Properties

Label 102.4.f.c.55.2
Level $102$
Weight $4$
Character 102.55
Analytic conductor $6.018$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [102,4,Mod(13,102)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(102, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("102.13");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 102 = 2 \cdot 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 102.f (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.01819482059\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 886x^{10} + 292945x^{8} + 42943904x^{6} + 2387634208x^{4} + 5944075264x^{2} + 2089586944 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 55.2
Root \(0.650232i\) of defining polynomial
Character \(\chi\) \(=\) 102.55
Dual form 102.4.f.c.13.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000i q^{2} +(-2.12132 + 2.12132i) q^{3} -4.00000 q^{4} +(2.87400 - 2.87400i) q^{5} +(-4.24264 - 4.24264i) q^{6} +(-23.5451 - 23.5451i) q^{7} -8.00000i q^{8} -9.00000i q^{9} +(5.74799 + 5.74799i) q^{10} +(3.61347 + 3.61347i) q^{11} +(8.48528 - 8.48528i) q^{12} +18.3446 q^{13} +(47.0903 - 47.0903i) q^{14} +12.1933i q^{15} +16.0000 q^{16} +(-25.1071 - 65.4418i) q^{17} +18.0000 q^{18} -66.8279i q^{19} +(-11.4960 + 11.4960i) q^{20} +99.8936 q^{21} +(-7.22694 + 7.22694i) q^{22} +(-113.738 - 113.738i) q^{23} +(16.9706 + 16.9706i) q^{24} +108.480i q^{25} +36.6892i q^{26} +(19.0919 + 19.0919i) q^{27} +(94.1806 + 94.1806i) q^{28} +(120.744 - 120.744i) q^{29} -24.3867 q^{30} +(-182.902 + 182.902i) q^{31} +32.0000i q^{32} -15.3307 q^{33} +(130.884 - 50.2142i) q^{34} -135.337 q^{35} +36.0000i q^{36} +(-217.684 + 217.684i) q^{37} +133.656 q^{38} +(-38.9148 + 38.9148i) q^{39} +(-22.9920 - 22.9920i) q^{40} +(-198.360 - 198.360i) q^{41} +199.787i q^{42} -328.331i q^{43} +(-14.4539 - 14.4539i) q^{44} +(-25.8660 - 25.8660i) q^{45} +(227.476 - 227.476i) q^{46} -55.5285 q^{47} +(-33.9411 + 33.9411i) q^{48} +765.747i q^{49} -216.961 q^{50} +(192.083 + 85.5628i) q^{51} -73.3785 q^{52} +233.093i q^{53} +(-38.1838 + 38.1838i) q^{54} +20.7702 q^{55} +(-188.361 + 188.361i) q^{56} +(141.763 + 141.763i) q^{57} +(241.488 + 241.488i) q^{58} -182.149i q^{59} -48.7734i q^{60} +(5.15108 + 5.15108i) q^{61} +(-365.803 - 365.803i) q^{62} +(-211.906 + 211.906i) q^{63} -64.0000 q^{64} +(52.7224 - 52.7224i) q^{65} -30.6613i q^{66} +314.116 q^{67} +(100.428 + 261.767i) q^{68} +482.549 q^{69} -270.675i q^{70} +(-67.9639 + 67.9639i) q^{71} -72.0000 q^{72} +(717.292 - 717.292i) q^{73} +(-435.368 - 435.368i) q^{74} +(-230.121 - 230.121i) q^{75} +267.312i q^{76} -170.159i q^{77} +(-77.8296 - 77.8296i) q^{78} +(7.15665 + 7.15665i) q^{79} +(45.9840 - 45.9840i) q^{80} -81.0000 q^{81} +(396.720 - 396.720i) q^{82} -66.0553i q^{83} -399.574 q^{84} +(-260.237 - 115.922i) q^{85} +656.661 q^{86} +512.273i q^{87} +(28.9078 - 28.9078i) q^{88} +1499.70 q^{89} +(51.7320 - 51.7320i) q^{90} +(-431.927 - 431.927i) q^{91} +(454.951 + 454.951i) q^{92} -775.986i q^{93} -111.057i q^{94} +(-192.063 - 192.063i) q^{95} +(-67.8823 - 67.8823i) q^{96} +(-143.219 + 143.219i) q^{97} -1531.49 q^{98} +(32.5212 - 32.5212i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 48 q^{4} + 16 q^{5} - 12 q^{7} + 32 q^{10} - 32 q^{11} - 68 q^{13} + 24 q^{14} + 192 q^{16} + 64 q^{17} + 216 q^{18} - 64 q^{20} - 168 q^{21} + 64 q^{22} - 112 q^{23} + 48 q^{28} - 296 q^{29} - 168 q^{30}+ \cdots - 288 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/102\mathbb{Z}\right)^\times\).

\(n\) \(35\) \(37\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000i 0.707107i
\(3\) −2.12132 + 2.12132i −0.408248 + 0.408248i
\(4\) −4.00000 −0.500000
\(5\) 2.87400 2.87400i 0.257058 0.257058i −0.566798 0.823857i \(-0.691818\pi\)
0.823857 + 0.566798i \(0.191818\pi\)
\(6\) −4.24264 4.24264i −0.288675 0.288675i
\(7\) −23.5451 23.5451i −1.27132 1.27132i −0.945397 0.325921i \(-0.894326\pi\)
−0.325921 0.945397i \(-0.605674\pi\)
\(8\) 8.00000i 0.353553i
\(9\) 9.00000i 0.333333i
\(10\) 5.74799 + 5.74799i 0.181768 + 0.181768i
\(11\) 3.61347 + 3.61347i 0.0990457 + 0.0990457i 0.754893 0.655848i \(-0.227689\pi\)
−0.655848 + 0.754893i \(0.727689\pi\)
\(12\) 8.48528 8.48528i 0.204124 0.204124i
\(13\) 18.3446 0.391376 0.195688 0.980666i \(-0.437306\pi\)
0.195688 + 0.980666i \(0.437306\pi\)
\(14\) 47.0903 47.0903i 0.898958 0.898958i
\(15\) 12.1933i 0.209887i
\(16\) 16.0000 0.250000
\(17\) −25.1071 65.4418i −0.358198 0.933646i
\(18\) 18.0000 0.235702
\(19\) 66.8279i 0.806914i −0.914998 0.403457i \(-0.867808\pi\)
0.914998 0.403457i \(-0.132192\pi\)
\(20\) −11.4960 + 11.4960i −0.128529 + 0.128529i
\(21\) 99.8936 1.03803
\(22\) −7.22694 + 7.22694i −0.0700359 + 0.0700359i
\(23\) −113.738 113.738i −1.03113 1.03113i −0.999500 0.0316293i \(-0.989930\pi\)
−0.0316293 0.999500i \(-0.510070\pi\)
\(24\) 16.9706 + 16.9706i 0.144338 + 0.144338i
\(25\) 108.480i 0.867842i
\(26\) 36.6892i 0.276744i
\(27\) 19.0919 + 19.0919i 0.136083 + 0.136083i
\(28\) 94.1806 + 94.1806i 0.635659 + 0.635659i
\(29\) 120.744 120.744i 0.773157 0.773157i −0.205500 0.978657i \(-0.565882\pi\)
0.978657 + 0.205500i \(0.0658820\pi\)
\(30\) −24.3867 −0.148413
\(31\) −182.902 + 182.902i −1.05968 + 1.05968i −0.0615791 + 0.998102i \(0.519614\pi\)
−0.998102 + 0.0615791i \(0.980386\pi\)
\(32\) 32.0000i 0.176777i
\(33\) −15.3307 −0.0808704
\(34\) 130.884 50.2142i 0.660187 0.253284i
\(35\) −135.337 −0.653605
\(36\) 36.0000i 0.166667i
\(37\) −217.684 + 217.684i −0.967216 + 0.967216i −0.999479 0.0322632i \(-0.989729\pi\)
0.0322632 + 0.999479i \(0.489729\pi\)
\(38\) 133.656 0.570575
\(39\) −38.9148 + 38.9148i −0.159778 + 0.159778i
\(40\) −22.9920 22.9920i −0.0908838 0.0908838i
\(41\) −198.360 198.360i −0.755575 0.755575i 0.219938 0.975514i \(-0.429414\pi\)
−0.975514 + 0.219938i \(0.929414\pi\)
\(42\) 199.787i 0.733996i
\(43\) 328.331i 1.16442i −0.813039 0.582209i \(-0.802189\pi\)
0.813039 0.582209i \(-0.197811\pi\)
\(44\) −14.4539 14.4539i −0.0495228 0.0495228i
\(45\) −25.8660 25.8660i −0.0856860 0.0856860i
\(46\) 227.476 227.476i 0.729118 0.729118i
\(47\) −55.5285 −0.172333 −0.0861666 0.996281i \(-0.527462\pi\)
−0.0861666 + 0.996281i \(0.527462\pi\)
\(48\) −33.9411 + 33.9411i −0.102062 + 0.102062i
\(49\) 765.747i 2.23250i
\(50\) −216.961 −0.613657
\(51\) 192.083 + 85.5628i 0.527393 + 0.234925i
\(52\) −73.3785 −0.195688
\(53\) 233.093i 0.604108i 0.953291 + 0.302054i \(0.0976723\pi\)
−0.953291 + 0.302054i \(0.902328\pi\)
\(54\) −38.1838 + 38.1838i −0.0962250 + 0.0962250i
\(55\) 20.7702 0.0509210
\(56\) −188.361 + 188.361i −0.449479 + 0.449479i
\(57\) 141.763 + 141.763i 0.329421 + 0.329421i
\(58\) 241.488 + 241.488i 0.546705 + 0.546705i
\(59\) 182.149i 0.401928i −0.979599 0.200964i \(-0.935593\pi\)
0.979599 0.200964i \(-0.0644075\pi\)
\(60\) 48.7734i 0.104944i
\(61\) 5.15108 + 5.15108i 0.0108119 + 0.0108119i 0.712492 0.701680i \(-0.247566\pi\)
−0.701680 + 0.712492i \(0.747566\pi\)
\(62\) −365.803 365.803i −0.749308 0.749308i
\(63\) −211.906 + 211.906i −0.423773 + 0.423773i
\(64\) −64.0000 −0.125000
\(65\) 52.7224 52.7224i 0.100606 0.100606i
\(66\) 30.6613i 0.0571840i
\(67\) 314.116 0.572767 0.286383 0.958115i \(-0.407547\pi\)
0.286383 + 0.958115i \(0.407547\pi\)
\(68\) 100.428 + 261.767i 0.179099 + 0.466823i
\(69\) 482.549 0.841913
\(70\) 270.675i 0.462169i
\(71\) −67.9639 + 67.9639i −0.113603 + 0.113603i −0.761623 0.648020i \(-0.775597\pi\)
0.648020 + 0.761623i \(0.275597\pi\)
\(72\) −72.0000 −0.117851
\(73\) 717.292 717.292i 1.15004 1.15004i 0.163493 0.986545i \(-0.447724\pi\)
0.986545 0.163493i \(-0.0522761\pi\)
\(74\) −435.368 435.368i −0.683925 0.683925i
\(75\) −230.121 230.121i −0.354295 0.354295i
\(76\) 267.312i 0.403457i
\(77\) 170.159i 0.251837i
\(78\) −77.8296 77.8296i −0.112980 0.112980i
\(79\) 7.15665 + 7.15665i 0.0101922 + 0.0101922i 0.712185 0.701992i \(-0.247706\pi\)
−0.701992 + 0.712185i \(0.747706\pi\)
\(80\) 45.9840 45.9840i 0.0642645 0.0642645i
\(81\) −81.0000 −0.111111
\(82\) 396.720 396.720i 0.534272 0.534272i
\(83\) 66.0553i 0.0873555i −0.999046 0.0436778i \(-0.986093\pi\)
0.999046 0.0436778i \(-0.0139075\pi\)
\(84\) −399.574 −0.519013
\(85\) −260.237 115.922i −0.332079 0.147923i
\(86\) 656.661 0.823367
\(87\) 512.273i 0.631280i
\(88\) 28.9078 28.9078i 0.0350179 0.0350179i
\(89\) 1499.70 1.78616 0.893081 0.449897i \(-0.148539\pi\)
0.893081 + 0.449897i \(0.148539\pi\)
\(90\) 51.7320 51.7320i 0.0605892 0.0605892i
\(91\) −431.927 431.927i −0.497563 0.497563i
\(92\) 454.951 + 454.951i 0.515564 + 0.515564i
\(93\) 775.986i 0.865226i
\(94\) 111.057i 0.121858i
\(95\) −192.063 192.063i −0.207424 0.207424i
\(96\) −67.8823 67.8823i −0.0721688 0.0721688i
\(97\) −143.219 + 143.219i −0.149914 + 0.149914i −0.778080 0.628166i \(-0.783806\pi\)
0.628166 + 0.778080i \(0.283806\pi\)
\(98\) −1531.49 −1.57862
\(99\) 32.5212 32.5212i 0.0330152 0.0330152i
\(100\) 433.921i 0.433921i
\(101\) 493.172 0.485866 0.242933 0.970043i \(-0.421891\pi\)
0.242933 + 0.970043i \(0.421891\pi\)
\(102\) −171.126 + 384.167i −0.166117 + 0.372923i
\(103\) −1263.90 −1.20909 −0.604544 0.796572i \(-0.706645\pi\)
−0.604544 + 0.796572i \(0.706645\pi\)
\(104\) 146.757i 0.138372i
\(105\) 287.094 287.094i 0.266833 0.266833i
\(106\) −466.185 −0.427169
\(107\) 1209.48 1209.48i 1.09275 1.09275i 0.0975185 0.995234i \(-0.468909\pi\)
0.995234 0.0975185i \(-0.0310905\pi\)
\(108\) −76.3675 76.3675i −0.0680414 0.0680414i
\(109\) 1217.82 + 1217.82i 1.07015 + 1.07015i 0.997346 + 0.0728014i \(0.0231939\pi\)
0.0728014 + 0.997346i \(0.476806\pi\)
\(110\) 41.5404i 0.0360066i
\(111\) 923.554i 0.789729i
\(112\) −376.722 376.722i −0.317830 0.317830i
\(113\) −778.737 778.737i −0.648296 0.648296i 0.304285 0.952581i \(-0.401582\pi\)
−0.952581 + 0.304285i \(0.901582\pi\)
\(114\) −283.527 + 283.527i −0.232936 + 0.232936i
\(115\) −653.764 −0.530120
\(116\) −482.975 + 482.975i −0.386579 + 0.386579i
\(117\) 165.102i 0.130459i
\(118\) 364.298 0.284206
\(119\) −949.686 + 2131.99i −0.731576 + 1.64234i
\(120\) 97.5467 0.0742063
\(121\) 1304.89i 0.980380i
\(122\) −10.3022 + 10.3022i −0.00764519 + 0.00764519i
\(123\) 841.569 0.616925
\(124\) 731.607 731.607i 0.529841 0.529841i
\(125\) 671.022 + 671.022i 0.480144 + 0.480144i
\(126\) −423.813 423.813i −0.299653 0.299653i
\(127\) 611.357i 0.427159i 0.976926 + 0.213579i \(0.0685122\pi\)
−0.976926 + 0.213579i \(0.931488\pi\)
\(128\) 128.000i 0.0883883i
\(129\) 696.494 + 696.494i 0.475371 + 0.475371i
\(130\) 105.445 + 105.445i 0.0711394 + 0.0711394i
\(131\) −1375.17 + 1375.17i −0.917171 + 0.917171i −0.996823 0.0796522i \(-0.974619\pi\)
0.0796522 + 0.996823i \(0.474619\pi\)
\(132\) 61.3226 0.0404352
\(133\) −1573.47 + 1573.47i −1.02584 + 1.02584i
\(134\) 628.232i 0.405007i
\(135\) 109.740 0.0699624
\(136\) −523.535 + 200.857i −0.330094 + 0.126642i
\(137\) 2208.72 1.37740 0.688700 0.725046i \(-0.258182\pi\)
0.688700 + 0.725046i \(0.258182\pi\)
\(138\) 965.097i 0.595323i
\(139\) −949.032 + 949.032i −0.579107 + 0.579107i −0.934657 0.355550i \(-0.884293\pi\)
0.355550 + 0.934657i \(0.384293\pi\)
\(140\) 541.349 0.326803
\(141\) 117.794 117.794i 0.0703547 0.0703547i
\(142\) −135.928 135.928i −0.0803297 0.0803297i
\(143\) 66.2877 + 66.2877i 0.0387641 + 0.0387641i
\(144\) 144.000i 0.0833333i
\(145\) 694.035i 0.397493i
\(146\) 1434.58 + 1434.58i 0.813199 + 0.813199i
\(147\) −1624.40 1624.40i −0.911414 0.911414i
\(148\) 870.735 870.735i 0.483608 0.483608i
\(149\) 10.3414 0.00568590 0.00284295 0.999996i \(-0.499095\pi\)
0.00284295 + 0.999996i \(0.499095\pi\)
\(150\) 460.243 460.243i 0.250524 0.250524i
\(151\) 1952.58i 1.05231i 0.850389 + 0.526155i \(0.176367\pi\)
−0.850389 + 0.526155i \(0.823633\pi\)
\(152\) −534.623 −0.285287
\(153\) −588.976 + 225.964i −0.311215 + 0.119399i
\(154\) 340.319 0.178076
\(155\) 1051.32i 0.544799i
\(156\) 155.659 155.659i 0.0798892 0.0798892i
\(157\) −214.205 −0.108888 −0.0544440 0.998517i \(-0.517339\pi\)
−0.0544440 + 0.998517i \(0.517339\pi\)
\(158\) −14.3133 + 14.3133i −0.00720699 + 0.00720699i
\(159\) −494.464 494.464i −0.246626 0.246626i
\(160\) 91.9679 + 91.9679i 0.0454419 + 0.0454419i
\(161\) 5355.94i 2.62179i
\(162\) 162.000i 0.0785674i
\(163\) −1039.61 1039.61i −0.499560 0.499560i 0.411741 0.911301i \(-0.364921\pi\)
−0.911301 + 0.411741i \(0.864921\pi\)
\(164\) 793.439 + 793.439i 0.377788 + 0.377788i
\(165\) −44.0603 + 44.0603i −0.0207884 + 0.0207884i
\(166\) 132.111 0.0617697
\(167\) 2766.20 2766.20i 1.28176 1.28176i 0.342101 0.939663i \(-0.388862\pi\)
0.939663 0.342101i \(-0.111138\pi\)
\(168\) 799.149i 0.366998i
\(169\) −1860.47 −0.846825
\(170\) 231.844 520.475i 0.104598 0.234815i
\(171\) −601.451 −0.268971
\(172\) 1313.32i 0.582209i
\(173\) 1142.19 1142.19i 0.501958 0.501958i −0.410088 0.912046i \(-0.634502\pi\)
0.912046 + 0.410088i \(0.134502\pi\)
\(174\) −1024.55 −0.446383
\(175\) 2554.18 2554.18i 1.10330 1.10330i
\(176\) 57.8155 + 57.8155i 0.0247614 + 0.0247614i
\(177\) 386.396 + 386.396i 0.164086 + 0.164086i
\(178\) 2999.41i 1.26301i
\(179\) 40.4870i 0.0169058i 0.999964 + 0.00845290i \(0.00269068\pi\)
−0.999964 + 0.00845290i \(0.997309\pi\)
\(180\) 103.464 + 103.464i 0.0428430 + 0.0428430i
\(181\) −1189.85 1189.85i −0.488624 0.488624i 0.419248 0.907872i \(-0.362294\pi\)
−0.907872 + 0.419248i \(0.862294\pi\)
\(182\) 863.853 863.853i 0.351830 0.351830i
\(183\) −21.8542 −0.00882791
\(184\) −909.902 + 909.902i −0.364559 + 0.364559i
\(185\) 1251.25i 0.497262i
\(186\) 1551.97 0.611807
\(187\) 145.748 327.196i 0.0569955 0.127952i
\(188\) 222.114 0.0861666
\(189\) 899.042i 0.346009i
\(190\) 384.127 384.127i 0.146671 0.146671i
\(191\) −1691.14 −0.640663 −0.320332 0.947305i \(-0.603794\pi\)
−0.320332 + 0.947305i \(0.603794\pi\)
\(192\) 135.765 135.765i 0.0510310 0.0510310i
\(193\) −2474.02 2474.02i −0.922713 0.922713i 0.0745076 0.997220i \(-0.476261\pi\)
−0.997220 + 0.0745076i \(0.976261\pi\)
\(194\) −286.438 286.438i −0.106005 0.106005i
\(195\) 223.682i 0.0821447i
\(196\) 3062.99i 1.11625i
\(197\) −3089.38 3089.38i −1.11730 1.11730i −0.992135 0.125170i \(-0.960052\pi\)
−0.125170 0.992135i \(-0.539948\pi\)
\(198\) 65.0425 + 65.0425i 0.0233453 + 0.0233453i
\(199\) 2374.63 2374.63i 0.845894 0.845894i −0.143723 0.989618i \(-0.545908\pi\)
0.989618 + 0.143723i \(0.0459076\pi\)
\(200\) 867.842 0.306829
\(201\) −666.341 + 666.341i −0.233831 + 0.233831i
\(202\) 986.344i 0.343559i
\(203\) −5685.86 −1.96586
\(204\) −768.333 342.251i −0.263697 0.117463i
\(205\) −1140.17 −0.388454
\(206\) 2527.80i 0.854954i
\(207\) −1023.64 + 1023.64i −0.343710 + 0.343710i
\(208\) 293.514 0.0978439
\(209\) 241.481 241.481i 0.0799214 0.0799214i
\(210\) 574.188 + 574.188i 0.188680 + 0.188680i
\(211\) −523.969 523.969i −0.170955 0.170955i 0.616444 0.787399i \(-0.288573\pi\)
−0.787399 + 0.616444i \(0.788573\pi\)
\(212\) 932.370i 0.302054i
\(213\) 288.346i 0.0927567i
\(214\) 2418.95 + 2418.95i 0.772693 + 0.772693i
\(215\) −943.621 943.621i −0.299323 0.299323i
\(216\) 152.735 152.735i 0.0481125 0.0481125i
\(217\) 8612.89 2.69438
\(218\) −2435.64 + 2435.64i −0.756709 + 0.756709i
\(219\) 3043.21i 0.939002i
\(220\) −83.0808 −0.0254605
\(221\) −460.581 1200.51i −0.140190 0.365406i
\(222\) 1847.11 0.558423
\(223\) 881.040i 0.264569i 0.991212 + 0.132284i \(0.0422312\pi\)
−0.991212 + 0.132284i \(0.957769\pi\)
\(224\) 753.444 753.444i 0.224739 0.224739i
\(225\) 976.323 0.289281
\(226\) 1557.47 1557.47i 0.458414 0.458414i
\(227\) −3868.14 3868.14i −1.13100 1.13100i −0.990011 0.140992i \(-0.954971\pi\)
−0.140992 0.990011i \(-0.545029\pi\)
\(228\) −567.054 567.054i −0.164711 0.164711i
\(229\) 4951.00i 1.42870i 0.699790 + 0.714348i \(0.253277\pi\)
−0.699790 + 0.714348i \(0.746723\pi\)
\(230\) 1307.53i 0.374852i
\(231\) 360.962 + 360.962i 0.102812 + 0.102812i
\(232\) −965.951 965.951i −0.273352 0.273352i
\(233\) 1249.74 1249.74i 0.351388 0.351388i −0.509238 0.860626i \(-0.670073\pi\)
0.860626 + 0.509238i \(0.170073\pi\)
\(234\) 330.203 0.0922481
\(235\) −159.589 + 159.589i −0.0442996 + 0.0442996i
\(236\) 728.595i 0.200964i
\(237\) −30.3631 −0.00832192
\(238\) −4263.98 1899.37i −1.16131 0.517303i
\(239\) 2643.27 0.715392 0.357696 0.933838i \(-0.383562\pi\)
0.357696 + 0.933838i \(0.383562\pi\)
\(240\) 195.093i 0.0524718i
\(241\) 2845.07 2845.07i 0.760444 0.760444i −0.215958 0.976403i \(-0.569288\pi\)
0.976403 + 0.215958i \(0.0692876\pi\)
\(242\) 2609.77 0.693233
\(243\) 171.827 171.827i 0.0453609 0.0453609i
\(244\) −20.6043 20.6043i −0.00540597 0.00540597i
\(245\) 2200.76 + 2200.76i 0.573882 + 0.573882i
\(246\) 1683.14i 0.436232i
\(247\) 1225.93i 0.315807i
\(248\) 1463.21 + 1463.21i 0.374654 + 0.374654i
\(249\) 140.124 + 140.124i 0.0356627 + 0.0356627i
\(250\) −1342.04 + 1342.04i −0.339513 + 0.339513i
\(251\) 380.065 0.0955757 0.0477879 0.998858i \(-0.484783\pi\)
0.0477879 + 0.998858i \(0.484783\pi\)
\(252\) 847.625 847.625i 0.211886 0.211886i
\(253\) 821.976i 0.204258i
\(254\) −1222.71 −0.302047
\(255\) 797.954 306.140i 0.195960 0.0751812i
\(256\) 256.000 0.0625000
\(257\) 5121.07i 1.24297i −0.783426 0.621486i \(-0.786529\pi\)
0.783426 0.621486i \(-0.213471\pi\)
\(258\) −1392.99 + 1392.99i −0.336138 + 0.336138i
\(259\) 10250.8 2.45928
\(260\) −210.890 + 210.890i −0.0503031 + 0.0503031i
\(261\) −1086.69 1086.69i −0.257719 0.257719i
\(262\) −2750.34 2750.34i −0.648538 0.648538i
\(263\) 2525.04i 0.592016i 0.955185 + 0.296008i \(0.0956556\pi\)
−0.955185 + 0.296008i \(0.904344\pi\)
\(264\) 122.645i 0.0285920i
\(265\) 669.907 + 669.907i 0.155291 + 0.155291i
\(266\) −3146.95 3146.95i −0.725382 0.725382i
\(267\) −3181.35 + 3181.35i −0.729197 + 0.729197i
\(268\) −1256.46 −0.286383
\(269\) 4090.68 4090.68i 0.927186 0.927186i −0.0703371 0.997523i \(-0.522407\pi\)
0.997523 + 0.0703371i \(0.0224075\pi\)
\(270\) 219.480i 0.0494709i
\(271\) −1478.94 −0.331511 −0.165755 0.986167i \(-0.553006\pi\)
−0.165755 + 0.986167i \(0.553006\pi\)
\(272\) −401.714 1047.07i −0.0895496 0.233411i
\(273\) 1832.51 0.406258
\(274\) 4417.45i 0.973970i
\(275\) −391.990 + 391.990i −0.0859560 + 0.0859560i
\(276\) −1930.19 −0.420957
\(277\) −4859.21 + 4859.21i −1.05401 + 1.05401i −0.0555587 + 0.998455i \(0.517694\pi\)
−0.998455 + 0.0555587i \(0.982306\pi\)
\(278\) −1898.06 1898.06i −0.409490 0.409490i
\(279\) 1646.12 + 1646.12i 0.353227 + 0.353227i
\(280\) 1082.70i 0.231084i
\(281\) 5263.80i 1.11748i 0.829343 + 0.558740i \(0.188715\pi\)
−0.829343 + 0.558740i \(0.811285\pi\)
\(282\) 235.587 + 235.587i 0.0497483 + 0.0497483i
\(283\) 1901.80 + 1901.80i 0.399471 + 0.399471i 0.878046 0.478576i \(-0.158847\pi\)
−0.478576 + 0.878046i \(0.658847\pi\)
\(284\) 271.856 271.856i 0.0568016 0.0568016i
\(285\) 814.855 0.169361
\(286\) −132.575 + 132.575i −0.0274103 + 0.0274103i
\(287\) 9340.82i 1.92115i
\(288\) 288.000 0.0589256
\(289\) −3652.26 + 3286.11i −0.743388 + 0.668861i
\(290\) 1388.07 0.281070
\(291\) 607.626i 0.122404i
\(292\) −2869.17 + 2869.17i −0.575019 + 0.575019i
\(293\) −6076.26 −1.21153 −0.605767 0.795642i \(-0.707133\pi\)
−0.605767 + 0.795642i \(0.707133\pi\)
\(294\) 3248.79 3248.79i 0.644467 0.644467i
\(295\) −523.495 523.495i −0.103319 0.103319i
\(296\) 1741.47 + 1741.47i 0.341963 + 0.341963i
\(297\) 137.976i 0.0269568i
\(298\) 20.6828i 0.00402054i
\(299\) −2086.48 2086.48i −0.403559 0.403559i
\(300\) 920.486 + 920.486i 0.177148 + 0.177148i
\(301\) −7730.59 + 7730.59i −1.48034 + 1.48034i
\(302\) −3905.16 −0.744096
\(303\) −1046.18 + 1046.18i −0.198354 + 0.198354i
\(304\) 1069.25i 0.201729i
\(305\) 29.6084 0.00555859
\(306\) −451.928 1177.95i −0.0844282 0.220062i
\(307\) 8431.56 1.56747 0.783737 0.621093i \(-0.213311\pi\)
0.783737 + 0.621093i \(0.213311\pi\)
\(308\) 680.637i 0.125919i
\(309\) 2681.14 2681.14i 0.493608 0.493608i
\(310\) −2102.64 −0.385231
\(311\) 3483.80 3483.80i 0.635203 0.635203i −0.314166 0.949368i \(-0.601725\pi\)
0.949368 + 0.314166i \(0.101725\pi\)
\(312\) 311.319 + 311.319i 0.0564902 + 0.0564902i
\(313\) 1862.01 + 1862.01i 0.336252 + 0.336252i 0.854955 0.518703i \(-0.173585\pi\)
−0.518703 + 0.854955i \(0.673585\pi\)
\(314\) 428.410i 0.0769954i
\(315\) 1218.04i 0.217868i
\(316\) −28.6266 28.6266i −0.00509611 0.00509611i
\(317\) −7875.61 7875.61i −1.39539 1.39539i −0.812681 0.582709i \(-0.801993\pi\)
−0.582709 0.812681i \(-0.698007\pi\)
\(318\) 988.928 988.928i 0.174391 0.174391i
\(319\) 872.608 0.153156
\(320\) −183.936 + 183.936i −0.0321323 + 0.0321323i
\(321\) 5131.37i 0.892228i
\(322\) −10711.9 −1.85388
\(323\) −4373.34 + 1677.86i −0.753372 + 0.289035i
\(324\) 324.000 0.0555556
\(325\) 1990.03i 0.339652i
\(326\) 2079.21 2079.21i 0.353242 0.353242i
\(327\) −5166.78 −0.873772
\(328\) −1586.88 + 1586.88i −0.267136 + 0.267136i
\(329\) 1307.43 + 1307.43i 0.219090 + 0.219090i
\(330\) −88.1205 88.1205i −0.0146996 0.0146996i
\(331\) 10177.8i 1.69009i −0.534695 0.845045i \(-0.679573\pi\)
0.534695 0.845045i \(-0.320427\pi\)
\(332\) 264.221i 0.0436778i
\(333\) 1959.15 + 1959.15i 0.322405 + 0.322405i
\(334\) 5532.39 + 5532.39i 0.906344 + 0.906344i
\(335\) 902.769 902.769i 0.147234 0.147234i
\(336\) 1598.30 0.259507
\(337\) −5222.92 + 5222.92i −0.844245 + 0.844245i −0.989408 0.145163i \(-0.953629\pi\)
0.145163 + 0.989408i \(0.453629\pi\)
\(338\) 3720.95i 0.598796i
\(339\) 3303.90 0.529331
\(340\) 1040.95 + 463.687i 0.166039 + 0.0739617i
\(341\) −1321.82 −0.209914
\(342\) 1202.90i 0.190192i
\(343\) 9953.64 9953.64i 1.56690 1.56690i
\(344\) −2626.64 −0.411684
\(345\) 1386.84 1386.84i 0.216421 0.216421i
\(346\) 2284.37 + 2284.37i 0.354938 + 0.354938i
\(347\) 7248.96 + 7248.96i 1.12145 + 1.12145i 0.991523 + 0.129931i \(0.0414757\pi\)
0.129931 + 0.991523i \(0.458524\pi\)
\(348\) 2049.09i 0.315640i
\(349\) 11338.1i 1.73901i −0.493924 0.869505i \(-0.664438\pi\)
0.493924 0.869505i \(-0.335562\pi\)
\(350\) 5108.37 + 5108.37i 0.780153 + 0.780153i
\(351\) 350.233 + 350.233i 0.0532595 + 0.0532595i
\(352\) −115.631 + 115.631i −0.0175090 + 0.0175090i
\(353\) 4609.39 0.694995 0.347497 0.937681i \(-0.387032\pi\)
0.347497 + 0.937681i \(0.387032\pi\)
\(354\) −772.792 + 772.792i −0.116027 + 0.116027i
\(355\) 390.656i 0.0584053i
\(356\) −5998.82 −0.893081
\(357\) −2508.04 6537.22i −0.371819 0.969149i
\(358\) −80.9740 −0.0119542
\(359\) 4521.15i 0.664673i 0.943161 + 0.332336i \(0.107837\pi\)
−0.943161 + 0.332336i \(0.892163\pi\)
\(360\) −206.928 + 206.928i −0.0302946 + 0.0302946i
\(361\) 2393.03 0.348889
\(362\) 2379.70 2379.70i 0.345509 0.345509i
\(363\) 2768.08 + 2768.08i 0.400238 + 0.400238i
\(364\) 1727.71 + 1727.71i 0.248781 + 0.248781i
\(365\) 4122.99i 0.591253i
\(366\) 43.7084i 0.00624227i
\(367\) 2778.51 + 2778.51i 0.395196 + 0.395196i 0.876535 0.481339i \(-0.159849\pi\)
−0.481339 + 0.876535i \(0.659849\pi\)
\(368\) −1819.80 1819.80i −0.257782 0.257782i
\(369\) −1785.24 + 1785.24i −0.251858 + 0.251858i
\(370\) −2502.49 −0.351617
\(371\) 5488.20 5488.20i 0.768013 0.768013i
\(372\) 3103.95i 0.432613i
\(373\) −9797.93 −1.36010 −0.680050 0.733165i \(-0.738042\pi\)
−0.680050 + 0.733165i \(0.738042\pi\)
\(374\) 654.392 + 291.496i 0.0904754 + 0.0403019i
\(375\) −2846.90 −0.392036
\(376\) 444.228i 0.0609290i
\(377\) 2215.00 2215.00i 0.302595 0.302595i
\(378\) 1798.08 0.244665
\(379\) 7104.90 7104.90i 0.962940 0.962940i −0.0363970 0.999337i \(-0.511588\pi\)
0.999337 + 0.0363970i \(0.0115881\pi\)
\(380\) 768.253 + 768.253i 0.103712 + 0.103712i
\(381\) −1296.88 1296.88i −0.174387 0.174387i
\(382\) 3382.28i 0.453017i
\(383\) 2856.38i 0.381081i −0.981679 0.190541i \(-0.938976\pi\)
0.981679 0.190541i \(-0.0610241\pi\)
\(384\) 271.529 + 271.529i 0.0360844 + 0.0360844i
\(385\) −489.037 489.037i −0.0647368 0.0647368i
\(386\) 4948.03 4948.03i 0.652456 0.652456i
\(387\) −2954.98 −0.388139
\(388\) 572.875 572.875i 0.0749571 0.0749571i
\(389\) 5479.16i 0.714150i 0.934076 + 0.357075i \(0.116226\pi\)
−0.934076 + 0.357075i \(0.883774\pi\)
\(390\) −447.364 −0.0580851
\(391\) −4587.58 + 10298.8i −0.593360 + 1.33206i
\(392\) 6125.98 0.789308
\(393\) 5834.36i 0.748867i
\(394\) 6178.76 6178.76i 0.790054 0.790054i
\(395\) 41.1364 0.00523999
\(396\) −130.085 + 130.085i −0.0165076 + 0.0165076i
\(397\) −7528.85 7528.85i −0.951794 0.951794i 0.0470963 0.998890i \(-0.485003\pi\)
−0.998890 + 0.0470963i \(0.985003\pi\)
\(398\) 4749.26 + 4749.26i 0.598138 + 0.598138i
\(399\) 6675.68i 0.837599i
\(400\) 1735.68i 0.216961i
\(401\) −1584.22 1584.22i −0.197288 0.197288i 0.601549 0.798836i \(-0.294551\pi\)
−0.798836 + 0.601549i \(0.794551\pi\)
\(402\) −1332.68 1332.68i −0.165344 0.165344i
\(403\) −3355.26 + 3355.26i −0.414733 + 0.414733i
\(404\) −1972.69 −0.242933
\(405\) −232.794 + 232.794i −0.0285620 + 0.0285620i
\(406\) 11371.7i 1.39007i
\(407\) −1573.19 −0.191597
\(408\) 684.503 1536.67i 0.0830586 0.186462i
\(409\) −5233.25 −0.632684 −0.316342 0.948645i \(-0.602455\pi\)
−0.316342 + 0.948645i \(0.602455\pi\)
\(410\) 2280.34i 0.274678i
\(411\) −4685.41 + 4685.41i −0.562322 + 0.562322i
\(412\) 5055.61 0.604544
\(413\) −4288.72 + 4288.72i −0.510979 + 0.510979i
\(414\) −2047.28 2047.28i −0.243039 0.243039i
\(415\) −189.843 189.843i −0.0224554 0.0224554i
\(416\) 587.028i 0.0691861i
\(417\) 4026.40i 0.472839i
\(418\) 482.961 + 482.961i 0.0565129 + 0.0565129i
\(419\) 12061.2 + 12061.2i 1.40627 + 1.40627i 0.777985 + 0.628283i \(0.216242\pi\)
0.628283 + 0.777985i \(0.283758\pi\)
\(420\) −1148.38 + 1148.38i −0.133417 + 0.133417i
\(421\) 1995.98 0.231065 0.115532 0.993304i \(-0.463143\pi\)
0.115532 + 0.993304i \(0.463143\pi\)
\(422\) 1047.94 1047.94i 0.120883 0.120883i
\(423\) 499.756i 0.0574444i
\(424\) 1864.74 0.213584
\(425\) 7099.15 2723.63i 0.810257 0.310860i
\(426\) 576.693 0.0655889
\(427\) 242.566i 0.0274908i
\(428\) −4837.91 + 4837.91i −0.546376 + 0.546376i
\(429\) −281.235 −0.0316507
\(430\) 1887.24 1887.24i 0.211653 0.211653i
\(431\) −10257.3 10257.3i −1.14635 1.14635i −0.987265 0.159087i \(-0.949145\pi\)
−0.159087 0.987265i \(-0.550855\pi\)
\(432\) 305.470 + 305.470i 0.0340207 + 0.0340207i
\(433\) 1017.03i 0.112876i −0.998406 0.0564378i \(-0.982026\pi\)
0.998406 0.0564378i \(-0.0179743\pi\)
\(434\) 17225.8i 1.90522i
\(435\) 1472.27 + 1472.27i 0.162276 + 0.162276i
\(436\) −4871.29 4871.29i −0.535074 0.535074i
\(437\) −7600.86 + 7600.86i −0.832033 + 0.832033i
\(438\) −6086.43 −0.663974
\(439\) −1311.08 + 1311.08i −0.142539 + 0.142539i −0.774775 0.632237i \(-0.782137\pi\)
0.632237 + 0.774775i \(0.282137\pi\)
\(440\) 166.162i 0.0180033i
\(441\) 6891.73 0.744166
\(442\) 2401.01 921.161i 0.258381 0.0991294i
\(443\) −4297.84 −0.460941 −0.230470 0.973079i \(-0.574026\pi\)
−0.230470 + 0.973079i \(0.574026\pi\)
\(444\) 3694.22i 0.394864i
\(445\) 4310.15 4310.15i 0.459147 0.459147i
\(446\) −1762.08 −0.187078
\(447\) −21.9374 + 21.9374i −0.00232126 + 0.00232126i
\(448\) 1506.89 + 1506.89i 0.158915 + 0.158915i
\(449\) −1352.33 1352.33i −0.142139 0.142139i 0.632457 0.774596i \(-0.282047\pi\)
−0.774596 + 0.632457i \(0.782047\pi\)
\(450\) 1952.65i 0.204552i
\(451\) 1433.53i 0.149673i
\(452\) 3114.95 + 3114.95i 0.324148 + 0.324148i
\(453\) −4142.05 4142.05i −0.429604 0.429604i
\(454\) 7736.28 7736.28i 0.799740 0.799740i
\(455\) −2482.71 −0.255805
\(456\) 1134.11 1134.11i 0.116468 0.116468i
\(457\) 2234.77i 0.228749i 0.993438 + 0.114374i \(0.0364863\pi\)
−0.993438 + 0.114374i \(0.963514\pi\)
\(458\) −9902.01 −1.01024
\(459\) 770.065 1728.75i 0.0783084 0.175798i
\(460\) 2615.06 0.265060
\(461\) 149.634i 0.0151174i 0.999971 + 0.00755871i \(0.00240604\pi\)
−0.999971 + 0.00755871i \(0.997594\pi\)
\(462\) −721.925 + 721.925i −0.0726991 + 0.0726991i
\(463\) −4732.09 −0.474987 −0.237494 0.971389i \(-0.576326\pi\)
−0.237494 + 0.971389i \(0.576326\pi\)
\(464\) 1931.90 1931.90i 0.193289 0.193289i
\(465\) −2230.18 2230.18i −0.222413 0.222413i
\(466\) 2499.49 + 2499.49i 0.248469 + 0.248469i
\(467\) 2749.01i 0.272396i 0.990682 + 0.136198i \(0.0434884\pi\)
−0.990682 + 0.136198i \(0.956512\pi\)
\(468\) 660.406i 0.0652293i
\(469\) −7395.90 7395.90i −0.728169 0.728169i
\(470\) −319.177 319.177i −0.0313246 0.0313246i
\(471\) 454.397 454.397i 0.0444533 0.0444533i
\(472\) −1457.19 −0.142103
\(473\) 1186.41 1186.41i 0.115330 0.115330i
\(474\) 60.7262i 0.00588449i
\(475\) 7249.51 0.700274
\(476\) 3798.74 8527.95i 0.365788 0.821172i
\(477\) 2097.83 0.201369
\(478\) 5286.54i 0.505859i
\(479\) −2976.64 + 2976.64i −0.283938 + 0.283938i −0.834677 0.550739i \(-0.814346\pi\)
0.550739 + 0.834677i \(0.314346\pi\)
\(480\) −390.187 −0.0371031
\(481\) −3993.33 + 3993.33i −0.378545 + 0.378545i
\(482\) 5690.14 + 5690.14i 0.537715 + 0.537715i
\(483\) −11361.7 11361.7i −1.07034 1.07034i
\(484\) 5219.54i 0.490190i
\(485\) 823.221i 0.0770733i
\(486\) 343.654 + 343.654i 0.0320750 + 0.0320750i
\(487\) 11877.6 + 11877.6i 1.10519 + 1.10519i 0.993774 + 0.111414i \(0.0355380\pi\)
0.111414 + 0.993774i \(0.464462\pi\)
\(488\) 41.2086 41.2086i 0.00382260 0.00382260i
\(489\) 4410.68 0.407889
\(490\) −4401.51 + 4401.51i −0.405796 + 0.405796i
\(491\) 10904.6i 1.00228i 0.865367 + 0.501138i \(0.167085\pi\)
−0.865367 + 0.501138i \(0.832915\pi\)
\(492\) −3366.28 −0.308462
\(493\) −10933.2 4870.17i −0.998799 0.444911i
\(494\) 2451.87 0.223309
\(495\) 186.932i 0.0169737i
\(496\) −2926.43 + 2926.43i −0.264920 + 0.264920i
\(497\) 3200.44 0.288852
\(498\) −280.249 + 280.249i −0.0252174 + 0.0252174i
\(499\) 1827.30 + 1827.30i 0.163930 + 0.163930i 0.784305 0.620375i \(-0.213020\pi\)
−0.620375 + 0.784305i \(0.713020\pi\)
\(500\) −2684.09 2684.09i −0.240072 0.240072i
\(501\) 11736.0i 1.04656i
\(502\) 760.131i 0.0675823i
\(503\) 7741.93 + 7741.93i 0.686274 + 0.686274i 0.961406 0.275133i \(-0.0887218\pi\)
−0.275133 + 0.961406i \(0.588722\pi\)
\(504\) 1695.25 + 1695.25i 0.149826 + 0.149826i
\(505\) 1417.38 1417.38i 0.124896 0.124896i
\(506\) 1643.95 0.144432
\(507\) 3946.66 3946.66i 0.345715 0.345715i
\(508\) 2445.43i 0.213579i
\(509\) 134.612 0.0117221 0.00586106 0.999983i \(-0.498134\pi\)
0.00586106 + 0.999983i \(0.498134\pi\)
\(510\) 612.279 + 1595.91i 0.0531611 + 0.138565i
\(511\) −33777.5 −2.92413
\(512\) 512.000i 0.0441942i
\(513\) 1275.87 1275.87i 0.109807 0.109807i
\(514\) 10242.1 0.878913
\(515\) −3632.45 + 3632.45i −0.310806 + 0.310806i
\(516\) −2785.98 2785.98i −0.237686 0.237686i
\(517\) −200.650 200.650i −0.0170689 0.0170689i
\(518\) 20501.6i 1.73897i
\(519\) 4845.88i 0.409847i
\(520\) −421.779 421.779i −0.0355697 0.0355697i
\(521\) 11455.0 + 11455.0i 0.963248 + 0.963248i 0.999348 0.0361000i \(-0.0114935\pi\)
−0.0361000 + 0.999348i \(0.511493\pi\)
\(522\) 2173.39 2173.39i 0.182235 0.182235i
\(523\) 21230.4 1.77503 0.887516 0.460778i \(-0.152429\pi\)
0.887516 + 0.460778i \(0.152429\pi\)
\(524\) 5500.69 5500.69i 0.458585 0.458585i
\(525\) 10836.5i 0.900844i
\(526\) −5050.07 −0.418619
\(527\) 16561.6 + 7377.29i 1.36894 + 0.609791i
\(528\) −245.290 −0.0202176
\(529\) 13705.6i 1.12645i
\(530\) −1339.81 + 1339.81i −0.109807 + 0.109807i
\(531\) −1639.34 −0.133976
\(532\) 6293.89 6293.89i 0.512922 0.512922i
\(533\) −3638.84 3638.84i −0.295714 0.295714i
\(534\) −6362.71 6362.71i −0.515620 0.515620i
\(535\) 6952.06i 0.561802i
\(536\) 2512.93i 0.202504i
\(537\) −85.8859 85.8859i −0.00690177 0.00690177i
\(538\) 8181.36 + 8181.36i 0.655620 + 0.655620i
\(539\) −2767.00 + 2767.00i −0.221119 + 0.221119i
\(540\) −438.960 −0.0349812
\(541\) −6203.13 + 6203.13i −0.492964 + 0.492964i −0.909239 0.416275i \(-0.863335\pi\)
0.416275 + 0.909239i \(0.363335\pi\)
\(542\) 2957.89i 0.234413i
\(543\) 5048.11 0.398960
\(544\) 2094.14 803.428i 0.165047 0.0633211i
\(545\) 7000.03 0.550180
\(546\) 3665.02i 0.287268i
\(547\) −5805.91 + 5805.91i −0.453826 + 0.453826i −0.896622 0.442796i \(-0.853986\pi\)
0.442796 + 0.896622i \(0.353986\pi\)
\(548\) −8834.89 −0.688700
\(549\) 46.3597 46.3597i 0.00360398 0.00360398i
\(550\) −783.980 783.980i −0.0607801 0.0607801i
\(551\) −8069.06 8069.06i −0.623872 0.623872i
\(552\) 3860.39i 0.297661i
\(553\) 337.009i 0.0259151i
\(554\) −9718.43 9718.43i −0.745301 0.745301i
\(555\) −2654.29 2654.29i −0.203006 0.203006i
\(556\) 3796.13 3796.13i 0.289553 0.289553i
\(557\) 644.069 0.0489948 0.0244974 0.999700i \(-0.492201\pi\)
0.0244974 + 0.999700i \(0.492201\pi\)
\(558\) −3292.23 + 3292.23i −0.249769 + 0.249769i
\(559\) 6023.10i 0.455725i
\(560\) −2165.40 −0.163401
\(561\) 384.909 + 1003.27i 0.0289677 + 0.0755043i
\(562\) −10527.6 −0.790178
\(563\) 22872.8i 1.71221i −0.516805 0.856103i \(-0.672879\pi\)
0.516805 0.856103i \(-0.327121\pi\)
\(564\) −471.175 + 471.175i −0.0351774 + 0.0351774i
\(565\) −4476.18 −0.333299
\(566\) −3803.60 + 3803.60i −0.282468 + 0.282468i
\(567\) 1907.16 + 1907.16i 0.141258 + 0.141258i
\(568\) 543.711 + 543.711i 0.0401648 + 0.0401648i
\(569\) 13513.0i 0.995599i −0.867292 0.497800i \(-0.834142\pi\)
0.867292 0.497800i \(-0.165858\pi\)
\(570\) 1629.71i 0.119756i
\(571\) −11974.6 11974.6i −0.877622 0.877622i 0.115666 0.993288i \(-0.463100\pi\)
−0.993288 + 0.115666i \(0.963100\pi\)
\(572\) −265.151 265.151i −0.0193820 0.0193820i
\(573\) 3587.45 3587.45i 0.261550 0.261550i
\(574\) −18681.6 −1.35846
\(575\) 12338.3 12338.3i 0.894857 0.894857i
\(576\) 576.000i 0.0416667i
\(577\) 18805.8 1.35684 0.678420 0.734674i \(-0.262665\pi\)
0.678420 + 0.734674i \(0.262665\pi\)
\(578\) −6572.22 7304.53i −0.472956 0.525655i
\(579\) 10496.4 0.753392
\(580\) 2776.14i 0.198746i
\(581\) −1555.28 + 1555.28i −0.111057 + 0.111057i
\(582\) 1215.25 0.0865530
\(583\) −842.273 + 842.273i −0.0598343 + 0.0598343i
\(584\) −5738.34 5738.34i −0.406600 0.406600i
\(585\) −474.502 474.502i −0.0335354 0.0335354i
\(586\) 12152.5i 0.856683i
\(587\) 8038.76i 0.565239i −0.959232 0.282619i \(-0.908797\pi\)
0.959232 0.282619i \(-0.0912034\pi\)
\(588\) 6497.58 + 6497.58i 0.455707 + 0.455707i
\(589\) 12222.9 + 12222.9i 0.855072 + 0.855072i
\(590\) 1046.99 1046.99i 0.0730575 0.0730575i
\(591\) 13107.1 0.912276
\(592\) −3482.94 + 3482.94i −0.241804 + 0.241804i
\(593\) 8124.66i 0.562630i −0.959615 0.281315i \(-0.909229\pi\)
0.959615 0.281315i \(-0.0907706\pi\)
\(594\) −275.952 −0.0190613
\(595\) 3397.93 + 8856.72i 0.234120 + 0.610236i
\(596\) −41.3656 −0.00284295
\(597\) 10074.7i 0.690670i
\(598\) 4172.95 4172.95i 0.285359 0.285359i
\(599\) 8419.51 0.574310 0.287155 0.957884i \(-0.407290\pi\)
0.287155 + 0.957884i \(0.407290\pi\)
\(600\) −1840.97 + 1840.97i −0.125262 + 0.125262i
\(601\) 14357.8 + 14357.8i 0.974488 + 0.974488i 0.999683 0.0251941i \(-0.00802038\pi\)
−0.0251941 + 0.999683i \(0.508020\pi\)
\(602\) −15461.2 15461.2i −1.04676 1.04676i
\(603\) 2827.04i 0.190922i
\(604\) 7810.33i 0.526155i
\(605\) −3750.24 3750.24i −0.252015 0.252015i
\(606\) −2092.35 2092.35i −0.140257 0.140257i
\(607\) −3129.93 + 3129.93i −0.209292 + 0.209292i −0.803966 0.594675i \(-0.797281\pi\)
0.594675 + 0.803966i \(0.297281\pi\)
\(608\) 2138.49 0.142644
\(609\) 12061.5 12061.5i 0.802558 0.802558i
\(610\) 59.2167i 0.00393052i
\(611\) −1018.65 −0.0674470
\(612\) 2355.91 903.856i 0.155608 0.0596997i
\(613\) −8994.17 −0.592612 −0.296306 0.955093i \(-0.595755\pi\)
−0.296306 + 0.955093i \(0.595755\pi\)
\(614\) 16863.1i 1.10837i
\(615\) 2418.67 2418.67i 0.158586 0.158586i
\(616\) −1361.27 −0.0890378
\(617\) −14300.2 + 14300.2i −0.933068 + 0.933068i −0.997896 0.0648287i \(-0.979350\pi\)
0.0648287 + 0.997896i \(0.479350\pi\)
\(618\) 5362.28 + 5362.28i 0.349033 + 0.349033i
\(619\) 12830.8 + 12830.8i 0.833138 + 0.833138i 0.987945 0.154807i \(-0.0494754\pi\)
−0.154807 + 0.987945i \(0.549475\pi\)
\(620\) 4205.27i 0.272400i
\(621\) 4342.94i 0.280638i
\(622\) 6967.59 + 6967.59i 0.449156 + 0.449156i
\(623\) −35310.7 35310.7i −2.27078 2.27078i
\(624\) −622.637 + 622.637i −0.0399446 + 0.0399446i
\(625\) −9703.01 −0.620992
\(626\) −3724.02 + 3724.02i −0.237766 + 0.237766i
\(627\) 1024.52i 0.0652555i
\(628\) 856.820 0.0544440
\(629\) 19711.0 + 8780.21i 1.24949 + 0.556582i
\(630\) −2436.07 −0.154056
\(631\) 27551.9i 1.73823i −0.494611 0.869115i \(-0.664689\pi\)
0.494611 0.869115i \(-0.335311\pi\)
\(632\) 57.2532 57.2532i 0.00360350 0.00360350i
\(633\) 2223.01 0.139584
\(634\) 15751.2 15751.2i 0.986690 0.986690i
\(635\) 1757.04 + 1757.04i 0.109805 + 0.109805i
\(636\) 1977.86 + 1977.86i 0.123313 + 0.123313i
\(637\) 14047.3i 0.873746i
\(638\) 1745.22i 0.108297i
\(639\) 611.675 + 611.675i 0.0378678 + 0.0378678i
\(640\) −367.872 367.872i −0.0227209 0.0227209i
\(641\) 17303.2 17303.2i 1.06620 1.06620i 0.0685532 0.997647i \(-0.478162\pi\)
0.997647 0.0685532i \(-0.0218383\pi\)
\(642\) −10262.7 −0.630901
\(643\) −7139.55 + 7139.55i −0.437879 + 0.437879i −0.891298 0.453418i \(-0.850204\pi\)
0.453418 + 0.891298i \(0.350204\pi\)
\(644\) 21423.8i 1.31089i
\(645\) 4003.45 0.244396
\(646\) −3355.71 8746.68i −0.204379 0.532715i
\(647\) 13578.2 0.825059 0.412529 0.910944i \(-0.364645\pi\)
0.412529 + 0.910944i \(0.364645\pi\)
\(648\) 648.000i 0.0392837i
\(649\) 658.189 658.189i 0.0398092 0.0398092i
\(650\) −3980.06 −0.240170
\(651\) −18270.7 + 18270.7i −1.09998 + 1.09998i
\(652\) 4158.43 + 4158.43i 0.249780 + 0.249780i
\(653\) −7028.19 7028.19i −0.421186 0.421186i 0.464426 0.885612i \(-0.346261\pi\)
−0.885612 + 0.464426i \(0.846261\pi\)
\(654\) 10333.6i 0.617850i
\(655\) 7904.48i 0.471532i
\(656\) −3173.76 3173.76i −0.188894 0.188894i
\(657\) −6455.63 6455.63i −0.383346 0.383346i
\(658\) −2614.85 + 2614.85i −0.154920 + 0.154920i
\(659\) −18058.7 −1.06748 −0.533739 0.845649i \(-0.679213\pi\)
−0.533739 + 0.845649i \(0.679213\pi\)
\(660\) 176.241 176.241i 0.0103942 0.0103942i
\(661\) 19648.0i 1.15615i −0.815983 0.578076i \(-0.803804\pi\)
0.815983 0.578076i \(-0.196196\pi\)
\(662\) 20355.5 1.19507
\(663\) 3523.70 + 1569.62i 0.206409 + 0.0919441i
\(664\) −528.442 −0.0308848
\(665\) 9044.31i 0.527404i
\(666\) −3918.31 + 3918.31i −0.227975 + 0.227975i
\(667\) −27466.3 −1.59445
\(668\) −11064.8 + 11064.8i −0.640882 + 0.640882i
\(669\) −1868.97 1868.97i −0.108010 0.108010i
\(670\) 1805.54 + 1805.54i 0.104110 + 0.104110i
\(671\) 37.2265i 0.00214175i
\(672\) 3196.59i 0.183499i
\(673\) −12645.2 12645.2i −0.724272 0.724272i 0.245200 0.969472i \(-0.421146\pi\)
−0.969472 + 0.245200i \(0.921146\pi\)
\(674\) −10445.8 10445.8i −0.596971 0.596971i
\(675\) −2071.09 + 2071.09i −0.118098 + 0.118098i
\(676\) 7441.90 0.423413
\(677\) 18897.5 18897.5i 1.07281 1.07281i 0.0756765 0.997132i \(-0.475888\pi\)
0.997132 0.0756765i \(-0.0241116\pi\)
\(678\) 6607.80i 0.374294i
\(679\) 6744.22 0.381177
\(680\) −927.375 + 2081.90i −0.0522988 + 0.117408i
\(681\) 16411.1 0.923460
\(682\) 2643.64i 0.148431i
\(683\) −17168.0 + 17168.0i −0.961810 + 0.961810i −0.999297 0.0374871i \(-0.988065\pi\)
0.0374871 + 0.999297i \(0.488065\pi\)
\(684\) 2405.80 0.134486
\(685\) 6347.86 6347.86i 0.354072 0.354072i
\(686\) 19907.3 + 19907.3i 1.10796 + 1.10796i
\(687\) −10502.7 10502.7i −0.583263 0.583263i
\(688\) 5253.29i 0.291104i
\(689\) 4275.99i 0.236433i
\(690\) 2773.69 + 2773.69i 0.153033 + 0.153033i
\(691\) 7875.63 + 7875.63i 0.433579 + 0.433579i 0.889844 0.456265i \(-0.150813\pi\)
−0.456265 + 0.889844i \(0.650813\pi\)
\(692\) −4568.74 + 4568.74i −0.250979 + 0.250979i
\(693\) −1531.43 −0.0839457
\(694\) −14497.9 + 14497.9i −0.792988 + 0.792988i
\(695\) 5455.03i 0.297728i
\(696\) 4098.18 0.223191
\(697\) −8000.78 + 17961.3i −0.434794 + 0.976085i
\(698\) 22676.2 1.22967
\(699\) 5302.21i 0.286907i
\(700\) −10216.7 + 10216.7i −0.551652 + 0.551652i
\(701\) 1650.56 0.0889312 0.0444656 0.999011i \(-0.485841\pi\)
0.0444656 + 0.999011i \(0.485841\pi\)
\(702\) −700.467 + 700.467i −0.0376601 + 0.0376601i
\(703\) 14547.4 + 14547.4i 0.780461 + 0.780461i
\(704\) −231.262 231.262i −0.0123807 0.0123807i
\(705\) 677.077i 0.0361705i
\(706\) 9218.78i 0.491435i
\(707\) −11611.8 11611.8i −0.617690 0.617690i
\(708\) −1545.58 1545.58i −0.0820432 0.0820432i
\(709\) 10017.4 10017.4i 0.530620 0.530620i −0.390137 0.920757i \(-0.627572\pi\)
0.920757 + 0.390137i \(0.127572\pi\)
\(710\) −781.312 −0.0412988
\(711\) 64.4099 64.4099i 0.00339741 0.00339741i
\(712\) 11997.6i 0.631503i
\(713\) 41605.7 2.18534
\(714\) 13074.4 5016.08i 0.685292 0.262916i
\(715\) 381.022 0.0199292
\(716\) 161.948i 0.00845290i
\(717\) −5607.22 + 5607.22i −0.292058 + 0.292058i
\(718\) −9042.31 −0.469994
\(719\) 6926.60 6926.60i 0.359275 0.359275i −0.504271 0.863546i \(-0.668239\pi\)
0.863546 + 0.504271i \(0.168239\pi\)
\(720\) −413.856 413.856i −0.0214215 0.0214215i
\(721\) 29758.8 + 29758.8i 1.53713 + 1.53713i
\(722\) 4786.06i 0.246702i
\(723\) 12070.6i 0.620900i
\(724\) 4759.40 + 4759.40i 0.244312 + 0.244312i
\(725\) 13098.3 + 13098.3i 0.670979 + 0.670979i
\(726\) −5536.16 + 5536.16i −0.283011 + 0.283011i
\(727\) 8021.85 0.409235 0.204618 0.978842i \(-0.434405\pi\)
0.204618 + 0.978842i \(0.434405\pi\)
\(728\) −3455.41 + 3455.41i −0.175915 + 0.175915i
\(729\) 729.000i 0.0370370i
\(730\) 8245.99 0.418079
\(731\) −21486.6 + 8243.44i −1.08715 + 0.417092i
\(732\) 87.4167 0.00441395
\(733\) 11391.4i 0.574014i −0.957928 0.287007i \(-0.907340\pi\)
0.957928 0.287007i \(-0.0926603\pi\)
\(734\) −5557.01 + 5557.01i −0.279446 + 0.279446i
\(735\) −9337.02 −0.468573
\(736\) 3639.61 3639.61i 0.182280 0.182280i
\(737\) 1135.05 + 1135.05i 0.0567301 + 0.0567301i
\(738\) −3570.48 3570.48i −0.178091 0.178091i
\(739\) 15410.0i 0.767072i −0.923526 0.383536i \(-0.874706\pi\)
0.923526 0.383536i \(-0.125294\pi\)
\(740\) 5004.98i 0.248631i
\(741\) 2600.60 + 2600.60i 0.128928 + 0.128928i
\(742\) 10976.4 + 10976.4i 0.543067 + 0.543067i
\(743\) −20464.1 + 20464.1i −1.01044 + 1.01044i −0.0104944 + 0.999945i \(0.503341\pi\)
−0.999945 + 0.0104944i \(0.996659\pi\)
\(744\) −6207.89 −0.305904
\(745\) 29.7211 29.7211i 0.00146161 0.00146161i
\(746\) 19595.9i 0.961737i
\(747\) −594.497 −0.0291185
\(748\) −582.993 + 1308.78i −0.0284978 + 0.0639758i
\(749\) −56954.6 −2.77847
\(750\) 5693.81i 0.277211i
\(751\) −6696.98 + 6696.98i −0.325401 + 0.325401i −0.850835 0.525433i \(-0.823903\pi\)
0.525433 + 0.850835i \(0.323903\pi\)
\(752\) −888.455 −0.0430833
\(753\) −806.240 + 806.240i −0.0390186 + 0.0390186i
\(754\) 4430.00 + 4430.00i 0.213967 + 0.213967i
\(755\) 5611.71 + 5611.71i 0.270505 + 0.270505i
\(756\) 3596.17i 0.173004i
\(757\) 1463.59i 0.0702710i 0.999383 + 0.0351355i \(0.0111863\pi\)
−0.999383 + 0.0351355i \(0.988814\pi\)
\(758\) 14209.8 + 14209.8i 0.680902 + 0.680902i
\(759\) 1743.67 + 1743.67i 0.0833879 + 0.0833879i
\(760\) −1536.51 + 1536.51i −0.0733354 + 0.0733354i
\(761\) −37987.0 −1.80950 −0.904748 0.425947i \(-0.859941\pi\)
−0.904748 + 0.425947i \(0.859941\pi\)
\(762\) 2593.77 2593.77i 0.123310 0.123310i
\(763\) 57347.5i 2.72100i
\(764\) 6764.57 0.320332
\(765\) −1043.30 + 2342.14i −0.0493078 + 0.110693i
\(766\) 5712.75 0.269465
\(767\) 3341.45i 0.157305i
\(768\) −543.058 + 543.058i −0.0255155 + 0.0255155i
\(769\) 29701.4 1.39280 0.696398 0.717655i \(-0.254785\pi\)
0.696398 + 0.717655i \(0.254785\pi\)
\(770\) 978.075 978.075i 0.0457758 0.0457758i
\(771\) 10863.4 + 10863.4i 0.507441 + 0.507441i
\(772\) 9896.06 + 9896.06i 0.461356 + 0.461356i
\(773\) 22444.2i 1.04432i −0.852847 0.522161i \(-0.825126\pi\)
0.852847 0.522161i \(-0.174874\pi\)
\(774\) 5909.95i 0.274456i
\(775\) −19841.2 19841.2i −0.919636 0.919636i
\(776\) 1145.75 + 1145.75i 0.0530027 + 0.0530027i
\(777\) −21745.2 + 21745.2i −1.00400 + 1.00400i
\(778\) −10958.3 −0.504980
\(779\) −13256.0 + 13256.0i −0.609685 + 0.609685i
\(780\) 894.729i 0.0410723i
\(781\) −491.171 −0.0225038
\(782\) −20597.7 9175.16i −0.941907 0.419569i
\(783\) 4610.45 0.210427
\(784\) 12252.0i 0.558125i
\(785\) −615.624 + 615.624i −0.0279905 + 0.0279905i
\(786\) 11668.7 0.529529
\(787\) −28691.9 + 28691.9i −1.29956 + 1.29956i −0.370887 + 0.928678i \(0.620946\pi\)
−0.928678 + 0.370887i \(0.879054\pi\)
\(788\) 12357.5 + 12357.5i 0.558652 + 0.558652i
\(789\) −5356.41 5356.41i −0.241690 0.241690i
\(790\) 82.2728i 0.00370523i
\(791\) 36671.0i 1.64838i
\(792\) −260.170 260.170i −0.0116726 0.0116726i
\(793\) 94.4946 + 94.4946i 0.00423153 + 0.00423153i
\(794\) 15057.7 15057.7i 0.673020 0.673020i
\(795\) −2842.18 −0.126794
\(796\) −9498.52 + 9498.52i −0.422947 + 0.422947i
\(797\) 10014.0i 0.445063i 0.974926 + 0.222531i \(0.0714319\pi\)
−0.974926 + 0.222531i \(0.928568\pi\)
\(798\) 13351.4 0.592272
\(799\) 1394.16 + 3633.88i 0.0617294 + 0.160898i
\(800\) −3471.37 −0.153414
\(801\) 13497.3i 0.595387i
\(802\) 3168.44 3168.44i 0.139503 0.139503i
\(803\) 5183.83 0.227812
\(804\) 2665.36 2665.36i 0.116916 0.116916i
\(805\) 15393.0 + 15393.0i 0.673951 + 0.673951i
\(806\) −6710.53 6710.53i −0.293261 0.293261i
\(807\) 17355.3i 0.757044i
\(808\) 3945.38i 0.171780i
\(809\) 1953.83 + 1953.83i 0.0849111 + 0.0849111i 0.748287 0.663376i \(-0.230877\pi\)
−0.663376 + 0.748287i \(0.730877\pi\)
\(810\) −465.588 465.588i −0.0201964 0.0201964i
\(811\) 20783.4 20783.4i 0.899880 0.899880i −0.0955448 0.995425i \(-0.530459\pi\)
0.995425 + 0.0955448i \(0.0304593\pi\)
\(812\) 22743.4 0.982929
\(813\) 3137.31 3137.31i 0.135339 0.135339i
\(814\) 3146.38i 0.135480i
\(815\) −5975.65 −0.256832
\(816\) 3073.33 + 1369.01i 0.131848 + 0.0587313i
\(817\) −21941.6 −0.939585
\(818\) 10466.5i 0.447375i
\(819\) −3887.34 + 3887.34i −0.165854 + 0.165854i
\(820\) 4560.68 0.194227
\(821\) −28722.0 + 28722.0i −1.22096 + 1.22096i −0.253663 + 0.967293i \(0.581636\pi\)
−0.967293 + 0.253663i \(0.918364\pi\)
\(822\) −9370.82 9370.82i −0.397621 0.397621i
\(823\) 5700.12 + 5700.12i 0.241426 + 0.241426i 0.817440 0.576014i \(-0.195393\pi\)
−0.576014 + 0.817440i \(0.695393\pi\)
\(824\) 10111.2i 0.427477i
\(825\) 1663.07i 0.0701828i
\(826\) −8577.44 8577.44i −0.361316 0.361316i
\(827\) −10098.5 10098.5i −0.424617 0.424617i 0.462173 0.886790i \(-0.347070\pi\)
−0.886790 + 0.462173i \(0.847070\pi\)
\(828\) 4094.56 4094.56i 0.171855 0.171855i
\(829\) −19975.7 −0.836894 −0.418447 0.908241i \(-0.637425\pi\)
−0.418447 + 0.908241i \(0.637425\pi\)
\(830\) 379.685 379.685i 0.0158784 0.0158784i
\(831\) 20615.9i 0.860599i
\(832\) −1174.06 −0.0489220
\(833\) 50111.9 19225.7i 2.08436 0.799678i
\(834\) 8052.81 0.334348
\(835\) 15900.1i 0.658976i
\(836\) −965.923 + 965.923i −0.0399607 + 0.0399607i
\(837\) −6983.88 −0.288409
\(838\) −24122.3 + 24122.3i −0.994382 + 0.994382i
\(839\) −7066.95 7066.95i −0.290796 0.290796i 0.546598 0.837395i \(-0.315922\pi\)
−0.837395 + 0.546598i \(0.815922\pi\)
\(840\) −2296.75 2296.75i −0.0943398 0.0943398i
\(841\) 4769.14i 0.195545i
\(842\) 3991.97i 0.163388i
\(843\) −11166.2 11166.2i −0.456210 0.456210i
\(844\) 2095.88 + 2095.88i 0.0854775 + 0.0854775i
\(845\) −5347.00 + 5347.00i −0.217683 + 0.217683i
\(846\) −999.512 −0.0406193
\(847\) −30723.7 + 30723.7i −1.24637 + 1.24637i
\(848\) 3729.48i 0.151027i
\(849\) −8068.65 −0.326166
\(850\) 5447.26 + 14198.3i 0.219811 + 0.572938i
\(851\) 49517.7 1.99465
\(852\) 1153.39i 0.0463783i
\(853\) 22955.7 22955.7i 0.921439 0.921439i −0.0756925 0.997131i \(-0.524117\pi\)
0.997131 + 0.0756925i \(0.0241167\pi\)
\(854\) 485.131 0.0194389
\(855\) −1728.57 + 1728.57i −0.0691413 + 0.0691413i
\(856\) −9675.81 9675.81i −0.386346 0.386346i
\(857\) −8498.19 8498.19i −0.338731 0.338731i 0.517159 0.855890i \(-0.326990\pi\)
−0.855890 + 0.517159i \(0.826990\pi\)
\(858\) 562.470i 0.0223804i
\(859\) 17465.0i 0.693711i −0.937919 0.346855i \(-0.887249\pi\)
0.937919 0.346855i \(-0.112751\pi\)
\(860\) 3774.48 + 3774.48i 0.149661 + 0.149661i
\(861\) −19814.9 19814.9i −0.784308 0.784308i
\(862\) 20514.6 20514.6i 0.810593 0.810593i
\(863\) 40272.5 1.58852 0.794259 0.607579i \(-0.207859\pi\)
0.794259 + 0.607579i \(0.207859\pi\)
\(864\) −610.940 + 610.940i −0.0240563 + 0.0240563i
\(865\) 6565.28i 0.258065i
\(866\) 2034.05 0.0798152
\(867\) 776.728 14718.5i 0.0304257 0.576548i
\(868\) −34451.6 −1.34719
\(869\) 51.7207i 0.00201899i
\(870\) −2944.54 + 2944.54i −0.114746 + 0.114746i
\(871\) 5762.34 0.224167
\(872\) 9742.57 9742.57i 0.378354 0.378354i
\(873\) 1288.97 + 1288.97i 0.0499714 + 0.0499714i
\(874\) −15201.7 15201.7i −0.588336 0.588336i
\(875\) 31598.6i 1.22083i
\(876\) 12172.9i 0.469501i
\(877\) −10434.9 10434.9i −0.401782 0.401782i 0.477079 0.878861i \(-0.341696\pi\)
−0.878861 + 0.477079i \(0.841696\pi\)
\(878\) −2622.16 2622.16i −0.100790 0.100790i
\(879\) 12889.7 12889.7i 0.494606 0.494606i
\(880\) 332.323 0.0127302
\(881\) −12015.0 + 12015.0i −0.459474 + 0.459474i −0.898483 0.439009i \(-0.855330\pi\)
0.439009 + 0.898483i \(0.355330\pi\)
\(882\) 13783.5i 0.526205i
\(883\) 5494.09 0.209389 0.104695 0.994504i \(-0.466613\pi\)
0.104695 + 0.994504i \(0.466613\pi\)
\(884\) 1842.32 + 4802.02i 0.0700950 + 0.182703i
\(885\) 2221.00 0.0843595
\(886\) 8595.68i 0.325934i
\(887\) 9566.03 9566.03i 0.362115 0.362115i −0.502476 0.864591i \(-0.667578\pi\)
0.864591 + 0.502476i \(0.167578\pi\)
\(888\) −7388.43 −0.279211
\(889\) 14394.5 14394.5i 0.543055 0.543055i
\(890\) 8620.29 + 8620.29i 0.324666 + 0.324666i
\(891\) −292.691 292.691i −0.0110051 0.0110051i
\(892\) 3524.16i 0.132284i
\(893\) 3710.85i 0.139058i
\(894\) −43.8748 43.8748i −0.00164138 0.00164138i
\(895\) 116.360 + 116.360i 0.00434578 + 0.00434578i
\(896\) −3013.78 + 3013.78i −0.112370 + 0.112370i
\(897\) 8852.17 0.329504
\(898\) 2704.66 2704.66i 0.100508 0.100508i
\(899\) 44168.5i 1.63860i
\(900\) −3905.29 −0.144640
\(901\) 15254.0 5852.28i 0.564023 0.216390i
\(902\) 2867.07 0.105835
\(903\) 32798.1i 1.20870i
\(904\) −6229.90 + 6229.90i −0.229207 + 0.229207i
\(905\) −6839.26 −0.251210
\(906\) 8284.10 8284.10i 0.303776 0.303776i
\(907\) 8569.84 + 8569.84i 0.313734 + 0.313734i 0.846354 0.532620i \(-0.178793\pi\)
−0.532620 + 0.846354i \(0.678793\pi\)
\(908\) 15472.6 + 15472.6i 0.565501 + 0.565501i
\(909\) 4438.55i 0.161955i
\(910\) 4965.43i 0.180882i
\(911\) 23063.0 + 23063.0i 0.838759 + 0.838759i 0.988696 0.149936i \(-0.0479069\pi\)
−0.149936 + 0.988696i \(0.547907\pi\)
\(912\) 2268.21 + 2268.21i 0.0823554 + 0.0823554i
\(913\) 238.689 238.689i 0.00865218 0.00865218i
\(914\) −4469.54 −0.161750
\(915\) −62.8088 + 62.8088i −0.00226929 + 0.00226929i
\(916\) 19804.0i 0.714348i
\(917\) 64757.2 2.33203
\(918\) 3457.50 + 1540.13i 0.124308 + 0.0553724i
\(919\) −46742.5 −1.67780 −0.838898 0.544289i \(-0.816800\pi\)
−0.838898 + 0.544289i \(0.816800\pi\)
\(920\) 5230.11i 0.187426i
\(921\) −17886.0 + 17886.0i −0.639918 + 0.639918i
\(922\) −299.267 −0.0106896
\(923\) −1246.77 + 1246.77i −0.0444616 + 0.0444616i
\(924\) −1443.85 1443.85i −0.0514060 0.0514060i
\(925\) −23614.4 23614.4i −0.839391 0.839391i
\(926\) 9464.19i 0.335867i
\(927\) 11375.1i 0.403029i
\(928\) 3863.80 + 3863.80i 0.136676 + 0.136676i
\(929\) 7027.24 + 7027.24i 0.248177 + 0.248177i 0.820222 0.572045i \(-0.193850\pi\)
−0.572045 + 0.820222i \(0.693850\pi\)
\(930\) 4460.37 4460.37i 0.157270 0.157270i
\(931\) 51173.3 1.80144
\(932\) −4998.97 + 4998.97i −0.175694 + 0.175694i
\(933\) 14780.5i 0.518641i
\(934\) −5498.02 −0.192613
\(935\) −521.480 1359.24i −0.0182398 0.0475421i
\(936\) −1320.81 −0.0461241
\(937\) 18865.1i 0.657733i 0.944376 + 0.328867i \(0.106667\pi\)
−0.944376 + 0.328867i \(0.893333\pi\)
\(938\) 14791.8 14791.8i 0.514893 0.514893i
\(939\) −7899.83 −0.274549
\(940\) 638.355 638.355i 0.0221498 0.0221498i
\(941\) 25499.6 + 25499.6i 0.883384 + 0.883384i 0.993877 0.110493i \(-0.0352429\pi\)
−0.110493 + 0.993877i \(0.535243\pi\)
\(942\) 908.795 + 908.795i 0.0314333 + 0.0314333i
\(943\) 45122.0i 1.55819i
\(944\) 2914.38i 0.100482i
\(945\) −2583.84 2583.84i −0.0889444 0.0889444i
\(946\) 2372.83 + 2372.83i 0.0815510 + 0.0815510i
\(947\) 36894.9 36894.9i 1.26602 1.26602i 0.317896 0.948126i \(-0.397024\pi\)
0.948126 0.317896i \(-0.102976\pi\)
\(948\) 121.452 0.00416096
\(949\) 13158.5 13158.5i 0.450097 0.450097i
\(950\) 14499.0i 0.495169i
\(951\) 33413.4 1.13933
\(952\) 17055.9 + 7597.49i 0.580656 + 0.258651i
\(953\) −38749.7 −1.31713 −0.658566 0.752523i \(-0.728836\pi\)
−0.658566 + 0.752523i \(0.728836\pi\)
\(954\) 4195.67i 0.142390i
\(955\) −4860.34 + 4860.34i −0.164688 + 0.164688i
\(956\) −10573.1 −0.357696
\(957\) −1851.08 + 1851.08i −0.0625256 + 0.0625256i
\(958\) −5953.28 5953.28i −0.200774 0.200774i
\(959\) −52004.7 52004.7i −1.75111 1.75111i
\(960\) 780.374i 0.0262359i
\(961\) 37115.1i 1.24585i
\(962\) −7986.66 7986.66i −0.267672 0.267672i
\(963\) −10885.3 10885.3i −0.364251 0.364251i
\(964\) −11380.3 + 11380.3i −0.380222 + 0.380222i
\(965\) −14220.6 −0.474382
\(966\) 22723.3 22723.3i 0.756844 0.756844i
\(967\) 52687.2i 1.75213i −0.482197 0.876063i \(-0.660161\pi\)
0.482197 0.876063i \(-0.339839\pi\)
\(968\) −10439.1 −0.346617
\(969\) 5717.99 12836.5i 0.189565 0.425561i
\(970\) −1646.44 −0.0544991
\(971\) 4339.06i 0.143406i 0.997426 + 0.0717030i \(0.0228434\pi\)
−0.997426 + 0.0717030i \(0.977157\pi\)
\(972\) −687.308 + 687.308i −0.0226805 + 0.0226805i
\(973\) 44690.2 1.47246
\(974\) −23755.3 + 23755.3i −0.781486 + 0.781486i
\(975\) −4221.49 4221.49i −0.138662 0.138662i
\(976\) 82.4173 + 82.4173i 0.00270298 + 0.00270298i
\(977\) 23529.5i 0.770498i 0.922813 + 0.385249i \(0.125884\pi\)
−0.922813 + 0.385249i \(0.874116\pi\)
\(978\) 8821.35i 0.288421i
\(979\) 5419.14 + 5419.14i 0.176911 + 0.176911i
\(980\) −8803.02 8803.02i −0.286941 0.286941i
\(981\) 10960.4 10960.4i 0.356716 0.356716i
\(982\) −21809.2 −0.708717
\(983\) −17689.6 + 17689.6i −0.573967 + 0.573967i −0.933235 0.359267i \(-0.883027\pi\)
0.359267 + 0.933235i \(0.383027\pi\)
\(984\) 6732.55i 0.218116i
\(985\) −17757.7 −0.574425
\(986\) 9740.33 21866.5i 0.314600 0.706257i
\(987\) −5546.94 −0.178886
\(988\) 4903.73i 0.157903i
\(989\) −37343.6 + 37343.6i −1.20066 + 1.20066i
\(990\) 373.864 0.0120022
\(991\) −33982.5 + 33982.5i −1.08929 + 1.08929i −0.0936904 + 0.995601i \(0.529866\pi\)
−0.995601 + 0.0936904i \(0.970134\pi\)
\(992\) −5852.86 5852.86i −0.187327 0.187327i
\(993\) 21590.3 + 21590.3i 0.689976 + 0.689976i
\(994\) 6400.88i 0.204249i
\(995\) 13649.4i 0.434888i
\(996\) −560.498 560.498i −0.0178314 0.0178314i
\(997\) 19292.0 + 19292.0i 0.612823 + 0.612823i 0.943681 0.330858i \(-0.107338\pi\)
−0.330858 + 0.943681i \(0.607338\pi\)
\(998\) −3654.59 + 3654.59i −0.115916 + 0.115916i
\(999\) −8311.99 −0.263243
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 102.4.f.c.55.2 yes 12
3.2 odd 2 306.4.g.g.55.3 12
17.8 even 8 1734.4.a.be.1.4 6
17.9 even 8 1734.4.a.bd.1.3 6
17.13 even 4 inner 102.4.f.c.13.2 12
51.47 odd 4 306.4.g.g.217.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
102.4.f.c.13.2 12 17.13 even 4 inner
102.4.f.c.55.2 yes 12 1.1 even 1 trivial
306.4.g.g.55.3 12 3.2 odd 2
306.4.g.g.217.3 12 51.47 odd 4
1734.4.a.bd.1.3 6 17.9 even 8
1734.4.a.be.1.4 6 17.8 even 8