Properties

Label 1734.2.f.a.1483.2
Level $1734$
Weight $2$
Character 1734.1483
Analytic conductor $13.846$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1734,2,Mod(829,1734)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1734, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1734.829");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1734 = 2 \cdot 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1734.f (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.8460597105\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1483.2
Root \(-0.707107 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 1734.1483
Dual form 1734.2.f.a.829.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} +(0.707107 - 0.707107i) q^{3} -1.00000 q^{4} +(-0.707107 + 0.707107i) q^{5} +(-0.707107 - 0.707107i) q^{6} +(2.82843 + 2.82843i) q^{7} +1.00000i q^{8} -1.00000i q^{9} +(0.707107 + 0.707107i) q^{10} +(2.12132 + 2.12132i) q^{11} +(-0.707107 + 0.707107i) q^{12} -6.00000 q^{13} +(2.82843 - 2.82843i) q^{14} +1.00000i q^{15} +1.00000 q^{16} -1.00000 q^{18} +4.00000i q^{19} +(0.707107 - 0.707107i) q^{20} +4.00000 q^{21} +(2.12132 - 2.12132i) q^{22} +(-4.24264 - 4.24264i) q^{23} +(0.707107 + 0.707107i) q^{24} +4.00000i q^{25} +6.00000i q^{26} +(-0.707107 - 0.707107i) q^{27} +(-2.82843 - 2.82843i) q^{28} +(-4.94975 + 4.94975i) q^{29} +1.00000 q^{30} +(2.12132 - 2.12132i) q^{31} -1.00000i q^{32} +3.00000 q^{33} -4.00000 q^{35} +1.00000i q^{36} +(-5.65685 + 5.65685i) q^{37} +4.00000 q^{38} +(-4.24264 + 4.24264i) q^{39} +(-0.707107 - 0.707107i) q^{40} +(1.41421 + 1.41421i) q^{41} -4.00000i q^{42} +4.00000i q^{43} +(-2.12132 - 2.12132i) q^{44} +(0.707107 + 0.707107i) q^{45} +(-4.24264 + 4.24264i) q^{46} +2.00000 q^{47} +(0.707107 - 0.707107i) q^{48} +9.00000i q^{49} +4.00000 q^{50} +6.00000 q^{52} +13.0000i q^{53} +(-0.707107 + 0.707107i) q^{54} -3.00000 q^{55} +(-2.82843 + 2.82843i) q^{56} +(2.82843 + 2.82843i) q^{57} +(4.94975 + 4.94975i) q^{58} -9.00000i q^{59} -1.00000i q^{60} +(-7.07107 - 7.07107i) q^{61} +(-2.12132 - 2.12132i) q^{62} +(2.82843 - 2.82843i) q^{63} -1.00000 q^{64} +(4.24264 - 4.24264i) q^{65} -3.00000i q^{66} -6.00000 q^{67} -6.00000 q^{69} +4.00000i q^{70} +(8.48528 - 8.48528i) q^{71} +1.00000 q^{72} +(-4.94975 + 4.94975i) q^{73} +(5.65685 + 5.65685i) q^{74} +(2.82843 + 2.82843i) q^{75} -4.00000i q^{76} +12.0000i q^{77} +(4.24264 + 4.24264i) q^{78} +(3.53553 + 3.53553i) q^{79} +(-0.707107 + 0.707107i) q^{80} -1.00000 q^{81} +(1.41421 - 1.41421i) q^{82} +12.0000i q^{83} -4.00000 q^{84} +4.00000 q^{86} +7.00000i q^{87} +(-2.12132 + 2.12132i) q^{88} -4.00000 q^{89} +(0.707107 - 0.707107i) q^{90} +(-16.9706 - 16.9706i) q^{91} +(4.24264 + 4.24264i) q^{92} -3.00000i q^{93} -2.00000i q^{94} +(-2.82843 - 2.82843i) q^{95} +(-0.707107 - 0.707107i) q^{96} +(2.12132 - 2.12132i) q^{97} +9.00000 q^{98} +(2.12132 - 2.12132i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} - 24 q^{13} + 4 q^{16} - 4 q^{18} + 16 q^{21} + 4 q^{30} + 12 q^{33} - 16 q^{35} + 16 q^{38} + 8 q^{47} + 16 q^{50} + 24 q^{52} - 12 q^{55} - 4 q^{64} - 24 q^{67} - 24 q^{69} + 4 q^{72} - 4 q^{81}+ \cdots + 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1734\mathbb{Z}\right)^\times\).

\(n\) \(1157\) \(1159\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0.707107 0.707107i 0.408248 0.408248i
\(4\) −1.00000 −0.500000
\(5\) −0.707107 + 0.707107i −0.316228 + 0.316228i −0.847316 0.531089i \(-0.821783\pi\)
0.531089 + 0.847316i \(0.321783\pi\)
\(6\) −0.707107 0.707107i −0.288675 0.288675i
\(7\) 2.82843 + 2.82843i 1.06904 + 1.06904i 0.997433 + 0.0716124i \(0.0228145\pi\)
0.0716124 + 0.997433i \(0.477186\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 1.00000i 0.333333i
\(10\) 0.707107 + 0.707107i 0.223607 + 0.223607i
\(11\) 2.12132 + 2.12132i 0.639602 + 0.639602i 0.950457 0.310855i \(-0.100615\pi\)
−0.310855 + 0.950457i \(0.600615\pi\)
\(12\) −0.707107 + 0.707107i −0.204124 + 0.204124i
\(13\) −6.00000 −1.66410 −0.832050 0.554700i \(-0.812833\pi\)
−0.832050 + 0.554700i \(0.812833\pi\)
\(14\) 2.82843 2.82843i 0.755929 0.755929i
\(15\) 1.00000i 0.258199i
\(16\) 1.00000 0.250000
\(17\) 0 0
\(18\) −1.00000 −0.235702
\(19\) 4.00000i 0.917663i 0.888523 + 0.458831i \(0.151732\pi\)
−0.888523 + 0.458831i \(0.848268\pi\)
\(20\) 0.707107 0.707107i 0.158114 0.158114i
\(21\) 4.00000 0.872872
\(22\) 2.12132 2.12132i 0.452267 0.452267i
\(23\) −4.24264 4.24264i −0.884652 0.884652i 0.109351 0.994003i \(-0.465123\pi\)
−0.994003 + 0.109351i \(0.965123\pi\)
\(24\) 0.707107 + 0.707107i 0.144338 + 0.144338i
\(25\) 4.00000i 0.800000i
\(26\) 6.00000i 1.17670i
\(27\) −0.707107 0.707107i −0.136083 0.136083i
\(28\) −2.82843 2.82843i −0.534522 0.534522i
\(29\) −4.94975 + 4.94975i −0.919145 + 0.919145i −0.996967 0.0778222i \(-0.975203\pi\)
0.0778222 + 0.996967i \(0.475203\pi\)
\(30\) 1.00000 0.182574
\(31\) 2.12132 2.12132i 0.381000 0.381000i −0.490462 0.871463i \(-0.663172\pi\)
0.871463 + 0.490462i \(0.163172\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 3.00000 0.522233
\(34\) 0 0
\(35\) −4.00000 −0.676123
\(36\) 1.00000i 0.166667i
\(37\) −5.65685 + 5.65685i −0.929981 + 0.929981i −0.997704 0.0677230i \(-0.978427\pi\)
0.0677230 + 0.997704i \(0.478427\pi\)
\(38\) 4.00000 0.648886
\(39\) −4.24264 + 4.24264i −0.679366 + 0.679366i
\(40\) −0.707107 0.707107i −0.111803 0.111803i
\(41\) 1.41421 + 1.41421i 0.220863 + 0.220863i 0.808862 0.587999i \(-0.200084\pi\)
−0.587999 + 0.808862i \(0.700084\pi\)
\(42\) 4.00000i 0.617213i
\(43\) 4.00000i 0.609994i 0.952353 + 0.304997i \(0.0986555\pi\)
−0.952353 + 0.304997i \(0.901344\pi\)
\(44\) −2.12132 2.12132i −0.319801 0.319801i
\(45\) 0.707107 + 0.707107i 0.105409 + 0.105409i
\(46\) −4.24264 + 4.24264i −0.625543 + 0.625543i
\(47\) 2.00000 0.291730 0.145865 0.989305i \(-0.453403\pi\)
0.145865 + 0.989305i \(0.453403\pi\)
\(48\) 0.707107 0.707107i 0.102062 0.102062i
\(49\) 9.00000i 1.28571i
\(50\) 4.00000 0.565685
\(51\) 0 0
\(52\) 6.00000 0.832050
\(53\) 13.0000i 1.78569i 0.450367 + 0.892844i \(0.351293\pi\)
−0.450367 + 0.892844i \(0.648707\pi\)
\(54\) −0.707107 + 0.707107i −0.0962250 + 0.0962250i
\(55\) −3.00000 −0.404520
\(56\) −2.82843 + 2.82843i −0.377964 + 0.377964i
\(57\) 2.82843 + 2.82843i 0.374634 + 0.374634i
\(58\) 4.94975 + 4.94975i 0.649934 + 0.649934i
\(59\) 9.00000i 1.17170i −0.810419 0.585850i \(-0.800761\pi\)
0.810419 0.585850i \(-0.199239\pi\)
\(60\) 1.00000i 0.129099i
\(61\) −7.07107 7.07107i −0.905357 0.905357i 0.0905357 0.995893i \(-0.471142\pi\)
−0.995893 + 0.0905357i \(0.971142\pi\)
\(62\) −2.12132 2.12132i −0.269408 0.269408i
\(63\) 2.82843 2.82843i 0.356348 0.356348i
\(64\) −1.00000 −0.125000
\(65\) 4.24264 4.24264i 0.526235 0.526235i
\(66\) 3.00000i 0.369274i
\(67\) −6.00000 −0.733017 −0.366508 0.930415i \(-0.619447\pi\)
−0.366508 + 0.930415i \(0.619447\pi\)
\(68\) 0 0
\(69\) −6.00000 −0.722315
\(70\) 4.00000i 0.478091i
\(71\) 8.48528 8.48528i 1.00702 1.00702i 0.00704243 0.999975i \(-0.497758\pi\)
0.999975 0.00704243i \(-0.00224169\pi\)
\(72\) 1.00000 0.117851
\(73\) −4.94975 + 4.94975i −0.579324 + 0.579324i −0.934717 0.355393i \(-0.884347\pi\)
0.355393 + 0.934717i \(0.384347\pi\)
\(74\) 5.65685 + 5.65685i 0.657596 + 0.657596i
\(75\) 2.82843 + 2.82843i 0.326599 + 0.326599i
\(76\) 4.00000i 0.458831i
\(77\) 12.0000i 1.36753i
\(78\) 4.24264 + 4.24264i 0.480384 + 0.480384i
\(79\) 3.53553 + 3.53553i 0.397779 + 0.397779i 0.877449 0.479670i \(-0.159244\pi\)
−0.479670 + 0.877449i \(0.659244\pi\)
\(80\) −0.707107 + 0.707107i −0.0790569 + 0.0790569i
\(81\) −1.00000 −0.111111
\(82\) 1.41421 1.41421i 0.156174 0.156174i
\(83\) 12.0000i 1.31717i 0.752506 + 0.658586i \(0.228845\pi\)
−0.752506 + 0.658586i \(0.771155\pi\)
\(84\) −4.00000 −0.436436
\(85\) 0 0
\(86\) 4.00000 0.431331
\(87\) 7.00000i 0.750479i
\(88\) −2.12132 + 2.12132i −0.226134 + 0.226134i
\(89\) −4.00000 −0.423999 −0.212000 0.977270i \(-0.567998\pi\)
−0.212000 + 0.977270i \(0.567998\pi\)
\(90\) 0.707107 0.707107i 0.0745356 0.0745356i
\(91\) −16.9706 16.9706i −1.77900 1.77900i
\(92\) 4.24264 + 4.24264i 0.442326 + 0.442326i
\(93\) 3.00000i 0.311086i
\(94\) 2.00000i 0.206284i
\(95\) −2.82843 2.82843i −0.290191 0.290191i
\(96\) −0.707107 0.707107i −0.0721688 0.0721688i
\(97\) 2.12132 2.12132i 0.215387 0.215387i −0.591164 0.806551i \(-0.701331\pi\)
0.806551 + 0.591164i \(0.201331\pi\)
\(98\) 9.00000 0.909137
\(99\) 2.12132 2.12132i 0.213201 0.213201i
\(100\) 4.00000i 0.400000i
\(101\) 17.0000 1.69156 0.845782 0.533529i \(-0.179135\pi\)
0.845782 + 0.533529i \(0.179135\pi\)
\(102\) 0 0
\(103\) 13.0000 1.28093 0.640464 0.767988i \(-0.278742\pi\)
0.640464 + 0.767988i \(0.278742\pi\)
\(104\) 6.00000i 0.588348i
\(105\) −2.82843 + 2.82843i −0.276026 + 0.276026i
\(106\) 13.0000 1.26267
\(107\) 10.6066 10.6066i 1.02538 1.02538i 0.0257094 0.999669i \(-0.491816\pi\)
0.999669 0.0257094i \(-0.00818447\pi\)
\(108\) 0.707107 + 0.707107i 0.0680414 + 0.0680414i
\(109\) 7.07107 + 7.07107i 0.677285 + 0.677285i 0.959385 0.282100i \(-0.0910309\pi\)
−0.282100 + 0.959385i \(0.591031\pi\)
\(110\) 3.00000i 0.286039i
\(111\) 8.00000i 0.759326i
\(112\) 2.82843 + 2.82843i 0.267261 + 0.267261i
\(113\) 7.07107 + 7.07107i 0.665190 + 0.665190i 0.956599 0.291409i \(-0.0941239\pi\)
−0.291409 + 0.956599i \(0.594124\pi\)
\(114\) 2.82843 2.82843i 0.264906 0.264906i
\(115\) 6.00000 0.559503
\(116\) 4.94975 4.94975i 0.459573 0.459573i
\(117\) 6.00000i 0.554700i
\(118\) −9.00000 −0.828517
\(119\) 0 0
\(120\) −1.00000 −0.0912871
\(121\) 2.00000i 0.181818i
\(122\) −7.07107 + 7.07107i −0.640184 + 0.640184i
\(123\) 2.00000 0.180334
\(124\) −2.12132 + 2.12132i −0.190500 + 0.190500i
\(125\) −6.36396 6.36396i −0.569210 0.569210i
\(126\) −2.82843 2.82843i −0.251976 0.251976i
\(127\) 16.0000i 1.41977i 0.704317 + 0.709885i \(0.251253\pi\)
−0.704317 + 0.709885i \(0.748747\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 2.82843 + 2.82843i 0.249029 + 0.249029i
\(130\) −4.24264 4.24264i −0.372104 0.372104i
\(131\) 14.1421 14.1421i 1.23560 1.23560i 0.273824 0.961780i \(-0.411711\pi\)
0.961780 0.273824i \(-0.0882887\pi\)
\(132\) −3.00000 −0.261116
\(133\) −11.3137 + 11.3137i −0.981023 + 0.981023i
\(134\) 6.00000i 0.518321i
\(135\) 1.00000 0.0860663
\(136\) 0 0
\(137\) 12.0000 1.02523 0.512615 0.858619i \(-0.328677\pi\)
0.512615 + 0.858619i \(0.328677\pi\)
\(138\) 6.00000i 0.510754i
\(139\) −5.65685 + 5.65685i −0.479808 + 0.479808i −0.905070 0.425262i \(-0.860182\pi\)
0.425262 + 0.905070i \(0.360182\pi\)
\(140\) 4.00000 0.338062
\(141\) 1.41421 1.41421i 0.119098 0.119098i
\(142\) −8.48528 8.48528i −0.712069 0.712069i
\(143\) −12.7279 12.7279i −1.06436 1.06436i
\(144\) 1.00000i 0.0833333i
\(145\) 7.00000i 0.581318i
\(146\) 4.94975 + 4.94975i 0.409644 + 0.409644i
\(147\) 6.36396 + 6.36396i 0.524891 + 0.524891i
\(148\) 5.65685 5.65685i 0.464991 0.464991i
\(149\) −15.0000 −1.22885 −0.614424 0.788976i \(-0.710612\pi\)
−0.614424 + 0.788976i \(0.710612\pi\)
\(150\) 2.82843 2.82843i 0.230940 0.230940i
\(151\) 9.00000i 0.732410i −0.930534 0.366205i \(-0.880657\pi\)
0.930534 0.366205i \(-0.119343\pi\)
\(152\) −4.00000 −0.324443
\(153\) 0 0
\(154\) 12.0000 0.966988
\(155\) 3.00000i 0.240966i
\(156\) 4.24264 4.24264i 0.339683 0.339683i
\(157\) −12.0000 −0.957704 −0.478852 0.877896i \(-0.658947\pi\)
−0.478852 + 0.877896i \(0.658947\pi\)
\(158\) 3.53553 3.53553i 0.281272 0.281272i
\(159\) 9.19239 + 9.19239i 0.729004 + 0.729004i
\(160\) 0.707107 + 0.707107i 0.0559017 + 0.0559017i
\(161\) 24.0000i 1.89146i
\(162\) 1.00000i 0.0785674i
\(163\) 4.24264 + 4.24264i 0.332309 + 0.332309i 0.853463 0.521154i \(-0.174498\pi\)
−0.521154 + 0.853463i \(0.674498\pi\)
\(164\) −1.41421 1.41421i −0.110432 0.110432i
\(165\) −2.12132 + 2.12132i −0.165145 + 0.165145i
\(166\) 12.0000 0.931381
\(167\) 5.65685 5.65685i 0.437741 0.437741i −0.453510 0.891251i \(-0.649829\pi\)
0.891251 + 0.453510i \(0.149829\pi\)
\(168\) 4.00000i 0.308607i
\(169\) 23.0000 1.76923
\(170\) 0 0
\(171\) 4.00000 0.305888
\(172\) 4.00000i 0.304997i
\(173\) 9.19239 9.19239i 0.698884 0.698884i −0.265286 0.964170i \(-0.585466\pi\)
0.964170 + 0.265286i \(0.0854662\pi\)
\(174\) 7.00000 0.530669
\(175\) −11.3137 + 11.3137i −0.855236 + 0.855236i
\(176\) 2.12132 + 2.12132i 0.159901 + 0.159901i
\(177\) −6.36396 6.36396i −0.478345 0.478345i
\(178\) 4.00000i 0.299813i
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) −0.707107 0.707107i −0.0527046 0.0527046i
\(181\) −7.07107 7.07107i −0.525588 0.525588i 0.393665 0.919254i \(-0.371207\pi\)
−0.919254 + 0.393665i \(0.871207\pi\)
\(182\) −16.9706 + 16.9706i −1.25794 + 1.25794i
\(183\) −10.0000 −0.739221
\(184\) 4.24264 4.24264i 0.312772 0.312772i
\(185\) 8.00000i 0.588172i
\(186\) −3.00000 −0.219971
\(187\) 0 0
\(188\) −2.00000 −0.145865
\(189\) 4.00000i 0.290957i
\(190\) −2.82843 + 2.82843i −0.205196 + 0.205196i
\(191\) −14.0000 −1.01300 −0.506502 0.862239i \(-0.669062\pi\)
−0.506502 + 0.862239i \(0.669062\pi\)
\(192\) −0.707107 + 0.707107i −0.0510310 + 0.0510310i
\(193\) −6.36396 6.36396i −0.458088 0.458088i 0.439939 0.898027i \(-0.355000\pi\)
−0.898027 + 0.439939i \(0.855000\pi\)
\(194\) −2.12132 2.12132i −0.152302 0.152302i
\(195\) 6.00000i 0.429669i
\(196\) 9.00000i 0.642857i
\(197\) −7.07107 7.07107i −0.503793 0.503793i 0.408822 0.912614i \(-0.365940\pi\)
−0.912614 + 0.408822i \(0.865940\pi\)
\(198\) −2.12132 2.12132i −0.150756 0.150756i
\(199\) −0.707107 + 0.707107i −0.0501255 + 0.0501255i −0.731725 0.681600i \(-0.761285\pi\)
0.681600 + 0.731725i \(0.261285\pi\)
\(200\) −4.00000 −0.282843
\(201\) −4.24264 + 4.24264i −0.299253 + 0.299253i
\(202\) 17.0000i 1.19612i
\(203\) −28.0000 −1.96521
\(204\) 0 0
\(205\) −2.00000 −0.139686
\(206\) 13.0000i 0.905753i
\(207\) −4.24264 + 4.24264i −0.294884 + 0.294884i
\(208\) −6.00000 −0.416025
\(209\) −8.48528 + 8.48528i −0.586939 + 0.586939i
\(210\) 2.82843 + 2.82843i 0.195180 + 0.195180i
\(211\) 5.65685 + 5.65685i 0.389434 + 0.389434i 0.874486 0.485052i \(-0.161199\pi\)
−0.485052 + 0.874486i \(0.661199\pi\)
\(212\) 13.0000i 0.892844i
\(213\) 12.0000i 0.822226i
\(214\) −10.6066 10.6066i −0.725052 0.725052i
\(215\) −2.82843 2.82843i −0.192897 0.192897i
\(216\) 0.707107 0.707107i 0.0481125 0.0481125i
\(217\) 12.0000 0.814613
\(218\) 7.07107 7.07107i 0.478913 0.478913i
\(219\) 7.00000i 0.473016i
\(220\) 3.00000 0.202260
\(221\) 0 0
\(222\) 8.00000 0.536925
\(223\) 17.0000i 1.13840i 0.822198 + 0.569202i \(0.192748\pi\)
−0.822198 + 0.569202i \(0.807252\pi\)
\(224\) 2.82843 2.82843i 0.188982 0.188982i
\(225\) 4.00000 0.266667
\(226\) 7.07107 7.07107i 0.470360 0.470360i
\(227\) 14.1421 + 14.1421i 0.938647 + 0.938647i 0.998224 0.0595772i \(-0.0189752\pi\)
−0.0595772 + 0.998224i \(0.518975\pi\)
\(228\) −2.82843 2.82843i −0.187317 0.187317i
\(229\) 14.0000i 0.925146i 0.886581 + 0.462573i \(0.153074\pi\)
−0.886581 + 0.462573i \(0.846926\pi\)
\(230\) 6.00000i 0.395628i
\(231\) 8.48528 + 8.48528i 0.558291 + 0.558291i
\(232\) −4.94975 4.94975i −0.324967 0.324967i
\(233\) 16.9706 16.9706i 1.11178 1.11178i 0.118869 0.992910i \(-0.462073\pi\)
0.992910 0.118869i \(-0.0379267\pi\)
\(234\) 6.00000 0.392232
\(235\) −1.41421 + 1.41421i −0.0922531 + 0.0922531i
\(236\) 9.00000i 0.585850i
\(237\) 5.00000 0.324785
\(238\) 0 0
\(239\) −26.0000 −1.68180 −0.840900 0.541190i \(-0.817974\pi\)
−0.840900 + 0.541190i \(0.817974\pi\)
\(240\) 1.00000i 0.0645497i
\(241\) −10.6066 + 10.6066i −0.683231 + 0.683231i −0.960727 0.277496i \(-0.910496\pi\)
0.277496 + 0.960727i \(0.410496\pi\)
\(242\) −2.00000 −0.128565
\(243\) −0.707107 + 0.707107i −0.0453609 + 0.0453609i
\(244\) 7.07107 + 7.07107i 0.452679 + 0.452679i
\(245\) −6.36396 6.36396i −0.406579 0.406579i
\(246\) 2.00000i 0.127515i
\(247\) 24.0000i 1.52708i
\(248\) 2.12132 + 2.12132i 0.134704 + 0.134704i
\(249\) 8.48528 + 8.48528i 0.537733 + 0.537733i
\(250\) −6.36396 + 6.36396i −0.402492 + 0.402492i
\(251\) 15.0000 0.946792 0.473396 0.880850i \(-0.343028\pi\)
0.473396 + 0.880850i \(0.343028\pi\)
\(252\) −2.82843 + 2.82843i −0.178174 + 0.178174i
\(253\) 18.0000i 1.13165i
\(254\) 16.0000 1.00393
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 2.82843 2.82843i 0.176090 0.176090i
\(259\) −32.0000 −1.98838
\(260\) −4.24264 + 4.24264i −0.263117 + 0.263117i
\(261\) 4.94975 + 4.94975i 0.306382 + 0.306382i
\(262\) −14.1421 14.1421i −0.873704 0.873704i
\(263\) 18.0000i 1.10993i 0.831875 + 0.554964i \(0.187268\pi\)
−0.831875 + 0.554964i \(0.812732\pi\)
\(264\) 3.00000i 0.184637i
\(265\) −9.19239 9.19239i −0.564684 0.564684i
\(266\) 11.3137 + 11.3137i 0.693688 + 0.693688i
\(267\) −2.82843 + 2.82843i −0.173097 + 0.173097i
\(268\) 6.00000 0.366508
\(269\) −6.36396 + 6.36396i −0.388018 + 0.388018i −0.873980 0.485962i \(-0.838469\pi\)
0.485962 + 0.873980i \(0.338469\pi\)
\(270\) 1.00000i 0.0608581i
\(271\) 5.00000 0.303728 0.151864 0.988401i \(-0.451472\pi\)
0.151864 + 0.988401i \(0.451472\pi\)
\(272\) 0 0
\(273\) −24.0000 −1.45255
\(274\) 12.0000i 0.724947i
\(275\) −8.48528 + 8.48528i −0.511682 + 0.511682i
\(276\) 6.00000 0.361158
\(277\) 15.5563 15.5563i 0.934690 0.934690i −0.0633039 0.997994i \(-0.520164\pi\)
0.997994 + 0.0633039i \(0.0201637\pi\)
\(278\) 5.65685 + 5.65685i 0.339276 + 0.339276i
\(279\) −2.12132 2.12132i −0.127000 0.127000i
\(280\) 4.00000i 0.239046i
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) −1.41421 1.41421i −0.0842152 0.0842152i
\(283\) 2.82843 + 2.82843i 0.168133 + 0.168133i 0.786158 0.618026i \(-0.212067\pi\)
−0.618026 + 0.786158i \(0.712067\pi\)
\(284\) −8.48528 + 8.48528i −0.503509 + 0.503509i
\(285\) −4.00000 −0.236940
\(286\) −12.7279 + 12.7279i −0.752618 + 0.752618i
\(287\) 8.00000i 0.472225i
\(288\) −1.00000 −0.0589256
\(289\) 0 0
\(290\) −7.00000 −0.411054
\(291\) 3.00000i 0.175863i
\(292\) 4.94975 4.94975i 0.289662 0.289662i
\(293\) 19.0000 1.10999 0.554996 0.831853i \(-0.312720\pi\)
0.554996 + 0.831853i \(0.312720\pi\)
\(294\) 6.36396 6.36396i 0.371154 0.371154i
\(295\) 6.36396 + 6.36396i 0.370524 + 0.370524i
\(296\) −5.65685 5.65685i −0.328798 0.328798i
\(297\) 3.00000i 0.174078i
\(298\) 15.0000i 0.868927i
\(299\) 25.4558 + 25.4558i 1.47215 + 1.47215i
\(300\) −2.82843 2.82843i −0.163299 0.163299i
\(301\) −11.3137 + 11.3137i −0.652111 + 0.652111i
\(302\) −9.00000 −0.517892
\(303\) 12.0208 12.0208i 0.690578 0.690578i
\(304\) 4.00000i 0.229416i
\(305\) 10.0000 0.572598
\(306\) 0 0
\(307\) −12.0000 −0.684876 −0.342438 0.939540i \(-0.611253\pi\)
−0.342438 + 0.939540i \(0.611253\pi\)
\(308\) 12.0000i 0.683763i
\(309\) 9.19239 9.19239i 0.522937 0.522937i
\(310\) 3.00000 0.170389
\(311\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(312\) −4.24264 4.24264i −0.240192 0.240192i
\(313\) −9.89949 9.89949i −0.559553 0.559553i 0.369627 0.929180i \(-0.379485\pi\)
−0.929180 + 0.369627i \(0.879485\pi\)
\(314\) 12.0000i 0.677199i
\(315\) 4.00000i 0.225374i
\(316\) −3.53553 3.53553i −0.198889 0.198889i
\(317\) −1.41421 1.41421i −0.0794301 0.0794301i 0.666276 0.745706i \(-0.267887\pi\)
−0.745706 + 0.666276i \(0.767887\pi\)
\(318\) 9.19239 9.19239i 0.515484 0.515484i
\(319\) −21.0000 −1.17577
\(320\) 0.707107 0.707107i 0.0395285 0.0395285i
\(321\) 15.0000i 0.837218i
\(322\) −24.0000 −1.33747
\(323\) 0 0
\(324\) 1.00000 0.0555556
\(325\) 24.0000i 1.33128i
\(326\) 4.24264 4.24264i 0.234978 0.234978i
\(327\) 10.0000 0.553001
\(328\) −1.41421 + 1.41421i −0.0780869 + 0.0780869i
\(329\) 5.65685 + 5.65685i 0.311872 + 0.311872i
\(330\) 2.12132 + 2.12132i 0.116775 + 0.116775i
\(331\) 22.0000i 1.20923i 0.796518 + 0.604615i \(0.206673\pi\)
−0.796518 + 0.604615i \(0.793327\pi\)
\(332\) 12.0000i 0.658586i
\(333\) 5.65685 + 5.65685i 0.309994 + 0.309994i
\(334\) −5.65685 5.65685i −0.309529 0.309529i
\(335\) 4.24264 4.24264i 0.231800 0.231800i
\(336\) 4.00000 0.218218
\(337\) −21.2132 + 21.2132i −1.15556 + 1.15556i −0.170136 + 0.985421i \(0.554421\pi\)
−0.985421 + 0.170136i \(0.945579\pi\)
\(338\) 23.0000i 1.25104i
\(339\) 10.0000 0.543125
\(340\) 0 0
\(341\) 9.00000 0.487377
\(342\) 4.00000i 0.216295i
\(343\) −5.65685 + 5.65685i −0.305441 + 0.305441i
\(344\) −4.00000 −0.215666
\(345\) 4.24264 4.24264i 0.228416 0.228416i
\(346\) −9.19239 9.19239i −0.494186 0.494186i
\(347\) 12.0208 + 12.0208i 0.645311 + 0.645311i 0.951856 0.306545i \(-0.0991730\pi\)
−0.306545 + 0.951856i \(0.599173\pi\)
\(348\) 7.00000i 0.375239i
\(349\) 12.0000i 0.642345i −0.947021 0.321173i \(-0.895923\pi\)
0.947021 0.321173i \(-0.104077\pi\)
\(350\) 11.3137 + 11.3137i 0.604743 + 0.604743i
\(351\) 4.24264 + 4.24264i 0.226455 + 0.226455i
\(352\) 2.12132 2.12132i 0.113067 0.113067i
\(353\) 4.00000 0.212899 0.106449 0.994318i \(-0.466052\pi\)
0.106449 + 0.994318i \(0.466052\pi\)
\(354\) −6.36396 + 6.36396i −0.338241 + 0.338241i
\(355\) 12.0000i 0.636894i
\(356\) 4.00000 0.212000
\(357\) 0 0
\(358\) 0 0
\(359\) 30.0000i 1.58334i −0.610949 0.791670i \(-0.709212\pi\)
0.610949 0.791670i \(-0.290788\pi\)
\(360\) −0.707107 + 0.707107i −0.0372678 + 0.0372678i
\(361\) 3.00000 0.157895
\(362\) −7.07107 + 7.07107i −0.371647 + 0.371647i
\(363\) −1.41421 1.41421i −0.0742270 0.0742270i
\(364\) 16.9706 + 16.9706i 0.889499 + 0.889499i
\(365\) 7.00000i 0.366397i
\(366\) 10.0000i 0.522708i
\(367\) −12.0208 12.0208i −0.627481 0.627481i 0.319952 0.947434i \(-0.396333\pi\)
−0.947434 + 0.319952i \(0.896333\pi\)
\(368\) −4.24264 4.24264i −0.221163 0.221163i
\(369\) 1.41421 1.41421i 0.0736210 0.0736210i
\(370\) −8.00000 −0.415900
\(371\) −36.7696 + 36.7696i −1.90898 + 1.90898i
\(372\) 3.00000i 0.155543i
\(373\) −32.0000 −1.65690 −0.828449 0.560065i \(-0.810776\pi\)
−0.828449 + 0.560065i \(0.810776\pi\)
\(374\) 0 0
\(375\) −9.00000 −0.464758
\(376\) 2.00000i 0.103142i
\(377\) 29.6985 29.6985i 1.52955 1.52955i
\(378\) −4.00000 −0.205738
\(379\) −7.07107 + 7.07107i −0.363216 + 0.363216i −0.864996 0.501779i \(-0.832679\pi\)
0.501779 + 0.864996i \(0.332679\pi\)
\(380\) 2.82843 + 2.82843i 0.145095 + 0.145095i
\(381\) 11.3137 + 11.3137i 0.579619 + 0.579619i
\(382\) 14.0000i 0.716302i
\(383\) 2.00000i 0.102195i 0.998694 + 0.0510976i \(0.0162720\pi\)
−0.998694 + 0.0510976i \(0.983728\pi\)
\(384\) 0.707107 + 0.707107i 0.0360844 + 0.0360844i
\(385\) −8.48528 8.48528i −0.432450 0.432450i
\(386\) −6.36396 + 6.36396i −0.323917 + 0.323917i
\(387\) 4.00000 0.203331
\(388\) −2.12132 + 2.12132i −0.107694 + 0.107694i
\(389\) 5.00000i 0.253510i −0.991934 0.126755i \(-0.959544\pi\)
0.991934 0.126755i \(-0.0404562\pi\)
\(390\) −6.00000 −0.303822
\(391\) 0 0
\(392\) −9.00000 −0.454569
\(393\) 20.0000i 1.00887i
\(394\) −7.07107 + 7.07107i −0.356235 + 0.356235i
\(395\) −5.00000 −0.251577
\(396\) −2.12132 + 2.12132i −0.106600 + 0.106600i
\(397\) 15.5563 + 15.5563i 0.780751 + 0.780751i 0.979957 0.199207i \(-0.0638365\pi\)
−0.199207 + 0.979957i \(0.563837\pi\)
\(398\) 0.707107 + 0.707107i 0.0354441 + 0.0354441i
\(399\) 16.0000i 0.801002i
\(400\) 4.00000i 0.200000i
\(401\) −8.48528 8.48528i −0.423735 0.423735i 0.462753 0.886487i \(-0.346862\pi\)
−0.886487 + 0.462753i \(0.846862\pi\)
\(402\) 4.24264 + 4.24264i 0.211604 + 0.211604i
\(403\) −12.7279 + 12.7279i −0.634023 + 0.634023i
\(404\) −17.0000 −0.845782
\(405\) 0.707107 0.707107i 0.0351364 0.0351364i
\(406\) 28.0000i 1.38962i
\(407\) −24.0000 −1.18964
\(408\) 0 0
\(409\) 19.0000 0.939490 0.469745 0.882802i \(-0.344346\pi\)
0.469745 + 0.882802i \(0.344346\pi\)
\(410\) 2.00000i 0.0987730i
\(411\) 8.48528 8.48528i 0.418548 0.418548i
\(412\) −13.0000 −0.640464
\(413\) 25.4558 25.4558i 1.25260 1.25260i
\(414\) 4.24264 + 4.24264i 0.208514 + 0.208514i
\(415\) −8.48528 8.48528i −0.416526 0.416526i
\(416\) 6.00000i 0.294174i
\(417\) 8.00000i 0.391762i
\(418\) 8.48528 + 8.48528i 0.415029 + 0.415029i
\(419\) 2.12132 + 2.12132i 0.103633 + 0.103633i 0.757022 0.653389i \(-0.226653\pi\)
−0.653389 + 0.757022i \(0.726653\pi\)
\(420\) 2.82843 2.82843i 0.138013 0.138013i
\(421\) −22.0000 −1.07221 −0.536107 0.844150i \(-0.680106\pi\)
−0.536107 + 0.844150i \(0.680106\pi\)
\(422\) 5.65685 5.65685i 0.275371 0.275371i
\(423\) 2.00000i 0.0972433i
\(424\) −13.0000 −0.631336
\(425\) 0 0
\(426\) −12.0000 −0.581402
\(427\) 40.0000i 1.93574i
\(428\) −10.6066 + 10.6066i −0.512689 + 0.512689i
\(429\) −18.0000 −0.869048
\(430\) −2.82843 + 2.82843i −0.136399 + 0.136399i
\(431\) 7.07107 + 7.07107i 0.340601 + 0.340601i 0.856593 0.515992i \(-0.172577\pi\)
−0.515992 + 0.856593i \(0.672577\pi\)
\(432\) −0.707107 0.707107i −0.0340207 0.0340207i
\(433\) 3.00000i 0.144171i 0.997398 + 0.0720854i \(0.0229654\pi\)
−0.997398 + 0.0720854i \(0.977035\pi\)
\(434\) 12.0000i 0.576018i
\(435\) −4.94975 4.94975i −0.237322 0.237322i
\(436\) −7.07107 7.07107i −0.338643 0.338643i
\(437\) 16.9706 16.9706i 0.811812 0.811812i
\(438\) 7.00000 0.334473
\(439\) 19.7990 19.7990i 0.944954 0.944954i −0.0536078 0.998562i \(-0.517072\pi\)
0.998562 + 0.0536078i \(0.0170721\pi\)
\(440\) 3.00000i 0.143019i
\(441\) 9.00000 0.428571
\(442\) 0 0
\(443\) −12.0000 −0.570137 −0.285069 0.958507i \(-0.592016\pi\)
−0.285069 + 0.958507i \(0.592016\pi\)
\(444\) 8.00000i 0.379663i
\(445\) 2.82843 2.82843i 0.134080 0.134080i
\(446\) 17.0000 0.804973
\(447\) −10.6066 + 10.6066i −0.501675 + 0.501675i
\(448\) −2.82843 2.82843i −0.133631 0.133631i
\(449\) 2.82843 + 2.82843i 0.133482 + 0.133482i 0.770691 0.637209i \(-0.219911\pi\)
−0.637209 + 0.770691i \(0.719911\pi\)
\(450\) 4.00000i 0.188562i
\(451\) 6.00000i 0.282529i
\(452\) −7.07107 7.07107i −0.332595 0.332595i
\(453\) −6.36396 6.36396i −0.299005 0.299005i
\(454\) 14.1421 14.1421i 0.663723 0.663723i
\(455\) 24.0000 1.12514
\(456\) −2.82843 + 2.82843i −0.132453 + 0.132453i
\(457\) 17.0000i 0.795226i −0.917553 0.397613i \(-0.869839\pi\)
0.917553 0.397613i \(-0.130161\pi\)
\(458\) 14.0000 0.654177
\(459\) 0 0
\(460\) −6.00000 −0.279751
\(461\) 35.0000i 1.63011i 0.579382 + 0.815056i \(0.303294\pi\)
−0.579382 + 0.815056i \(0.696706\pi\)
\(462\) 8.48528 8.48528i 0.394771 0.394771i
\(463\) −5.00000 −0.232370 −0.116185 0.993228i \(-0.537067\pi\)
−0.116185 + 0.993228i \(0.537067\pi\)
\(464\) −4.94975 + 4.94975i −0.229786 + 0.229786i
\(465\) 2.12132 + 2.12132i 0.0983739 + 0.0983739i
\(466\) −16.9706 16.9706i −0.786146 0.786146i
\(467\) 3.00000i 0.138823i 0.997588 + 0.0694117i \(0.0221122\pi\)
−0.997588 + 0.0694117i \(0.977888\pi\)
\(468\) 6.00000i 0.277350i
\(469\) −16.9706 16.9706i −0.783628 0.783628i
\(470\) 1.41421 + 1.41421i 0.0652328 + 0.0652328i
\(471\) −8.48528 + 8.48528i −0.390981 + 0.390981i
\(472\) 9.00000 0.414259
\(473\) −8.48528 + 8.48528i −0.390154 + 0.390154i
\(474\) 5.00000i 0.229658i
\(475\) −16.0000 −0.734130
\(476\) 0 0
\(477\) 13.0000 0.595229
\(478\) 26.0000i 1.18921i
\(479\) 9.89949 9.89949i 0.452319 0.452319i −0.443804 0.896124i \(-0.646371\pi\)
0.896124 + 0.443804i \(0.146371\pi\)
\(480\) 1.00000 0.0456435
\(481\) 33.9411 33.9411i 1.54758 1.54758i
\(482\) 10.6066 + 10.6066i 0.483117 + 0.483117i
\(483\) −16.9706 16.9706i −0.772187 0.772187i
\(484\) 2.00000i 0.0909091i
\(485\) 3.00000i 0.136223i
\(486\) 0.707107 + 0.707107i 0.0320750 + 0.0320750i
\(487\) −17.6777 17.6777i −0.801052 0.801052i 0.182208 0.983260i \(-0.441675\pi\)
−0.983260 + 0.182208i \(0.941675\pi\)
\(488\) 7.07107 7.07107i 0.320092 0.320092i
\(489\) 6.00000 0.271329
\(490\) −6.36396 + 6.36396i −0.287494 + 0.287494i
\(491\) 23.0000i 1.03798i −0.854782 0.518988i \(-0.826309\pi\)
0.854782 0.518988i \(-0.173691\pi\)
\(492\) −2.00000 −0.0901670
\(493\) 0 0
\(494\) −24.0000 −1.07981
\(495\) 3.00000i 0.134840i
\(496\) 2.12132 2.12132i 0.0952501 0.0952501i
\(497\) 48.0000 2.15309
\(498\) 8.48528 8.48528i 0.380235 0.380235i
\(499\) −5.65685 5.65685i −0.253236 0.253236i 0.569060 0.822296i \(-0.307307\pi\)
−0.822296 + 0.569060i \(0.807307\pi\)
\(500\) 6.36396 + 6.36396i 0.284605 + 0.284605i
\(501\) 8.00000i 0.357414i
\(502\) 15.0000i 0.669483i
\(503\) −1.41421 1.41421i −0.0630567 0.0630567i 0.674875 0.737932i \(-0.264197\pi\)
−0.737932 + 0.674875i \(0.764197\pi\)
\(504\) 2.82843 + 2.82843i 0.125988 + 0.125988i
\(505\) −12.0208 + 12.0208i −0.534919 + 0.534919i
\(506\) −18.0000 −0.800198
\(507\) 16.2635 16.2635i 0.722285 0.722285i
\(508\) 16.0000i 0.709885i
\(509\) −31.0000 −1.37405 −0.687025 0.726633i \(-0.741084\pi\)
−0.687025 + 0.726633i \(0.741084\pi\)
\(510\) 0 0
\(511\) −28.0000 −1.23865
\(512\) 1.00000i 0.0441942i
\(513\) 2.82843 2.82843i 0.124878 0.124878i
\(514\) 0 0
\(515\) −9.19239 + 9.19239i −0.405065 + 0.405065i
\(516\) −2.82843 2.82843i −0.124515 0.124515i
\(517\) 4.24264 + 4.24264i 0.186591 + 0.186591i
\(518\) 32.0000i 1.40600i
\(519\) 13.0000i 0.570637i
\(520\) 4.24264 + 4.24264i 0.186052 + 0.186052i
\(521\) −14.1421 14.1421i −0.619578 0.619578i 0.325845 0.945423i \(-0.394351\pi\)
−0.945423 + 0.325845i \(0.894351\pi\)
\(522\) 4.94975 4.94975i 0.216645 0.216645i
\(523\) 26.0000 1.13690 0.568450 0.822718i \(-0.307543\pi\)
0.568450 + 0.822718i \(0.307543\pi\)
\(524\) −14.1421 + 14.1421i −0.617802 + 0.617802i
\(525\) 16.0000i 0.698297i
\(526\) 18.0000 0.784837
\(527\) 0 0
\(528\) 3.00000 0.130558
\(529\) 13.0000i 0.565217i
\(530\) −9.19239 + 9.19239i −0.399292 + 0.399292i
\(531\) −9.00000 −0.390567
\(532\) 11.3137 11.3137i 0.490511 0.490511i
\(533\) −8.48528 8.48528i −0.367538 0.367538i
\(534\) 2.82843 + 2.82843i 0.122398 + 0.122398i
\(535\) 15.0000i 0.648507i
\(536\) 6.00000i 0.259161i
\(537\) 0 0
\(538\) 6.36396 + 6.36396i 0.274370 + 0.274370i
\(539\) −19.0919 + 19.0919i −0.822346 + 0.822346i
\(540\) −1.00000 −0.0430331
\(541\) −12.7279 + 12.7279i −0.547216 + 0.547216i −0.925635 0.378419i \(-0.876468\pi\)
0.378419 + 0.925635i \(0.376468\pi\)
\(542\) 5.00000i 0.214768i
\(543\) −10.0000 −0.429141
\(544\) 0 0
\(545\) −10.0000 −0.428353
\(546\) 24.0000i 1.02711i
\(547\) 18.3848 18.3848i 0.786076 0.786076i −0.194772 0.980848i \(-0.562397\pi\)
0.980848 + 0.194772i \(0.0623968\pi\)
\(548\) −12.0000 −0.512615
\(549\) −7.07107 + 7.07107i −0.301786 + 0.301786i
\(550\) 8.48528 + 8.48528i 0.361814 + 0.361814i
\(551\) −19.7990 19.7990i −0.843465 0.843465i
\(552\) 6.00000i 0.255377i
\(553\) 20.0000i 0.850487i
\(554\) −15.5563 15.5563i −0.660926 0.660926i
\(555\) −5.65685 5.65685i −0.240120 0.240120i
\(556\) 5.65685 5.65685i 0.239904 0.239904i
\(557\) −14.0000 −0.593199 −0.296600 0.955002i \(-0.595853\pi\)
−0.296600 + 0.955002i \(0.595853\pi\)
\(558\) −2.12132 + 2.12132i −0.0898027 + 0.0898027i
\(559\) 24.0000i 1.01509i
\(560\) −4.00000 −0.169031
\(561\) 0 0
\(562\) 0 0
\(563\) 23.0000i 0.969334i 0.874699 + 0.484667i \(0.161059\pi\)
−0.874699 + 0.484667i \(0.838941\pi\)
\(564\) −1.41421 + 1.41421i −0.0595491 + 0.0595491i
\(565\) −10.0000 −0.420703
\(566\) 2.82843 2.82843i 0.118888 0.118888i
\(567\) −2.82843 2.82843i −0.118783 0.118783i
\(568\) 8.48528 + 8.48528i 0.356034 + 0.356034i
\(569\) 18.0000i 0.754599i −0.926091 0.377300i \(-0.876853\pi\)
0.926091 0.377300i \(-0.123147\pi\)
\(570\) 4.00000i 0.167542i
\(571\) 14.1421 + 14.1421i 0.591830 + 0.591830i 0.938125 0.346296i \(-0.112561\pi\)
−0.346296 + 0.938125i \(0.612561\pi\)
\(572\) 12.7279 + 12.7279i 0.532181 + 0.532181i
\(573\) −9.89949 + 9.89949i −0.413557 + 0.413557i
\(574\) 8.00000 0.333914
\(575\) 16.9706 16.9706i 0.707721 0.707721i
\(576\) 1.00000i 0.0416667i
\(577\) 30.0000 1.24892 0.624458 0.781058i \(-0.285320\pi\)
0.624458 + 0.781058i \(0.285320\pi\)
\(578\) 0 0
\(579\) −9.00000 −0.374027
\(580\) 7.00000i 0.290659i
\(581\) −33.9411 + 33.9411i −1.40812 + 1.40812i
\(582\) −3.00000 −0.124354
\(583\) −27.5772 + 27.5772i −1.14213 + 1.14213i
\(584\) −4.94975 4.94975i −0.204822 0.204822i
\(585\) −4.24264 4.24264i −0.175412 0.175412i
\(586\) 19.0000i 0.784883i
\(587\) 3.00000i 0.123823i 0.998082 + 0.0619116i \(0.0197197\pi\)
−0.998082 + 0.0619116i \(0.980280\pi\)
\(588\) −6.36396 6.36396i −0.262445 0.262445i
\(589\) 8.48528 + 8.48528i 0.349630 + 0.349630i
\(590\) 6.36396 6.36396i 0.262000 0.262000i
\(591\) −10.0000 −0.411345
\(592\) −5.65685 + 5.65685i −0.232495 + 0.232495i
\(593\) 6.00000i 0.246390i 0.992382 + 0.123195i \(0.0393141\pi\)
−0.992382 + 0.123195i \(0.960686\pi\)
\(594\) −3.00000 −0.123091
\(595\) 0 0
\(596\) 15.0000 0.614424
\(597\) 1.00000i 0.0409273i
\(598\) 25.4558 25.4558i 1.04097 1.04097i
\(599\) 4.00000 0.163436 0.0817178 0.996656i \(-0.473959\pi\)
0.0817178 + 0.996656i \(0.473959\pi\)
\(600\) −2.82843 + 2.82843i −0.115470 + 0.115470i
\(601\) 3.53553 + 3.53553i 0.144217 + 0.144217i 0.775529 0.631312i \(-0.217483\pi\)
−0.631312 + 0.775529i \(0.717483\pi\)
\(602\) 11.3137 + 11.3137i 0.461112 + 0.461112i
\(603\) 6.00000i 0.244339i
\(604\) 9.00000i 0.366205i
\(605\) 1.41421 + 1.41421i 0.0574960 + 0.0574960i
\(606\) −12.0208 12.0208i −0.488312 0.488312i
\(607\) 9.19239 9.19239i 0.373108 0.373108i −0.495500 0.868608i \(-0.665015\pi\)
0.868608 + 0.495500i \(0.165015\pi\)
\(608\) 4.00000 0.162221
\(609\) −19.7990 + 19.7990i −0.802296 + 0.802296i
\(610\) 10.0000i 0.404888i
\(611\) −12.0000 −0.485468
\(612\) 0 0
\(613\) 24.0000 0.969351 0.484675 0.874694i \(-0.338938\pi\)
0.484675 + 0.874694i \(0.338938\pi\)
\(614\) 12.0000i 0.484281i
\(615\) −1.41421 + 1.41421i −0.0570266 + 0.0570266i
\(616\) −12.0000 −0.483494
\(617\) −8.48528 + 8.48528i −0.341605 + 0.341605i −0.856970 0.515366i \(-0.827656\pi\)
0.515366 + 0.856970i \(0.327656\pi\)
\(618\) −9.19239 9.19239i −0.369772 0.369772i
\(619\) 7.07107 + 7.07107i 0.284210 + 0.284210i 0.834786 0.550575i \(-0.185592\pi\)
−0.550575 + 0.834786i \(0.685592\pi\)
\(620\) 3.00000i 0.120483i
\(621\) 6.00000i 0.240772i
\(622\) 0 0
\(623\) −11.3137 11.3137i −0.453274 0.453274i
\(624\) −4.24264 + 4.24264i −0.169842 + 0.169842i
\(625\) −11.0000 −0.440000
\(626\) −9.89949 + 9.89949i −0.395663 + 0.395663i
\(627\) 12.0000i 0.479234i
\(628\) 12.0000 0.478852
\(629\) 0 0
\(630\) 4.00000 0.159364
\(631\) 25.0000i 0.995234i −0.867397 0.497617i \(-0.834208\pi\)
0.867397 0.497617i \(-0.165792\pi\)
\(632\) −3.53553 + 3.53553i −0.140636 + 0.140636i
\(633\) 8.00000 0.317971
\(634\) −1.41421 + 1.41421i −0.0561656 + 0.0561656i
\(635\) −11.3137 11.3137i −0.448971 0.448971i
\(636\) −9.19239 9.19239i −0.364502 0.364502i
\(637\) 54.0000i 2.13956i
\(638\) 21.0000i 0.831398i
\(639\) −8.48528 8.48528i −0.335673 0.335673i
\(640\) −0.707107 0.707107i −0.0279508 0.0279508i
\(641\) 11.3137 11.3137i 0.446865 0.446865i −0.447446 0.894311i \(-0.647666\pi\)
0.894311 + 0.447446i \(0.147666\pi\)
\(642\) −15.0000 −0.592003
\(643\) 26.8701 26.8701i 1.05965 1.05965i 0.0615475 0.998104i \(-0.480396\pi\)
0.998104 0.0615475i \(-0.0196036\pi\)
\(644\) 24.0000i 0.945732i
\(645\) −4.00000 −0.157500
\(646\) 0 0
\(647\) 4.00000 0.157256 0.0786281 0.996904i \(-0.474946\pi\)
0.0786281 + 0.996904i \(0.474946\pi\)
\(648\) 1.00000i 0.0392837i
\(649\) 19.0919 19.0919i 0.749422 0.749422i
\(650\) −24.0000 −0.941357
\(651\) 8.48528 8.48528i 0.332564 0.332564i
\(652\) −4.24264 4.24264i −0.166155 0.166155i
\(653\) −15.5563 15.5563i −0.608767 0.608767i 0.333857 0.942624i \(-0.391650\pi\)
−0.942624 + 0.333857i \(0.891650\pi\)
\(654\) 10.0000i 0.391031i
\(655\) 20.0000i 0.781465i
\(656\) 1.41421 + 1.41421i 0.0552158 + 0.0552158i
\(657\) 4.94975 + 4.94975i 0.193108 + 0.193108i
\(658\) 5.65685 5.65685i 0.220527 0.220527i
\(659\) 3.00000 0.116863 0.0584317 0.998291i \(-0.481390\pi\)
0.0584317 + 0.998291i \(0.481390\pi\)
\(660\) 2.12132 2.12132i 0.0825723 0.0825723i
\(661\) 22.0000i 0.855701i 0.903850 + 0.427850i \(0.140729\pi\)
−0.903850 + 0.427850i \(0.859271\pi\)
\(662\) 22.0000 0.855054
\(663\) 0 0
\(664\) −12.0000 −0.465690
\(665\) 16.0000i 0.620453i
\(666\) 5.65685 5.65685i 0.219199 0.219199i
\(667\) 42.0000 1.62625
\(668\) −5.65685 + 5.65685i −0.218870 + 0.218870i
\(669\) 12.0208 + 12.0208i 0.464752 + 0.464752i
\(670\) −4.24264 4.24264i −0.163908 0.163908i
\(671\) 30.0000i 1.15814i
\(672\) 4.00000i 0.154303i
\(673\) 24.0416 + 24.0416i 0.926737 + 0.926737i 0.997494 0.0707568i \(-0.0225414\pi\)
−0.0707568 + 0.997494i \(0.522541\pi\)
\(674\) 21.2132 + 21.2132i 0.817102 + 0.817102i
\(675\) 2.82843 2.82843i 0.108866 0.108866i
\(676\) −23.0000 −0.884615
\(677\) 15.5563 15.5563i 0.597879 0.597879i −0.341869 0.939748i \(-0.611060\pi\)
0.939748 + 0.341869i \(0.111060\pi\)
\(678\) 10.0000i 0.384048i
\(679\) 12.0000 0.460518
\(680\) 0 0
\(681\) 20.0000 0.766402
\(682\) 9.00000i 0.344628i
\(683\) −19.0919 + 19.0919i −0.730531 + 0.730531i −0.970725 0.240194i \(-0.922789\pi\)
0.240194 + 0.970725i \(0.422789\pi\)
\(684\) −4.00000 −0.152944
\(685\) −8.48528 + 8.48528i −0.324206 + 0.324206i
\(686\) 5.65685 + 5.65685i 0.215980 + 0.215980i
\(687\) 9.89949 + 9.89949i 0.377689 + 0.377689i
\(688\) 4.00000i 0.152499i
\(689\) 78.0000i 2.97156i
\(690\) −4.24264 4.24264i −0.161515 0.161515i
\(691\) 5.65685 + 5.65685i 0.215197 + 0.215197i 0.806471 0.591274i \(-0.201375\pi\)
−0.591274 + 0.806471i \(0.701375\pi\)
\(692\) −9.19239 + 9.19239i −0.349442 + 0.349442i
\(693\) 12.0000 0.455842
\(694\) 12.0208 12.0208i 0.456304 0.456304i
\(695\) 8.00000i 0.303457i
\(696\) −7.00000 −0.265334
\(697\) 0 0
\(698\) −12.0000 −0.454207
\(699\) 24.0000i 0.907763i
\(700\) 11.3137 11.3137i 0.427618 0.427618i
\(701\) 15.0000 0.566542 0.283271 0.959040i \(-0.408580\pi\)
0.283271 + 0.959040i \(0.408580\pi\)
\(702\) 4.24264 4.24264i 0.160128 0.160128i
\(703\) −22.6274 22.6274i −0.853409 0.853409i
\(704\) −2.12132 2.12132i −0.0799503 0.0799503i
\(705\) 2.00000i 0.0753244i
\(706\) 4.00000i 0.150542i
\(707\) 48.0833 + 48.0833i 1.80836 + 1.80836i
\(708\) 6.36396 + 6.36396i 0.239172 + 0.239172i
\(709\) 5.65685 5.65685i 0.212448 0.212448i −0.592859 0.805306i \(-0.702001\pi\)
0.805306 + 0.592859i \(0.202001\pi\)
\(710\) 12.0000 0.450352
\(711\) 3.53553 3.53553i 0.132593 0.132593i
\(712\) 4.00000i 0.149906i
\(713\) −18.0000 −0.674105
\(714\) 0 0
\(715\) 18.0000 0.673162
\(716\) 0 0
\(717\) −18.3848 + 18.3848i −0.686592 + 0.686592i
\(718\) −30.0000 −1.11959
\(719\) 8.48528 8.48528i 0.316448 0.316448i −0.530953 0.847401i \(-0.678166\pi\)
0.847401 + 0.530953i \(0.178166\pi\)
\(720\) 0.707107 + 0.707107i 0.0263523 + 0.0263523i
\(721\) 36.7696 + 36.7696i 1.36937 + 1.36937i
\(722\) 3.00000i 0.111648i
\(723\) 15.0000i 0.557856i
\(724\) 7.07107 + 7.07107i 0.262794 + 0.262794i
\(725\) −19.7990 19.7990i −0.735316 0.735316i
\(726\) −1.41421 + 1.41421i −0.0524864 + 0.0524864i
\(727\) 41.0000 1.52061 0.760303 0.649569i \(-0.225051\pi\)
0.760303 + 0.649569i \(0.225051\pi\)
\(728\) 16.9706 16.9706i 0.628971 0.628971i
\(729\) 1.00000i 0.0370370i
\(730\) −7.00000 −0.259082
\(731\) 0 0
\(732\) 10.0000 0.369611
\(733\) 12.0000i 0.443230i −0.975134 0.221615i \(-0.928867\pi\)
0.975134 0.221615i \(-0.0711328\pi\)
\(734\) −12.0208 + 12.0208i −0.443696 + 0.443696i
\(735\) −9.00000 −0.331970
\(736\) −4.24264 + 4.24264i −0.156386 + 0.156386i
\(737\) −12.7279 12.7279i −0.468839 0.468839i
\(738\) −1.41421 1.41421i −0.0520579 0.0520579i
\(739\) 6.00000i 0.220714i −0.993892 0.110357i \(-0.964801\pi\)
0.993892 0.110357i \(-0.0351994\pi\)
\(740\) 8.00000i 0.294086i
\(741\) −16.9706 16.9706i −0.623429 0.623429i
\(742\) 36.7696 + 36.7696i 1.34985 + 1.34985i
\(743\) −7.07107 + 7.07107i −0.259412 + 0.259412i −0.824815 0.565403i \(-0.808721\pi\)
0.565403 + 0.824815i \(0.308721\pi\)
\(744\) 3.00000 0.109985
\(745\) 10.6066 10.6066i 0.388596 0.388596i
\(746\) 32.0000i 1.17160i
\(747\) 12.0000 0.439057
\(748\) 0 0
\(749\) 60.0000 2.19235
\(750\) 9.00000i 0.328634i
\(751\) −24.7487 + 24.7487i −0.903094 + 0.903094i −0.995703 0.0926084i \(-0.970480\pi\)
0.0926084 + 0.995703i \(0.470480\pi\)
\(752\) 2.00000 0.0729325
\(753\) 10.6066 10.6066i 0.386526 0.386526i
\(754\) −29.6985 29.6985i −1.08156 1.08156i
\(755\) 6.36396 + 6.36396i 0.231608 + 0.231608i
\(756\) 4.00000i 0.145479i
\(757\) 38.0000i 1.38113i −0.723269 0.690567i \(-0.757361\pi\)
0.723269 0.690567i \(-0.242639\pi\)
\(758\) 7.07107 + 7.07107i 0.256833 + 0.256833i
\(759\) −12.7279 12.7279i −0.461994 0.461994i
\(760\) 2.82843 2.82843i 0.102598 0.102598i
\(761\) −34.0000 −1.23250 −0.616250 0.787551i \(-0.711349\pi\)
−0.616250 + 0.787551i \(0.711349\pi\)
\(762\) 11.3137 11.3137i 0.409852 0.409852i
\(763\) 40.0000i 1.44810i
\(764\) 14.0000 0.506502
\(765\) 0 0
\(766\) 2.00000 0.0722629
\(767\) 54.0000i 1.94983i
\(768\) 0.707107 0.707107i 0.0255155 0.0255155i
\(769\) 55.0000 1.98335 0.991675 0.128763i \(-0.0411007\pi\)
0.991675 + 0.128763i \(0.0411007\pi\)
\(770\) −8.48528 + 8.48528i −0.305788 + 0.305788i
\(771\) 0 0
\(772\) 6.36396 + 6.36396i 0.229044 + 0.229044i
\(773\) 51.0000i 1.83434i 0.398493 + 0.917171i \(0.369533\pi\)
−0.398493 + 0.917171i \(0.630467\pi\)
\(774\) 4.00000i 0.143777i
\(775\) 8.48528 + 8.48528i 0.304800 + 0.304800i
\(776\) 2.12132 + 2.12132i 0.0761510 + 0.0761510i
\(777\) −22.6274 + 22.6274i −0.811754 + 0.811754i
\(778\) −5.00000 −0.179259
\(779\) −5.65685 + 5.65685i −0.202678 + 0.202678i
\(780\) 6.00000i 0.214834i
\(781\) 36.0000 1.28818
\(782\) 0 0
\(783\) 7.00000 0.250160
\(784\) 9.00000i 0.321429i
\(785\) 8.48528 8.48528i 0.302853 0.302853i
\(786\) −20.0000 −0.713376
\(787\) 16.9706 16.9706i 0.604935 0.604935i −0.336683 0.941618i \(-0.609305\pi\)
0.941618 + 0.336683i \(0.109305\pi\)
\(788\) 7.07107 + 7.07107i 0.251896 + 0.251896i
\(789\) 12.7279 + 12.7279i 0.453126 + 0.453126i
\(790\) 5.00000i 0.177892i
\(791\) 40.0000i 1.42224i
\(792\) 2.12132 + 2.12132i 0.0753778 + 0.0753778i
\(793\) 42.4264 + 42.4264i 1.50661 + 1.50661i
\(794\) 15.5563 15.5563i 0.552074 0.552074i
\(795\) −13.0000 −0.461062
\(796\) 0.707107 0.707107i 0.0250627 0.0250627i
\(797\) 14.0000i 0.495905i −0.968772 0.247953i \(-0.920242\pi\)
0.968772 0.247953i \(-0.0797578\pi\)
\(798\) 16.0000 0.566394
\(799\) 0 0
\(800\) 4.00000 0.141421
\(801\) 4.00000i 0.141333i
\(802\) −8.48528 + 8.48528i −0.299626 + 0.299626i
\(803\) −21.0000 −0.741074
\(804\) 4.24264 4.24264i 0.149626 0.149626i
\(805\) 16.9706 + 16.9706i 0.598134 + 0.598134i
\(806\) 12.7279 + 12.7279i 0.448322 + 0.448322i
\(807\) 9.00000i 0.316815i
\(808\) 17.0000i 0.598058i
\(809\) −31.1127 31.1127i −1.09386 1.09386i −0.995112 0.0987522i \(-0.968515\pi\)
−0.0987522 0.995112i \(-0.531485\pi\)
\(810\) −0.707107 0.707107i −0.0248452 0.0248452i
\(811\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(812\) 28.0000 0.982607
\(813\) 3.53553 3.53553i 0.123997 0.123997i
\(814\) 24.0000i 0.841200i
\(815\) −6.00000 −0.210171
\(816\) 0 0
\(817\) −16.0000 −0.559769
\(818\) 19.0000i 0.664319i
\(819\) −16.9706 + 16.9706i −0.592999 + 0.592999i
\(820\) 2.00000 0.0698430
\(821\) 21.2132 21.2132i 0.740346 0.740346i −0.232299 0.972645i \(-0.574625\pi\)
0.972645 + 0.232299i \(0.0746247\pi\)
\(822\) −8.48528 8.48528i −0.295958 0.295958i
\(823\) −27.5772 27.5772i −0.961280 0.961280i 0.0379983 0.999278i \(-0.487902\pi\)
−0.999278 + 0.0379983i \(0.987902\pi\)
\(824\) 13.0000i 0.452876i
\(825\) 12.0000i 0.417786i
\(826\) −25.4558 25.4558i −0.885722 0.885722i
\(827\) 3.53553 + 3.53553i 0.122943 + 0.122943i 0.765901 0.642958i \(-0.222293\pi\)
−0.642958 + 0.765901i \(0.722293\pi\)
\(828\) 4.24264 4.24264i 0.147442 0.147442i
\(829\) 12.0000 0.416777 0.208389 0.978046i \(-0.433178\pi\)
0.208389 + 0.978046i \(0.433178\pi\)
\(830\) −8.48528 + 8.48528i −0.294528 + 0.294528i
\(831\) 22.0000i 0.763172i
\(832\) 6.00000 0.208013
\(833\) 0 0
\(834\) 8.00000 0.277017
\(835\) 8.00000i 0.276851i
\(836\) 8.48528 8.48528i 0.293470 0.293470i
\(837\) −3.00000 −0.103695
\(838\) 2.12132 2.12132i 0.0732798 0.0732798i
\(839\) −21.2132 21.2132i −0.732361 0.732361i 0.238726 0.971087i \(-0.423270\pi\)
−0.971087 + 0.238726i \(0.923270\pi\)
\(840\) −2.82843 2.82843i −0.0975900 0.0975900i
\(841\) 20.0000i 0.689655i
\(842\) 22.0000i 0.758170i
\(843\) 0 0
\(844\) −5.65685 5.65685i −0.194717 0.194717i
\(845\) −16.2635 + 16.2635i −0.559480 + 0.559480i
\(846\) −2.00000 −0.0687614
\(847\) 5.65685 5.65685i 0.194372 0.194372i
\(848\) 13.0000i 0.446422i
\(849\) 4.00000 0.137280
\(850\) 0 0
\(851\) 48.0000 1.64542
\(852\) 12.0000i 0.411113i
\(853\) −22.6274 + 22.6274i −0.774748 + 0.774748i −0.978932 0.204184i \(-0.934546\pi\)
0.204184 + 0.978932i \(0.434546\pi\)
\(854\) −40.0000 −1.36877
\(855\) −2.82843 + 2.82843i −0.0967302 + 0.0967302i
\(856\) 10.6066 + 10.6066i 0.362526 + 0.362526i
\(857\) 35.3553 + 35.3553i 1.20772 + 1.20772i 0.971765 + 0.235950i \(0.0758202\pi\)
0.235950 + 0.971765i \(0.424180\pi\)
\(858\) 18.0000i 0.614510i
\(859\) 40.0000i 1.36478i 0.730987 + 0.682391i \(0.239060\pi\)
−0.730987 + 0.682391i \(0.760940\pi\)
\(860\) 2.82843 + 2.82843i 0.0964486 + 0.0964486i
\(861\) 5.65685 + 5.65685i 0.192785 + 0.192785i
\(862\) 7.07107 7.07107i 0.240842 0.240842i
\(863\) 30.0000 1.02121 0.510606 0.859815i \(-0.329421\pi\)
0.510606 + 0.859815i \(0.329421\pi\)
\(864\) −0.707107 + 0.707107i −0.0240563 + 0.0240563i
\(865\) 13.0000i 0.442013i
\(866\) 3.00000 0.101944
\(867\) 0 0
\(868\) −12.0000 −0.407307
\(869\) 15.0000i 0.508840i
\(870\) −4.94975 + 4.94975i −0.167812 + 0.167812i
\(871\) 36.0000 1.21981
\(872\) −7.07107 + 7.07107i −0.239457 + 0.239457i
\(873\) −2.12132 2.12132i −0.0717958 0.0717958i
\(874\) −16.9706 16.9706i −0.574038 0.574038i
\(875\) 36.0000i 1.21702i
\(876\) 7.00000i 0.236508i
\(877\) 12.7279 + 12.7279i 0.429791 + 0.429791i 0.888557 0.458766i \(-0.151708\pi\)
−0.458766 + 0.888557i \(0.651708\pi\)
\(878\) −19.7990 19.7990i −0.668184 0.668184i
\(879\) 13.4350 13.4350i 0.453152 0.453152i
\(880\) −3.00000 −0.101130
\(881\) 32.5269 32.5269i 1.09586 1.09586i 0.100970 0.994889i \(-0.467805\pi\)
0.994889 0.100970i \(-0.0321946\pi\)
\(882\) 9.00000i 0.303046i
\(883\) 2.00000 0.0673054 0.0336527 0.999434i \(-0.489286\pi\)
0.0336527 + 0.999434i \(0.489286\pi\)
\(884\) 0 0
\(885\) 9.00000 0.302532
\(886\) 12.0000i 0.403148i
\(887\) −25.4558 + 25.4558i −0.854724 + 0.854724i −0.990711 0.135987i \(-0.956579\pi\)
0.135987 + 0.990711i \(0.456579\pi\)
\(888\) −8.00000 −0.268462
\(889\) −45.2548 + 45.2548i −1.51780 + 1.51780i
\(890\) −2.82843 2.82843i −0.0948091 0.0948091i
\(891\) −2.12132 2.12132i −0.0710669 0.0710669i
\(892\) 17.0000i 0.569202i
\(893\) 8.00000i 0.267710i
\(894\) 10.6066 + 10.6066i 0.354738 + 0.354738i
\(895\) 0 0
\(896\) −2.82843 + 2.82843i −0.0944911 + 0.0944911i
\(897\) 36.0000 1.20201
\(898\) 2.82843 2.82843i 0.0943858 0.0943858i
\(899\) 21.0000i 0.700389i
\(900\) −4.00000 −0.133333
\(901\) 0 0
\(902\) 6.00000 0.199778
\(903\) 16.0000i 0.532447i
\(904\) −7.07107 + 7.07107i −0.235180 + 0.235180i
\(905\) 10.0000 0.332411
\(906\) −6.36396 + 6.36396i −0.211428 + 0.211428i
\(907\) 38.1838 + 38.1838i 1.26787 + 1.26787i 0.947186 + 0.320685i \(0.103913\pi\)
0.320685 + 0.947186i \(0.396087\pi\)
\(908\) −14.1421 14.1421i −0.469323 0.469323i
\(909\) 17.0000i 0.563854i
\(910\) 24.0000i 0.795592i
\(911\) −15.5563 15.5563i −0.515405 0.515405i 0.400773 0.916178i \(-0.368742\pi\)
−0.916178 + 0.400773i \(0.868742\pi\)
\(912\) 2.82843 + 2.82843i 0.0936586 + 0.0936586i
\(913\) −25.4558 + 25.4558i −0.842465 + 0.842465i
\(914\) −17.0000 −0.562310
\(915\) 7.07107 7.07107i 0.233762 0.233762i
\(916\) 14.0000i 0.462573i
\(917\) 80.0000 2.64183
\(918\) 0 0
\(919\) 16.0000 0.527791 0.263896 0.964551i \(-0.414993\pi\)
0.263896 + 0.964551i \(0.414993\pi\)
\(920\) 6.00000i 0.197814i
\(921\) −8.48528 + 8.48528i −0.279600 + 0.279600i
\(922\) 35.0000 1.15266
\(923\) −50.9117 + 50.9117i −1.67578 + 1.67578i
\(924\) −8.48528 8.48528i −0.279145 0.279145i
\(925\) −22.6274 22.6274i −0.743985 0.743985i
\(926\) 5.00000i 0.164310i
\(927\) 13.0000i 0.426976i
\(928\) 4.94975 + 4.94975i 0.162483 + 0.162483i
\(929\) −5.65685 5.65685i −0.185595 0.185595i 0.608193 0.793789i \(-0.291894\pi\)
−0.793789 + 0.608193i \(0.791894\pi\)
\(930\) 2.12132 2.12132i 0.0695608 0.0695608i
\(931\) −36.0000 −1.17985
\(932\) −16.9706 + 16.9706i −0.555889 + 0.555889i
\(933\) 0 0
\(934\) 3.00000 0.0981630
\(935\) 0 0
\(936\) −6.00000 −0.196116
\(937\) 19.0000i 0.620703i 0.950622 + 0.310351i \(0.100447\pi\)
−0.950622 + 0.310351i \(0.899553\pi\)
\(938\) −16.9706 + 16.9706i −0.554109 + 0.554109i
\(939\) −14.0000 −0.456873
\(940\) 1.41421 1.41421i 0.0461266 0.0461266i
\(941\) 21.2132 + 21.2132i 0.691531 + 0.691531i 0.962569 0.271038i \(-0.0873669\pi\)
−0.271038 + 0.962569i \(0.587367\pi\)
\(942\) 8.48528 + 8.48528i 0.276465 + 0.276465i
\(943\) 12.0000i 0.390774i
\(944\) 9.00000i 0.292925i
\(945\) 2.82843 + 2.82843i 0.0920087 + 0.0920087i
\(946\) 8.48528 + 8.48528i 0.275880 + 0.275880i
\(947\) −2.12132 + 2.12132i −0.0689336 + 0.0689336i −0.740733 0.671799i \(-0.765522\pi\)
0.671799 + 0.740733i \(0.265522\pi\)
\(948\) −5.00000 −0.162392
\(949\) 29.6985 29.6985i 0.964054 0.964054i
\(950\) 16.0000i 0.519109i
\(951\) −2.00000 −0.0648544
\(952\) 0 0
\(953\) 4.00000 0.129573 0.0647864 0.997899i \(-0.479363\pi\)
0.0647864 + 0.997899i \(0.479363\pi\)
\(954\) 13.0000i 0.420891i
\(955\) 9.89949 9.89949i 0.320340 0.320340i
\(956\) 26.0000 0.840900
\(957\) −14.8492 + 14.8492i −0.480008 + 0.480008i
\(958\) −9.89949 9.89949i −0.319838 0.319838i
\(959\) 33.9411 + 33.9411i 1.09602 + 1.09602i
\(960\) 1.00000i 0.0322749i
\(961\) 22.0000i 0.709677i
\(962\) −33.9411 33.9411i −1.09431 1.09431i
\(963\) −10.6066 10.6066i −0.341793 0.341793i
\(964\) 10.6066 10.6066i 0.341616 0.341616i
\(965\) 9.00000 0.289720
\(966\) −16.9706 + 16.9706i −0.546019 + 0.546019i
\(967\) 13.0000i 0.418052i 0.977910 + 0.209026i \(0.0670293\pi\)
−0.977910 + 0.209026i \(0.932971\pi\)
\(968\) 2.00000 0.0642824
\(969\) 0 0
\(970\) 3.00000 0.0963242
\(971\) 19.0000i 0.609739i −0.952394 0.304870i \(-0.901387\pi\)
0.952394 0.304870i \(-0.0986129\pi\)
\(972\) 0.707107 0.707107i 0.0226805 0.0226805i
\(973\) −32.0000 −1.02587
\(974\) −17.6777 + 17.6777i −0.566429 + 0.566429i
\(975\) −16.9706 16.9706i −0.543493 0.543493i
\(976\) −7.07107 7.07107i −0.226339 0.226339i
\(977\) 16.0000i 0.511885i 0.966692 + 0.255943i \(0.0823858\pi\)
−0.966692 + 0.255943i \(0.917614\pi\)
\(978\) 6.00000i 0.191859i
\(979\) −8.48528 8.48528i −0.271191 0.271191i
\(980\) 6.36396 + 6.36396i 0.203289 + 0.203289i
\(981\) 7.07107 7.07107i 0.225762 0.225762i
\(982\) −23.0000 −0.733959
\(983\) 9.89949 9.89949i 0.315745 0.315745i −0.531385 0.847130i \(-0.678328\pi\)
0.847130 + 0.531385i \(0.178328\pi\)
\(984\) 2.00000i 0.0637577i
\(985\) 10.0000 0.318626
\(986\) 0 0
\(987\) 8.00000 0.254643
\(988\) 24.0000i 0.763542i
\(989\) 16.9706 16.9706i 0.539633 0.539633i
\(990\) 3.00000 0.0953463
\(991\) −2.82843 + 2.82843i −0.0898479 + 0.0898479i −0.750602 0.660754i \(-0.770237\pi\)
0.660754 + 0.750602i \(0.270237\pi\)
\(992\) −2.12132 2.12132i −0.0673520 0.0673520i
\(993\) 15.5563 + 15.5563i 0.493666 + 0.493666i
\(994\) 48.0000i 1.52247i
\(995\) 1.00000i 0.0317021i
\(996\) −8.48528 8.48528i −0.268866 0.268866i
\(997\) −15.5563 15.5563i −0.492675 0.492675i 0.416473 0.909148i \(-0.363266\pi\)
−0.909148 + 0.416473i \(0.863266\pi\)
\(998\) −5.65685 + 5.65685i −0.179065 + 0.179065i
\(999\) 8.00000 0.253109
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1734.2.f.a.1483.2 4
17.2 even 8 1734.2.b.g.577.1 2
17.4 even 4 inner 1734.2.f.a.829.1 4
17.8 even 8 1734.2.a.a.1.1 1
17.9 even 8 1734.2.a.g.1.1 yes 1
17.13 even 4 inner 1734.2.f.a.829.2 4
17.15 even 8 1734.2.b.g.577.2 2
17.16 even 2 inner 1734.2.f.a.1483.1 4
51.8 odd 8 5202.2.a.m.1.1 1
51.26 odd 8 5202.2.a.i.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1734.2.a.a.1.1 1 17.8 even 8
1734.2.a.g.1.1 yes 1 17.9 even 8
1734.2.b.g.577.1 2 17.2 even 8
1734.2.b.g.577.2 2 17.15 even 8
1734.2.f.a.829.1 4 17.4 even 4 inner
1734.2.f.a.829.2 4 17.13 even 4 inner
1734.2.f.a.1483.1 4 17.16 even 2 inner
1734.2.f.a.1483.2 4 1.1 even 1 trivial
5202.2.a.i.1.1 1 51.26 odd 8
5202.2.a.m.1.1 1 51.8 odd 8