Properties

Label 1734.4.a.bd.1.3
Level $1734$
Weight $4$
Character 1734.1
Self dual yes
Analytic conductor $102.309$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1734,4,Mod(1,1734)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1734, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1734.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1734 = 2 \cdot 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1734.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(102.309311950\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 441x^{4} + 280x^{3} + 48672x^{2} + 38656x - 45712 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 102)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.650232\) of defining polynomial
Character \(\chi\) \(=\) 1734.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} -3.00000 q^{3} +4.00000 q^{4} -4.06445 q^{5} -6.00000 q^{6} +33.2979 q^{7} +8.00000 q^{8} +9.00000 q^{9} -8.12889 q^{10} +5.11022 q^{11} -12.0000 q^{12} -18.3446 q^{13} +66.5957 q^{14} +12.1933 q^{15} +16.0000 q^{16} +18.0000 q^{18} -66.8279 q^{19} -16.2578 q^{20} -99.8936 q^{21} +10.2204 q^{22} -160.850 q^{23} -24.0000 q^{24} -108.480 q^{25} -36.6892 q^{26} -27.0000 q^{27} +133.191 q^{28} -170.758 q^{29} +24.3867 q^{30} -258.662 q^{31} +32.0000 q^{32} -15.3307 q^{33} -135.337 q^{35} +36.0000 q^{36} -307.851 q^{37} -133.656 q^{38} +55.0339 q^{39} -32.5156 q^{40} +280.523 q^{41} -199.787 q^{42} +328.331 q^{43} +20.4409 q^{44} -36.5800 q^{45} -321.699 q^{46} +55.5285 q^{47} -48.0000 q^{48} +765.747 q^{49} -216.961 q^{50} -73.3785 q^{52} +233.093 q^{53} -54.0000 q^{54} -20.7702 q^{55} +266.383 q^{56} +200.484 q^{57} -341.515 q^{58} +182.149 q^{59} +48.7734 q^{60} -7.28473 q^{61} -517.324 q^{62} +299.681 q^{63} +64.0000 q^{64} +74.5607 q^{65} -30.6613 q^{66} +314.116 q^{67} +482.549 q^{69} -270.675 q^{70} -96.1155 q^{71} +72.0000 q^{72} -1014.40 q^{73} -615.703 q^{74} +325.441 q^{75} -267.312 q^{76} +170.159 q^{77} +110.068 q^{78} +10.1210 q^{79} -65.0311 q^{80} +81.0000 q^{81} +561.046 q^{82} -66.0553 q^{83} -399.574 q^{84} +656.661 q^{86} +512.273 q^{87} +40.8817 q^{88} -1499.70 q^{89} -73.1600 q^{90} -610.837 q^{91} -643.398 q^{92} +775.986 q^{93} +111.057 q^{94} +271.618 q^{95} -96.0000 q^{96} +202.542 q^{97} +1531.49 q^{98} +45.9920 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 12 q^{2} - 18 q^{3} + 24 q^{4} - 14 q^{5} - 36 q^{6} - 28 q^{7} + 48 q^{8} + 54 q^{9} - 28 q^{10} - 34 q^{11} - 72 q^{12} + 34 q^{13} - 56 q^{14} + 42 q^{15} + 96 q^{16} + 108 q^{18} + 70 q^{19} - 56 q^{20}+ \cdots - 306 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) −3.00000 −0.577350
\(4\) 4.00000 0.500000
\(5\) −4.06445 −0.363535 −0.181768 0.983342i \(-0.558182\pi\)
−0.181768 + 0.983342i \(0.558182\pi\)
\(6\) −6.00000 −0.408248
\(7\) 33.2979 1.79792 0.898958 0.438036i \(-0.144326\pi\)
0.898958 + 0.438036i \(0.144326\pi\)
\(8\) 8.00000 0.353553
\(9\) 9.00000 0.333333
\(10\) −8.12889 −0.257058
\(11\) 5.11022 0.140072 0.0700359 0.997544i \(-0.477689\pi\)
0.0700359 + 0.997544i \(0.477689\pi\)
\(12\) −12.0000 −0.288675
\(13\) −18.3446 −0.391376 −0.195688 0.980666i \(-0.562694\pi\)
−0.195688 + 0.980666i \(0.562694\pi\)
\(14\) 66.5957 1.27132
\(15\) 12.1933 0.209887
\(16\) 16.0000 0.250000
\(17\) 0 0
\(18\) 18.0000 0.235702
\(19\) −66.8279 −0.806914 −0.403457 0.914998i \(-0.632192\pi\)
−0.403457 + 0.914998i \(0.632192\pi\)
\(20\) −16.2578 −0.181768
\(21\) −99.8936 −1.03803
\(22\) 10.2204 0.0990457
\(23\) −160.850 −1.45824 −0.729118 0.684388i \(-0.760070\pi\)
−0.729118 + 0.684388i \(0.760070\pi\)
\(24\) −24.0000 −0.204124
\(25\) −108.480 −0.867842
\(26\) −36.6892 −0.276744
\(27\) −27.0000 −0.192450
\(28\) 133.191 0.898958
\(29\) −170.758 −1.09341 −0.546705 0.837325i \(-0.684118\pi\)
−0.546705 + 0.837325i \(0.684118\pi\)
\(30\) 24.3867 0.148413
\(31\) −258.662 −1.49862 −0.749308 0.662222i \(-0.769614\pi\)
−0.749308 + 0.662222i \(0.769614\pi\)
\(32\) 32.0000 0.176777
\(33\) −15.3307 −0.0808704
\(34\) 0 0
\(35\) −135.337 −0.653605
\(36\) 36.0000 0.166667
\(37\) −307.851 −1.36785 −0.683925 0.729552i \(-0.739729\pi\)
−0.683925 + 0.729552i \(0.739729\pi\)
\(38\) −133.656 −0.570575
\(39\) 55.0339 0.225961
\(40\) −32.5156 −0.128529
\(41\) 280.523 1.06854 0.534272 0.845312i \(-0.320586\pi\)
0.534272 + 0.845312i \(0.320586\pi\)
\(42\) −199.787 −0.733996
\(43\) 328.331 1.16442 0.582209 0.813039i \(-0.302189\pi\)
0.582209 + 0.813039i \(0.302189\pi\)
\(44\) 20.4409 0.0700359
\(45\) −36.5800 −0.121178
\(46\) −321.699 −1.03113
\(47\) 55.5285 0.172333 0.0861666 0.996281i \(-0.472538\pi\)
0.0861666 + 0.996281i \(0.472538\pi\)
\(48\) −48.0000 −0.144338
\(49\) 765.747 2.23250
\(50\) −216.961 −0.613657
\(51\) 0 0
\(52\) −73.3785 −0.195688
\(53\) 233.093 0.604108 0.302054 0.953291i \(-0.402328\pi\)
0.302054 + 0.953291i \(0.402328\pi\)
\(54\) −54.0000 −0.136083
\(55\) −20.7702 −0.0509210
\(56\) 266.383 0.635659
\(57\) 200.484 0.465872
\(58\) −341.515 −0.773157
\(59\) 182.149 0.401928 0.200964 0.979599i \(-0.435593\pi\)
0.200964 + 0.979599i \(0.435593\pi\)
\(60\) 48.7734 0.104944
\(61\) −7.28473 −0.0152904 −0.00764519 0.999971i \(-0.502434\pi\)
−0.00764519 + 0.999971i \(0.502434\pi\)
\(62\) −517.324 −1.05968
\(63\) 299.681 0.599305
\(64\) 64.0000 0.125000
\(65\) 74.5607 0.142279
\(66\) −30.6613 −0.0571840
\(67\) 314.116 0.572767 0.286383 0.958115i \(-0.407547\pi\)
0.286383 + 0.958115i \(0.407547\pi\)
\(68\) 0 0
\(69\) 482.549 0.841913
\(70\) −270.675 −0.462169
\(71\) −96.1155 −0.160659 −0.0803297 0.996768i \(-0.525597\pi\)
−0.0803297 + 0.996768i \(0.525597\pi\)
\(72\) 72.0000 0.117851
\(73\) −1014.40 −1.62640 −0.813199 0.581985i \(-0.802276\pi\)
−0.813199 + 0.581985i \(0.802276\pi\)
\(74\) −615.703 −0.967216
\(75\) 325.441 0.501049
\(76\) −267.312 −0.403457
\(77\) 170.159 0.251837
\(78\) 110.068 0.159778
\(79\) 10.1210 0.0144140 0.00720699 0.999974i \(-0.497706\pi\)
0.00720699 + 0.999974i \(0.497706\pi\)
\(80\) −65.0311 −0.0908838
\(81\) 81.0000 0.111111
\(82\) 561.046 0.755575
\(83\) −66.0553 −0.0873555 −0.0436778 0.999046i \(-0.513907\pi\)
−0.0436778 + 0.999046i \(0.513907\pi\)
\(84\) −399.574 −0.519013
\(85\) 0 0
\(86\) 656.661 0.823367
\(87\) 512.273 0.631280
\(88\) 40.8817 0.0495228
\(89\) −1499.70 −1.78616 −0.893081 0.449897i \(-0.851461\pi\)
−0.893081 + 0.449897i \(0.851461\pi\)
\(90\) −73.1600 −0.0856860
\(91\) −610.837 −0.703660
\(92\) −643.398 −0.729118
\(93\) 775.986 0.865226
\(94\) 111.057 0.121858
\(95\) 271.618 0.293342
\(96\) −96.0000 −0.102062
\(97\) 202.542 0.212011 0.106005 0.994366i \(-0.466194\pi\)
0.106005 + 0.994366i \(0.466194\pi\)
\(98\) 1531.49 1.57862
\(99\) 45.9920 0.0466906
\(100\) −433.921 −0.433921
\(101\) 493.172 0.485866 0.242933 0.970043i \(-0.421891\pi\)
0.242933 + 0.970043i \(0.421891\pi\)
\(102\) 0 0
\(103\) −1263.90 −1.20909 −0.604544 0.796572i \(-0.706645\pi\)
−0.604544 + 0.796572i \(0.706645\pi\)
\(104\) −146.757 −0.138372
\(105\) 406.012 0.377359
\(106\) 466.185 0.427169
\(107\) −1710.46 −1.54539 −0.772693 0.634781i \(-0.781091\pi\)
−0.772693 + 0.634781i \(0.781091\pi\)
\(108\) −108.000 −0.0962250
\(109\) −1722.26 −1.51342 −0.756709 0.653752i \(-0.773194\pi\)
−0.756709 + 0.653752i \(0.773194\pi\)
\(110\) −41.5404 −0.0360066
\(111\) 923.554 0.789729
\(112\) 532.766 0.449479
\(113\) −1101.30 −0.916829 −0.458414 0.888739i \(-0.651582\pi\)
−0.458414 + 0.888739i \(0.651582\pi\)
\(114\) 400.967 0.329421
\(115\) 653.764 0.530120
\(116\) −683.030 −0.546705
\(117\) −165.102 −0.130459
\(118\) 364.298 0.284206
\(119\) 0 0
\(120\) 97.5467 0.0742063
\(121\) −1304.89 −0.980380
\(122\) −14.5695 −0.0108119
\(123\) −841.569 −0.616925
\(124\) −1034.65 −0.749308
\(125\) 948.968 0.679026
\(126\) 599.361 0.423773
\(127\) −611.357 −0.427159 −0.213579 0.976926i \(-0.568512\pi\)
−0.213579 + 0.976926i \(0.568512\pi\)
\(128\) 128.000 0.0883883
\(129\) −984.992 −0.672277
\(130\) 149.121 0.100606
\(131\) 1944.79 1.29708 0.648538 0.761183i \(-0.275381\pi\)
0.648538 + 0.761183i \(0.275381\pi\)
\(132\) −61.3226 −0.0404352
\(133\) −2225.23 −1.45076
\(134\) 628.232 0.405007
\(135\) 109.740 0.0699624
\(136\) 0 0
\(137\) 2208.72 1.37740 0.688700 0.725046i \(-0.258182\pi\)
0.688700 + 0.725046i \(0.258182\pi\)
\(138\) 965.097 0.595323
\(139\) −1342.13 −0.818981 −0.409490 0.912314i \(-0.634293\pi\)
−0.409490 + 0.912314i \(0.634293\pi\)
\(140\) −541.349 −0.326803
\(141\) −166.585 −0.0994966
\(142\) −192.231 −0.113603
\(143\) −93.7450 −0.0548207
\(144\) 144.000 0.0833333
\(145\) 694.035 0.397493
\(146\) −2028.81 −1.15004
\(147\) −2297.24 −1.28893
\(148\) −1231.41 −0.683925
\(149\) −10.3414 −0.00568590 −0.00284295 0.999996i \(-0.500905\pi\)
−0.00284295 + 0.999996i \(0.500905\pi\)
\(150\) 650.882 0.354295
\(151\) 1952.58 1.05231 0.526155 0.850389i \(-0.323633\pi\)
0.526155 + 0.850389i \(0.323633\pi\)
\(152\) −534.623 −0.285287
\(153\) 0 0
\(154\) 340.319 0.178076
\(155\) 1051.32 0.544799
\(156\) 220.135 0.112980
\(157\) 214.205 0.108888 0.0544440 0.998517i \(-0.482661\pi\)
0.0544440 + 0.998517i \(0.482661\pi\)
\(158\) 20.2421 0.0101922
\(159\) −699.278 −0.348782
\(160\) −130.062 −0.0642645
\(161\) −5355.94 −2.62179
\(162\) 162.000 0.0785674
\(163\) 1470.23 0.706484 0.353242 0.935532i \(-0.385079\pi\)
0.353242 + 0.935532i \(0.385079\pi\)
\(164\) 1122.09 0.534272
\(165\) 62.3106 0.0293992
\(166\) −132.111 −0.0617697
\(167\) 3911.99 1.81269 0.906344 0.422540i \(-0.138862\pi\)
0.906344 + 0.422540i \(0.138862\pi\)
\(168\) −799.149 −0.366998
\(169\) −1860.47 −0.846825
\(170\) 0 0
\(171\) −601.451 −0.268971
\(172\) 1313.32 0.582209
\(173\) 1615.29 0.709876 0.354938 0.934890i \(-0.384502\pi\)
0.354938 + 0.934890i \(0.384502\pi\)
\(174\) 1024.55 0.446383
\(175\) −3612.16 −1.56031
\(176\) 81.7635 0.0350179
\(177\) −546.447 −0.232053
\(178\) −2999.41 −1.26301
\(179\) −40.4870 −0.0169058 −0.00845290 0.999964i \(-0.502691\pi\)
−0.00845290 + 0.999964i \(0.502691\pi\)
\(180\) −146.320 −0.0605892
\(181\) −1682.70 −0.691019 −0.345509 0.938415i \(-0.612294\pi\)
−0.345509 + 0.938415i \(0.612294\pi\)
\(182\) −1221.67 −0.497563
\(183\) 21.8542 0.00882791
\(184\) −1286.80 −0.515564
\(185\) 1251.25 0.497262
\(186\) 1551.97 0.611807
\(187\) 0 0
\(188\) 222.114 0.0861666
\(189\) −899.042 −0.346009
\(190\) 543.237 0.207424
\(191\) 1691.14 0.640663 0.320332 0.947305i \(-0.396206\pi\)
0.320332 + 0.947305i \(0.396206\pi\)
\(192\) −192.000 −0.0721688
\(193\) −3498.79 −1.30491 −0.652456 0.757826i \(-0.726261\pi\)
−0.652456 + 0.757826i \(0.726261\pi\)
\(194\) 405.084 0.149914
\(195\) −223.682 −0.0821447
\(196\) 3062.99 1.11625
\(197\) 4369.04 1.58011 0.790054 0.613037i \(-0.210052\pi\)
0.790054 + 0.613037i \(0.210052\pi\)
\(198\) 91.9839 0.0330152
\(199\) −3358.23 −1.19628 −0.598138 0.801393i \(-0.704092\pi\)
−0.598138 + 0.801393i \(0.704092\pi\)
\(200\) −867.842 −0.306829
\(201\) −942.348 −0.330687
\(202\) 986.344 0.343559
\(203\) −5685.86 −1.96586
\(204\) 0 0
\(205\) −1140.17 −0.388454
\(206\) −2527.80 −0.854954
\(207\) −1447.65 −0.486079
\(208\) −293.514 −0.0978439
\(209\) −341.505 −0.113026
\(210\) 812.024 0.266833
\(211\) 741.004 0.241767 0.120883 0.992667i \(-0.461427\pi\)
0.120883 + 0.992667i \(0.461427\pi\)
\(212\) 932.370 0.302054
\(213\) 288.346 0.0927567
\(214\) −3420.92 −1.09275
\(215\) −1334.48 −0.423307
\(216\) −216.000 −0.0680414
\(217\) −8612.89 −2.69438
\(218\) −3444.52 −1.07015
\(219\) 3043.21 0.939002
\(220\) −83.0808 −0.0254605
\(221\) 0 0
\(222\) 1847.11 0.558423
\(223\) 881.040 0.264569 0.132284 0.991212i \(-0.457769\pi\)
0.132284 + 0.991212i \(0.457769\pi\)
\(224\) 1065.53 0.317830
\(225\) −976.323 −0.289281
\(226\) −2202.60 −0.648296
\(227\) −5470.38 −1.59948 −0.799740 0.600347i \(-0.795029\pi\)
−0.799740 + 0.600347i \(0.795029\pi\)
\(228\) 801.935 0.232936
\(229\) −4951.00 −1.42870 −0.714348 0.699790i \(-0.753277\pi\)
−0.714348 + 0.699790i \(0.753277\pi\)
\(230\) 1307.53 0.374852
\(231\) −510.478 −0.145398
\(232\) −1366.06 −0.386579
\(233\) −1767.40 −0.496938 −0.248469 0.968640i \(-0.579927\pi\)
−0.248469 + 0.968640i \(0.579927\pi\)
\(234\) −330.203 −0.0922481
\(235\) −225.692 −0.0626492
\(236\) 728.595 0.200964
\(237\) −30.3631 −0.00832192
\(238\) 0 0
\(239\) 2643.27 0.715392 0.357696 0.933838i \(-0.383562\pi\)
0.357696 + 0.933838i \(0.383562\pi\)
\(240\) 195.093 0.0524718
\(241\) 4023.54 1.07543 0.537715 0.843127i \(-0.319288\pi\)
0.537715 + 0.843127i \(0.319288\pi\)
\(242\) −2609.77 −0.693233
\(243\) −243.000 −0.0641500
\(244\) −29.1389 −0.00764519
\(245\) −3112.34 −0.811592
\(246\) −1683.14 −0.436232
\(247\) 1225.93 0.315807
\(248\) −2069.30 −0.529841
\(249\) 198.166 0.0504347
\(250\) 1897.94 0.480144
\(251\) −380.065 −0.0955757 −0.0477879 0.998858i \(-0.515217\pi\)
−0.0477879 + 0.998858i \(0.515217\pi\)
\(252\) 1198.72 0.299653
\(253\) −821.976 −0.204258
\(254\) −1222.71 −0.302047
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) −5121.07 −1.24297 −0.621486 0.783426i \(-0.713471\pi\)
−0.621486 + 0.783426i \(0.713471\pi\)
\(258\) −1969.98 −0.475371
\(259\) −10250.8 −2.45928
\(260\) 298.243 0.0711394
\(261\) −1536.82 −0.364470
\(262\) 3889.57 0.917171
\(263\) −2525.04 −0.592016 −0.296008 0.955185i \(-0.595656\pi\)
−0.296008 + 0.955185i \(0.595656\pi\)
\(264\) −122.645 −0.0285920
\(265\) −947.392 −0.219614
\(266\) −4450.45 −1.02584
\(267\) 4499.11 1.03124
\(268\) 1256.46 0.286383
\(269\) 5785.09 1.31124 0.655620 0.755091i \(-0.272407\pi\)
0.655620 + 0.755091i \(0.272407\pi\)
\(270\) 219.480 0.0494709
\(271\) −1478.94 −0.331511 −0.165755 0.986167i \(-0.553006\pi\)
−0.165755 + 0.986167i \(0.553006\pi\)
\(272\) 0 0
\(273\) 1832.51 0.406258
\(274\) 4417.45 0.973970
\(275\) −554.358 −0.121560
\(276\) 1930.19 0.420957
\(277\) 6871.97 1.49060 0.745301 0.666729i \(-0.232306\pi\)
0.745301 + 0.666729i \(0.232306\pi\)
\(278\) −2684.27 −0.579107
\(279\) −2327.96 −0.499539
\(280\) −1082.70 −0.231084
\(281\) −5263.80 −1.11748 −0.558740 0.829343i \(-0.688715\pi\)
−0.558740 + 0.829343i \(0.688715\pi\)
\(282\) −333.171 −0.0703547
\(283\) 2689.55 0.564937 0.282468 0.959277i \(-0.408847\pi\)
0.282468 + 0.959277i \(0.408847\pi\)
\(284\) −384.462 −0.0803297
\(285\) −814.855 −0.169361
\(286\) −187.490 −0.0387641
\(287\) 9340.82 1.92115
\(288\) 288.000 0.0589256
\(289\) 0 0
\(290\) 1388.07 0.281070
\(291\) −607.626 −0.122404
\(292\) −4057.62 −0.813199
\(293\) 6076.26 1.21153 0.605767 0.795642i \(-0.292867\pi\)
0.605767 + 0.795642i \(0.292867\pi\)
\(294\) −4594.48 −0.911414
\(295\) −740.334 −0.146115
\(296\) −2462.81 −0.483608
\(297\) −137.976 −0.0269568
\(298\) −20.6828 −0.00402054
\(299\) 2950.72 0.570718
\(300\) 1301.76 0.250524
\(301\) 10932.7 2.09352
\(302\) 3905.16 0.744096
\(303\) −1479.52 −0.280515
\(304\) −1069.25 −0.201729
\(305\) 29.6084 0.00555859
\(306\) 0 0
\(307\) 8431.56 1.56747 0.783737 0.621093i \(-0.213311\pi\)
0.783737 + 0.621093i \(0.213311\pi\)
\(308\) 680.637 0.125919
\(309\) 3791.71 0.698067
\(310\) 2102.64 0.385231
\(311\) −4926.83 −0.898312 −0.449156 0.893453i \(-0.648275\pi\)
−0.449156 + 0.893453i \(0.648275\pi\)
\(312\) 440.271 0.0798892
\(313\) −2633.28 −0.475532 −0.237766 0.971322i \(-0.576415\pi\)
−0.237766 + 0.971322i \(0.576415\pi\)
\(314\) 428.410 0.0769954
\(315\) −1218.04 −0.217868
\(316\) 40.4841 0.00720699
\(317\) −11137.8 −1.97338 −0.986690 0.162615i \(-0.948007\pi\)
−0.986690 + 0.162615i \(0.948007\pi\)
\(318\) −1398.56 −0.246626
\(319\) −872.608 −0.153156
\(320\) −260.125 −0.0454419
\(321\) 5131.37 0.892228
\(322\) −10711.9 −1.85388
\(323\) 0 0
\(324\) 324.000 0.0555556
\(325\) 1990.03 0.339652
\(326\) 2940.45 0.499560
\(327\) 5166.78 0.873772
\(328\) 2244.18 0.377788
\(329\) 1848.98 0.309840
\(330\) 124.621 0.0207884
\(331\) 10177.8 1.69009 0.845045 0.534695i \(-0.179573\pi\)
0.845045 + 0.534695i \(0.179573\pi\)
\(332\) −264.221 −0.0436778
\(333\) −2770.66 −0.455950
\(334\) 7823.98 1.28176
\(335\) −1276.71 −0.208221
\(336\) −1598.30 −0.259507
\(337\) −7386.32 −1.19394 −0.596971 0.802263i \(-0.703629\pi\)
−0.596971 + 0.802263i \(0.703629\pi\)
\(338\) −3720.95 −0.598796
\(339\) 3303.90 0.529331
\(340\) 0 0
\(341\) −1321.82 −0.209914
\(342\) −1202.90 −0.190192
\(343\) 14076.6 2.21593
\(344\) 2626.64 0.411684
\(345\) −1961.29 −0.306065
\(346\) 3230.59 0.501958
\(347\) −10251.6 −1.58598 −0.792988 0.609237i \(-0.791476\pi\)
−0.792988 + 0.609237i \(0.791476\pi\)
\(348\) 2049.09 0.315640
\(349\) 11338.1 1.73901 0.869505 0.493924i \(-0.164438\pi\)
0.869505 + 0.493924i \(0.164438\pi\)
\(350\) −7224.32 −1.10330
\(351\) 495.305 0.0753203
\(352\) 163.527 0.0247614
\(353\) −4609.39 −0.694995 −0.347497 0.937681i \(-0.612968\pi\)
−0.347497 + 0.937681i \(0.612968\pi\)
\(354\) −1092.89 −0.164086
\(355\) 390.656 0.0584053
\(356\) −5998.82 −0.893081
\(357\) 0 0
\(358\) −80.9740 −0.0119542
\(359\) 4521.15 0.664673 0.332336 0.943161i \(-0.392163\pi\)
0.332336 + 0.943161i \(0.392163\pi\)
\(360\) −292.640 −0.0428430
\(361\) −2393.03 −0.348889
\(362\) −3365.41 −0.488624
\(363\) 3914.66 0.566023
\(364\) −2443.35 −0.351830
\(365\) 4122.99 0.591253
\(366\) 43.7084 0.00624227
\(367\) −3929.40 −0.558891 −0.279446 0.960161i \(-0.590151\pi\)
−0.279446 + 0.960161i \(0.590151\pi\)
\(368\) −2573.59 −0.364559
\(369\) 2524.71 0.356182
\(370\) 2502.49 0.351617
\(371\) 7761.48 1.08613
\(372\) 3103.95 0.432613
\(373\) −9797.93 −1.36010 −0.680050 0.733165i \(-0.738042\pi\)
−0.680050 + 0.733165i \(0.738042\pi\)
\(374\) 0 0
\(375\) −2846.90 −0.392036
\(376\) 444.228 0.0609290
\(377\) 3132.48 0.427934
\(378\) −1798.08 −0.244665
\(379\) −10047.9 −1.36180 −0.680902 0.732375i \(-0.738412\pi\)
−0.680902 + 0.732375i \(0.738412\pi\)
\(380\) 1086.47 0.146671
\(381\) 1834.07 0.246620
\(382\) 3382.28 0.453017
\(383\) 2856.38 0.381081 0.190541 0.981679i \(-0.438976\pi\)
0.190541 + 0.981679i \(0.438976\pi\)
\(384\) −384.000 −0.0510310
\(385\) −691.603 −0.0915516
\(386\) −6997.57 −0.922713
\(387\) 2954.98 0.388139
\(388\) 810.168 0.106005
\(389\) 5479.16 0.714150 0.357075 0.934076i \(-0.383774\pi\)
0.357075 + 0.934076i \(0.383774\pi\)
\(390\) −447.364 −0.0580851
\(391\) 0 0
\(392\) 6125.98 0.789308
\(393\) −5834.36 −0.748867
\(394\) 8738.08 1.11730
\(395\) −41.1364 −0.00523999
\(396\) 183.968 0.0233453
\(397\) −10647.4 −1.34604 −0.673020 0.739624i \(-0.735003\pi\)
−0.673020 + 0.739624i \(0.735003\pi\)
\(398\) −6716.46 −0.845894
\(399\) 6675.68 0.837599
\(400\) −1735.68 −0.216961
\(401\) 2240.43 0.279007 0.139503 0.990222i \(-0.455449\pi\)
0.139503 + 0.990222i \(0.455449\pi\)
\(402\) −1884.70 −0.233831
\(403\) 4745.06 0.586522
\(404\) 1972.69 0.242933
\(405\) −329.220 −0.0403928
\(406\) −11371.7 −1.39007
\(407\) −1573.19 −0.191597
\(408\) 0 0
\(409\) −5233.25 −0.632684 −0.316342 0.948645i \(-0.602455\pi\)
−0.316342 + 0.948645i \(0.602455\pi\)
\(410\) −2280.34 −0.274678
\(411\) −6626.17 −0.795243
\(412\) −5055.61 −0.604544
\(413\) 6065.17 0.722633
\(414\) −2895.29 −0.343710
\(415\) 268.478 0.0317568
\(416\) −587.028 −0.0691861
\(417\) 4026.40 0.472839
\(418\) −683.010 −0.0799214
\(419\) 17057.1 1.98876 0.994382 0.105856i \(-0.0337582\pi\)
0.994382 + 0.105856i \(0.0337582\pi\)
\(420\) 1624.05 0.188680
\(421\) −1995.98 −0.231065 −0.115532 0.993304i \(-0.536857\pi\)
−0.115532 + 0.993304i \(0.536857\pi\)
\(422\) 1482.01 0.170955
\(423\) 499.756 0.0574444
\(424\) 1864.74 0.213584
\(425\) 0 0
\(426\) 576.693 0.0655889
\(427\) −242.566 −0.0274908
\(428\) −6841.83 −0.772693
\(429\) 281.235 0.0316507
\(430\) −2668.96 −0.299323
\(431\) −14506.0 −1.62119 −0.810593 0.585610i \(-0.800855\pi\)
−0.810593 + 0.585610i \(0.800855\pi\)
\(432\) −432.000 −0.0481125
\(433\) 1017.03 0.112876 0.0564378 0.998406i \(-0.482026\pi\)
0.0564378 + 0.998406i \(0.482026\pi\)
\(434\) −17225.8 −1.90522
\(435\) −2082.10 −0.229493
\(436\) −6889.04 −0.756709
\(437\) 10749.2 1.17667
\(438\) 6086.43 0.663974
\(439\) −1854.15 −0.201580 −0.100790 0.994908i \(-0.532137\pi\)
−0.100790 + 0.994908i \(0.532137\pi\)
\(440\) −166.162 −0.0180033
\(441\) 6891.73 0.744166
\(442\) 0 0
\(443\) −4297.84 −0.460941 −0.230470 0.973079i \(-0.574026\pi\)
−0.230470 + 0.973079i \(0.574026\pi\)
\(444\) 3694.22 0.394864
\(445\) 6095.47 0.649332
\(446\) 1762.08 0.187078
\(447\) 31.0242 0.00328276
\(448\) 2131.06 0.224739
\(449\) 1912.49 0.201015 0.100508 0.994936i \(-0.467953\pi\)
0.100508 + 0.994936i \(0.467953\pi\)
\(450\) −1952.65 −0.204552
\(451\) 1433.53 0.149673
\(452\) −4405.20 −0.458414
\(453\) −5857.75 −0.607552
\(454\) −10940.8 −1.13100
\(455\) 2482.71 0.255805
\(456\) 1603.87 0.164711
\(457\) 2234.77 0.228749 0.114374 0.993438i \(-0.463514\pi\)
0.114374 + 0.993438i \(0.463514\pi\)
\(458\) −9902.01 −1.01024
\(459\) 0 0
\(460\) 2615.06 0.265060
\(461\) 149.634 0.0151174 0.00755871 0.999971i \(-0.497594\pi\)
0.00755871 + 0.999971i \(0.497594\pi\)
\(462\) −1020.96 −0.102812
\(463\) 4732.09 0.474987 0.237494 0.971389i \(-0.423674\pi\)
0.237494 + 0.971389i \(0.423674\pi\)
\(464\) −2732.12 −0.273352
\(465\) −3153.95 −0.314540
\(466\) −3534.81 −0.351388
\(467\) −2749.01 −0.272396 −0.136198 0.990682i \(-0.543488\pi\)
−0.136198 + 0.990682i \(0.543488\pi\)
\(468\) −660.406 −0.0652293
\(469\) 10459.4 1.02979
\(470\) −451.385 −0.0442996
\(471\) −642.615 −0.0628665
\(472\) 1457.19 0.142103
\(473\) 1677.84 0.163102
\(474\) −60.7262 −0.00588449
\(475\) 7249.51 0.700274
\(476\) 0 0
\(477\) 2097.83 0.201369
\(478\) 5286.54 0.505859
\(479\) −4209.60 −0.401549 −0.200774 0.979638i \(-0.564346\pi\)
−0.200774 + 0.979638i \(0.564346\pi\)
\(480\) 390.187 0.0371031
\(481\) 5647.42 0.535343
\(482\) 8047.07 0.760444
\(483\) 16067.8 1.51369
\(484\) −5219.54 −0.490190
\(485\) −823.221 −0.0770733
\(486\) −486.000 −0.0453609
\(487\) 16797.5 1.56297 0.781486 0.623923i \(-0.214462\pi\)
0.781486 + 0.623923i \(0.214462\pi\)
\(488\) −58.2778 −0.00540597
\(489\) −4410.68 −0.407889
\(490\) −6224.68 −0.573882
\(491\) 10904.6 1.00228 0.501138 0.865367i \(-0.332915\pi\)
0.501138 + 0.865367i \(0.332915\pi\)
\(492\) −3366.28 −0.308462
\(493\) 0 0
\(494\) 2451.87 0.223309
\(495\) −186.932 −0.0169737
\(496\) −4138.59 −0.374654
\(497\) −3200.44 −0.288852
\(498\) 396.332 0.0356627
\(499\) 2584.19 0.231832 0.115916 0.993259i \(-0.463020\pi\)
0.115916 + 0.993259i \(0.463020\pi\)
\(500\) 3795.87 0.339513
\(501\) −11736.0 −1.04656
\(502\) −760.131 −0.0675823
\(503\) −10948.7 −0.970537 −0.485269 0.874365i \(-0.661278\pi\)
−0.485269 + 0.874365i \(0.661278\pi\)
\(504\) 2397.45 0.211886
\(505\) −2004.47 −0.176629
\(506\) −1643.95 −0.144432
\(507\) 5581.42 0.488915
\(508\) −2445.43 −0.213579
\(509\) 134.612 0.0117221 0.00586106 0.999983i \(-0.498134\pi\)
0.00586106 + 0.999983i \(0.498134\pi\)
\(510\) 0 0
\(511\) −33777.5 −2.92413
\(512\) 512.000 0.0441942
\(513\) 1804.35 0.155291
\(514\) −10242.1 −0.878913
\(515\) 5137.06 0.439546
\(516\) −3939.97 −0.336138
\(517\) 283.763 0.0241390
\(518\) −20501.6 −1.73897
\(519\) −4845.88 −0.409847
\(520\) 596.486 0.0503031
\(521\) 16199.8 1.36224 0.681119 0.732172i \(-0.261493\pi\)
0.681119 + 0.732172i \(0.261493\pi\)
\(522\) −3073.64 −0.257719
\(523\) −21230.4 −1.77503 −0.887516 0.460778i \(-0.847571\pi\)
−0.887516 + 0.460778i \(0.847571\pi\)
\(524\) 7779.15 0.648538
\(525\) 10836.5 0.900844
\(526\) −5050.07 −0.418619
\(527\) 0 0
\(528\) −245.290 −0.0202176
\(529\) 13705.6 1.12645
\(530\) −1894.78 −0.155291
\(531\) 1639.34 0.133976
\(532\) −8900.91 −0.725382
\(533\) −5146.09 −0.418202
\(534\) 8998.23 0.729197
\(535\) 6952.06 0.561802
\(536\) 2512.93 0.202504
\(537\) 121.461 0.00976057
\(538\) 11570.2 0.927186
\(539\) 3913.14 0.312710
\(540\) 438.960 0.0349812
\(541\) −8772.55 −0.697156 −0.348578 0.937280i \(-0.613335\pi\)
−0.348578 + 0.937280i \(0.613335\pi\)
\(542\) −2957.89 −0.234413
\(543\) 5048.11 0.398960
\(544\) 0 0
\(545\) 7000.03 0.550180
\(546\) 3665.02 0.287268
\(547\) −8210.79 −0.641807 −0.320903 0.947112i \(-0.603986\pi\)
−0.320903 + 0.947112i \(0.603986\pi\)
\(548\) 8834.89 0.688700
\(549\) −65.5625 −0.00509680
\(550\) −1108.72 −0.0859560
\(551\) 11411.4 0.882288
\(552\) 3860.39 0.297661
\(553\) 337.009 0.0259151
\(554\) 13743.9 1.05401
\(555\) −3753.74 −0.287094
\(556\) −5368.54 −0.409490
\(557\) −644.069 −0.0489948 −0.0244974 0.999700i \(-0.507799\pi\)
−0.0244974 + 0.999700i \(0.507799\pi\)
\(558\) −4655.92 −0.353227
\(559\) −6023.10 −0.455725
\(560\) −2165.40 −0.163401
\(561\) 0 0
\(562\) −10527.6 −0.790178
\(563\) −22872.8 −1.71221 −0.856103 0.516805i \(-0.827121\pi\)
−0.856103 + 0.516805i \(0.827121\pi\)
\(564\) −666.342 −0.0497483
\(565\) 4476.18 0.333299
\(566\) 5379.10 0.399471
\(567\) 2697.13 0.199768
\(568\) −768.924 −0.0568016
\(569\) 13513.0 0.995599 0.497800 0.867292i \(-0.334142\pi\)
0.497800 + 0.867292i \(0.334142\pi\)
\(570\) −1629.71 −0.119756
\(571\) 16934.7 1.24115 0.620573 0.784149i \(-0.286900\pi\)
0.620573 + 0.784149i \(0.286900\pi\)
\(572\) −374.980 −0.0274103
\(573\) −5073.43 −0.369887
\(574\) 18681.6 1.35846
\(575\) 17449.0 1.26552
\(576\) 576.000 0.0416667
\(577\) 18805.8 1.35684 0.678420 0.734674i \(-0.262665\pi\)
0.678420 + 0.734674i \(0.262665\pi\)
\(578\) 0 0
\(579\) 10496.4 0.753392
\(580\) 2776.14 0.198746
\(581\) −2199.50 −0.157058
\(582\) −1215.25 −0.0865530
\(583\) 1191.15 0.0846184
\(584\) −8115.24 −0.575019
\(585\) 671.047 0.0474263
\(586\) 12152.5 0.856683
\(587\) 8038.76 0.565239 0.282619 0.959232i \(-0.408797\pi\)
0.282619 + 0.959232i \(0.408797\pi\)
\(588\) −9188.97 −0.644467
\(589\) 17285.8 1.20925
\(590\) −1480.67 −0.103319
\(591\) −13107.1 −0.912276
\(592\) −4925.62 −0.341963
\(593\) −8124.66 −0.562630 −0.281315 0.959615i \(-0.590771\pi\)
−0.281315 + 0.959615i \(0.590771\pi\)
\(594\) −275.952 −0.0190613
\(595\) 0 0
\(596\) −41.3656 −0.00284295
\(597\) 10074.7 0.690670
\(598\) 5901.45 0.403559
\(599\) −8419.51 −0.574310 −0.287155 0.957884i \(-0.592710\pi\)
−0.287155 + 0.957884i \(0.592710\pi\)
\(600\) 2603.53 0.177148
\(601\) 20305.0 1.37813 0.689067 0.724697i \(-0.258020\pi\)
0.689067 + 0.724697i \(0.258020\pi\)
\(602\) 21865.4 1.48034
\(603\) 2827.04 0.190922
\(604\) 7810.33 0.526155
\(605\) 5303.64 0.356403
\(606\) −2959.03 −0.198354
\(607\) 4426.39 0.295983 0.147992 0.988989i \(-0.452719\pi\)
0.147992 + 0.988989i \(0.452719\pi\)
\(608\) −2138.49 −0.142644
\(609\) 17057.6 1.13499
\(610\) 59.2167 0.00393052
\(611\) −1018.65 −0.0674470
\(612\) 0 0
\(613\) −8994.17 −0.592612 −0.296306 0.955093i \(-0.595755\pi\)
−0.296306 + 0.955093i \(0.595755\pi\)
\(614\) 16863.1 1.10837
\(615\) 3420.51 0.224274
\(616\) 1361.27 0.0890378
\(617\) 20223.5 1.31956 0.659779 0.751460i \(-0.270650\pi\)
0.659779 + 0.751460i \(0.270650\pi\)
\(618\) 7583.41 0.493608
\(619\) −18145.5 −1.17824 −0.589118 0.808047i \(-0.700525\pi\)
−0.589118 + 0.808047i \(0.700525\pi\)
\(620\) 4205.27 0.272400
\(621\) 4342.94 0.280638
\(622\) −9853.66 −0.635203
\(623\) −49936.9 −3.21137
\(624\) 880.542 0.0564902
\(625\) 9703.01 0.620992
\(626\) −5266.55 −0.336252
\(627\) 1024.52 0.0652555
\(628\) 856.820 0.0544440
\(629\) 0 0
\(630\) −2436.07 −0.154056
\(631\) −27551.9 −1.73823 −0.869115 0.494611i \(-0.835311\pi\)
−0.869115 + 0.494611i \(0.835311\pi\)
\(632\) 80.9683 0.00509611
\(633\) −2223.01 −0.139584
\(634\) −22275.6 −1.39539
\(635\) 2484.83 0.155287
\(636\) −2797.11 −0.174391
\(637\) −14047.3 −0.873746
\(638\) −1745.22 −0.108297
\(639\) −865.039 −0.0535531
\(640\) −520.249 −0.0321323
\(641\) −24470.4 −1.50784 −0.753918 0.656969i \(-0.771838\pi\)
−0.753918 + 0.656969i \(0.771838\pi\)
\(642\) 10262.7 0.630901
\(643\) −10096.8 −0.619255 −0.309627 0.950858i \(-0.600204\pi\)
−0.309627 + 0.950858i \(0.600204\pi\)
\(644\) −21423.8 −1.31089
\(645\) 4003.45 0.244396
\(646\) 0 0
\(647\) 13578.2 0.825059 0.412529 0.910944i \(-0.364645\pi\)
0.412529 + 0.910944i \(0.364645\pi\)
\(648\) 648.000 0.0392837
\(649\) 930.820 0.0562988
\(650\) 3980.06 0.240170
\(651\) 25838.7 1.55560
\(652\) 5880.90 0.353242
\(653\) 9939.36 0.595646 0.297823 0.954621i \(-0.403739\pi\)
0.297823 + 0.954621i \(0.403739\pi\)
\(654\) 10333.6 0.617850
\(655\) −7904.48 −0.471532
\(656\) 4488.37 0.267136
\(657\) −9129.64 −0.542133
\(658\) 3697.96 0.219090
\(659\) 18058.7 1.06748 0.533739 0.845649i \(-0.320787\pi\)
0.533739 + 0.845649i \(0.320787\pi\)
\(660\) 249.242 0.0146996
\(661\) −19648.0 −1.15615 −0.578076 0.815983i \(-0.696196\pi\)
−0.578076 + 0.815983i \(0.696196\pi\)
\(662\) 20355.5 1.19507
\(663\) 0 0
\(664\) −528.442 −0.0308848
\(665\) 9044.31 0.527404
\(666\) −5541.33 −0.322405
\(667\) 27466.3 1.59445
\(668\) 15648.0 0.906344
\(669\) −2643.12 −0.152749
\(670\) −2553.41 −0.147234
\(671\) −37.2265 −0.00214175
\(672\) −3196.59 −0.183499
\(673\) 17883.0 1.02428 0.512138 0.858903i \(-0.328854\pi\)
0.512138 + 0.858903i \(0.328854\pi\)
\(674\) −14772.6 −0.844245
\(675\) 2928.97 0.167016
\(676\) −7441.90 −0.423413
\(677\) 26725.2 1.51718 0.758590 0.651568i \(-0.225888\pi\)
0.758590 + 0.651568i \(0.225888\pi\)
\(678\) 6607.80 0.374294
\(679\) 6744.22 0.381177
\(680\) 0 0
\(681\) 16411.1 0.923460
\(682\) −2643.64 −0.148431
\(683\) −24279.3 −1.36020 −0.680102 0.733117i \(-0.738065\pi\)
−0.680102 + 0.733117i \(0.738065\pi\)
\(684\) −2405.80 −0.134486
\(685\) −8977.23 −0.500734
\(686\) 28153.2 1.56690
\(687\) 14853.0 0.824859
\(688\) 5253.29 0.291104
\(689\) −4275.99 −0.236433
\(690\) −3922.58 −0.216421
\(691\) 11137.8 0.613174 0.306587 0.951843i \(-0.400813\pi\)
0.306587 + 0.951843i \(0.400813\pi\)
\(692\) 6461.18 0.354938
\(693\) 1531.43 0.0839457
\(694\) −20503.2 −1.12145
\(695\) 5455.03 0.297728
\(696\) 4098.18 0.223191
\(697\) 0 0
\(698\) 22676.2 1.22967
\(699\) 5302.21 0.286907
\(700\) −14448.6 −0.780153
\(701\) −1650.56 −0.0889312 −0.0444656 0.999011i \(-0.514159\pi\)
−0.0444656 + 0.999011i \(0.514159\pi\)
\(702\) 990.610 0.0532595
\(703\) 20573.1 1.10374
\(704\) 327.054 0.0175090
\(705\) 677.077 0.0361705
\(706\) −9218.78 −0.491435
\(707\) 16421.6 0.873546
\(708\) −2185.79 −0.116027
\(709\) −14166.7 −0.750410 −0.375205 0.926942i \(-0.622428\pi\)
−0.375205 + 0.926942i \(0.622428\pi\)
\(710\) 781.312 0.0412988
\(711\) 91.0893 0.00480466
\(712\) −11997.6 −0.631503
\(713\) 41605.7 2.18534
\(714\) 0 0
\(715\) 381.022 0.0199292
\(716\) −161.948 −0.00845290
\(717\) −7929.80 −0.413032
\(718\) 9042.31 0.469994
\(719\) −9795.69 −0.508091 −0.254046 0.967192i \(-0.581761\pi\)
−0.254046 + 0.967192i \(0.581761\pi\)
\(720\) −585.280 −0.0302946
\(721\) −42085.2 −2.17384
\(722\) −4786.06 −0.246702
\(723\) −12070.6 −0.620900
\(724\) −6730.81 −0.345509
\(725\) 18523.8 0.948907
\(726\) 7829.31 0.400238
\(727\) −8021.85 −0.409235 −0.204618 0.978842i \(-0.565595\pi\)
−0.204618 + 0.978842i \(0.565595\pi\)
\(728\) −4886.69 −0.248781
\(729\) 729.000 0.0370370
\(730\) 8245.99 0.418079
\(731\) 0 0
\(732\) 87.4167 0.00441395
\(733\) −11391.4 −0.574014 −0.287007 0.957928i \(-0.592660\pi\)
−0.287007 + 0.957928i \(0.592660\pi\)
\(734\) −7858.80 −0.395196
\(735\) 9337.02 0.468573
\(736\) −5147.18 −0.257782
\(737\) 1605.20 0.0802284
\(738\) 5049.42 0.251858
\(739\) 15410.0 0.767072 0.383536 0.923526i \(-0.374706\pi\)
0.383536 + 0.923526i \(0.374706\pi\)
\(740\) 5004.98 0.248631
\(741\) −3677.80 −0.182331
\(742\) 15523.0 0.768013
\(743\) 28940.7 1.42898 0.714489 0.699647i \(-0.246659\pi\)
0.714489 + 0.699647i \(0.246659\pi\)
\(744\) 6207.89 0.305904
\(745\) 42.0320 0.00206703
\(746\) −19595.9 −0.961737
\(747\) −594.497 −0.0291185
\(748\) 0 0
\(749\) −56954.6 −2.77847
\(750\) −5693.81 −0.277211
\(751\) −9470.96 −0.460187 −0.230093 0.973169i \(-0.573903\pi\)
−0.230093 + 0.973169i \(0.573903\pi\)
\(752\) 888.455 0.0430833
\(753\) 1140.20 0.0551807
\(754\) 6264.97 0.302595
\(755\) −7936.16 −0.382552
\(756\) −3596.17 −0.173004
\(757\) −1463.59 −0.0702710 −0.0351355 0.999383i \(-0.511186\pi\)
−0.0351355 + 0.999383i \(0.511186\pi\)
\(758\) −20095.7 −0.962940
\(759\) 2465.93 0.117928
\(760\) 2172.95 0.103712
\(761\) 37987.0 1.80950 0.904748 0.425947i \(-0.140059\pi\)
0.904748 + 0.425947i \(0.140059\pi\)
\(762\) 3668.14 0.174387
\(763\) −57347.5 −2.72100
\(764\) 6764.57 0.320332
\(765\) 0 0
\(766\) 5712.75 0.269465
\(767\) −3341.45 −0.157305
\(768\) −768.000 −0.0360844
\(769\) −29701.4 −1.39280 −0.696398 0.717655i \(-0.745215\pi\)
−0.696398 + 0.717655i \(0.745215\pi\)
\(770\) −1383.21 −0.0647368
\(771\) 15363.2 0.717630
\(772\) −13995.1 −0.652456
\(773\) 22444.2 1.04432 0.522161 0.852847i \(-0.325126\pi\)
0.522161 + 0.852847i \(0.325126\pi\)
\(774\) 5909.95 0.274456
\(775\) 28059.7 1.30056
\(776\) 1620.34 0.0749571
\(777\) 30752.4 1.41987
\(778\) 10958.3 0.504980
\(779\) −18746.8 −0.862224
\(780\) −894.729 −0.0410723
\(781\) −491.171 −0.0225038
\(782\) 0 0
\(783\) 4610.45 0.210427
\(784\) 12252.0 0.558125
\(785\) −870.624 −0.0395846
\(786\) −11668.7 −0.529529
\(787\) 40576.5 1.83786 0.918931 0.394418i \(-0.129054\pi\)
0.918931 + 0.394418i \(0.129054\pi\)
\(788\) 17476.2 0.790054
\(789\) 7575.11 0.341801
\(790\) −82.2728 −0.00370523
\(791\) −36671.0 −1.64838
\(792\) 367.936 0.0165076
\(793\) 133.636 0.00598428
\(794\) −21294.8 −0.951794
\(795\) 2842.18 0.126794
\(796\) −13432.9 −0.598138
\(797\) 10014.0 0.445063 0.222531 0.974926i \(-0.428568\pi\)
0.222531 + 0.974926i \(0.428568\pi\)
\(798\) 13351.4 0.592272
\(799\) 0 0
\(800\) −3471.37 −0.153414
\(801\) −13497.3 −0.595387
\(802\) 4480.86 0.197288
\(803\) −5183.83 −0.227812
\(804\) −3769.39 −0.165344
\(805\) 21768.9 0.953111
\(806\) 9490.12 0.414733
\(807\) −17355.3 −0.757044
\(808\) 3945.38 0.171780
\(809\) −2763.14 −0.120082 −0.0600412 0.998196i \(-0.519123\pi\)
−0.0600412 + 0.998196i \(0.519123\pi\)
\(810\) −658.440 −0.0285620
\(811\) −29392.1 −1.27262 −0.636311 0.771432i \(-0.719541\pi\)
−0.636311 + 0.771432i \(0.719541\pi\)
\(812\) −22743.4 −0.982929
\(813\) 4436.83 0.191398
\(814\) −3146.38 −0.135480
\(815\) −5975.65 −0.256832
\(816\) 0 0
\(817\) −21941.6 −0.939585
\(818\) −10466.5 −0.447375
\(819\) −5497.53 −0.234553
\(820\) −4560.68 −0.194227
\(821\) 40619.0 1.72669 0.863346 0.504612i \(-0.168364\pi\)
0.863346 + 0.504612i \(0.168364\pi\)
\(822\) −13252.3 −0.562322
\(823\) −8061.18 −0.341428 −0.170714 0.985321i \(-0.554607\pi\)
−0.170714 + 0.985321i \(0.554607\pi\)
\(824\) −10111.2 −0.427477
\(825\) 1663.07 0.0701828
\(826\) 12130.3 0.510979
\(827\) −14281.4 −0.600499 −0.300249 0.953861i \(-0.597070\pi\)
−0.300249 + 0.953861i \(0.597070\pi\)
\(828\) −5790.58 −0.243039
\(829\) 19975.7 0.836894 0.418447 0.908241i \(-0.362575\pi\)
0.418447 + 0.908241i \(0.362575\pi\)
\(830\) 536.956 0.0224554
\(831\) −20615.9 −0.860599
\(832\) −1174.06 −0.0489220
\(833\) 0 0
\(834\) 8052.81 0.334348
\(835\) −15900.1 −0.658976
\(836\) −1366.02 −0.0565129
\(837\) 6983.88 0.288409
\(838\) 34114.1 1.40627
\(839\) −9994.18 −0.411248 −0.205624 0.978631i \(-0.565922\pi\)
−0.205624 + 0.978631i \(0.565922\pi\)
\(840\) 3248.10 0.133417
\(841\) 4769.14 0.195545
\(842\) −3991.97 −0.163388
\(843\) 15791.4 0.645178
\(844\) 2964.02 0.120883
\(845\) 7561.80 0.307851
\(846\) 999.512 0.0406193
\(847\) −43449.9 −1.76264
\(848\) 3729.48 0.151027
\(849\) −8068.65 −0.326166
\(850\) 0 0
\(851\) 49517.7 1.99465
\(852\) 1153.39 0.0463783
\(853\) 32464.2 1.30311 0.651556 0.758601i \(-0.274117\pi\)
0.651556 + 0.758601i \(0.274117\pi\)
\(854\) −485.131 −0.0194389
\(855\) 2444.57 0.0977806
\(856\) −13683.7 −0.546376
\(857\) 12018.3 0.479038 0.239519 0.970892i \(-0.423010\pi\)
0.239519 + 0.970892i \(0.423010\pi\)
\(858\) 562.470 0.0223804
\(859\) 17465.0 0.693711 0.346855 0.937919i \(-0.387249\pi\)
0.346855 + 0.937919i \(0.387249\pi\)
\(860\) −5337.93 −0.211653
\(861\) −28022.5 −1.10918
\(862\) −29012.1 −1.14635
\(863\) −40272.5 −1.58852 −0.794259 0.607579i \(-0.792141\pi\)
−0.794259 + 0.607579i \(0.792141\pi\)
\(864\) −864.000 −0.0340207
\(865\) −6565.28 −0.258065
\(866\) 2034.05 0.0798152
\(867\) 0 0
\(868\) −34451.6 −1.34719
\(869\) 51.7207 0.00201899
\(870\) −4164.21 −0.162276
\(871\) −5762.34 −0.224167
\(872\) −13778.1 −0.535074
\(873\) 1822.88 0.0706702
\(874\) 21498.5 0.832033
\(875\) 31598.6 1.22083
\(876\) 12172.9 0.469501
\(877\) 14757.2 0.568205 0.284103 0.958794i \(-0.408304\pi\)
0.284103 + 0.958794i \(0.408304\pi\)
\(878\) −3708.30 −0.142539
\(879\) −18228.8 −0.699479
\(880\) −332.323 −0.0127302
\(881\) −16991.8 −0.649794 −0.324897 0.945749i \(-0.605330\pi\)
−0.324897 + 0.945749i \(0.605330\pi\)
\(882\) 13783.5 0.526205
\(883\) 5494.09 0.209389 0.104695 0.994504i \(-0.466613\pi\)
0.104695 + 0.994504i \(0.466613\pi\)
\(884\) 0 0
\(885\) 2221.00 0.0843595
\(886\) −8595.68 −0.325934
\(887\) 13528.4 0.512108 0.256054 0.966662i \(-0.417578\pi\)
0.256054 + 0.966662i \(0.417578\pi\)
\(888\) 7388.43 0.279211
\(889\) −20356.9 −0.767996
\(890\) 12190.9 0.459147
\(891\) 413.928 0.0155635
\(892\) 3524.16 0.132284
\(893\) −3710.85 −0.139058
\(894\) 62.0483 0.00232126
\(895\) 164.557 0.00614585
\(896\) 4262.13 0.158915
\(897\) −8852.17 −0.329504
\(898\) 3824.97 0.142139
\(899\) 44168.5 1.63860
\(900\) −3905.29 −0.144640
\(901\) 0 0
\(902\) 2867.07 0.105835
\(903\) −32798.1 −1.20870
\(904\) −8810.41 −0.324148
\(905\) 6839.26 0.251210
\(906\) −11715.5 −0.429604
\(907\) 12119.6 0.443687 0.221844 0.975082i \(-0.428793\pi\)
0.221844 + 0.975082i \(0.428793\pi\)
\(908\) −21881.5 −0.799740
\(909\) 4438.55 0.161955
\(910\) 4965.43 0.180882
\(911\) −32615.9 −1.18618 −0.593092 0.805134i \(-0.702093\pi\)
−0.593092 + 0.805134i \(0.702093\pi\)
\(912\) 3207.74 0.116468
\(913\) −337.557 −0.0122360
\(914\) 4469.54 0.161750
\(915\) −88.8251 −0.00320925
\(916\) −19804.0 −0.714348
\(917\) 64757.2 2.33203
\(918\) 0 0
\(919\) −46742.5 −1.67780 −0.838898 0.544289i \(-0.816800\pi\)
−0.838898 + 0.544289i \(0.816800\pi\)
\(920\) 5230.11 0.187426
\(921\) −25294.7 −0.904981
\(922\) 299.267 0.0106896
\(923\) 1763.20 0.0628781
\(924\) −2041.91 −0.0726991
\(925\) 33395.8 1.18708
\(926\) 9464.19 0.335867
\(927\) −11375.1 −0.403029
\(928\) −5464.24 −0.193289
\(929\) 9938.02 0.350975 0.175488 0.984482i \(-0.443850\pi\)
0.175488 + 0.984482i \(0.443850\pi\)
\(930\) −6307.91 −0.222413
\(931\) −51173.3 −1.80144
\(932\) −7069.61 −0.248469
\(933\) 14780.5 0.518641
\(934\) −5498.02 −0.192613
\(935\) 0 0
\(936\) −1320.81 −0.0461241
\(937\) 18865.1 0.657733 0.328867 0.944376i \(-0.393333\pi\)
0.328867 + 0.944376i \(0.393333\pi\)
\(938\) 20918.8 0.728169
\(939\) 7899.83 0.274549
\(940\) −902.770 −0.0313246
\(941\) 36061.9 1.24929 0.624647 0.780907i \(-0.285243\pi\)
0.624647 + 0.780907i \(0.285243\pi\)
\(942\) −1285.23 −0.0444533
\(943\) −45122.0 −1.55819
\(944\) 2914.38 0.100482
\(945\) 3654.11 0.125786
\(946\) 3355.68 0.115330
\(947\) −52177.2 −1.79042 −0.895212 0.445640i \(-0.852976\pi\)
−0.895212 + 0.445640i \(0.852976\pi\)
\(948\) −121.452 −0.00416096
\(949\) 18608.9 0.636533
\(950\) 14499.0 0.495169
\(951\) 33413.4 1.13933
\(952\) 0 0
\(953\) −38749.7 −1.31713 −0.658566 0.752523i \(-0.728836\pi\)
−0.658566 + 0.752523i \(0.728836\pi\)
\(954\) 4195.67 0.142390
\(955\) −6873.55 −0.232904
\(956\) 10573.1 0.357696
\(957\) 2617.83 0.0884245
\(958\) −8419.21 −0.283938
\(959\) 73545.7 2.47645
\(960\) 780.374 0.0262359
\(961\) 37115.1 1.24585
\(962\) 11294.8 0.378545
\(963\) −15394.1 −0.515128
\(964\) 16094.1 0.537715
\(965\) 14220.6 0.474382
\(966\) 32135.7 1.07034
\(967\) −52687.2 −1.75213 −0.876063 0.482197i \(-0.839839\pi\)
−0.876063 + 0.482197i \(0.839839\pi\)
\(968\) −10439.1 −0.346617
\(969\) 0 0
\(970\) −1646.44 −0.0544991
\(971\) 4339.06 0.143406 0.0717030 0.997426i \(-0.477157\pi\)
0.0717030 + 0.997426i \(0.477157\pi\)
\(972\) −972.000 −0.0320750
\(973\) −44690.2 −1.47246
\(974\) 33595.0 1.10519
\(975\) −5970.09 −0.196098
\(976\) −116.556 −0.00382260
\(977\) −23529.5 −0.770498 −0.385249 0.922813i \(-0.625884\pi\)
−0.385249 + 0.922813i \(0.625884\pi\)
\(978\) −8821.35 −0.288421
\(979\) −7663.82 −0.250191
\(980\) −12449.4 −0.405796
\(981\) −15500.3 −0.504473
\(982\) 21809.2 0.708717
\(983\) −25016.8 −0.811712 −0.405856 0.913937i \(-0.633027\pi\)
−0.405856 + 0.913937i \(0.633027\pi\)
\(984\) −6732.55 −0.218116
\(985\) −17757.7 −0.574425
\(986\) 0 0
\(987\) −5546.94 −0.178886
\(988\) 4903.73 0.157903
\(989\) −52811.8 −1.69800
\(990\) −373.864 −0.0120022
\(991\) 48058.4 1.54049 0.770246 0.637747i \(-0.220134\pi\)
0.770246 + 0.637747i \(0.220134\pi\)
\(992\) −8277.19 −0.264920
\(993\) −30533.3 −0.975774
\(994\) −6400.88 −0.204249
\(995\) 13649.4 0.434888
\(996\) 792.663 0.0252174
\(997\) 27283.0 0.866662 0.433331 0.901235i \(-0.357338\pi\)
0.433331 + 0.901235i \(0.357338\pi\)
\(998\) 5168.38 0.163930
\(999\) 8311.99 0.263243
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1734.4.a.bd.1.3 6
17.2 even 8 102.4.f.c.55.2 yes 12
17.9 even 8 102.4.f.c.13.2 12
17.16 even 2 1734.4.a.be.1.4 6
51.2 odd 8 306.4.g.g.55.3 12
51.26 odd 8 306.4.g.g.217.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
102.4.f.c.13.2 12 17.9 even 8
102.4.f.c.55.2 yes 12 17.2 even 8
306.4.g.g.55.3 12 51.2 odd 8
306.4.g.g.217.3 12 51.26 odd 8
1734.4.a.bd.1.3 6 1.1 even 1 trivial
1734.4.a.be.1.4 6 17.16 even 2