π-0.390637\pi
0.336853 + 0.941557i 0.390637π0.390637\pi
564564 13.4338 0.565663
565565 −2.31490 −0.0973887
566566 30.3114 1.27408
567567 −0.305407 −0.0128259
568568 −8.36959 −0.351180
569569 −11.9864 −0.502495 −0.251248 0.967923i 0.580841π-0.580841\pi
−0.251248 + 0.967923i 0.580841π0.580841\pi
570570 0.157451 0.00659491
571571 24.3560 1.01927 0.509633 0.860392i 0.329781π-0.329781\pi
0.509633 + 0.860392i 0.329781π0.329781\pi
572572 −8.12836 −0.339864
573573 21.0351 0.878753
574574 1.33450 0.0557011
575575 −20.5817 −0.858317
576576 1.00000 0.0416667
577577 −9.90673 −0.412422 −0.206211 0.978508i 0.566113π-0.566113\pi
−0.206211 + 0.978508i 0.566113π0.566113\pi
578578 0 0
579579 −22.8016 −0.947602
580580 1.00774 0.0418442
581581 2.06418 0.0856365
582582 1.08647 0.0450355
583583 −10.6423 −0.440758
584584 7.37464 0.305165
585585 0.694593 0.0287179
586586 −2.47472 −0.102230
587587 18.6186 0.768470 0.384235 0.923235i 0.374465π-0.374465\pi
0.384235 + 0.923235i 0.374465π0.374465\pi
588588 −6.90673 −0.284829
589589 −7.33099 −0.302068
590590 0.394238 0.0162305
591591 1.15745 0.0476112
592592 −2.93582 −0.120662
593593 −18.8384 −0.773602 −0.386801 0.922163i 0.626420π-0.626420\pi
−0.386801 + 0.922163i 0.626420π0.626420\pi
594594 −1.41147 −0.0579135
595595 0 0
596596 7.49525 0.307017
597597 −7.39693 −0.302736
598598 23.7743 0.972201
599599 14.5270 0.593559 0.296779 0.954946i 0.404087π-0.404087\pi
0.296779 + 0.954946i 0.404087π0.404087\pi
600600 −4.98545 −0.203530
601601 −9.98545 −0.407315 −0.203658 0.979042i 0.565283π-0.565283\pi
−0.203658 + 0.979042i 0.565283π0.565283\pi
602602 −1.83244 −0.0746848
603603 13.1480 0.535426
604604 −12.6040 −0.512850
605605 −1.08647 −0.0441711
606606 −10.2490 −0.416336
607607 −15.2618 −0.619456 −0.309728 0.950825i 0.600238π-0.600238\pi
−0.309728 + 0.950825i 0.600238π0.600238\pi
608608 1.30541 0.0529413
609609 −2.55169 −0.103400
610610 −1.80335 −0.0730154
611611 77.3620 3.12973
612612 0 0
613613 32.1985 1.30049 0.650243 0.759726i 0.274667π-0.274667\pi
0.650243 + 0.759726i 0.274667π0.274667\pi
614614 −18.4243 −0.743543
615615 −0.527036 −0.0212522
616616 0.431074 0.0173685
617617 −6.82295 −0.274682 −0.137341 0.990524i 0.543856π-0.543856\pi
−0.137341 + 0.990524i 0.543856π0.543856\pi
618618 1.16250 0.0467628
619619 9.98639 0.401387 0.200693 0.979654i 0.435681π-0.435681\pi
0.200693 + 0.979654i 0.435681π0.435681\pi
620620 −0.677356 −0.0272033
621621 4.12836 0.165665
622622 −21.5175 −0.862775
623623 1.79797 0.0720342
624624 5.75877 0.230535
625625 24.7820 0.991280
626626 26.5134 1.05969
627627 −1.84255 −0.0735843
628628 −16.2567 −0.648713
629629 0 0
630630 −0.0368366 −0.00146761
631631 48.0901 1.91444 0.957218 0.289367i 0.0934449π-0.0934449\pi
0.957218 + 0.289367i 0.0934449π0.0934449\pi
632632 −2.21894 −0.0882647
633633 −20.0155 −0.795544
634634 12.8425 0.510043
635635 −0.686852 −0.0272569
636636 7.53983 0.298974
637637 −39.7743 −1.57591
638638 −11.7929 −0.466886
639639 −8.36959 −0.331096
640640 0.120615 0.00476772
641641 −38.5918 −1.52429 −0.762143 0.647409i 0.775853π-0.775853\pi
−0.762143 + 0.647409i 0.775853π0.775853\pi
642642 11.9855 0.473028
643643 32.3506 1.27578 0.637891 0.770126i 0.279807π-0.279807\pi
0.637891 + 0.770126i 0.279807π0.279807\pi
644644 −1.26083 −0.0496837
645645 0.723689 0.0284952
646646 0 0
647647 10.9804 0.431684 0.215842 0.976428i 0.430750π-0.430750\pi
0.215842 + 0.976428i 0.430750π0.430750\pi
648648 1.00000 0.0392837
649649 −4.61350 −0.181096
650650 −28.7101 −1.12610
651651 1.71513 0.0672211
652652 −15.7588 −0.617161
653653 5.34998 0.209361 0.104681 0.994506i 0.466618π-0.466618\pi
0.104681 + 0.994506i 0.466618π0.466618\pi
654654 7.60132 0.297235
655655 0.799726 0.0312479
656656 −4.36959 −0.170604
657657 7.37464 0.287712
658658 −4.10277 −0.159943
659659 −12.9290 −0.503643 −0.251821 0.967774i 0.581030π-0.581030\pi
−0.251821 + 0.967774i 0.581030π0.581030\pi
660660 −0.170245 −0.00662676
661661 −12.3114 −0.478858 −0.239429 0.970914i 0.576960π-0.576960\pi
−0.239429 + 0.970914i 0.576960π0.576960\pi
662662 26.4534 1.02814
663663 0 0
664664 −6.75877 −0.262291
665665 −0.0480868 −0.00186473
666666 −2.93582 −0.113761
667667 34.4926 1.33556
668668 13.1925 0.510434
669669 −18.5202 −0.716033
670670 1.58584 0.0612662
671671 21.1034 0.814687
672672 −0.305407 −0.0117813
673673 −11.6459 −0.448916 −0.224458 0.974484i 0.572061π-0.572061\pi
−0.224458 + 0.974484i 0.572061π0.572061\pi
674674 5.73917 0.221065
675675 −4.98545 −0.191890
676676 20.1634 0.775517
677677 19.3250 0.742720 0.371360 0.928489i 0.378892π-0.378892\pi
0.371360 + 0.928489i 0.378892π0.378892\pi
678678 −19.1925 −0.737085
679679 −0.331815 −0.0127339
680680 0 0
681681 26.1480 1.00199
682682 7.92665 0.303527
683683 34.0624 1.30336 0.651681 0.758493i 0.274064π-0.274064\pi
0.651681 + 0.758493i 0.274064π0.274064\pi
684684 1.30541 0.0499135
685685 −2.21213 −0.0845213
686686 4.24722 0.162159
687687 −2.93582 −0.112009
688688 6.00000 0.228748
689689 43.4201 1.65418
690690 0.497941 0.0189563
691691 −26.9905 −1.02677 −0.513384 0.858159i 0.671608π-0.671608\pi
−0.513384 + 0.858159i 0.671608π0.671608\pi
692692 20.4020 0.775567
693693 0.431074 0.0163752
694694 −4.08141 −0.154928
695695 −1.55674 −0.0590506
696696 8.35504 0.316697
697697 0 0
698698 −7.34461 −0.277998
699699 −1.41828 −0.0536443
700700 1.52259 0.0575486
701701 47.7383 1.80305 0.901526 0.432724i 0.142448π-0.142448\pi
0.901526 + 0.432724i 0.142448π0.142448\pi
702702 5.75877 0.217351
703703 −3.83244 −0.144543
704704 −1.41147 −0.0531969
705705 1.62031 0.0610244
706706 12.4243 0.467593
707707 3.13011 0.117720
708708 3.26857 0.122840
709709 40.5580 1.52319 0.761594 0.648055i 0.224417π-0.224417\pi
0.761594 + 0.648055i 0.224417π0.224417\pi
710710 −1.00950 −0.0378857
711711 −2.21894 −0.0832168
712712 −5.88713 −0.220629
713713 −23.1843 −0.868259
714714 0 0
715715 −0.980400 −0.0366649
716716 −7.66550 −0.286473
717717 −23.1634 −0.865054
718718 6.93582 0.258843
719719 −2.63640 −0.0983212 −0.0491606 0.998791i 0.515655π-0.515655\pi
−0.0491606 + 0.998791i 0.515655π0.515655\pi
720720 0.120615 0.00449505
721721 −0.355037 −0.0132223
722722 −17.2959 −0.643687
723723 4.08141 0.151789
724724 7.67499 0.285239
725725 −41.6536 −1.54698
726726 −9.00774 −0.334309
727727 −18.2645 −0.677391 −0.338696 0.940896i 0.609986π-0.609986\pi
−0.338696 + 0.940896i 0.609986π0.609986\pi
728728 −1.75877 −0.0651844
729729 1.00000 0.0370370
730730 0.889490 0.0329215
731731 0 0
732732 −14.9513 −0.552616
733733 11.4201 0.421813 0.210906 0.977506i 0.432358π-0.432358\pi
0.210906 + 0.977506i 0.432358π0.432358\pi
734734 −27.2294 −1.00505
735735 −0.833053 −0.0307276
736736 4.12836 0.152173
737737 −18.5580 −0.683593
738738 −4.36959 −0.160847
739739 −6.95130 −0.255708 −0.127854 0.991793i 0.540809π-0.540809\pi
−0.127854 + 0.991793i 0.540809π0.540809\pi
740740 −0.354103 −0.0130171
741741 7.51754 0.276164
742742 −2.30272 −0.0845355
743743 36.4742 1.33811 0.669055 0.743213i 0.266699π-0.266699\pi
0.669055 + 0.743213i 0.266699π0.266699\pi
744744 −5.61587 −0.205888
745745 0.904038 0.0331214
746746 −26.9668 −0.987324
747747 −6.75877 −0.247290
748748 0 0
749749 −3.66044 −0.133750
750750 −1.20439 −0.0439782
751751 −7.22937 −0.263803 −0.131902 0.991263i 0.542108π-0.542108\pi
−0.131902 + 0.991263i 0.542108π0.542108\pi
752752 13.4338 0.489879
753753 −14.8530 −0.541273
754754 48.1147 1.75224
755755 −1.52023 −0.0553268
756756 −0.305407 −0.0111076
757757 −21.9608 −0.798179 −0.399089 0.916912i 0.630674π-0.630674\pi
−0.399089 + 0.916912i 0.630674π0.630674\pi
758758 −13.7297 −0.498684
759759 −5.82707 −0.211509
760760 0.157451 0.00571136
761761 40.3013 1.46092 0.730460 0.682955i 0.239306π-0.239306\pi
0.730460 + 0.682955i 0.239306π0.239306\pi
762762 −5.69459 −0.206293
763763 −2.32150 −0.0840439
764764 21.0351 0.761023
765765 0 0
766766 −28.6709 −1.03592
767767 18.8229 0.679657
768768 1.00000 0.0360844
769769 −29.6382 −1.06878 −0.534390 0.845238i 0.679458π-0.679458\pi
−0.534390 + 0.845238i 0.679458π0.679458\pi
770770 0.0519939 0.00187373
771771 −4.00000 −0.144056
772772 −22.8016 −0.820647
773773 −50.0479 −1.80010 −0.900048 0.435790i 0.856469π-0.856469\pi
−0.900048 + 0.435790i 0.856469π0.856469\pi
774774 6.00000 0.215666
775775 27.9976 1.00570
776776 1.08647 0.0390019
777777 0.896622 0.0321661
778778 1.77332 0.0635765
779779 −5.70409 −0.204370
780780 0.694593 0.0248704
781781 11.8135 0.422719
782782 0 0
783783 8.35504 0.298585
784784 −6.90673 −0.246669
785785 −1.96080 −0.0699839
786786 6.63041 0.236499
787787 44.8040 1.59709 0.798544 0.601936i 0.205604π-0.205604\pi
0.798544 + 0.601936i 0.205604π0.205604\pi
788788 1.15745 0.0412325
789789 9.88713 0.351991
790790 −0.267637 −0.00952210
791791 5.86154 0.208412
792792 −1.41147 −0.0501545
793793 −86.1011 −3.05754
794794 −3.47296 −0.123251
795795 0.909415 0.0322536
796796 −7.39693 −0.262177
797797 −50.1735 −1.77724 −0.888619 0.458646i 0.848335π-0.848335\pi
−0.888619 + 0.458646i 0.848335π0.848335\pi
798798 −0.398681 −0.0141132
799799 0 0
800800 −4.98545 −0.176262
801801 −5.88713 −0.208011
802802 10.7101 0.378186
803803 −10.4091 −0.367330
804804 13.1480 0.463693
805805 −0.152075 −0.00535993
806806 −32.3405 −1.13915
807807 −17.8803 −0.629417
808808 −10.2490 −0.360558
809809 51.3073 1.80387 0.901934 0.431874i 0.142148π-0.142148\pi
0.901934 + 0.431874i 0.142148π0.142148\pi
810810 0.120615 0.00423797
811811 28.3250 0.994626 0.497313 0.867571i 0.334320π-0.334320\pi
0.497313 + 0.867571i 0.334320π0.334320\pi
812812 −2.55169 −0.0895467
813813 18.3259 0.642719
814814 4.14384 0.145241
815815 −1.90074 −0.0665800
816816 0 0
817817 7.83244 0.274023
818818 10.8999 0.381107
819819 −1.75877 −0.0614564
820820 −0.527036 −0.0184049
821821 26.1985 0.914335 0.457167 0.889381i 0.348864π-0.348864\pi
0.457167 + 0.889381i 0.348864π0.348864\pi
822822 −18.3405 −0.639698
823823 17.0865 0.595597 0.297798 0.954629i 0.403748π-0.403748\pi
0.297798 + 0.954629i 0.403748π0.403748\pi
824824 1.16250 0.0404977
825825 7.03684 0.244991
826826 −0.998245 −0.0347334
827827 42.8907 1.49146 0.745729 0.666250i 0.232102π-0.232102\pi
0.745729 + 0.666250i 0.232102π0.232102\pi
828828 4.12836 0.143470
829829 −36.4944 −1.26750 −0.633752 0.773536i 0.718486π-0.718486\pi
−0.633752 + 0.773536i 0.718486π0.718486\pi
830830 −0.815207 −0.0282963
831831 −14.5817 −0.505834
832832 5.75877 0.199649
833833 0 0
834834 −12.9067 −0.446923
835835 1.59121 0.0550662
836836 −1.84255 −0.0637259
837837 −5.61587 −0.194113
838838 28.7469 0.993046
839839 −15.4047 −0.531828 −0.265914 0.963997i 0.585674π-0.585674\pi
−0.265914 + 0.963997i 0.585674π0.585674\pi
840840 −0.0368366 −0.00127098
841841 40.8066 1.40713
842842 −14.5972 −0.503053
843843 −16.8384 −0.579946
844844 −20.0155 −0.688961
845845 2.43201 0.0836636
846846 13.4338 0.461862
847847 2.75103 0.0945265
848848 7.53983 0.258919
849849 30.3114 1.04028
850850 0 0
851851 −12.1201 −0.415472
852852 −8.36959 −0.286737
853853 26.1676 0.895960 0.447980 0.894044i 0.352144π-0.352144\pi
0.447980 + 0.894044i 0.352144π0.352144\pi
854854 4.56624 0.156253
855855 0.157451 0.00538472
856856 11.9855 0.409654
857857 29.8735 1.02046 0.510230 0.860038i 0.329560π-0.329560\pi
0.510230 + 0.860038i 0.329560π0.329560\pi
858858 −8.12836 −0.277497
859859 40.7648 1.39088 0.695438 0.718586i 0.255210π-0.255210\pi
0.695438 + 0.718586i 0.255210π0.255210\pi
860860 0.723689 0.0246776
861861 1.33450 0.0454797
862862 32.0547 1.09179
863863 5.18716 0.176573 0.0882864 0.996095i 0.471861π-0.471861\pi
0.0882864 + 0.996095i 0.471861π0.471861\pi
864864 1.00000 0.0340207
865865 2.46078 0.0836690
866866 7.84018 0.266420
867867 0 0
868868 1.71513 0.0582152
869869 3.13198 0.106245
870870 1.00774 0.0341656
871871 75.7161 2.56554
872872 7.60132 0.257413
873873 1.08647 0.0367713
874874 5.38919 0.182292
875875 0.367830 0.0124349
876876 7.37464 0.249166
877877 25.8817 0.873965 0.436982 0.899470i 0.356047π-0.356047\pi
0.436982 + 0.899470i 0.356047π0.356047\pi
878878 −19.3500 −0.653030
879879 −2.47472 −0.0834702
880880 −0.170245 −0.00573894
881881 −41.6715 −1.40395 −0.701974 0.712203i 0.747698π-0.747698\pi
−0.701974 + 0.712203i 0.747698π0.747698\pi
882882 −6.90673 −0.232562
883883 −49.0215 −1.64970 −0.824852 0.565349i 0.808742π-0.808742\pi
−0.824852 + 0.565349i 0.808742π0.808742\pi
884884 0 0
885885 0.394238 0.0132522
886886 25.1438 0.844724
887887 −49.5194 −1.66270 −0.831350 0.555750i 0.812431π-0.812431\pi
−0.831350 + 0.555750i 0.812431π0.812431\pi
888888 −2.93582 −0.0985197
889889 1.73917 0.0583299
890890 −0.710074 −0.0238017
891891 −1.41147 −0.0472862
892892 −18.5202 −0.620103
893893 17.5365 0.586838
894894 7.49525 0.250679
895895 −0.924572 −0.0309050
896896 −0.305407 −0.0102029
897897 23.7743 0.793799
898898 14.3250 0.478032
899899 −46.9208 −1.56490
900900 −4.98545 −0.166182
901901 0 0
902902 6.16756 0.205357
903903 −1.83244 −0.0609799
904904 −19.1925 −0.638334
905905 0.925717 0.0307719
906906 −12.6040 −0.418740
907907 19.1189 0.634831 0.317416 0.948287i 0.397185π-0.397185\pi
0.317416 + 0.948287i 0.397185π0.397185\pi
908908 26.1480 0.867750
909909 −10.2490 −0.339937
910910 −0.212134 −0.00703216
911911 −33.7606 −1.11854 −0.559270 0.828986i 0.688918π-0.688918\pi
−0.559270 + 0.828986i 0.688918π0.688918\pi
912912 1.30541 0.0432264
913913 9.53983 0.315722
914914 24.8239 0.821101
915915 −1.80335 −0.0596168
916916 −2.93582 −0.0970023
917917 −2.02498 −0.0668706
918918 0 0
919919 −13.9513 −0.460211 −0.230106 0.973166i 0.573907π-0.573907\pi
−0.230106 + 0.973166i 0.573907π0.573907\pi
920920 0.497941 0.0164166
921921 −18.4243 −0.607100
922922 −21.2618 −0.700219
923923 −48.1985 −1.58647
924924 0.431074 0.0141813
925925 14.6364 0.481242
926926 −0.120615 −0.00396365
927927 1.16250 0.0381816
928928 8.35504 0.274268
929929 −39.8479 −1.30737 −0.653684 0.756768i 0.726777π-0.726777\pi
−0.653684 + 0.756768i 0.726777π0.726777\pi
930930 −0.677356 −0.0222114
931931 −9.01609 −0.295490
932932 −1.41828 −0.0464573
933933 −21.5175 −0.704453
934934 −10.5963 −0.346720
935935 0 0
936936 5.75877 0.188231
937937 34.8907 1.13983 0.569916 0.821703i 0.306976π-0.306976\pi
0.569916 + 0.821703i 0.306976π0.306976\pi
938938 −4.01548 −0.131110
939939 26.5134 0.865233
940940 1.62031 0.0528487
941941 −21.2026 −0.691186 −0.345593 0.938384i 0.612322π-0.612322\pi
−0.345593 + 0.938384i 0.612322π0.612322\pi
942942 −16.2567 −0.529672
943943 −18.0392 −0.587437
944944 3.26857 0.106383
945945 −0.0368366 −0.00119830
946946 −8.46884 −0.275346
947947 43.2695 1.40607 0.703035 0.711155i 0.251828π-0.251828\pi
0.703035 + 0.711155i 0.251828π0.251828\pi
948948 −2.21894 −0.0720678
949949 42.4688 1.37860
950950 −6.50805 −0.211149
951951 12.8425 0.416448
952952 0 0
953953 37.6323 1.21903 0.609515 0.792775i 0.291364π-0.291364\pi
0.609515 + 0.792775i 0.291364π0.291364\pi
954954 7.53983 0.244111
955955 2.53714 0.0821000
956956 −23.1634 −0.749159
957957 −11.7929 −0.381211
958958 −21.6560 −0.699674
959959 5.60132 0.180876
960960 0.120615 0.00389282
961961 0.537962 0.0173536
962962 −16.9067 −0.545095
963963 11.9855 0.386226
964964 4.08141 0.131453
965965 −2.75021 −0.0885323
966966 −1.26083 −0.0405665
967967 2.56860 0.0826006 0.0413003 0.999147i 0.486850π-0.486850\pi
0.0413003 + 0.999147i 0.486850π0.486850\pi
968968 −9.00774 −0.289520
969969 0 0
970970 0.131044 0.00420757
971971 39.9777 1.28295 0.641473 0.767146i 0.278324π-0.278324\pi
0.641473 + 0.767146i 0.278324π0.278324\pi
972972 1.00000 0.0320750
973973 3.94181 0.126369
974974 10.4320 0.334263
975975 −28.7101 −0.919458
976976 −14.9513 −0.478580
977977 57.4938 1.83939 0.919695 0.392633i 0.128436π-0.128436\pi
0.919695 + 0.392633i 0.128436π0.128436\pi
978978 −15.7588 −0.503910
979979 8.30953 0.265574
980980 −0.833053 −0.0266109
981981 7.60132 0.242691
982982 7.43613 0.237296
983983 51.6377 1.64699 0.823493 0.567327i 0.192022π-0.192022\pi
0.823493 + 0.567327i 0.192022π0.192022\pi
984984 −4.36959 −0.139297
985985 0.139606 0.00444821
986986 0 0
987987 −4.10277 −0.130593
988988 7.51754 0.239165
989989 24.7701 0.787644
990990 −0.170245 −0.00541073
991991 47.5972 1.51197 0.755987 0.654586i 0.227157π-0.227157\pi
0.755987 + 0.654586i 0.227157π0.227157\pi
992992 −5.61587 −0.178304
993993 26.4534 0.839472
994994 2.55613 0.0810756
995995 −0.892178 −0.0282840
996996 −6.75877 −0.214160
997997 −1.38919 −0.0439959 −0.0219980 0.999758i 0.507003π-0.507003\pi
−0.0219980 + 0.999758i 0.507003π0.507003\pi
998998 −3.47296 −0.109935
999999 −2.93582 −0.0928853
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1734.2.a.s.1.1 yes 3
3.2 odd 2 5202.2.a.bf.1.3 3
17.2 even 8 1734.2.f.o.1483.6 12
17.4 even 4 1734.2.b.i.577.3 6
17.8 even 8 1734.2.f.o.829.1 12
17.9 even 8 1734.2.f.o.829.6 12
17.13 even 4 1734.2.b.i.577.4 6
17.15 even 8 1734.2.f.o.1483.1 12
17.16 even 2 1734.2.a.r.1.3 3
51.50 odd 2 5202.2.a.bk.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1734.2.a.r.1.3 3 17.16 even 2
1734.2.a.s.1.1 yes 3 1.1 even 1 trivial
1734.2.b.i.577.3 6 17.4 even 4
1734.2.b.i.577.4 6 17.13 even 4
1734.2.f.o.829.1 12 17.8 even 8
1734.2.f.o.829.6 12 17.9 even 8
1734.2.f.o.1483.1 12 17.15 even 8
1734.2.f.o.1483.6 12 17.2 even 8
5202.2.a.bf.1.3 3 3.2 odd 2
5202.2.a.bk.1.1 3 51.50 odd 2