Properties

Label 1734.4.a.bd.1.4
Level $1734$
Weight $4$
Character 1734.1
Self dual yes
Analytic conductor $102.309$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1734,4,Mod(1,1734)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1734, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1734.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1734 = 2 \cdot 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1734.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(102.309311950\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 441x^{4} + 280x^{3} + 48672x^{2} + 38656x - 45712 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 102)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-1.47294\) of defining polynomial
Character \(\chi\) \(=\) 1734.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} -3.00000 q^{3} +4.00000 q^{4} +0.887153 q^{5} -6.00000 q^{6} +18.8933 q^{7} +8.00000 q^{8} +9.00000 q^{9} +1.77431 q^{10} -59.7478 q^{11} -12.0000 q^{12} -36.6745 q^{13} +37.7867 q^{14} -2.66146 q^{15} +16.0000 q^{16} +18.0000 q^{18} +117.094 q^{19} +3.54861 q^{20} -56.6800 q^{21} -119.496 q^{22} +186.637 q^{23} -24.0000 q^{24} -124.213 q^{25} -73.3490 q^{26} -27.0000 q^{27} +75.5734 q^{28} -130.917 q^{29} -5.32292 q^{30} -238.953 q^{31} +32.0000 q^{32} +179.243 q^{33} +16.7613 q^{35} +36.0000 q^{36} -14.1221 q^{37} +234.189 q^{38} +110.024 q^{39} +7.09723 q^{40} -480.524 q^{41} -113.360 q^{42} +194.715 q^{43} -238.991 q^{44} +7.98438 q^{45} +373.274 q^{46} -40.2448 q^{47} -48.0000 q^{48} +13.9584 q^{49} -248.426 q^{50} -146.698 q^{52} -40.8393 q^{53} -54.0000 q^{54} -53.0055 q^{55} +151.147 q^{56} -351.283 q^{57} -261.834 q^{58} +447.653 q^{59} -10.6458 q^{60} +154.466 q^{61} -477.906 q^{62} +170.040 q^{63} +64.0000 q^{64} -32.5359 q^{65} +358.487 q^{66} -438.990 q^{67} -559.910 q^{69} +33.5226 q^{70} +608.063 q^{71} +72.0000 q^{72} -365.386 q^{73} -28.2441 q^{74} +372.639 q^{75} +468.378 q^{76} -1128.84 q^{77} +220.047 q^{78} -1333.90 q^{79} +14.1945 q^{80} +81.0000 q^{81} -961.048 q^{82} -516.632 q^{83} -226.720 q^{84} +389.430 q^{86} +392.752 q^{87} -477.983 q^{88} +821.409 q^{89} +15.9688 q^{90} -692.904 q^{91} +746.547 q^{92} +716.860 q^{93} -80.4897 q^{94} +103.881 q^{95} -96.0000 q^{96} -1328.77 q^{97} +27.9168 q^{98} -537.730 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 12 q^{2} - 18 q^{3} + 24 q^{4} - 14 q^{5} - 36 q^{6} - 28 q^{7} + 48 q^{8} + 54 q^{9} - 28 q^{10} - 34 q^{11} - 72 q^{12} + 34 q^{13} - 56 q^{14} + 42 q^{15} + 96 q^{16} + 108 q^{18} + 70 q^{19} - 56 q^{20}+ \cdots - 306 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) −3.00000 −0.577350
\(4\) 4.00000 0.500000
\(5\) 0.887153 0.0793494 0.0396747 0.999213i \(-0.487368\pi\)
0.0396747 + 0.999213i \(0.487368\pi\)
\(6\) −6.00000 −0.408248
\(7\) 18.8933 1.02014 0.510072 0.860132i \(-0.329619\pi\)
0.510072 + 0.860132i \(0.329619\pi\)
\(8\) 8.00000 0.353553
\(9\) 9.00000 0.333333
\(10\) 1.77431 0.0561085
\(11\) −59.7478 −1.63770 −0.818848 0.574011i \(-0.805387\pi\)
−0.818848 + 0.574011i \(0.805387\pi\)
\(12\) −12.0000 −0.288675
\(13\) −36.6745 −0.782437 −0.391219 0.920298i \(-0.627946\pi\)
−0.391219 + 0.920298i \(0.627946\pi\)
\(14\) 37.7867 0.721351
\(15\) −2.66146 −0.0458124
\(16\) 16.0000 0.250000
\(17\) 0 0
\(18\) 18.0000 0.235702
\(19\) 117.094 1.41386 0.706929 0.707284i \(-0.250080\pi\)
0.706929 + 0.707284i \(0.250080\pi\)
\(20\) 3.54861 0.0396747
\(21\) −56.6800 −0.588981
\(22\) −119.496 −1.15803
\(23\) 186.637 1.69202 0.846010 0.533167i \(-0.178998\pi\)
0.846010 + 0.533167i \(0.178998\pi\)
\(24\) −24.0000 −0.204124
\(25\) −124.213 −0.993704
\(26\) −73.3490 −0.553267
\(27\) −27.0000 −0.192450
\(28\) 75.5734 0.510072
\(29\) −130.917 −0.838301 −0.419150 0.907917i \(-0.637672\pi\)
−0.419150 + 0.907917i \(0.637672\pi\)
\(30\) −5.32292 −0.0323943
\(31\) −238.953 −1.38443 −0.692214 0.721692i \(-0.743364\pi\)
−0.692214 + 0.721692i \(0.743364\pi\)
\(32\) 32.0000 0.176777
\(33\) 179.243 0.945524
\(34\) 0 0
\(35\) 16.7613 0.0809479
\(36\) 36.0000 0.166667
\(37\) −14.1221 −0.0627474 −0.0313737 0.999508i \(-0.509988\pi\)
−0.0313737 + 0.999508i \(0.509988\pi\)
\(38\) 234.189 0.999749
\(39\) 110.024 0.451740
\(40\) 7.09723 0.0280543
\(41\) −480.524 −1.83037 −0.915186 0.403032i \(-0.867956\pi\)
−0.915186 + 0.403032i \(0.867956\pi\)
\(42\) −113.360 −0.416472
\(43\) 194.715 0.690553 0.345277 0.938501i \(-0.387785\pi\)
0.345277 + 0.938501i \(0.387785\pi\)
\(44\) −238.991 −0.818848
\(45\) 7.98438 0.0264498
\(46\) 373.274 1.19644
\(47\) −40.2448 −0.124900 −0.0624501 0.998048i \(-0.519891\pi\)
−0.0624501 + 0.998048i \(0.519891\pi\)
\(48\) −48.0000 −0.144338
\(49\) 13.9584 0.0406950
\(50\) −248.426 −0.702655
\(51\) 0 0
\(52\) −146.698 −0.391219
\(53\) −40.8393 −0.105844 −0.0529218 0.998599i \(-0.516853\pi\)
−0.0529218 + 0.998599i \(0.516853\pi\)
\(54\) −54.0000 −0.136083
\(55\) −53.0055 −0.129950
\(56\) 151.147 0.360676
\(57\) −351.283 −0.816292
\(58\) −261.834 −0.592768
\(59\) 447.653 0.987788 0.493894 0.869522i \(-0.335573\pi\)
0.493894 + 0.869522i \(0.335573\pi\)
\(60\) −10.6458 −0.0229062
\(61\) 154.466 0.324219 0.162109 0.986773i \(-0.448170\pi\)
0.162109 + 0.986773i \(0.448170\pi\)
\(62\) −477.906 −0.978938
\(63\) 170.040 0.340048
\(64\) 64.0000 0.125000
\(65\) −32.5359 −0.0620859
\(66\) 358.487 0.668586
\(67\) −438.990 −0.800464 −0.400232 0.916414i \(-0.631071\pi\)
−0.400232 + 0.916414i \(0.631071\pi\)
\(68\) 0 0
\(69\) −559.910 −0.976888
\(70\) 33.5226 0.0572388
\(71\) 608.063 1.01639 0.508196 0.861242i \(-0.330313\pi\)
0.508196 + 0.861242i \(0.330313\pi\)
\(72\) 72.0000 0.117851
\(73\) −365.386 −0.585824 −0.292912 0.956139i \(-0.594624\pi\)
−0.292912 + 0.956139i \(0.594624\pi\)
\(74\) −28.2441 −0.0443691
\(75\) 372.639 0.573715
\(76\) 468.378 0.706929
\(77\) −1128.84 −1.67069
\(78\) 220.047 0.319429
\(79\) −1333.90 −1.89969 −0.949847 0.312716i \(-0.898761\pi\)
−0.949847 + 0.312716i \(0.898761\pi\)
\(80\) 14.1945 0.0198374
\(81\) 81.0000 0.111111
\(82\) −961.048 −1.29427
\(83\) −516.632 −0.683226 −0.341613 0.939841i \(-0.610973\pi\)
−0.341613 + 0.939841i \(0.610973\pi\)
\(84\) −226.720 −0.294490
\(85\) 0 0
\(86\) 389.430 0.488295
\(87\) 392.752 0.483993
\(88\) −477.983 −0.579013
\(89\) 821.409 0.978305 0.489153 0.872198i \(-0.337306\pi\)
0.489153 + 0.872198i \(0.337306\pi\)
\(90\) 15.9688 0.0187028
\(91\) −692.904 −0.798199
\(92\) 746.547 0.846010
\(93\) 716.860 0.799300
\(94\) −80.4897 −0.0883178
\(95\) 103.881 0.112189
\(96\) −96.0000 −0.102062
\(97\) −1328.77 −1.39089 −0.695444 0.718580i \(-0.744792\pi\)
−0.695444 + 0.718580i \(0.744792\pi\)
\(98\) 27.9168 0.0287757
\(99\) −537.730 −0.545898
\(100\) −496.852 −0.496852
\(101\) 798.976 0.787140 0.393570 0.919295i \(-0.371240\pi\)
0.393570 + 0.919295i \(0.371240\pi\)
\(102\) 0 0
\(103\) −59.1043 −0.0565410 −0.0282705 0.999600i \(-0.509000\pi\)
−0.0282705 + 0.999600i \(0.509000\pi\)
\(104\) −293.396 −0.276633
\(105\) −50.2839 −0.0467353
\(106\) −81.6787 −0.0748428
\(107\) 809.404 0.731290 0.365645 0.930754i \(-0.380848\pi\)
0.365645 + 0.930754i \(0.380848\pi\)
\(108\) −108.000 −0.0962250
\(109\) −1654.16 −1.45358 −0.726789 0.686861i \(-0.758988\pi\)
−0.726789 + 0.686861i \(0.758988\pi\)
\(110\) −106.011 −0.0918886
\(111\) 42.3662 0.0362272
\(112\) 302.293 0.255036
\(113\) −480.786 −0.400252 −0.200126 0.979770i \(-0.564135\pi\)
−0.200126 + 0.979770i \(0.564135\pi\)
\(114\) −702.567 −0.577205
\(115\) 165.575 0.134261
\(116\) −523.669 −0.419150
\(117\) −330.071 −0.260812
\(118\) 895.307 0.698472
\(119\) 0 0
\(120\) −21.2917 −0.0161971
\(121\) 2238.80 1.68205
\(122\) 308.932 0.229257
\(123\) 1441.57 1.05677
\(124\) −955.813 −0.692214
\(125\) −221.090 −0.158199
\(126\) 340.080 0.240450
\(127\) 1505.29 1.05176 0.525878 0.850560i \(-0.323737\pi\)
0.525878 + 0.850560i \(0.323737\pi\)
\(128\) 128.000 0.0883883
\(129\) −584.146 −0.398691
\(130\) −65.0719 −0.0439014
\(131\) 1130.66 0.754096 0.377048 0.926194i \(-0.376939\pi\)
0.377048 + 0.926194i \(0.376939\pi\)
\(132\) 716.974 0.472762
\(133\) 2212.31 1.44234
\(134\) −877.979 −0.566014
\(135\) −23.9531 −0.0152708
\(136\) 0 0
\(137\) −1079.13 −0.672966 −0.336483 0.941690i \(-0.609237\pi\)
−0.336483 + 0.941690i \(0.609237\pi\)
\(138\) −1119.82 −0.690764
\(139\) −699.837 −0.427046 −0.213523 0.976938i \(-0.568494\pi\)
−0.213523 + 0.976938i \(0.568494\pi\)
\(140\) 67.0452 0.0404739
\(141\) 120.735 0.0721112
\(142\) 1216.13 0.718697
\(143\) 2191.22 1.28139
\(144\) 144.000 0.0833333
\(145\) −116.144 −0.0665187
\(146\) −730.771 −0.414240
\(147\) −41.8752 −0.0234953
\(148\) −56.4883 −0.0313737
\(149\) 1357.34 0.746293 0.373147 0.927772i \(-0.378279\pi\)
0.373147 + 0.927772i \(0.378279\pi\)
\(150\) 745.278 0.405678
\(151\) −1762.54 −0.949889 −0.474945 0.880016i \(-0.657532\pi\)
−0.474945 + 0.880016i \(0.657532\pi\)
\(152\) 936.756 0.499874
\(153\) 0 0
\(154\) −2257.67 −1.18135
\(155\) −211.988 −0.109854
\(156\) 440.094 0.225870
\(157\) −64.0852 −0.0325768 −0.0162884 0.999867i \(-0.505185\pi\)
−0.0162884 + 0.999867i \(0.505185\pi\)
\(158\) −2667.81 −1.34329
\(159\) 122.518 0.0611089
\(160\) 28.3889 0.0140271
\(161\) 3526.19 1.72610
\(162\) 162.000 0.0785674
\(163\) −2362.97 −1.13547 −0.567737 0.823210i \(-0.692181\pi\)
−0.567737 + 0.823210i \(0.692181\pi\)
\(164\) −1922.10 −0.915186
\(165\) 159.016 0.0750268
\(166\) −1033.26 −0.483114
\(167\) −2169.65 −1.00534 −0.502671 0.864478i \(-0.667649\pi\)
−0.502671 + 0.864478i \(0.667649\pi\)
\(168\) −453.440 −0.208236
\(169\) −851.979 −0.387792
\(170\) 0 0
\(171\) 1053.85 0.471286
\(172\) 778.861 0.345277
\(173\) −3330.57 −1.46369 −0.731846 0.681470i \(-0.761341\pi\)
−0.731846 + 0.681470i \(0.761341\pi\)
\(174\) 785.503 0.342235
\(175\) −2346.80 −1.01372
\(176\) −955.965 −0.409424
\(177\) −1342.96 −0.570300
\(178\) 1642.82 0.691766
\(179\) −3541.26 −1.47870 −0.739348 0.673324i \(-0.764866\pi\)
−0.739348 + 0.673324i \(0.764866\pi\)
\(180\) 31.9375 0.0132249
\(181\) −1717.66 −0.705375 −0.352687 0.935741i \(-0.614732\pi\)
−0.352687 + 0.935741i \(0.614732\pi\)
\(182\) −1385.81 −0.564412
\(183\) −463.398 −0.187188
\(184\) 1493.09 0.598219
\(185\) −12.5284 −0.00497897
\(186\) 1433.72 0.565190
\(187\) 0 0
\(188\) −160.979 −0.0624501
\(189\) −510.120 −0.196327
\(190\) 207.762 0.0793295
\(191\) −1714.57 −0.649538 −0.324769 0.945793i \(-0.605287\pi\)
−0.324769 + 0.945793i \(0.605287\pi\)
\(192\) −192.000 −0.0721688
\(193\) −3494.59 −1.30335 −0.651673 0.758500i \(-0.725933\pi\)
−0.651673 + 0.758500i \(0.725933\pi\)
\(194\) −2657.54 −0.983506
\(195\) 97.6078 0.0358453
\(196\) 55.8336 0.0203475
\(197\) 2770.20 1.00187 0.500936 0.865485i \(-0.332989\pi\)
0.500936 + 0.865485i \(0.332989\pi\)
\(198\) −1075.46 −0.386008
\(199\) 3328.98 1.18585 0.592927 0.805256i \(-0.297972\pi\)
0.592927 + 0.805256i \(0.297972\pi\)
\(200\) −993.704 −0.351327
\(201\) 1316.97 0.462148
\(202\) 1597.95 0.556592
\(203\) −2473.46 −0.855188
\(204\) 0 0
\(205\) −426.298 −0.145239
\(206\) −118.209 −0.0399805
\(207\) 1679.73 0.564007
\(208\) −586.792 −0.195609
\(209\) −6996.14 −2.31547
\(210\) −100.568 −0.0330468
\(211\) −3871.11 −1.26302 −0.631512 0.775366i \(-0.717565\pi\)
−0.631512 + 0.775366i \(0.717565\pi\)
\(212\) −163.357 −0.0529218
\(213\) −1824.19 −0.586814
\(214\) 1618.81 0.517100
\(215\) 172.742 0.0547950
\(216\) −216.000 −0.0680414
\(217\) −4514.62 −1.41232
\(218\) −3308.32 −1.02783
\(219\) 1096.16 0.338226
\(220\) −212.022 −0.0649751
\(221\) 0 0
\(222\) 84.7324 0.0256165
\(223\) −5294.36 −1.58985 −0.794925 0.606708i \(-0.792490\pi\)
−0.794925 + 0.606708i \(0.792490\pi\)
\(224\) 604.587 0.180338
\(225\) −1117.92 −0.331235
\(226\) −961.571 −0.283021
\(227\) −5224.55 −1.52760 −0.763801 0.645452i \(-0.776669\pi\)
−0.763801 + 0.645452i \(0.776669\pi\)
\(228\) −1405.13 −0.408146
\(229\) −1878.50 −0.542074 −0.271037 0.962569i \(-0.587367\pi\)
−0.271037 + 0.962569i \(0.587367\pi\)
\(230\) 331.151 0.0949367
\(231\) 3386.51 0.964571
\(232\) −1047.34 −0.296384
\(233\) 1660.50 0.466879 0.233439 0.972371i \(-0.425002\pi\)
0.233439 + 0.972371i \(0.425002\pi\)
\(234\) −660.141 −0.184422
\(235\) −35.7034 −0.00991077
\(236\) 1790.61 0.493894
\(237\) 4001.71 1.09679
\(238\) 0 0
\(239\) −5017.17 −1.35788 −0.678941 0.734192i \(-0.737561\pi\)
−0.678941 + 0.734192i \(0.737561\pi\)
\(240\) −42.5834 −0.0114531
\(241\) 5872.04 1.56951 0.784754 0.619807i \(-0.212789\pi\)
0.784754 + 0.619807i \(0.212789\pi\)
\(242\) 4477.61 1.18939
\(243\) −243.000 −0.0641500
\(244\) 617.864 0.162109
\(245\) 12.3832 0.00322913
\(246\) 2883.14 0.747246
\(247\) −4294.38 −1.10626
\(248\) −1911.63 −0.489469
\(249\) 1549.90 0.394461
\(250\) −442.180 −0.111864
\(251\) 6899.16 1.73495 0.867473 0.497485i \(-0.165743\pi\)
0.867473 + 0.497485i \(0.165743\pi\)
\(252\) 680.160 0.170024
\(253\) −11151.1 −2.77101
\(254\) 3010.58 0.743704
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) −1910.33 −0.463669 −0.231835 0.972755i \(-0.574473\pi\)
−0.231835 + 0.972755i \(0.574473\pi\)
\(258\) −1168.29 −0.281917
\(259\) −266.813 −0.0640114
\(260\) −130.144 −0.0310430
\(261\) −1178.26 −0.279434
\(262\) 2261.33 0.533227
\(263\) −2690.00 −0.630693 −0.315346 0.948977i \(-0.602121\pi\)
−0.315346 + 0.948977i \(0.602121\pi\)
\(264\) 1433.95 0.334293
\(265\) −36.2308 −0.00839863
\(266\) 4424.61 1.01989
\(267\) −2464.23 −0.564825
\(268\) −1755.96 −0.400232
\(269\) 1888.66 0.428080 0.214040 0.976825i \(-0.431338\pi\)
0.214040 + 0.976825i \(0.431338\pi\)
\(270\) −47.9063 −0.0107981
\(271\) 4172.66 0.935317 0.467659 0.883909i \(-0.345098\pi\)
0.467659 + 0.883909i \(0.345098\pi\)
\(272\) 0 0
\(273\) 2078.71 0.460840
\(274\) −2158.26 −0.475859
\(275\) 7421.45 1.62738
\(276\) −2239.64 −0.488444
\(277\) −740.569 −0.160637 −0.0803186 0.996769i \(-0.525594\pi\)
−0.0803186 + 0.996769i \(0.525594\pi\)
\(278\) −1399.67 −0.301967
\(279\) −2150.58 −0.461476
\(280\) 134.090 0.0286194
\(281\) 325.056 0.0690078 0.0345039 0.999405i \(-0.489015\pi\)
0.0345039 + 0.999405i \(0.489015\pi\)
\(282\) 241.469 0.0509903
\(283\) −4827.08 −1.01392 −0.506962 0.861969i \(-0.669231\pi\)
−0.506962 + 0.861969i \(0.669231\pi\)
\(284\) 2432.25 0.508196
\(285\) −311.642 −0.0647723
\(286\) 4382.45 0.906082
\(287\) −9078.70 −1.86724
\(288\) 288.000 0.0589256
\(289\) 0 0
\(290\) −232.287 −0.0470358
\(291\) 3986.31 0.803029
\(292\) −1461.54 −0.292912
\(293\) 1038.13 0.206991 0.103496 0.994630i \(-0.466997\pi\)
0.103496 + 0.994630i \(0.466997\pi\)
\(294\) −83.7504 −0.0166137
\(295\) 397.137 0.0783804
\(296\) −112.977 −0.0221845
\(297\) 1613.19 0.315175
\(298\) 2714.68 0.527709
\(299\) −6844.81 −1.32390
\(300\) 1490.56 0.286858
\(301\) 3678.82 0.704464
\(302\) −3525.07 −0.671673
\(303\) −2396.93 −0.454455
\(304\) 1873.51 0.353465
\(305\) 137.035 0.0257266
\(306\) 0 0
\(307\) −6737.14 −1.25247 −0.626236 0.779634i \(-0.715405\pi\)
−0.626236 + 0.779634i \(0.715405\pi\)
\(308\) −4515.34 −0.835343
\(309\) 177.313 0.0326439
\(310\) −423.976 −0.0776782
\(311\) −4747.62 −0.865637 −0.432818 0.901481i \(-0.642481\pi\)
−0.432818 + 0.901481i \(0.642481\pi\)
\(312\) 880.189 0.159714
\(313\) 6028.93 1.08874 0.544369 0.838846i \(-0.316769\pi\)
0.544369 + 0.838846i \(0.316769\pi\)
\(314\) −128.170 −0.0230353
\(315\) 150.852 0.0269826
\(316\) −5335.61 −0.949847
\(317\) 7008.56 1.24177 0.620884 0.783903i \(-0.286774\pi\)
0.620884 + 0.783903i \(0.286774\pi\)
\(318\) 245.036 0.0432105
\(319\) 7822.02 1.37288
\(320\) 56.7778 0.00991868
\(321\) −2428.21 −0.422211
\(322\) 7052.38 1.22054
\(323\) 0 0
\(324\) 324.000 0.0555556
\(325\) 4555.45 0.777511
\(326\) −4725.95 −0.802902
\(327\) 4962.49 0.839224
\(328\) −3844.19 −0.647134
\(329\) −760.360 −0.127416
\(330\) 318.033 0.0530519
\(331\) 5517.53 0.916227 0.458113 0.888894i \(-0.348525\pi\)
0.458113 + 0.888894i \(0.348525\pi\)
\(332\) −2066.53 −0.341613
\(333\) −127.099 −0.0209158
\(334\) −4339.29 −0.710885
\(335\) −389.451 −0.0635164
\(336\) −906.880 −0.147245
\(337\) 6916.68 1.11803 0.559014 0.829158i \(-0.311180\pi\)
0.559014 + 0.829158i \(0.311180\pi\)
\(338\) −1703.96 −0.274211
\(339\) 1442.36 0.231086
\(340\) 0 0
\(341\) 14276.9 2.26727
\(342\) 2107.70 0.333250
\(343\) −6216.70 −0.978630
\(344\) 1557.72 0.244147
\(345\) −496.726 −0.0775155
\(346\) −6661.15 −1.03499
\(347\) −3774.33 −0.583910 −0.291955 0.956432i \(-0.594306\pi\)
−0.291955 + 0.956432i \(0.594306\pi\)
\(348\) 1571.01 0.241997
\(349\) 529.191 0.0811660 0.0405830 0.999176i \(-0.487078\pi\)
0.0405830 + 0.999176i \(0.487078\pi\)
\(350\) −4693.60 −0.716809
\(351\) 990.212 0.150580
\(352\) −1911.93 −0.289506
\(353\) 3779.39 0.569849 0.284924 0.958550i \(-0.408032\pi\)
0.284924 + 0.958550i \(0.408032\pi\)
\(354\) −2685.92 −0.403263
\(355\) 539.445 0.0806501
\(356\) 3285.64 0.489153
\(357\) 0 0
\(358\) −7082.53 −1.04560
\(359\) 3764.01 0.553362 0.276681 0.960962i \(-0.410765\pi\)
0.276681 + 0.960962i \(0.410765\pi\)
\(360\) 63.8750 0.00935142
\(361\) 6852.11 0.998996
\(362\) −3435.32 −0.498775
\(363\) −6716.41 −0.971130
\(364\) −2771.62 −0.399099
\(365\) −324.153 −0.0464848
\(366\) −926.795 −0.132362
\(367\) 7404.30 1.05314 0.526568 0.850133i \(-0.323478\pi\)
0.526568 + 0.850133i \(0.323478\pi\)
\(368\) 2986.19 0.423005
\(369\) −4324.72 −0.610124
\(370\) −25.0569 −0.00352066
\(371\) −771.592 −0.107976
\(372\) 2867.44 0.399650
\(373\) 11940.8 1.65756 0.828779 0.559576i \(-0.189036\pi\)
0.828779 + 0.559576i \(0.189036\pi\)
\(374\) 0 0
\(375\) 663.270 0.0913364
\(376\) −321.959 −0.0441589
\(377\) 4801.33 0.655918
\(378\) −1020.24 −0.138824
\(379\) 9126.85 1.23698 0.618489 0.785793i \(-0.287745\pi\)
0.618489 + 0.785793i \(0.287745\pi\)
\(380\) 415.523 0.0560944
\(381\) −4515.88 −0.607232
\(382\) −3429.14 −0.459293
\(383\) −9261.13 −1.23557 −0.617783 0.786349i \(-0.711969\pi\)
−0.617783 + 0.786349i \(0.711969\pi\)
\(384\) −384.000 −0.0510310
\(385\) −1001.45 −0.132568
\(386\) −6989.17 −0.921605
\(387\) 1752.44 0.230184
\(388\) −5315.08 −0.695444
\(389\) −1854.73 −0.241745 −0.120872 0.992668i \(-0.538569\pi\)
−0.120872 + 0.992668i \(0.538569\pi\)
\(390\) 195.216 0.0253465
\(391\) 0 0
\(392\) 111.667 0.0143879
\(393\) −3391.99 −0.435378
\(394\) 5540.40 0.708430
\(395\) −1183.38 −0.150740
\(396\) −2150.92 −0.272949
\(397\) −9421.24 −1.19103 −0.595514 0.803345i \(-0.703052\pi\)
−0.595514 + 0.803345i \(0.703052\pi\)
\(398\) 6657.95 0.838525
\(399\) −6636.92 −0.832736
\(400\) −1987.41 −0.248426
\(401\) 3386.15 0.421687 0.210843 0.977520i \(-0.432379\pi\)
0.210843 + 0.977520i \(0.432379\pi\)
\(402\) 2633.94 0.326788
\(403\) 8763.49 1.08323
\(404\) 3195.91 0.393570
\(405\) 71.8594 0.00881660
\(406\) −4946.93 −0.604709
\(407\) 843.763 0.102761
\(408\) 0 0
\(409\) −9820.58 −1.18728 −0.593638 0.804732i \(-0.702309\pi\)
−0.593638 + 0.804732i \(0.702309\pi\)
\(410\) −852.597 −0.102699
\(411\) 3237.39 0.388537
\(412\) −236.417 −0.0282705
\(413\) 8457.67 1.00769
\(414\) 3359.46 0.398813
\(415\) −458.332 −0.0542136
\(416\) −1173.58 −0.138317
\(417\) 2099.51 0.246555
\(418\) −13992.3 −1.63728
\(419\) −9904.03 −1.15476 −0.577379 0.816477i \(-0.695924\pi\)
−0.577379 + 0.816477i \(0.695924\pi\)
\(420\) −201.136 −0.0233676
\(421\) −4639.35 −0.537074 −0.268537 0.963269i \(-0.586540\pi\)
−0.268537 + 0.963269i \(0.586540\pi\)
\(422\) −7742.21 −0.893092
\(423\) −362.204 −0.0416334
\(424\) −326.715 −0.0374214
\(425\) 0 0
\(426\) −3648.38 −0.414940
\(427\) 2918.38 0.330750
\(428\) 3237.62 0.365645
\(429\) −6573.67 −0.739813
\(430\) 345.485 0.0387459
\(431\) −2531.31 −0.282898 −0.141449 0.989946i \(-0.545176\pi\)
−0.141449 + 0.989946i \(0.545176\pi\)
\(432\) −432.000 −0.0481125
\(433\) −7126.68 −0.790962 −0.395481 0.918474i \(-0.629422\pi\)
−0.395481 + 0.918474i \(0.629422\pi\)
\(434\) −9029.25 −0.998658
\(435\) 348.431 0.0384046
\(436\) −6616.65 −0.726789
\(437\) 21854.1 2.39228
\(438\) 2192.31 0.239162
\(439\) 16253.1 1.76701 0.883506 0.468421i \(-0.155177\pi\)
0.883506 + 0.468421i \(0.155177\pi\)
\(440\) −424.044 −0.0459443
\(441\) 125.626 0.0135650
\(442\) 0 0
\(443\) 9083.04 0.974149 0.487075 0.873360i \(-0.338064\pi\)
0.487075 + 0.873360i \(0.338064\pi\)
\(444\) 169.465 0.0181136
\(445\) 728.716 0.0776279
\(446\) −10588.7 −1.12419
\(447\) −4072.02 −0.430873
\(448\) 1209.17 0.127518
\(449\) −1820.75 −0.191373 −0.0956864 0.995412i \(-0.530505\pi\)
−0.0956864 + 0.995412i \(0.530505\pi\)
\(450\) −2235.83 −0.234218
\(451\) 28710.3 2.99759
\(452\) −1923.14 −0.200126
\(453\) 5287.61 0.548419
\(454\) −10449.1 −1.08018
\(455\) −614.712 −0.0633366
\(456\) −2810.27 −0.288603
\(457\) −16585.9 −1.69772 −0.848858 0.528621i \(-0.822709\pi\)
−0.848858 + 0.528621i \(0.822709\pi\)
\(458\) −3757.01 −0.383304
\(459\) 0 0
\(460\) 662.302 0.0671304
\(461\) −7357.94 −0.743370 −0.371685 0.928359i \(-0.621220\pi\)
−0.371685 + 0.928359i \(0.621220\pi\)
\(462\) 6773.02 0.682055
\(463\) −14132.1 −1.41852 −0.709258 0.704949i \(-0.750970\pi\)
−0.709258 + 0.704949i \(0.750970\pi\)
\(464\) −2094.68 −0.209575
\(465\) 635.964 0.0634240
\(466\) 3320.99 0.330133
\(467\) 3807.01 0.377232 0.188616 0.982051i \(-0.439600\pi\)
0.188616 + 0.982051i \(0.439600\pi\)
\(468\) −1320.28 −0.130406
\(469\) −8293.98 −0.816589
\(470\) −71.4067 −0.00700797
\(471\) 192.256 0.0188082
\(472\) 3581.23 0.349236
\(473\) −11633.8 −1.13092
\(474\) 8003.42 0.775547
\(475\) −14544.7 −1.40496
\(476\) 0 0
\(477\) −367.554 −0.0352812
\(478\) −10034.3 −0.960168
\(479\) 14048.6 1.34008 0.670041 0.742324i \(-0.266277\pi\)
0.670041 + 0.742324i \(0.266277\pi\)
\(480\) −85.1667 −0.00809857
\(481\) 517.920 0.0490959
\(482\) 11744.1 1.10981
\(483\) −10578.6 −0.996567
\(484\) 8955.21 0.841023
\(485\) −1178.82 −0.110366
\(486\) −486.000 −0.0453609
\(487\) 5097.02 0.474267 0.237134 0.971477i \(-0.423792\pi\)
0.237134 + 0.971477i \(0.423792\pi\)
\(488\) 1235.73 0.114629
\(489\) 7088.92 0.655567
\(490\) 24.7665 0.00228334
\(491\) 6390.91 0.587409 0.293704 0.955896i \(-0.405112\pi\)
0.293704 + 0.955896i \(0.405112\pi\)
\(492\) 5766.29 0.528383
\(493\) 0 0
\(494\) −8588.77 −0.782241
\(495\) −477.049 −0.0433167
\(496\) −3823.25 −0.346107
\(497\) 11488.3 1.03687
\(498\) 3099.79 0.278926
\(499\) −5209.56 −0.467358 −0.233679 0.972314i \(-0.575077\pi\)
−0.233679 + 0.972314i \(0.575077\pi\)
\(500\) −884.361 −0.0790996
\(501\) 6508.94 0.580435
\(502\) 13798.3 1.22679
\(503\) 11096.4 0.983626 0.491813 0.870701i \(-0.336334\pi\)
0.491813 + 0.870701i \(0.336334\pi\)
\(504\) 1360.32 0.120225
\(505\) 708.815 0.0624591
\(506\) −22302.3 −1.95940
\(507\) 2555.94 0.223892
\(508\) 6021.17 0.525878
\(509\) −2967.70 −0.258430 −0.129215 0.991617i \(-0.541246\pi\)
−0.129215 + 0.991617i \(0.541246\pi\)
\(510\) 0 0
\(511\) −6903.36 −0.597625
\(512\) 512.000 0.0441942
\(513\) −3161.55 −0.272097
\(514\) −3820.66 −0.327864
\(515\) −52.4346 −0.00448649
\(516\) −2336.58 −0.199346
\(517\) 2404.54 0.204549
\(518\) −533.626 −0.0452629
\(519\) 9991.72 0.845063
\(520\) −260.287 −0.0219507
\(521\) −300.725 −0.0252880 −0.0126440 0.999920i \(-0.504025\pi\)
−0.0126440 + 0.999920i \(0.504025\pi\)
\(522\) −2356.51 −0.197589
\(523\) 6172.53 0.516073 0.258036 0.966135i \(-0.416925\pi\)
0.258036 + 0.966135i \(0.416925\pi\)
\(524\) 4522.66 0.377048
\(525\) 7040.39 0.585272
\(526\) −5379.99 −0.445967
\(527\) 0 0
\(528\) 2867.90 0.236381
\(529\) 22666.3 1.86293
\(530\) −72.4615 −0.00593873
\(531\) 4028.88 0.329263
\(532\) 8849.22 0.721170
\(533\) 17623.0 1.43215
\(534\) −4928.45 −0.399391
\(535\) 718.066 0.0580274
\(536\) −3511.92 −0.283007
\(537\) 10623.8 0.853725
\(538\) 3777.32 0.302698
\(539\) −833.984 −0.0666461
\(540\) −95.8126 −0.00763540
\(541\) 8456.76 0.672060 0.336030 0.941851i \(-0.390916\pi\)
0.336030 + 0.941851i \(0.390916\pi\)
\(542\) 8345.32 0.661369
\(543\) 5152.99 0.407248
\(544\) 0 0
\(545\) −1467.50 −0.115341
\(546\) 4157.43 0.325863
\(547\) 3781.66 0.295598 0.147799 0.989017i \(-0.452781\pi\)
0.147799 + 0.989017i \(0.452781\pi\)
\(548\) −4316.52 −0.336483
\(549\) 1390.19 0.108073
\(550\) 14842.9 1.15073
\(551\) −15329.7 −1.18524
\(552\) −4479.28 −0.345382
\(553\) −25201.9 −1.93796
\(554\) −1481.14 −0.113588
\(555\) 37.5853 0.00287461
\(556\) −2799.35 −0.213523
\(557\) 24045.8 1.82918 0.914589 0.404385i \(-0.132515\pi\)
0.914589 + 0.404385i \(0.132515\pi\)
\(558\) −4301.16 −0.326313
\(559\) −7141.09 −0.540315
\(560\) 268.181 0.0202370
\(561\) 0 0
\(562\) 650.111 0.0487959
\(563\) 13789.7 1.03227 0.516135 0.856507i \(-0.327370\pi\)
0.516135 + 0.856507i \(0.327370\pi\)
\(564\) 482.938 0.0360556
\(565\) −426.531 −0.0317598
\(566\) −9654.17 −0.716952
\(567\) 1530.36 0.113349
\(568\) 4864.50 0.359349
\(569\) −19638.1 −1.44687 −0.723437 0.690390i \(-0.757439\pi\)
−0.723437 + 0.690390i \(0.757439\pi\)
\(570\) −623.285 −0.0458009
\(571\) 15274.5 1.11947 0.559735 0.828672i \(-0.310903\pi\)
0.559735 + 0.828672i \(0.310903\pi\)
\(572\) 8764.89 0.640697
\(573\) 5143.70 0.375011
\(574\) −18157.4 −1.32034
\(575\) −23182.7 −1.68137
\(576\) 576.000 0.0416667
\(577\) −11093.2 −0.800371 −0.400186 0.916434i \(-0.631054\pi\)
−0.400186 + 0.916434i \(0.631054\pi\)
\(578\) 0 0
\(579\) 10483.8 0.752487
\(580\) −464.575 −0.0332593
\(581\) −9760.91 −0.696990
\(582\) 7972.62 0.567828
\(583\) 2440.06 0.173340
\(584\) −2923.09 −0.207120
\(585\) −292.823 −0.0206953
\(586\) 2076.27 0.146365
\(587\) 9450.73 0.664520 0.332260 0.943188i \(-0.392189\pi\)
0.332260 + 0.943188i \(0.392189\pi\)
\(588\) −167.501 −0.0117476
\(589\) −27980.1 −1.95738
\(590\) 794.275 0.0554233
\(591\) −8310.60 −0.578431
\(592\) −225.953 −0.0156868
\(593\) 15181.4 1.05131 0.525655 0.850698i \(-0.323820\pi\)
0.525655 + 0.850698i \(0.323820\pi\)
\(594\) 3226.38 0.222862
\(595\) 0 0
\(596\) 5429.36 0.373147
\(597\) −9986.93 −0.684653
\(598\) −13689.6 −0.936138
\(599\) 3015.99 0.205726 0.102863 0.994696i \(-0.467200\pi\)
0.102863 + 0.994696i \(0.467200\pi\)
\(600\) 2981.11 0.202839
\(601\) 12422.7 0.843149 0.421575 0.906794i \(-0.361478\pi\)
0.421575 + 0.906794i \(0.361478\pi\)
\(602\) 7357.64 0.498131
\(603\) −3950.91 −0.266821
\(604\) −7050.15 −0.474945
\(605\) 1986.16 0.133469
\(606\) −4793.86 −0.321348
\(607\) 2438.93 0.163086 0.0815430 0.996670i \(-0.474015\pi\)
0.0815430 + 0.996670i \(0.474015\pi\)
\(608\) 3747.02 0.249937
\(609\) 7420.39 0.493743
\(610\) 274.070 0.0181914
\(611\) 1475.96 0.0977266
\(612\) 0 0
\(613\) 14288.9 0.941477 0.470738 0.882273i \(-0.343988\pi\)
0.470738 + 0.882273i \(0.343988\pi\)
\(614\) −13474.3 −0.885631
\(615\) 1278.90 0.0838537
\(616\) −9030.69 −0.590677
\(617\) 10058.5 0.656306 0.328153 0.944625i \(-0.393574\pi\)
0.328153 + 0.944625i \(0.393574\pi\)
\(618\) 354.626 0.0230828
\(619\) 26199.0 1.70117 0.850586 0.525835i \(-0.176247\pi\)
0.850586 + 0.525835i \(0.176247\pi\)
\(620\) −847.952 −0.0549268
\(621\) −5039.19 −0.325629
\(622\) −9495.25 −0.612098
\(623\) 15519.2 0.998013
\(624\) 1760.38 0.112935
\(625\) 15330.5 0.981151
\(626\) 12057.9 0.769854
\(627\) 20988.4 1.33684
\(628\) −256.341 −0.0162884
\(629\) 0 0
\(630\) 301.703 0.0190796
\(631\) 2855.15 0.180129 0.0900647 0.995936i \(-0.471293\pi\)
0.0900647 + 0.995936i \(0.471293\pi\)
\(632\) −10671.2 −0.671643
\(633\) 11613.3 0.729207
\(634\) 14017.1 0.878062
\(635\) 1335.43 0.0834563
\(636\) 490.072 0.0305544
\(637\) −511.918 −0.0318413
\(638\) 15644.0 0.970773
\(639\) 5472.57 0.338797
\(640\) 113.556 0.00701356
\(641\) −12620.8 −0.777679 −0.388840 0.921305i \(-0.627124\pi\)
−0.388840 + 0.921305i \(0.627124\pi\)
\(642\) −4856.42 −0.298548
\(643\) 17780.1 1.09048 0.545239 0.838281i \(-0.316439\pi\)
0.545239 + 0.838281i \(0.316439\pi\)
\(644\) 14104.8 0.863052
\(645\) −518.227 −0.0316359
\(646\) 0 0
\(647\) −2887.24 −0.175439 −0.0877197 0.996145i \(-0.527958\pi\)
−0.0877197 + 0.996145i \(0.527958\pi\)
\(648\) 648.000 0.0392837
\(649\) −26746.3 −1.61770
\(650\) 9110.90 0.549783
\(651\) 13543.9 0.815401
\(652\) −9451.90 −0.567737
\(653\) 25653.1 1.53734 0.768670 0.639645i \(-0.220919\pi\)
0.768670 + 0.639645i \(0.220919\pi\)
\(654\) 9924.97 0.593421
\(655\) 1003.07 0.0598371
\(656\) −7688.38 −0.457593
\(657\) −3288.47 −0.195275
\(658\) −1520.72 −0.0900970
\(659\) 22255.0 1.31552 0.657762 0.753226i \(-0.271503\pi\)
0.657762 + 0.753226i \(0.271503\pi\)
\(660\) 636.066 0.0375134
\(661\) −5678.09 −0.334118 −0.167059 0.985947i \(-0.553427\pi\)
−0.167059 + 0.985947i \(0.553427\pi\)
\(662\) 11035.1 0.647870
\(663\) 0 0
\(664\) −4133.06 −0.241557
\(665\) 1962.65 0.114449
\(666\) −254.197 −0.0147897
\(667\) −24434.0 −1.41842
\(668\) −8678.58 −0.502671
\(669\) 15883.1 0.917900
\(670\) −778.902 −0.0449129
\(671\) −9229.00 −0.530971
\(672\) −1813.76 −0.104118
\(673\) −6871.08 −0.393552 −0.196776 0.980448i \(-0.563047\pi\)
−0.196776 + 0.980448i \(0.563047\pi\)
\(674\) 13833.4 0.790566
\(675\) 3353.75 0.191238
\(676\) −3407.92 −0.193896
\(677\) 9929.79 0.563711 0.281856 0.959457i \(-0.409050\pi\)
0.281856 + 0.959457i \(0.409050\pi\)
\(678\) 2884.71 0.163402
\(679\) −25104.9 −1.41891
\(680\) 0 0
\(681\) 15673.7 0.881962
\(682\) 28553.9 1.60320
\(683\) 4903.53 0.274712 0.137356 0.990522i \(-0.456140\pi\)
0.137356 + 0.990522i \(0.456140\pi\)
\(684\) 4215.40 0.235643
\(685\) −957.354 −0.0533995
\(686\) −12433.4 −0.691996
\(687\) 5635.51 0.312967
\(688\) 3115.44 0.172638
\(689\) 1497.76 0.0828160
\(690\) −993.453 −0.0548117
\(691\) 2336.83 0.128650 0.0643249 0.997929i \(-0.479511\pi\)
0.0643249 + 0.997929i \(0.479511\pi\)
\(692\) −13322.3 −0.731846
\(693\) −10159.5 −0.556895
\(694\) −7548.67 −0.412887
\(695\) −620.863 −0.0338858
\(696\) 3142.01 0.171117
\(697\) 0 0
\(698\) 1058.38 0.0573930
\(699\) −4981.49 −0.269552
\(700\) −9387.19 −0.506861
\(701\) −11924.7 −0.642498 −0.321249 0.946995i \(-0.604103\pi\)
−0.321249 + 0.946995i \(0.604103\pi\)
\(702\) 1980.42 0.106476
\(703\) −1653.62 −0.0887159
\(704\) −3823.86 −0.204712
\(705\) 107.110 0.00572198
\(706\) 7558.78 0.402944
\(707\) 15095.3 0.802996
\(708\) −5371.84 −0.285150
\(709\) −8039.30 −0.425842 −0.212921 0.977069i \(-0.568298\pi\)
−0.212921 + 0.977069i \(0.568298\pi\)
\(710\) 1078.89 0.0570282
\(711\) −12005.1 −0.633231
\(712\) 6571.27 0.345883
\(713\) −44597.4 −2.34248
\(714\) 0 0
\(715\) 1943.95 0.101678
\(716\) −14165.1 −0.739348
\(717\) 15051.5 0.783974
\(718\) 7528.03 0.391286
\(719\) 16258.2 0.843294 0.421647 0.906760i \(-0.361452\pi\)
0.421647 + 0.906760i \(0.361452\pi\)
\(720\) 127.750 0.00661245
\(721\) −1116.68 −0.0576800
\(722\) 13704.2 0.706397
\(723\) −17616.1 −0.906156
\(724\) −6870.65 −0.352687
\(725\) 16261.6 0.833022
\(726\) −13432.8 −0.686692
\(727\) −32634.5 −1.66485 −0.832426 0.554136i \(-0.813049\pi\)
−0.832426 + 0.554136i \(0.813049\pi\)
\(728\) −5543.23 −0.282206
\(729\) 729.000 0.0370370
\(730\) −648.306 −0.0328697
\(731\) 0 0
\(732\) −1853.59 −0.0935938
\(733\) −30175.2 −1.52053 −0.760264 0.649614i \(-0.774930\pi\)
−0.760264 + 0.649614i \(0.774930\pi\)
\(734\) 14808.6 0.744680
\(735\) −37.1497 −0.00186434
\(736\) 5972.38 0.299110
\(737\) 26228.7 1.31092
\(738\) −8649.43 −0.431423
\(739\) 25108.8 1.24985 0.624926 0.780684i \(-0.285129\pi\)
0.624926 + 0.780684i \(0.285129\pi\)
\(740\) −50.1138 −0.00248948
\(741\) 12883.2 0.638697
\(742\) −1543.18 −0.0763505
\(743\) −3787.46 −0.187010 −0.0935051 0.995619i \(-0.529807\pi\)
−0.0935051 + 0.995619i \(0.529807\pi\)
\(744\) 5734.88 0.282595
\(745\) 1204.17 0.0592179
\(746\) 23881.5 1.17207
\(747\) −4649.69 −0.227742
\(748\) 0 0
\(749\) 15292.3 0.746022
\(750\) 1326.54 0.0645846
\(751\) −36264.4 −1.76206 −0.881030 0.473061i \(-0.843149\pi\)
−0.881030 + 0.473061i \(0.843149\pi\)
\(752\) −643.918 −0.0312251
\(753\) −20697.5 −1.00167
\(754\) 9602.65 0.463804
\(755\) −1563.64 −0.0753731
\(756\) −2040.48 −0.0981635
\(757\) 19664.2 0.944132 0.472066 0.881563i \(-0.343508\pi\)
0.472066 + 0.881563i \(0.343508\pi\)
\(758\) 18253.7 0.874676
\(759\) 33453.4 1.59984
\(760\) 831.046 0.0396647
\(761\) −9962.11 −0.474542 −0.237271 0.971444i \(-0.576253\pi\)
−0.237271 + 0.971444i \(0.576253\pi\)
\(762\) −9031.75 −0.429378
\(763\) −31252.7 −1.48286
\(764\) −6858.27 −0.324769
\(765\) 0 0
\(766\) −18522.3 −0.873677
\(767\) −16417.5 −0.772882
\(768\) −768.000 −0.0360844
\(769\) 5619.91 0.263536 0.131768 0.991281i \(-0.457935\pi\)
0.131768 + 0.991281i \(0.457935\pi\)
\(770\) −2002.90 −0.0937397
\(771\) 5730.99 0.267700
\(772\) −13978.3 −0.651673
\(773\) −10503.4 −0.488722 −0.244361 0.969684i \(-0.578578\pi\)
−0.244361 + 0.969684i \(0.578578\pi\)
\(774\) 3504.87 0.162765
\(775\) 29681.1 1.37571
\(776\) −10630.2 −0.491753
\(777\) 800.439 0.0369570
\(778\) −3709.47 −0.170939
\(779\) −56266.7 −2.58789
\(780\) 390.431 0.0179227
\(781\) −36330.4 −1.66454
\(782\) 0 0
\(783\) 3534.77 0.161331
\(784\) 223.334 0.0101738
\(785\) −56.8534 −0.00258495
\(786\) −6783.99 −0.307859
\(787\) 15340.8 0.694841 0.347421 0.937709i \(-0.387058\pi\)
0.347421 + 0.937709i \(0.387058\pi\)
\(788\) 11080.8 0.500936
\(789\) 8069.99 0.364131
\(790\) −2366.75 −0.106589
\(791\) −9083.65 −0.408315
\(792\) −4301.84 −0.193004
\(793\) −5664.96 −0.253681
\(794\) −18842.5 −0.842185
\(795\) 108.692 0.00484895
\(796\) 13315.9 0.592927
\(797\) 14361.1 0.638266 0.319133 0.947710i \(-0.396608\pi\)
0.319133 + 0.947710i \(0.396608\pi\)
\(798\) −13273.8 −0.588833
\(799\) 0 0
\(800\) −3974.81 −0.175664
\(801\) 7392.68 0.326102
\(802\) 6772.30 0.298178
\(803\) 21831.0 0.959401
\(804\) 5267.87 0.231074
\(805\) 3128.27 0.136965
\(806\) 17527.0 0.765958
\(807\) −5665.98 −0.247152
\(808\) 6391.81 0.278296
\(809\) 2315.88 0.100645 0.0503227 0.998733i \(-0.483975\pi\)
0.0503227 + 0.998733i \(0.483975\pi\)
\(810\) 143.719 0.00623428
\(811\) −13135.6 −0.568747 −0.284373 0.958714i \(-0.591786\pi\)
−0.284373 + 0.958714i \(0.591786\pi\)
\(812\) −9893.86 −0.427594
\(813\) −12518.0 −0.540006
\(814\) 1687.53 0.0726631
\(815\) −2096.32 −0.0900993
\(816\) 0 0
\(817\) 22800.1 0.976345
\(818\) −19641.2 −0.839531
\(819\) −6236.14 −0.266066
\(820\) −1705.19 −0.0726195
\(821\) 39346.2 1.67258 0.836292 0.548285i \(-0.184719\pi\)
0.836292 + 0.548285i \(0.184719\pi\)
\(822\) 6474.78 0.274737
\(823\) 25509.2 1.08043 0.540216 0.841526i \(-0.318343\pi\)
0.540216 + 0.841526i \(0.318343\pi\)
\(824\) −472.834 −0.0199903
\(825\) −22264.4 −0.939570
\(826\) 16915.3 0.712542
\(827\) −37544.1 −1.57864 −0.789321 0.613981i \(-0.789567\pi\)
−0.789321 + 0.613981i \(0.789567\pi\)
\(828\) 6718.92 0.282003
\(829\) −14101.2 −0.590778 −0.295389 0.955377i \(-0.595449\pi\)
−0.295389 + 0.955377i \(0.595449\pi\)
\(830\) −916.664 −0.0383348
\(831\) 2221.71 0.0927439
\(832\) −2347.17 −0.0978046
\(833\) 0 0
\(834\) 4199.02 0.174341
\(835\) −1924.81 −0.0797734
\(836\) −27984.6 −1.15773
\(837\) 6451.74 0.266433
\(838\) −19808.1 −0.816537
\(839\) −35774.9 −1.47209 −0.736046 0.676931i \(-0.763309\pi\)
−0.736046 + 0.676931i \(0.763309\pi\)
\(840\) −402.271 −0.0165234
\(841\) −7249.68 −0.297252
\(842\) −9278.70 −0.379769
\(843\) −975.167 −0.0398417
\(844\) −15484.4 −0.631512
\(845\) −755.837 −0.0307711
\(846\) −724.407 −0.0294393
\(847\) 42298.5 1.71593
\(848\) −653.429 −0.0264609
\(849\) 14481.2 0.585389
\(850\) 0 0
\(851\) −2635.70 −0.106170
\(852\) −7296.75 −0.293407
\(853\) −3151.61 −0.126505 −0.0632526 0.997998i \(-0.520147\pi\)
−0.0632526 + 0.997998i \(0.520147\pi\)
\(854\) 5836.75 0.233875
\(855\) 934.927 0.0373963
\(856\) 6475.23 0.258550
\(857\) −23583.7 −0.940029 −0.470014 0.882659i \(-0.655751\pi\)
−0.470014 + 0.882659i \(0.655751\pi\)
\(858\) −13147.3 −0.523127
\(859\) 36967.7 1.46836 0.734181 0.678954i \(-0.237567\pi\)
0.734181 + 0.678954i \(0.237567\pi\)
\(860\) 690.969 0.0273975
\(861\) 27236.1 1.07805
\(862\) −5062.62 −0.200039
\(863\) −46451.4 −1.83224 −0.916120 0.400905i \(-0.868696\pi\)
−0.916120 + 0.400905i \(0.868696\pi\)
\(864\) −864.000 −0.0340207
\(865\) −2954.73 −0.116143
\(866\) −14253.4 −0.559295
\(867\) 0 0
\(868\) −18058.5 −0.706158
\(869\) 79697.8 3.11112
\(870\) 696.862 0.0271561
\(871\) 16099.7 0.626313
\(872\) −13233.3 −0.513917
\(873\) −11958.9 −0.463629
\(874\) 43708.3 1.69160
\(875\) −4177.13 −0.161386
\(876\) 4384.63 0.169113
\(877\) −28731.1 −1.10625 −0.553125 0.833098i \(-0.686565\pi\)
−0.553125 + 0.833098i \(0.686565\pi\)
\(878\) 32506.2 1.24947
\(879\) −3114.40 −0.119506
\(880\) −848.088 −0.0324875
\(881\) 26394.9 1.00938 0.504692 0.863299i \(-0.331606\pi\)
0.504692 + 0.863299i \(0.331606\pi\)
\(882\) 251.251 0.00959191
\(883\) −29247.0 −1.11466 −0.557328 0.830293i \(-0.688173\pi\)
−0.557328 + 0.830293i \(0.688173\pi\)
\(884\) 0 0
\(885\) −1191.41 −0.0452530
\(886\) 18166.1 0.688828
\(887\) −36513.4 −1.38219 −0.691093 0.722766i \(-0.742871\pi\)
−0.691093 + 0.722766i \(0.742871\pi\)
\(888\) 338.930 0.0128083
\(889\) 28440.0 1.07294
\(890\) 1457.43 0.0548912
\(891\) −4839.57 −0.181966
\(892\) −21177.4 −0.794925
\(893\) −4712.45 −0.176591
\(894\) −8144.04 −0.304673
\(895\) −3141.64 −0.117334
\(896\) 2418.35 0.0901689
\(897\) 20534.4 0.764353
\(898\) −3641.49 −0.135321
\(899\) 31283.1 1.16057
\(900\) −4471.67 −0.165617
\(901\) 0 0
\(902\) 57420.5 2.11962
\(903\) −11036.5 −0.406723
\(904\) −3846.28 −0.141511
\(905\) −1523.83 −0.0559711
\(906\) 10575.2 0.387791
\(907\) −5074.72 −0.185781 −0.0928905 0.995676i \(-0.529611\pi\)
−0.0928905 + 0.995676i \(0.529611\pi\)
\(908\) −20898.2 −0.763801
\(909\) 7190.79 0.262380
\(910\) −1229.42 −0.0447858
\(911\) −1307.08 −0.0475361 −0.0237681 0.999717i \(-0.507566\pi\)
−0.0237681 + 0.999717i \(0.507566\pi\)
\(912\) −5620.53 −0.204073
\(913\) 30867.7 1.11892
\(914\) −33171.8 −1.20047
\(915\) −411.105 −0.0148532
\(916\) −7514.02 −0.271037
\(917\) 21362.0 0.769287
\(918\) 0 0
\(919\) −34616.0 −1.24252 −0.621260 0.783605i \(-0.713379\pi\)
−0.621260 + 0.783605i \(0.713379\pi\)
\(920\) 1324.60 0.0474684
\(921\) 20211.4 0.723115
\(922\) −14715.9 −0.525642
\(923\) −22300.4 −0.795262
\(924\) 13546.0 0.482286
\(925\) 1754.14 0.0623523
\(926\) −28264.1 −1.00304
\(927\) −531.939 −0.0188470
\(928\) −4189.35 −0.148192
\(929\) −12183.1 −0.430264 −0.215132 0.976585i \(-0.569018\pi\)
−0.215132 + 0.976585i \(0.569018\pi\)
\(930\) 1271.93 0.0448475
\(931\) 1634.45 0.0575370
\(932\) 6641.98 0.233439
\(933\) 14242.9 0.499776
\(934\) 7614.02 0.266743
\(935\) 0 0
\(936\) −2640.57 −0.0922111
\(937\) 37258.1 1.29901 0.649503 0.760359i \(-0.274977\pi\)
0.649503 + 0.760359i \(0.274977\pi\)
\(938\) −16588.0 −0.577416
\(939\) −18086.8 −0.628583
\(940\) −142.813 −0.00495538
\(941\) 32270.4 1.11794 0.558972 0.829187i \(-0.311196\pi\)
0.558972 + 0.829187i \(0.311196\pi\)
\(942\) 384.511 0.0132994
\(943\) −89683.4 −3.09702
\(944\) 7162.46 0.246947
\(945\) −452.555 −0.0155784
\(946\) −23267.6 −0.799678
\(947\) 27626.2 0.947973 0.473987 0.880532i \(-0.342814\pi\)
0.473987 + 0.880532i \(0.342814\pi\)
\(948\) 16006.8 0.548394
\(949\) 13400.3 0.458370
\(950\) −29089.3 −0.993454
\(951\) −21025.7 −0.716935
\(952\) 0 0
\(953\) 34202.3 1.16256 0.581281 0.813703i \(-0.302552\pi\)
0.581281 + 0.813703i \(0.302552\pi\)
\(954\) −735.108 −0.0249476
\(955\) −1521.08 −0.0515405
\(956\) −20068.7 −0.678941
\(957\) −23466.1 −0.792633
\(958\) 28097.3 0.947581
\(959\) −20388.4 −0.686523
\(960\) −170.333 −0.00572655
\(961\) 27307.6 0.916640
\(962\) 1035.84 0.0347160
\(963\) 7284.64 0.243763
\(964\) 23488.2 0.784754
\(965\) −3100.23 −0.103420
\(966\) −21157.2 −0.704679
\(967\) 12249.7 0.407367 0.203684 0.979037i \(-0.434709\pi\)
0.203684 + 0.979037i \(0.434709\pi\)
\(968\) 17910.4 0.594693
\(969\) 0 0
\(970\) −2357.64 −0.0780406
\(971\) −10482.5 −0.346445 −0.173222 0.984883i \(-0.555418\pi\)
−0.173222 + 0.984883i \(0.555418\pi\)
\(972\) −972.000 −0.0320750
\(973\) −13222.3 −0.435649
\(974\) 10194.0 0.335358
\(975\) −13666.4 −0.448896
\(976\) 2471.45 0.0810546
\(977\) 47676.1 1.56120 0.780600 0.625031i \(-0.214914\pi\)
0.780600 + 0.625031i \(0.214914\pi\)
\(978\) 14177.8 0.463556
\(979\) −49077.4 −1.60217
\(980\) 49.5330 0.00161456
\(981\) −14887.5 −0.484526
\(982\) 12781.8 0.415361
\(983\) 38056.7 1.23481 0.617407 0.786644i \(-0.288183\pi\)
0.617407 + 0.786644i \(0.288183\pi\)
\(984\) 11532.6 0.373623
\(985\) 2457.59 0.0794979
\(986\) 0 0
\(987\) 2281.08 0.0735639
\(988\) −17177.5 −0.553128
\(989\) 36341.0 1.16843
\(990\) −954.099 −0.0306295
\(991\) −25197.0 −0.807679 −0.403840 0.914830i \(-0.632325\pi\)
−0.403840 + 0.914830i \(0.632325\pi\)
\(992\) −7646.50 −0.244735
\(993\) −16552.6 −0.528984
\(994\) 22976.7 0.733175
\(995\) 2953.31 0.0940968
\(996\) 6199.59 0.197230
\(997\) −13983.6 −0.444197 −0.222099 0.975024i \(-0.571291\pi\)
−0.222099 + 0.975024i \(0.571291\pi\)
\(998\) −10419.1 −0.330472
\(999\) 381.296 0.0120757
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1734.4.a.bd.1.4 6
17.8 even 8 102.4.f.c.13.5 12
17.15 even 8 102.4.f.c.55.5 yes 12
17.16 even 2 1734.4.a.be.1.3 6
51.8 odd 8 306.4.g.g.217.4 12
51.32 odd 8 306.4.g.g.55.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
102.4.f.c.13.5 12 17.8 even 8
102.4.f.c.55.5 yes 12 17.15 even 8
306.4.g.g.55.4 12 51.32 odd 8
306.4.g.g.217.4 12 51.8 odd 8
1734.4.a.bd.1.4 6 1.1 even 1 trivial
1734.4.a.be.1.3 6 17.16 even 2