Properties

Label 102.4.f.c.55.5
Level $102$
Weight $4$
Character 102.55
Analytic conductor $6.018$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [102,4,Mod(13,102)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(102, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("102.13");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 102 = 2 \cdot 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 102.f (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.01819482059\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 886x^{10} + 292945x^{8} + 42943904x^{6} + 2387634208x^{4} + 5944075264x^{2} + 2089586944 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 55.5
Root \(-1.47294i\) of defining polynomial
Character \(\chi\) \(=\) 102.55
Dual form 102.4.f.c.13.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000i q^{2} +(2.12132 - 2.12132i) q^{3} -4.00000 q^{4} +(0.627312 - 0.627312i) q^{5} +(4.24264 + 4.24264i) q^{6} +(13.3596 + 13.3596i) q^{7} -8.00000i q^{8} -9.00000i q^{9} +(1.25462 + 1.25462i) q^{10} +(42.2481 + 42.2481i) q^{11} +(-8.48528 + 8.48528i) q^{12} +36.6745 q^{13} +(-26.7192 + 26.7192i) q^{14} -2.66146i q^{15} +16.0000 q^{16} +(32.8910 - 61.8965i) q^{17} +18.0000 q^{18} +117.094i q^{19} +(-2.50925 + 2.50925i) q^{20} +56.6800 q^{21} +(-84.4962 + 84.4962i) q^{22} +(-131.972 - 131.972i) q^{23} +(-16.9706 - 16.9706i) q^{24} +124.213i q^{25} +73.3490i q^{26} +(-19.0919 - 19.0919i) q^{27} +(-53.4384 - 53.4384i) q^{28} +(-92.5725 + 92.5725i) q^{29} +5.32292 q^{30} +(168.965 - 168.965i) q^{31} +32.0000i q^{32} +179.243 q^{33} +(123.793 + 65.7820i) q^{34} +16.7613 q^{35} +36.0000i q^{36} +(9.98581 - 9.98581i) q^{37} -234.189 q^{38} +(77.7984 - 77.7984i) q^{39} +(-5.01850 - 5.01850i) q^{40} +(-339.782 - 339.782i) q^{41} +113.360i q^{42} -194.715i q^{43} +(-168.992 - 168.992i) q^{44} +(-5.64581 - 5.64581i) q^{45} +(263.944 - 263.944i) q^{46} +40.2448 q^{47} +(33.9411 - 33.9411i) q^{48} +13.9584i q^{49} -248.426 q^{50} +(-61.5300 - 201.075i) q^{51} -146.698 q^{52} -40.8393i q^{53} +(38.1838 - 38.1838i) q^{54} +53.0055 q^{55} +(106.877 - 106.877i) q^{56} +(248.395 + 248.395i) q^{57} +(-185.145 - 185.145i) q^{58} -447.653i q^{59} +10.6458i q^{60} +(109.224 + 109.224i) q^{61} +(337.931 + 337.931i) q^{62} +(120.236 - 120.236i) q^{63} -64.0000 q^{64} +(23.0064 - 23.0064i) q^{65} +358.487i q^{66} -438.990 q^{67} +(-131.564 + 247.586i) q^{68} -559.910 q^{69} +33.5226i q^{70} +(-429.965 + 429.965i) q^{71} -72.0000 q^{72} +(-258.367 + 258.367i) q^{73} +(19.9716 + 19.9716i) q^{74} +(263.495 + 263.495i) q^{75} -468.378i q^{76} +1128.84i q^{77} +(155.597 + 155.597i) q^{78} +(943.212 + 943.212i) q^{79} +(10.0370 - 10.0370i) q^{80} -81.0000 q^{81} +(679.563 - 679.563i) q^{82} -516.632i q^{83} -226.720 q^{84} +(-18.1955 - 59.4614i) q^{85} +389.430 q^{86} +392.752i q^{87} +(337.985 - 337.985i) q^{88} -821.409 q^{89} +(11.2916 - 11.2916i) q^{90} +(489.957 + 489.957i) q^{91} +(527.888 + 527.888i) q^{92} -716.860i q^{93} +80.4897i q^{94} +(73.4548 + 73.4548i) q^{95} +(67.8823 + 67.8823i) q^{96} +(-939.582 + 939.582i) q^{97} -27.9168 q^{98} +(380.233 - 380.233i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 48 q^{4} + 16 q^{5} - 12 q^{7} + 32 q^{10} - 32 q^{11} - 68 q^{13} + 24 q^{14} + 192 q^{16} + 64 q^{17} + 216 q^{18} - 64 q^{20} - 168 q^{21} + 64 q^{22} - 112 q^{23} + 48 q^{28} - 296 q^{29} - 168 q^{30}+ \cdots - 288 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/102\mathbb{Z}\right)^\times\).

\(n\) \(35\) \(37\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000i 0.707107i
\(3\) 2.12132 2.12132i 0.408248 0.408248i
\(4\) −4.00000 −0.500000
\(5\) 0.627312 0.627312i 0.0561085 0.0561085i −0.678496 0.734604i \(-0.737368\pi\)
0.734604 + 0.678496i \(0.237368\pi\)
\(6\) 4.24264 + 4.24264i 0.288675 + 0.288675i
\(7\) 13.3596 + 13.3596i 0.721351 + 0.721351i 0.968880 0.247529i \(-0.0796186\pi\)
−0.247529 + 0.968880i \(0.579619\pi\)
\(8\) 8.00000i 0.353553i
\(9\) 9.00000i 0.333333i
\(10\) 1.25462 + 1.25462i 0.0396747 + 0.0396747i
\(11\) 42.2481 + 42.2481i 1.15803 + 1.15803i 0.984900 + 0.173126i \(0.0553867\pi\)
0.173126 + 0.984900i \(0.444613\pi\)
\(12\) −8.48528 + 8.48528i −0.204124 + 0.204124i
\(13\) 36.6745 0.782437 0.391219 0.920298i \(-0.372054\pi\)
0.391219 + 0.920298i \(0.372054\pi\)
\(14\) −26.7192 + 26.7192i −0.510072 + 0.510072i
\(15\) 2.66146i 0.0458124i
\(16\) 16.0000 0.250000
\(17\) 32.8910 61.8965i 0.469250 0.883066i
\(18\) 18.0000 0.235702
\(19\) 117.094i 1.41386i 0.707284 + 0.706929i \(0.249920\pi\)
−0.707284 + 0.706929i \(0.750080\pi\)
\(20\) −2.50925 + 2.50925i −0.0280543 + 0.0280543i
\(21\) 56.6800 0.588981
\(22\) −84.4962 + 84.4962i −0.818848 + 0.818848i
\(23\) −131.972 131.972i −1.19644 1.19644i −0.975225 0.221213i \(-0.928998\pi\)
−0.221213 0.975225i \(-0.571002\pi\)
\(24\) −16.9706 16.9706i −0.144338 0.144338i
\(25\) 124.213i 0.993704i
\(26\) 73.3490i 0.553267i
\(27\) −19.0919 19.0919i −0.136083 0.136083i
\(28\) −53.4384 53.4384i −0.360676 0.360676i
\(29\) −92.5725 + 92.5725i −0.592768 + 0.592768i −0.938378 0.345610i \(-0.887672\pi\)
0.345610 + 0.938378i \(0.387672\pi\)
\(30\) 5.32292 0.0323943
\(31\) 168.965 168.965i 0.978938 0.978938i −0.0208446 0.999783i \(-0.506636\pi\)
0.999783 + 0.0208446i \(0.00663551\pi\)
\(32\) 32.0000i 0.176777i
\(33\) 179.243 0.945524
\(34\) 123.793 + 65.7820i 0.624422 + 0.331810i
\(35\) 16.7613 0.0809479
\(36\) 36.0000i 0.166667i
\(37\) 9.98581 9.98581i 0.0443691 0.0443691i −0.684574 0.728943i \(-0.740012\pi\)
0.728943 + 0.684574i \(0.240012\pi\)
\(38\) −234.189 −0.999749
\(39\) 77.7984 77.7984i 0.319429 0.319429i
\(40\) −5.01850 5.01850i −0.0198374 0.0198374i
\(41\) −339.782 339.782i −1.29427 1.29427i −0.932121 0.362147i \(-0.882044\pi\)
−0.362147 0.932121i \(-0.617956\pi\)
\(42\) 113.360i 0.416472i
\(43\) 194.715i 0.690553i −0.938501 0.345277i \(-0.887785\pi\)
0.938501 0.345277i \(-0.112215\pi\)
\(44\) −168.992 168.992i −0.579013 0.579013i
\(45\) −5.64581 5.64581i −0.0187028 0.0187028i
\(46\) 263.944 263.944i 0.846010 0.846010i
\(47\) 40.2448 0.124900 0.0624501 0.998048i \(-0.480109\pi\)
0.0624501 + 0.998048i \(0.480109\pi\)
\(48\) 33.9411 33.9411i 0.102062 0.102062i
\(49\) 13.9584i 0.0406950i
\(50\) −248.426 −0.702655
\(51\) −61.5300 201.075i −0.168940 0.552080i
\(52\) −146.698 −0.391219
\(53\) 40.8393i 0.105844i −0.998599 0.0529218i \(-0.983147\pi\)
0.998599 0.0529218i \(-0.0168534\pi\)
\(54\) 38.1838 38.1838i 0.0962250 0.0962250i
\(55\) 53.0055 0.129950
\(56\) 106.877 106.877i 0.255036 0.255036i
\(57\) 248.395 + 248.395i 0.577205 + 0.577205i
\(58\) −185.145 185.145i −0.419150 0.419150i
\(59\) 447.653i 0.987788i −0.869522 0.493894i \(-0.835573\pi\)
0.869522 0.493894i \(-0.164427\pi\)
\(60\) 10.6458i 0.0229062i
\(61\) 109.224 + 109.224i 0.229257 + 0.229257i 0.812382 0.583125i \(-0.198170\pi\)
−0.583125 + 0.812382i \(0.698170\pi\)
\(62\) 337.931 + 337.931i 0.692214 + 0.692214i
\(63\) 120.236 120.236i 0.240450 0.240450i
\(64\) −64.0000 −0.125000
\(65\) 23.0064 23.0064i 0.0439014 0.0439014i
\(66\) 358.487i 0.668586i
\(67\) −438.990 −0.800464 −0.400232 0.916414i \(-0.631071\pi\)
−0.400232 + 0.916414i \(0.631071\pi\)
\(68\) −131.564 + 247.586i −0.234625 + 0.441533i
\(69\) −559.910 −0.976888
\(70\) 33.5226i 0.0572388i
\(71\) −429.965 + 429.965i −0.718697 + 0.718697i −0.968338 0.249641i \(-0.919687\pi\)
0.249641 + 0.968338i \(0.419687\pi\)
\(72\) −72.0000 −0.117851
\(73\) −258.367 + 258.367i −0.414240 + 0.414240i −0.883213 0.468973i \(-0.844624\pi\)
0.468973 + 0.883213i \(0.344624\pi\)
\(74\) 19.9716 + 19.9716i 0.0313737 + 0.0313737i
\(75\) 263.495 + 263.495i 0.405678 + 0.405678i
\(76\) 468.378i 0.706929i
\(77\) 1128.84i 1.67069i
\(78\) 155.597 + 155.597i 0.225870 + 0.225870i
\(79\) 943.212 + 943.212i 1.34329 + 1.34329i 0.892766 + 0.450520i \(0.148761\pi\)
0.450520 + 0.892766i \(0.351239\pi\)
\(80\) 10.0370 10.0370i 0.0140271 0.0140271i
\(81\) −81.0000 −0.111111
\(82\) 679.563 679.563i 0.915186 0.915186i
\(83\) 516.632i 0.683226i −0.939841 0.341613i \(-0.889027\pi\)
0.939841 0.341613i \(-0.110973\pi\)
\(84\) −226.720 −0.294490
\(85\) −18.1955 59.4614i −0.0232186 0.0758764i
\(86\) 389.430 0.488295
\(87\) 392.752i 0.483993i
\(88\) 337.985 337.985i 0.409424 0.409424i
\(89\) −821.409 −0.978305 −0.489153 0.872198i \(-0.662694\pi\)
−0.489153 + 0.872198i \(0.662694\pi\)
\(90\) 11.2916 11.2916i 0.0132249 0.0132249i
\(91\) 489.957 + 489.957i 0.564412 + 0.564412i
\(92\) 527.888 + 527.888i 0.598219 + 0.598219i
\(93\) 716.860i 0.799300i
\(94\) 80.4897i 0.0883178i
\(95\) 73.4548 + 73.4548i 0.0793295 + 0.0793295i
\(96\) 67.8823 + 67.8823i 0.0721688 + 0.0721688i
\(97\) −939.582 + 939.582i −0.983506 + 0.983506i −0.999866 0.0163600i \(-0.994792\pi\)
0.0163600 + 0.999866i \(0.494792\pi\)
\(98\) −27.9168 −0.0287757
\(99\) 380.233 380.233i 0.386008 0.386008i
\(100\) 496.852i 0.496852i
\(101\) 798.976 0.787140 0.393570 0.919295i \(-0.371240\pi\)
0.393570 + 0.919295i \(0.371240\pi\)
\(102\) 402.150 123.060i 0.390380 0.119458i
\(103\) −59.1043 −0.0565410 −0.0282705 0.999600i \(-0.509000\pi\)
−0.0282705 + 0.999600i \(0.509000\pi\)
\(104\) 293.396i 0.276633i
\(105\) 35.5561 35.5561i 0.0330468 0.0330468i
\(106\) 81.6787 0.0748428
\(107\) 572.335 572.335i 0.517100 0.517100i −0.399593 0.916693i \(-0.630848\pi\)
0.916693 + 0.399593i \(0.130848\pi\)
\(108\) 76.3675 + 76.3675i 0.0680414 + 0.0680414i
\(109\) −1169.67 1169.67i −1.02783 1.02783i −0.999601 0.0282336i \(-0.991012\pi\)
−0.0282336 0.999601i \(-0.508988\pi\)
\(110\) 106.011i 0.0918886i
\(111\) 42.3662i 0.0362272i
\(112\) 213.754 + 213.754i 0.180338 + 0.180338i
\(113\) 339.967 + 339.967i 0.283021 + 0.283021i 0.834313 0.551292i \(-0.185865\pi\)
−0.551292 + 0.834313i \(0.685865\pi\)
\(114\) −496.790 + 496.790i −0.408146 + 0.408146i
\(115\) −165.575 −0.134261
\(116\) 370.290 370.290i 0.296384 0.296384i
\(117\) 330.071i 0.260812i
\(118\) 895.307 0.698472
\(119\) 1266.32 387.502i 0.975494 0.298507i
\(120\) −21.2917 −0.0161971
\(121\) 2238.80i 1.68205i
\(122\) −218.448 + 218.448i −0.162109 + 0.162109i
\(123\) −1441.57 −1.05677
\(124\) −675.862 + 675.862i −0.489469 + 0.489469i
\(125\) 156.334 + 156.334i 0.111864 + 0.111864i
\(126\) 240.473 + 240.473i 0.170024 + 0.170024i
\(127\) 1505.29i 1.05176i −0.850560 0.525878i \(-0.823737\pi\)
0.850560 0.525878i \(-0.176263\pi\)
\(128\) 128.000i 0.0883883i
\(129\) −413.053 413.053i −0.281917 0.281917i
\(130\) 46.0127 + 46.0127i 0.0310430 + 0.0310430i
\(131\) 799.501 799.501i 0.533227 0.533227i −0.388305 0.921531i \(-0.626939\pi\)
0.921531 + 0.388305i \(0.126939\pi\)
\(132\) −716.974 −0.472762
\(133\) −1564.34 + 1564.34i −1.01989 + 1.01989i
\(134\) 877.979i 0.566014i
\(135\) −23.9531 −0.0152708
\(136\) −495.172 263.128i −0.312211 0.165905i
\(137\) −1079.13 −0.672966 −0.336483 0.941690i \(-0.609237\pi\)
−0.336483 + 0.941690i \(0.609237\pi\)
\(138\) 1119.82i 0.690764i
\(139\) 494.859 494.859i 0.301967 0.301967i −0.539816 0.841783i \(-0.681506\pi\)
0.841783 + 0.539816i \(0.181506\pi\)
\(140\) −67.0452 −0.0404739
\(141\) 85.3722 85.3722i 0.0509903 0.0509903i
\(142\) −859.931 859.931i −0.508196 0.508196i
\(143\) 1549.43 + 1549.43i 0.906082 + 0.906082i
\(144\) 144.000i 0.0833333i
\(145\) 116.144i 0.0665187i
\(146\) −516.733 516.733i −0.292912 0.292912i
\(147\) 29.6102 + 29.6102i 0.0166137 + 0.0166137i
\(148\) −39.9432 + 39.9432i −0.0221845 + 0.0221845i
\(149\) −1357.34 −0.746293 −0.373147 0.927772i \(-0.621721\pi\)
−0.373147 + 0.927772i \(0.621721\pi\)
\(150\) −526.991 + 526.991i −0.286858 + 0.286858i
\(151\) 1762.54i 0.949889i −0.880016 0.474945i \(-0.842468\pi\)
0.880016 0.474945i \(-0.157532\pi\)
\(152\) 936.756 0.499874
\(153\) −557.069 296.019i −0.294355 0.156417i
\(154\) −2257.67 −1.18135
\(155\) 211.988i 0.109854i
\(156\) −311.194 + 311.194i −0.159714 + 0.159714i
\(157\) 64.0852 0.0325768 0.0162884 0.999867i \(-0.494815\pi\)
0.0162884 + 0.999867i \(0.494815\pi\)
\(158\) −1886.42 + 1886.42i −0.949847 + 0.949847i
\(159\) −86.6333 86.6333i −0.0432105 0.0432105i
\(160\) 20.0740 + 20.0740i 0.00991868 + 0.00991868i
\(161\) 3526.19i 1.72610i
\(162\) 162.000i 0.0785674i
\(163\) −1670.87 1670.87i −0.802902 0.802902i 0.180646 0.983548i \(-0.442181\pi\)
−0.983548 + 0.180646i \(0.942181\pi\)
\(164\) 1359.13 + 1359.13i 0.647134 + 0.647134i
\(165\) 112.442 112.442i 0.0530519 0.0530519i
\(166\) 1033.26 0.483114
\(167\) 1534.17 1534.17i 0.710885 0.710885i −0.255836 0.966720i \(-0.582351\pi\)
0.966720 + 0.255836i \(0.0823506\pi\)
\(168\) 453.440i 0.208236i
\(169\) −851.979 −0.387792
\(170\) 118.923 36.3910i 0.0536527 0.0164180i
\(171\) 1053.85 0.471286
\(172\) 778.861i 0.345277i
\(173\) 2355.07 2355.07i 1.03499 1.03499i 0.0356213 0.999365i \(-0.488659\pi\)
0.999365 0.0356213i \(-0.0113410\pi\)
\(174\) −785.503 −0.342235
\(175\) −1659.44 + 1659.44i −0.716809 + 0.716809i
\(176\) 675.970 + 675.970i 0.289506 + 0.289506i
\(177\) −949.616 949.616i −0.403263 0.403263i
\(178\) 1642.82i 0.691766i
\(179\) 3541.26i 1.47870i 0.673324 + 0.739348i \(0.264866\pi\)
−0.673324 + 0.739348i \(0.735134\pi\)
\(180\) 22.5832 + 22.5832i 0.00935142 + 0.00935142i
\(181\) 1214.57 + 1214.57i 0.498775 + 0.498775i 0.911057 0.412281i \(-0.135268\pi\)
−0.412281 + 0.911057i \(0.635268\pi\)
\(182\) −979.915 + 979.915i −0.399099 + 0.399099i
\(183\) 463.398 0.187188
\(184\) −1055.78 + 1055.78i −0.423005 + 0.423005i
\(185\) 12.5284i 0.00497897i
\(186\) 1433.72 0.565190
\(187\) 4004.59 1225.43i 1.56602 0.479209i
\(188\) −160.979 −0.0624501
\(189\) 510.120i 0.196327i
\(190\) −146.910 + 146.910i −0.0560944 + 0.0560944i
\(191\) 1714.57 0.649538 0.324769 0.945793i \(-0.394713\pi\)
0.324769 + 0.945793i \(0.394713\pi\)
\(192\) −135.765 + 135.765i −0.0510310 + 0.0510310i
\(193\) 2471.05 + 2471.05i 0.921605 + 0.921605i 0.997143 0.0755380i \(-0.0240674\pi\)
−0.0755380 + 0.997143i \(0.524067\pi\)
\(194\) −1879.16 1879.16i −0.695444 0.695444i
\(195\) 97.6078i 0.0358453i
\(196\) 55.8336i 0.0203475i
\(197\) 1958.83 + 1958.83i 0.708430 + 0.708430i 0.966205 0.257775i \(-0.0829893\pi\)
−0.257775 + 0.966205i \(0.582989\pi\)
\(198\) 760.466 + 760.466i 0.272949 + 0.272949i
\(199\) 2353.94 2353.94i 0.838525 0.838525i −0.150140 0.988665i \(-0.547972\pi\)
0.988665 + 0.150140i \(0.0479723\pi\)
\(200\) 993.704 0.351327
\(201\) −931.238 + 931.238i −0.326788 + 0.326788i
\(202\) 1597.95i 0.556592i
\(203\) −2473.46 −0.855188
\(204\) 246.120 + 804.299i 0.0844698 + 0.276040i
\(205\) −426.298 −0.145239
\(206\) 118.209i 0.0399805i
\(207\) −1187.75 + 1187.75i −0.398813 + 0.398813i
\(208\) 586.792 0.195609
\(209\) −4947.02 + 4947.02i −1.63728 + 1.63728i
\(210\) 71.1121 + 71.1121i 0.0233676 + 0.0233676i
\(211\) −2737.29 2737.29i −0.893092 0.893092i 0.101721 0.994813i \(-0.467565\pi\)
−0.994813 + 0.101721i \(0.967565\pi\)
\(212\) 163.357i 0.0529218i
\(213\) 1824.19i 0.586814i
\(214\) 1144.67 + 1144.67i 0.365645 + 0.365645i
\(215\) −122.147 122.147i −0.0387459 0.0387459i
\(216\) −152.735 + 152.735i −0.0481125 + 0.0481125i
\(217\) 4514.62 1.41232
\(218\) 2339.34 2339.34i 0.726789 0.726789i
\(219\) 1096.16i 0.338226i
\(220\) −212.022 −0.0649751
\(221\) 1206.26 2270.03i 0.367158 0.690943i
\(222\) 84.7324 0.0256165
\(223\) 5294.36i 1.58985i −0.606708 0.794925i \(-0.707510\pi\)
0.606708 0.794925i \(-0.292490\pi\)
\(224\) −427.508 + 427.508i −0.127518 + 0.127518i
\(225\) 1117.92 0.331235
\(226\) −679.934 + 679.934i −0.200126 + 0.200126i
\(227\) 3694.32 + 3694.32i 1.08018 + 1.08018i 0.996492 + 0.0836858i \(0.0266692\pi\)
0.0836858 + 0.996492i \(0.473331\pi\)
\(228\) −993.579 993.579i −0.288603 0.288603i
\(229\) 1878.50i 0.542074i 0.962569 + 0.271037i \(0.0873666\pi\)
−0.962569 + 0.271037i \(0.912633\pi\)
\(230\) 331.151i 0.0949367i
\(231\) 2394.62 + 2394.62i 0.682055 + 0.682055i
\(232\) 740.580 + 740.580i 0.209575 + 0.209575i
\(233\) 1174.15 1174.15i 0.330133 0.330133i −0.522504 0.852637i \(-0.675002\pi\)
0.852637 + 0.522504i \(0.175002\pi\)
\(234\) 660.141 0.184422
\(235\) 25.2461 25.2461i 0.00700797 0.00700797i
\(236\) 1790.61i 0.493894i
\(237\) 4001.71 1.09679
\(238\) 775.005 + 2532.65i 0.211076 + 0.689779i
\(239\) −5017.17 −1.35788 −0.678941 0.734192i \(-0.737561\pi\)
−0.678941 + 0.734192i \(0.737561\pi\)
\(240\) 42.5834i 0.0114531i
\(241\) −4152.16 + 4152.16i −1.10981 + 1.10981i −0.116635 + 0.993175i \(0.537211\pi\)
−0.993175 + 0.116635i \(0.962789\pi\)
\(242\) −4477.61 −1.18939
\(243\) −171.827 + 171.827i −0.0453609 + 0.0453609i
\(244\) −436.896 436.896i −0.114629 0.114629i
\(245\) 8.75628 + 8.75628i 0.00228334 + 0.00228334i
\(246\) 2883.14i 0.747246i
\(247\) 4294.38i 1.10626i
\(248\) −1351.72 1351.72i −0.346107 0.346107i
\(249\) −1095.94 1095.94i −0.278926 0.278926i
\(250\) −312.669 + 312.669i −0.0790996 + 0.0790996i
\(251\) −6899.16 −1.73495 −0.867473 0.497485i \(-0.834257\pi\)
−0.867473 + 0.497485i \(0.834257\pi\)
\(252\) −480.946 + 480.946i −0.120225 + 0.120225i
\(253\) 11151.1i 2.77101i
\(254\) 3010.58 0.743704
\(255\) −164.735 87.5382i −0.0404554 0.0214975i
\(256\) 256.000 0.0625000
\(257\) 1910.33i 0.463669i −0.972755 0.231835i \(-0.925527\pi\)
0.972755 0.231835i \(-0.0744728\pi\)
\(258\) 826.107 826.107i 0.199346 0.199346i
\(259\) 266.813 0.0640114
\(260\) −92.0255 + 92.0255i −0.0219507 + 0.0219507i
\(261\) 833.152 + 833.152i 0.197589 + 0.197589i
\(262\) 1599.00 + 1599.00i 0.377048 + 0.377048i
\(263\) 2690.00i 0.630693i 0.948977 + 0.315346i \(0.102121\pi\)
−0.948977 + 0.315346i \(0.897879\pi\)
\(264\) 1433.95i 0.334293i
\(265\) −25.6190 25.6190i −0.00593873 0.00593873i
\(266\) −3128.67 3128.67i −0.721170 0.721170i
\(267\) −1742.47 + 1742.47i −0.399391 + 0.399391i
\(268\) 1755.96 0.400232
\(269\) −1335.48 + 1335.48i −0.302698 + 0.302698i −0.842069 0.539370i \(-0.818662\pi\)
0.539370 + 0.842069i \(0.318662\pi\)
\(270\) 47.9063i 0.0107981i
\(271\) 4172.66 0.935317 0.467659 0.883909i \(-0.345098\pi\)
0.467659 + 0.883909i \(0.345098\pi\)
\(272\) 526.256 990.344i 0.117312 0.220766i
\(273\) 2078.71 0.460840
\(274\) 2158.26i 0.475859i
\(275\) −5247.76 + 5247.76i −1.15073 + 1.15073i
\(276\) 2239.64 0.488444
\(277\) −523.661 + 523.661i −0.113588 + 0.113588i −0.761616 0.648028i \(-0.775594\pi\)
0.648028 + 0.761616i \(0.275594\pi\)
\(278\) 989.719 + 989.719i 0.213523 + 0.213523i
\(279\) −1520.69 1520.69i −0.326313 0.326313i
\(280\) 134.090i 0.0286194i
\(281\) 325.056i 0.0690078i −0.999405 0.0345039i \(-0.989015\pi\)
0.999405 0.0345039i \(-0.0109851\pi\)
\(282\) 170.744 + 170.744i 0.0360556 + 0.0360556i
\(283\) 3413.26 + 3413.26i 0.716952 + 0.716952i 0.967980 0.251028i \(-0.0807686\pi\)
−0.251028 + 0.967980i \(0.580769\pi\)
\(284\) 1719.86 1719.86i 0.359349 0.359349i
\(285\) 311.642 0.0647723
\(286\) −3098.86 + 3098.86i −0.640697 + 0.640697i
\(287\) 9078.70i 1.86724i
\(288\) 288.000 0.0589256
\(289\) −2749.36 4071.68i −0.559609 0.828756i
\(290\) −232.287 −0.0470358
\(291\) 3986.31i 0.803029i
\(292\) 1033.47 1033.47i 0.207120 0.207120i
\(293\) −1038.13 −0.206991 −0.103496 0.994630i \(-0.533003\pi\)
−0.103496 + 0.994630i \(0.533003\pi\)
\(294\) −59.2205 + 59.2205i −0.0117476 + 0.0117476i
\(295\) −280.818 280.818i −0.0554233 0.0554233i
\(296\) −79.8865 79.8865i −0.0156868 0.0156868i
\(297\) 1613.19i 0.315175i
\(298\) 2714.68i 0.527709i
\(299\) −4840.01 4840.01i −0.936138 0.936138i
\(300\) −1053.98 1053.98i −0.202839 0.202839i
\(301\) 2601.32 2601.32i 0.498131 0.498131i
\(302\) 3525.07 0.671673
\(303\) 1694.88 1694.88i 0.321348 0.321348i
\(304\) 1873.51i 0.353465i
\(305\) 137.035 0.0257266
\(306\) 592.038 1114.14i 0.110603 0.208141i
\(307\) −6737.14 −1.25247 −0.626236 0.779634i \(-0.715405\pi\)
−0.626236 + 0.779634i \(0.715405\pi\)
\(308\) 4515.34i 0.835343i
\(309\) −125.379 + 125.379i −0.0230828 + 0.0230828i
\(310\) 423.976 0.0776782
\(311\) −3357.08 + 3357.08i −0.612098 + 0.612098i −0.943492 0.331395i \(-0.892481\pi\)
0.331395 + 0.943492i \(0.392481\pi\)
\(312\) −622.387 622.387i −0.112935 0.112935i
\(313\) 4263.10 + 4263.10i 0.769854 + 0.769854i 0.978081 0.208226i \(-0.0667691\pi\)
−0.208226 + 0.978081i \(0.566769\pi\)
\(314\) 128.170i 0.0230353i
\(315\) 150.852i 0.0269826i
\(316\) −3772.85 3772.85i −0.671643 0.671643i
\(317\) −4955.80 4955.80i −0.878062 0.878062i 0.115272 0.993334i \(-0.463226\pi\)
−0.993334 + 0.115272i \(0.963226\pi\)
\(318\) 173.267 173.267i 0.0305544 0.0305544i
\(319\) −7822.02 −1.37288
\(320\) −40.1480 + 40.1480i −0.00701356 + 0.00701356i
\(321\) 2428.21i 0.422211i
\(322\) 7052.38 1.22054
\(323\) 7247.74 + 3851.36i 1.24853 + 0.663453i
\(324\) 324.000 0.0555556
\(325\) 4555.45i 0.777511i
\(326\) 3341.75 3341.75i 0.567737 0.567737i
\(327\) −4962.49 −0.839224
\(328\) −2718.25 + 2718.25i −0.457593 + 0.457593i
\(329\) 537.655 + 537.655i 0.0900970 + 0.0900970i
\(330\) 224.883 + 224.883i 0.0375134 + 0.0375134i
\(331\) 5517.53i 0.916227i −0.888894 0.458113i \(-0.848525\pi\)
0.888894 0.458113i \(-0.151475\pi\)
\(332\) 2066.53i 0.341613i
\(333\) −89.8723 89.8723i −0.0147897 0.0147897i
\(334\) 3068.34 + 3068.34i 0.502671 + 0.502671i
\(335\) −275.384 + 275.384i −0.0449129 + 0.0449129i
\(336\) 906.880 0.147245
\(337\) −4890.83 + 4890.83i −0.790566 + 0.790566i −0.981586 0.191020i \(-0.938820\pi\)
0.191020 + 0.981586i \(0.438820\pi\)
\(338\) 1703.96i 0.274211i
\(339\) 1442.36 0.231086
\(340\) 72.7820 + 237.846i 0.0116093 + 0.0379382i
\(341\) 14276.9 2.26727
\(342\) 2107.70i 0.333250i
\(343\) 4395.87 4395.87i 0.691996 0.691996i
\(344\) −1557.72 −0.244147
\(345\) −351.239 + 351.239i −0.0548117 + 0.0548117i
\(346\) 4710.14 + 4710.14i 0.731846 + 0.731846i
\(347\) −2668.86 2668.86i −0.412887 0.412887i 0.469856 0.882743i \(-0.344306\pi\)
−0.882743 + 0.469856i \(0.844306\pi\)
\(348\) 1571.01i 0.241997i
\(349\) 529.191i 0.0811660i −0.999176 0.0405830i \(-0.987078\pi\)
0.999176 0.0405830i \(-0.0129215\pi\)
\(350\) −3318.87 3318.87i −0.506861 0.506861i
\(351\) −700.186 700.186i −0.106476 0.106476i
\(352\) −1351.94 + 1351.94i −0.204712 + 0.204712i
\(353\) −3779.39 −0.569849 −0.284924 0.958550i \(-0.591968\pi\)
−0.284924 + 0.958550i \(0.591968\pi\)
\(354\) 1899.23 1899.23i 0.285150 0.285150i
\(355\) 539.445i 0.0806501i
\(356\) 3285.64 0.489153
\(357\) 1864.26 3508.30i 0.276379 0.520109i
\(358\) −7082.53 −1.04560
\(359\) 3764.01i 0.553362i 0.960962 + 0.276681i \(0.0892346\pi\)
−0.960962 + 0.276681i \(0.910765\pi\)
\(360\) −45.1665 + 45.1665i −0.00661245 + 0.00661245i
\(361\) −6852.11 −0.998996
\(362\) −2429.14 + 2429.14i −0.352687 + 0.352687i
\(363\) 4749.22 + 4749.22i 0.686692 + 0.686692i
\(364\) −1959.83 1959.83i −0.282206 0.282206i
\(365\) 324.153i 0.0464848i
\(366\) 926.795i 0.132362i
\(367\) 5235.63 + 5235.63i 0.744680 + 0.744680i 0.973475 0.228794i \(-0.0734784\pi\)
−0.228794 + 0.973475i \(0.573478\pi\)
\(368\) −2111.55 2111.55i −0.299110 0.299110i
\(369\) −3058.04 + 3058.04i −0.431423 + 0.431423i
\(370\) 25.0569 0.00352066
\(371\) 545.598 545.598i 0.0763505 0.0763505i
\(372\) 2867.44i 0.399650i
\(373\) 11940.8 1.65756 0.828779 0.559576i \(-0.189036\pi\)
0.828779 + 0.559576i \(0.189036\pi\)
\(374\) 2450.85 + 8009.19i 0.338852 + 1.10734i
\(375\) 663.270 0.0913364
\(376\) 321.959i 0.0441589i
\(377\) −3395.05 + 3395.05i −0.463804 + 0.463804i
\(378\) 1020.24 0.138824
\(379\) 6453.66 6453.66i 0.874676 0.874676i −0.118302 0.992978i \(-0.537745\pi\)
0.992978 + 0.118302i \(0.0377450\pi\)
\(380\) −293.819 293.819i −0.0396647 0.0396647i
\(381\) −3193.21 3193.21i −0.429378 0.429378i
\(382\) 3429.14i 0.459293i
\(383\) 9261.13i 1.23557i 0.786349 + 0.617783i \(0.211969\pi\)
−0.786349 + 0.617783i \(0.788031\pi\)
\(384\) −271.529 271.529i −0.0360844 0.0360844i
\(385\) 708.133 + 708.133i 0.0937397 + 0.0937397i
\(386\) −4942.09 + 4942.09i −0.651673 + 0.651673i
\(387\) −1752.44 −0.230184
\(388\) 3758.33 3758.33i 0.491753 0.491753i
\(389\) 1854.73i 0.241745i −0.992668 0.120872i \(-0.961431\pi\)
0.992668 0.120872i \(-0.0385692\pi\)
\(390\) 195.216 0.0253465
\(391\) −12509.3 + 3827.92i −1.61796 + 0.495105i
\(392\) 111.667 0.0143879
\(393\) 3391.99i 0.435378i
\(394\) −3917.66 + 3917.66i −0.500936 + 0.500936i
\(395\) 1183.38 0.150740
\(396\) −1520.93 + 1520.93i −0.193004 + 0.193004i
\(397\) 6661.82 + 6661.82i 0.842185 + 0.842185i 0.989143 0.146958i \(-0.0469483\pi\)
−0.146958 + 0.989143i \(0.546948\pi\)
\(398\) 4707.88 + 4707.88i 0.592927 + 0.592927i
\(399\) 6636.92i 0.832736i
\(400\) 1987.41i 0.248426i
\(401\) 2394.37 + 2394.37i 0.298178 + 0.298178i 0.840300 0.542122i \(-0.182379\pi\)
−0.542122 + 0.840300i \(0.682379\pi\)
\(402\) −1862.48 1862.48i −0.231074 0.231074i
\(403\) 6196.73 6196.73i 0.765958 0.765958i
\(404\) −3195.91 −0.393570
\(405\) −50.8123 + 50.8123i −0.00623428 + 0.00623428i
\(406\) 4946.93i 0.604709i
\(407\) 843.763 0.102761
\(408\) −1608.60 + 492.240i −0.195190 + 0.0597292i
\(409\) −9820.58 −1.18728 −0.593638 0.804732i \(-0.702309\pi\)
−0.593638 + 0.804732i \(0.702309\pi\)
\(410\) 852.597i 0.102699i
\(411\) −2289.18 + 2289.18i −0.274737 + 0.274737i
\(412\) 236.417 0.0282705
\(413\) 5980.48 5980.48i 0.712542 0.712542i
\(414\) −2375.50 2375.50i −0.282003 0.282003i
\(415\) −324.090 324.090i −0.0383348 0.0383348i
\(416\) 1173.58i 0.138317i
\(417\) 2099.51i 0.246555i
\(418\) −9894.04 9894.04i −1.15773 1.15773i
\(419\) 7003.20 + 7003.20i 0.816537 + 0.816537i 0.985604 0.169068i \(-0.0540757\pi\)
−0.169068 + 0.985604i \(0.554076\pi\)
\(420\) −142.224 + 142.224i −0.0165234 + 0.0165234i
\(421\) 4639.35 0.537074 0.268537 0.963269i \(-0.413460\pi\)
0.268537 + 0.963269i \(0.413460\pi\)
\(422\) 5474.57 5474.57i 0.631512 0.631512i
\(423\) 362.204i 0.0416334i
\(424\) −326.715 −0.0374214
\(425\) 7688.35 + 4085.49i 0.877505 + 0.466295i
\(426\) −3648.38 −0.414940
\(427\) 2918.38i 0.330750i
\(428\) −2289.34 + 2289.34i −0.258550 + 0.258550i
\(429\) 6573.67 0.739813
\(430\) 244.294 244.294i 0.0273975 0.0273975i
\(431\) 1789.91 + 1789.91i 0.200039 + 0.200039i 0.800017 0.599978i \(-0.204824\pi\)
−0.599978 + 0.800017i \(0.704824\pi\)
\(432\) −305.470 305.470i −0.0340207 0.0340207i
\(433\) 7126.68i 0.790962i 0.918474 + 0.395481i \(0.129422\pi\)
−0.918474 + 0.395481i \(0.870578\pi\)
\(434\) 9029.25i 0.998658i
\(435\) 246.378 + 246.378i 0.0271561 + 0.0271561i
\(436\) 4678.68 + 4678.68i 0.513917 + 0.513917i
\(437\) 15453.2 15453.2i 1.69160 1.69160i
\(438\) −2192.31 −0.239162
\(439\) −11492.7 + 11492.7i −1.24947 + 1.24947i −0.293509 + 0.955956i \(0.594823\pi\)
−0.955956 + 0.293509i \(0.905177\pi\)
\(440\) 424.044i 0.0459443i
\(441\) 125.626 0.0135650
\(442\) 4540.05 + 2412.53i 0.488571 + 0.259620i
\(443\) 9083.04 0.974149 0.487075 0.873360i \(-0.338064\pi\)
0.487075 + 0.873360i \(0.338064\pi\)
\(444\) 169.465i 0.0181136i
\(445\) −515.280 + 515.280i −0.0548912 + 0.0548912i
\(446\) 10588.7 1.12419
\(447\) −2879.35 + 2879.35i −0.304673 + 0.304673i
\(448\) −855.015 855.015i −0.0901689 0.0901689i
\(449\) −1287.46 1287.46i −0.135321 0.135321i 0.636202 0.771523i \(-0.280505\pi\)
−0.771523 + 0.636202i \(0.780505\pi\)
\(450\) 2235.83i 0.234218i
\(451\) 28710.3i 2.99759i
\(452\) −1359.87 1359.87i −0.141511 0.141511i
\(453\) −3738.91 3738.91i −0.387791 0.387791i
\(454\) −7388.63 + 7388.63i −0.763801 + 0.763801i
\(455\) 614.712 0.0633366
\(456\) 1987.16 1987.16i 0.204073 0.204073i
\(457\) 16585.9i 1.69772i −0.528621 0.848858i \(-0.677291\pi\)
0.528621 0.848858i \(-0.322709\pi\)
\(458\) −3757.01 −0.383304
\(459\) −1809.67 + 553.770i −0.184027 + 0.0563132i
\(460\) 662.302 0.0671304
\(461\) 7357.94i 0.743370i −0.928359 0.371685i \(-0.878780\pi\)
0.928359 0.371685i \(-0.121220\pi\)
\(462\) −4789.25 + 4789.25i −0.482286 + 0.482286i
\(463\) 14132.1 1.41852 0.709258 0.704949i \(-0.249030\pi\)
0.709258 + 0.704949i \(0.249030\pi\)
\(464\) −1481.16 + 1481.16i −0.148192 + 0.148192i
\(465\) −449.695 449.695i −0.0448475 0.0448475i
\(466\) 2348.30 + 2348.30i 0.233439 + 0.233439i
\(467\) 3807.01i 0.377232i −0.982051 0.188616i \(-0.939600\pi\)
0.982051 0.188616i \(-0.0604002\pi\)
\(468\) 1320.28i 0.130406i
\(469\) −5864.73 5864.73i −0.577416 0.577416i
\(470\) 50.4922 + 50.4922i 0.00495538 + 0.00495538i
\(471\) 135.945 135.945i 0.0132994 0.0132994i
\(472\) −3581.23 −0.349236
\(473\) 8226.35 8226.35i 0.799678 0.799678i
\(474\) 8003.42i 0.775547i
\(475\) −14544.7 −1.40496
\(476\) −5065.30 + 1550.01i −0.487747 + 0.149253i
\(477\) −367.554 −0.0352812
\(478\) 10034.3i 0.960168i
\(479\) −9933.89 + 9933.89i −0.947581 + 0.947581i −0.998693 0.0511122i \(-0.983723\pi\)
0.0511122 + 0.998693i \(0.483723\pi\)
\(480\) 85.1667 0.00809857
\(481\) 366.225 366.225i 0.0347160 0.0347160i
\(482\) −8304.32 8304.32i −0.784754 0.784754i
\(483\) −7480.18 7480.18i −0.704679 0.704679i
\(484\) 8955.21i 0.841023i
\(485\) 1178.82i 0.110366i
\(486\) −343.654 343.654i −0.0320750 0.0320750i
\(487\) −3604.14 3604.14i −0.335358 0.335358i 0.519259 0.854617i \(-0.326208\pi\)
−0.854617 + 0.519259i \(0.826208\pi\)
\(488\) 873.791 873.791i 0.0810546 0.0810546i
\(489\) −7088.92 −0.655567
\(490\) −17.5126 + 17.5126i −0.00161456 + 0.00161456i
\(491\) 6390.91i 0.587409i 0.955896 + 0.293704i \(0.0948882\pi\)
−0.955896 + 0.293704i \(0.905112\pi\)
\(492\) 5766.29 0.528383
\(493\) 2685.11 + 8774.72i 0.245297 + 0.801609i
\(494\) −8588.77 −0.782241
\(495\) 477.049i 0.0433167i
\(496\) 2703.45 2703.45i 0.244735 0.244735i
\(497\) −11488.3 −1.03687
\(498\) 2191.89 2191.89i 0.197230 0.197230i
\(499\) 3683.71 + 3683.71i 0.330472 + 0.330472i 0.852766 0.522293i \(-0.174923\pi\)
−0.522293 + 0.852766i \(0.674923\pi\)
\(500\) −625.337 625.337i −0.0559319 0.0559319i
\(501\) 6508.94i 0.580435i
\(502\) 13798.3i 1.22679i
\(503\) 7846.34 + 7846.34i 0.695529 + 0.695529i 0.963443 0.267914i \(-0.0863344\pi\)
−0.267914 + 0.963443i \(0.586334\pi\)
\(504\) −961.892 961.892i −0.0850121 0.0850121i
\(505\) 501.208 501.208i 0.0441652 0.0441652i
\(506\) 22302.3 1.95940
\(507\) −1807.32 + 1807.32i −0.158316 + 0.158316i
\(508\) 6021.17i 0.525878i
\(509\) −2967.70 −0.258430 −0.129215 0.991617i \(-0.541246\pi\)
−0.129215 + 0.991617i \(0.541246\pi\)
\(510\) 175.076 329.470i 0.0152010 0.0286063i
\(511\) −6903.36 −0.597625
\(512\) 512.000i 0.0441942i
\(513\) 2235.55 2235.55i 0.192402 0.192402i
\(514\) 3820.66 0.327864
\(515\) −37.0769 + 37.0769i −0.00317243 + 0.00317243i
\(516\) 1652.21 + 1652.21i 0.140959 + 0.140959i
\(517\) 1700.27 + 1700.27i 0.144638 + 0.144638i
\(518\) 533.626i 0.0452629i
\(519\) 9991.72i 0.845063i
\(520\) −184.051 184.051i −0.0155215 0.0155215i
\(521\) 212.645 + 212.645i 0.0178813 + 0.0178813i 0.715991 0.698110i \(-0.245975\pi\)
−0.698110 + 0.715991i \(0.745975\pi\)
\(522\) −1666.30 + 1666.30i −0.139717 + 0.139717i
\(523\) −6172.53 −0.516073 −0.258036 0.966135i \(-0.583075\pi\)
−0.258036 + 0.966135i \(0.583075\pi\)
\(524\) −3198.00 + 3198.00i −0.266613 + 0.266613i
\(525\) 7040.39i 0.585272i
\(526\) −5379.99 −0.445967
\(527\) −4900.93 16015.8i −0.405100 1.32383i
\(528\) 2867.90 0.236381
\(529\) 22666.3i 1.86293i
\(530\) 51.2380 51.2380i 0.00419932 0.00419932i
\(531\) −4028.88 −0.329263
\(532\) 6257.35 6257.35i 0.509944 0.509944i
\(533\) −12461.3 12461.3i −1.01268 1.01268i
\(534\) −3484.94 3484.94i −0.282412 0.282412i
\(535\) 718.066i 0.0580274i
\(536\) 3511.92i 0.283007i
\(537\) 7512.15 + 7512.15i 0.603675 + 0.603675i
\(538\) −2670.97 2670.97i −0.214040 0.214040i
\(539\) −589.716 + 589.716i −0.0471259 + 0.0471259i
\(540\) 95.8126 0.00763540
\(541\) −5979.83 + 5979.83i −0.475218 + 0.475218i −0.903599 0.428380i \(-0.859084\pi\)
0.428380 + 0.903599i \(0.359084\pi\)
\(542\) 8345.32i 0.661369i
\(543\) 5152.99 0.407248
\(544\) 1980.69 + 1052.51i 0.156105 + 0.0829524i
\(545\) −1467.50 −0.115341
\(546\) 4157.43i 0.325863i
\(547\) −2674.04 + 2674.04i −0.209019 + 0.209019i −0.803851 0.594831i \(-0.797219\pi\)
0.594831 + 0.803851i \(0.297219\pi\)
\(548\) 4316.52 0.336483
\(549\) 983.015 983.015i 0.0764190 0.0764190i
\(550\) −10495.5 10495.5i −0.813692 0.813692i
\(551\) −10839.7 10839.7i −0.838090 0.838090i
\(552\) 4479.28i 0.345382i
\(553\) 25201.9i 1.93796i
\(554\) −1047.32 1047.32i −0.0803186 0.0803186i
\(555\) −26.5768 26.5768i −0.00203266 0.00203266i
\(556\) −1979.44 + 1979.44i −0.150984 + 0.150984i
\(557\) −24045.8 −1.82918 −0.914589 0.404385i \(-0.867485\pi\)
−0.914589 + 0.404385i \(0.867485\pi\)
\(558\) 3041.38 3041.38i 0.230738 0.230738i
\(559\) 7141.09i 0.540315i
\(560\) 268.181 0.0202370
\(561\) 5895.50 11094.5i 0.443687 0.834959i
\(562\) 650.111 0.0487959
\(563\) 13789.7i 1.03227i 0.856507 + 0.516135i \(0.172630\pi\)
−0.856507 + 0.516135i \(0.827370\pi\)
\(564\) −341.489 + 341.489i −0.0254952 + 0.0254952i
\(565\) 426.531 0.0317598
\(566\) −6826.53 + 6826.53i −0.506962 + 0.506962i
\(567\) −1082.13 1082.13i −0.0801501 0.0801501i
\(568\) 3439.72 + 3439.72i 0.254098 + 0.254098i
\(569\) 19638.1i 1.44687i 0.690390 + 0.723437i \(0.257439\pi\)
−0.690390 + 0.723437i \(0.742561\pi\)
\(570\) 623.285i 0.0458009i
\(571\) 10800.7 + 10800.7i 0.791585 + 0.791585i 0.981752 0.190167i \(-0.0609029\pi\)
−0.190167 + 0.981752i \(0.560903\pi\)
\(572\) −6197.71 6197.71i −0.453041 0.453041i
\(573\) 3637.15 3637.15i 0.265173 0.265173i
\(574\) 18157.4 1.32034
\(575\) 16392.6 16392.6i 1.18891 1.18891i
\(576\) 576.000i 0.0416667i
\(577\) −11093.2 −0.800371 −0.400186 0.916434i \(-0.631054\pi\)
−0.400186 + 0.916434i \(0.631054\pi\)
\(578\) 8143.36 5498.72i 0.586019 0.395704i
\(579\) 10483.8 0.752487
\(580\) 464.575i 0.0332593i
\(581\) 6902.01 6902.01i 0.492846 0.492846i
\(582\) −7972.62 −0.567828
\(583\) 1725.38 1725.38i 0.122570 0.122570i
\(584\) 2066.93 + 2066.93i 0.146456 + 0.146456i
\(585\) −207.057 207.057i −0.0146338 0.0146338i
\(586\) 2076.27i 0.146365i
\(587\) 9450.73i 0.664520i −0.943188 0.332260i \(-0.892189\pi\)
0.943188 0.332260i \(-0.107811\pi\)
\(588\) −118.441 118.441i −0.00830684 0.00830684i
\(589\) 19784.9 + 19784.9i 1.38408 + 1.38408i
\(590\) 561.637 561.637i 0.0391902 0.0391902i
\(591\) 8310.60 0.578431
\(592\) 159.773 159.773i 0.0110923 0.0110923i
\(593\) 15181.4i 1.05131i 0.850698 + 0.525655i \(0.176180\pi\)
−0.850698 + 0.525655i \(0.823820\pi\)
\(594\) 3226.38 0.222862
\(595\) 551.296 1037.47i 0.0379848 0.0714823i
\(596\) 5429.36 0.373147
\(597\) 9986.93i 0.684653i
\(598\) 9680.03 9680.03i 0.661949 0.661949i
\(599\) −3015.99 −0.205726 −0.102863 0.994696i \(-0.532800\pi\)
−0.102863 + 0.994696i \(0.532800\pi\)
\(600\) 2107.96 2107.96i 0.143429 0.143429i
\(601\) −8784.18 8784.18i −0.596197 0.596197i 0.343102 0.939298i \(-0.388522\pi\)
−0.939298 + 0.343102i \(0.888522\pi\)
\(602\) 5202.64 + 5202.64i 0.352232 + 0.352232i
\(603\) 3950.91i 0.266821i
\(604\) 7050.15i 0.474945i
\(605\) 1404.43 + 1404.43i 0.0943771 + 0.0943771i
\(606\) 3389.77 + 3389.77i 0.227228 + 0.227228i
\(607\) 1724.59 1724.59i 0.115319 0.115319i −0.647092 0.762412i \(-0.724015\pi\)
0.762412 + 0.647092i \(0.224015\pi\)
\(608\) −3747.02 −0.249937
\(609\) −5247.01 + 5247.01i −0.349129 + 0.349129i
\(610\) 274.070i 0.0181914i
\(611\) 1475.96 0.0977266
\(612\) 2228.28 + 1184.08i 0.147178 + 0.0782083i
\(613\) 14288.9 0.941477 0.470738 0.882273i \(-0.343988\pi\)
0.470738 + 0.882273i \(0.343988\pi\)
\(614\) 13474.3i 0.885631i
\(615\) −904.316 + 904.316i −0.0592935 + 0.0592935i
\(616\) 9030.69 0.590677
\(617\) 7112.45 7112.45i 0.464078 0.464078i −0.435911 0.899990i \(-0.643574\pi\)
0.899990 + 0.435911i \(0.143574\pi\)
\(618\) −250.758 250.758i −0.0163220 0.0163220i
\(619\) 18525.5 + 18525.5i 1.20291 + 1.20291i 0.973277 + 0.229634i \(0.0737529\pi\)
0.229634 + 0.973277i \(0.426247\pi\)
\(620\) 847.952i 0.0549268i
\(621\) 5039.19i 0.325629i
\(622\) −6714.15 6714.15i −0.432818 0.432818i
\(623\) −10973.7 10973.7i −0.705702 0.705702i
\(624\) 1244.77 1244.77i 0.0798572 0.0798572i
\(625\) −15330.5 −0.981151
\(626\) −8526.19 + 8526.19i −0.544369 + 0.544369i
\(627\) 20988.4i 1.33684i
\(628\) −256.341 −0.0162884
\(629\) −289.643 946.530i −0.0183606 0.0600010i
\(630\) 301.703 0.0190796
\(631\) 2855.15i 0.180129i 0.995936 + 0.0900647i \(0.0287074\pi\)
−0.995936 + 0.0900647i \(0.971293\pi\)
\(632\) 7545.69 7545.69i 0.474923 0.474923i
\(633\) −11613.3 −0.729207
\(634\) 9911.61 9911.61i 0.620884 0.620884i
\(635\) −944.288 944.288i −0.0590125 0.0590125i
\(636\) 346.533 + 346.533i 0.0216052 + 0.0216052i
\(637\) 511.918i 0.0318413i
\(638\) 15644.0i 0.970773i
\(639\) 3869.69 + 3869.69i 0.239566 + 0.239566i
\(640\) −80.2960 80.2960i −0.00495934 0.00495934i
\(641\) −8924.27 + 8924.27i −0.549902 + 0.549902i −0.926412 0.376510i \(-0.877124\pi\)
0.376510 + 0.926412i \(0.377124\pi\)
\(642\) 4856.42 0.298548
\(643\) −12572.4 + 12572.4i −0.771084 + 0.771084i −0.978296 0.207212i \(-0.933561\pi\)
0.207212 + 0.978296i \(0.433561\pi\)
\(644\) 14104.8i 0.863052i
\(645\) −518.227 −0.0316359
\(646\) −7702.71 + 14495.5i −0.469132 + 0.882844i
\(647\) −2887.24 −0.175439 −0.0877197 0.996145i \(-0.527958\pi\)
−0.0877197 + 0.996145i \(0.527958\pi\)
\(648\) 648.000i 0.0392837i
\(649\) 18912.5 18912.5i 1.14388 1.14388i
\(650\) −9110.90 −0.549783
\(651\) 9576.96 9576.96i 0.576576 0.576576i
\(652\) 6683.50 + 6683.50i 0.401451 + 0.401451i
\(653\) 18139.5 + 18139.5i 1.08706 + 1.08706i 0.995829 + 0.0912348i \(0.0290814\pi\)
0.0912348 + 0.995829i \(0.470919\pi\)
\(654\) 9924.97i 0.593421i
\(655\) 1003.07i 0.0598371i
\(656\) −5436.51 5436.51i −0.323567 0.323567i
\(657\) 2325.30 + 2325.30i 0.138080 + 0.138080i
\(658\) −1075.31 + 1075.31i −0.0637082 + 0.0637082i
\(659\) −22255.0 −1.31552 −0.657762 0.753226i \(-0.728497\pi\)
−0.657762 + 0.753226i \(0.728497\pi\)
\(660\) −449.766 + 449.766i −0.0265260 + 0.0265260i
\(661\) 5678.09i 0.334118i −0.985947 0.167059i \(-0.946573\pi\)
0.985947 0.167059i \(-0.0534271\pi\)
\(662\) 11035.1 0.647870
\(663\) −2256.58 7374.32i −0.132185 0.431968i
\(664\) −4133.06 −0.241557
\(665\) 1962.65i 0.114449i
\(666\) 179.745 179.745i 0.0104579 0.0104579i
\(667\) 24434.0 1.41842
\(668\) −6136.69 + 6136.69i −0.355442 + 0.355442i
\(669\) −11231.0 11231.0i −0.649054 0.649054i
\(670\) −550.767 550.767i −0.0317582 0.0317582i
\(671\) 9229.00i 0.530971i
\(672\) 1813.76i 0.104118i
\(673\) −4858.59 4858.59i −0.278284 0.278284i 0.554140 0.832423i \(-0.313047\pi\)
−0.832423 + 0.554140i \(0.813047\pi\)
\(674\) −9781.66 9781.66i −0.559014 0.559014i
\(675\) 2371.46 2371.46i 0.135226 0.135226i
\(676\) 3407.92 0.193896
\(677\) −7021.42 + 7021.42i −0.398604 + 0.398604i −0.877741 0.479136i \(-0.840950\pi\)
0.479136 + 0.877741i \(0.340950\pi\)
\(678\) 2884.71i 0.163402i
\(679\) −25104.9 −1.41891
\(680\) −475.691 + 145.564i −0.0268264 + 0.00820901i
\(681\) 15673.7 0.881962
\(682\) 28553.9i 1.60320i
\(683\) −3467.32 + 3467.32i −0.194251 + 0.194251i −0.797530 0.603279i \(-0.793860\pi\)
0.603279 + 0.797530i \(0.293860\pi\)
\(684\) −4215.40 −0.235643
\(685\) −676.952 + 676.952i −0.0377591 + 0.0377591i
\(686\) 8791.74 + 8791.74i 0.489315 + 0.489315i
\(687\) 3984.91 + 3984.91i 0.221301 + 0.221301i
\(688\) 3115.44i 0.172638i
\(689\) 1497.76i 0.0828160i
\(690\) −702.477 702.477i −0.0387577 0.0387577i
\(691\) −1652.39 1652.39i −0.0909692 0.0909692i 0.660158 0.751127i \(-0.270489\pi\)
−0.751127 + 0.660158i \(0.770489\pi\)
\(692\) −9420.28 + 9420.28i −0.517493 + 0.517493i
\(693\) 10159.5 0.556895
\(694\) 5337.71 5337.71i 0.291955 0.291955i
\(695\) 620.863i 0.0338858i
\(696\) 3142.01 0.171117
\(697\) −32207.1 + 9855.54i −1.75026 + 0.535589i
\(698\) 1058.38 0.0573930
\(699\) 4981.49i 0.269552i
\(700\) 6637.75 6637.75i 0.358405 0.358405i
\(701\) 11924.7 0.642498 0.321249 0.946995i \(-0.395897\pi\)
0.321249 + 0.946995i \(0.395897\pi\)
\(702\) 1400.37 1400.37i 0.0752900 0.0752900i
\(703\) 1169.28 + 1169.28i 0.0627316 + 0.0627316i
\(704\) −2703.88 2703.88i −0.144753 0.144753i
\(705\) 107.110i 0.00572198i
\(706\) 7558.78i 0.402944i
\(707\) 10674.0 + 10674.0i 0.567804 + 0.567804i
\(708\) 3798.47 + 3798.47i 0.201631 + 0.201631i
\(709\) −5684.64 + 5684.64i −0.301116 + 0.301116i −0.841450 0.540334i \(-0.818298\pi\)
0.540334 + 0.841450i \(0.318298\pi\)
\(710\) −1078.89 −0.0570282
\(711\) 8488.91 8488.91i 0.447762 0.447762i
\(712\) 6571.27i 0.345883i
\(713\) −44597.4 −2.34248
\(714\) 7016.59 + 3728.53i 0.367772 + 0.195430i
\(715\) 1943.95 0.101678
\(716\) 14165.1i 0.739348i
\(717\) −10643.0 + 10643.0i −0.554353 + 0.554353i
\(718\) −7528.03 −0.391286
\(719\) 11496.3 11496.3i 0.596299 0.596299i −0.343027 0.939326i \(-0.611452\pi\)
0.939326 + 0.343027i \(0.111452\pi\)
\(720\) −90.3330 90.3330i −0.00467571 0.00467571i
\(721\) −789.611 789.611i −0.0407859 0.0407859i
\(722\) 13704.2i 0.706397i
\(723\) 17616.1i 0.906156i
\(724\) −4858.28 4858.28i −0.249388 0.249388i
\(725\) −11498.7 11498.7i −0.589036 0.589036i
\(726\) −9498.44 + 9498.44i −0.485565 + 0.485565i
\(727\) 32634.5 1.66485 0.832426 0.554136i \(-0.186951\pi\)
0.832426 + 0.554136i \(0.186951\pi\)
\(728\) 3919.66 3919.66i 0.199550 0.199550i
\(729\) 729.000i 0.0370370i
\(730\) −648.306 −0.0328697
\(731\) −12052.2 6404.38i −0.609804 0.324042i
\(732\) −1853.59 −0.0935938
\(733\) 30175.2i 1.52053i −0.649614 0.760264i \(-0.725070\pi\)
0.649614 0.760264i \(-0.274930\pi\)
\(734\) −10471.3 + 10471.3i −0.526568 + 0.526568i
\(735\) 37.1497 0.00186434
\(736\) 4223.11 4223.11i 0.211502 0.211502i
\(737\) −18546.5 18546.5i −0.926958 0.926958i
\(738\) −6116.07 6116.07i −0.305062 0.305062i
\(739\) 25108.8i 1.24985i −0.780684 0.624926i \(-0.785129\pi\)
0.780684 0.624926i \(-0.214871\pi\)
\(740\) 50.1138i 0.00248948i
\(741\) 9109.76 + 9109.76i 0.451627 + 0.451627i
\(742\) 1091.20 + 1091.20i 0.0539879 + 0.0539879i
\(743\) −2678.14 + 2678.14i −0.132236 + 0.132236i −0.770127 0.637891i \(-0.779807\pi\)
0.637891 + 0.770127i \(0.279807\pi\)
\(744\) −5734.88 −0.282595
\(745\) −851.476 + 851.476i −0.0418734 + 0.0418734i
\(746\) 23881.5i 1.17207i
\(747\) −4649.69 −0.227742
\(748\) −16018.4 + 4901.71i −0.783008 + 0.239605i
\(749\) 15292.3 0.746022
\(750\) 1326.54i 0.0645846i
\(751\) 25642.8 25642.8i 1.24596 1.24596i 0.288478 0.957487i \(-0.406851\pi\)
0.957487 0.288478i \(-0.0931491\pi\)
\(752\) 643.918 0.0312251
\(753\) −14635.3 + 14635.3i −0.708289 + 0.708289i
\(754\) −6790.10 6790.10i −0.327959 0.327959i
\(755\) −1105.66 1105.66i −0.0532969 0.0532969i
\(756\) 2040.48i 0.0981635i
\(757\) 19664.2i 0.944132i −0.881563 0.472066i \(-0.843508\pi\)
0.881563 0.472066i \(-0.156492\pi\)
\(758\) 12907.3 + 12907.3i 0.618489 + 0.618489i
\(759\) −23655.1 23655.1i −1.13126 1.13126i
\(760\) 587.638 587.638i 0.0280472 0.0280472i
\(761\) 9962.11 0.474542 0.237271 0.971444i \(-0.423747\pi\)
0.237271 + 0.971444i \(0.423747\pi\)
\(762\) 6386.41 6386.41i 0.303616 0.303616i
\(763\) 31252.7i 1.48286i
\(764\) −6858.27 −0.324769
\(765\) −535.153 + 163.760i −0.0252921 + 0.00773953i
\(766\) −18522.3 −0.873677
\(767\) 16417.5i 0.772882i
\(768\) 543.058 543.058i 0.0255155 0.0255155i
\(769\) −5619.91 −0.263536 −0.131768 0.991281i \(-0.542065\pi\)
−0.131768 + 0.991281i \(0.542065\pi\)
\(770\) −1416.27 + 1416.27i −0.0662840 + 0.0662840i
\(771\) −4052.42 4052.42i −0.189292 0.189292i
\(772\) −9884.18 9884.18i −0.460802 0.460802i
\(773\) 10503.4i 0.488722i 0.969684 + 0.244361i \(0.0785783\pi\)
−0.969684 + 0.244361i \(0.921422\pi\)
\(774\) 3504.87i 0.162765i
\(775\) 20987.7 + 20987.7i 0.972774 + 0.972774i
\(776\) 7516.66 + 7516.66i 0.347722 + 0.347722i
\(777\) 565.996 565.996i 0.0261325 0.0261325i
\(778\) 3709.47 0.170939
\(779\) 39786.6 39786.6i 1.82991 1.82991i
\(780\) 390.431i 0.0179227i
\(781\) −36330.4 −1.66454
\(782\) −7655.84 25018.6i −0.350092 1.14407i
\(783\) 3534.77 0.161331
\(784\) 223.334i 0.0101738i
\(785\) 40.2014 40.2014i 0.00182784 0.00182784i
\(786\) 6783.99 0.307859
\(787\) 10847.6 10847.6i 0.491327 0.491327i −0.417397 0.908724i \(-0.637058\pi\)
0.908724 + 0.417397i \(0.137058\pi\)
\(788\) −7835.31 7835.31i −0.354215 0.354215i
\(789\) 5706.34 + 5706.34i 0.257479 + 0.257479i
\(790\) 2366.75i 0.106589i
\(791\) 9083.65i 0.408315i
\(792\) −3041.86 3041.86i −0.136475 0.136475i
\(793\) 4005.73 + 4005.73i 0.179379 + 0.179379i
\(794\) −13323.6 + 13323.6i −0.595514 + 0.595514i
\(795\) −108.692 −0.00484895
\(796\) −9415.77 + 9415.77i −0.419263 + 0.419263i
\(797\) 14361.1i 0.638266i 0.947710 + 0.319133i \(0.103392\pi\)
−0.947710 + 0.319133i \(0.896608\pi\)
\(798\) −13273.8 −0.588833
\(799\) 1323.69 2491.02i 0.0586094 0.110295i
\(800\) −3974.81 −0.175664
\(801\) 7392.68i 0.326102i
\(802\) −4788.74 + 4788.74i −0.210843 + 0.210843i
\(803\) −21831.0 −0.959401
\(804\) 3724.95 3724.95i 0.163394 0.163394i
\(805\) −2212.02 2212.02i −0.0968492 0.0968492i
\(806\) 12393.5 + 12393.5i 0.541614 + 0.541614i
\(807\) 5665.98i 0.247152i
\(808\) 6391.81i 0.278296i
\(809\) 1637.58 + 1637.58i 0.0711671 + 0.0711671i 0.741794 0.670627i \(-0.233975\pi\)
−0.670627 + 0.741794i \(0.733975\pi\)
\(810\) −101.625 101.625i −0.00440830 0.00440830i
\(811\) −9288.28 + 9288.28i −0.402165 + 0.402165i −0.878995 0.476831i \(-0.841786\pi\)
0.476831 + 0.878995i \(0.341786\pi\)
\(812\) 9893.86 0.427594
\(813\) 8851.55 8851.55i 0.381842 0.381842i
\(814\) 1687.53i 0.0726631i
\(815\) −2096.32 −0.0900993
\(816\) −984.480 3217.20i −0.0422349 0.138020i
\(817\) 22800.1 0.976345
\(818\) 19641.2i 0.839531i
\(819\) 4409.62 4409.62i 0.188137 0.188137i
\(820\) 1705.19 0.0726195
\(821\) 27821.9 27821.9i 1.18269 1.18269i 0.203651 0.979043i \(-0.434719\pi\)
0.979043 0.203651i \(-0.0652809\pi\)
\(822\) −4578.36 4578.36i −0.194269 0.194269i
\(823\) 18037.7 + 18037.7i 0.763981 + 0.763981i 0.977039 0.213059i \(-0.0683426\pi\)
−0.213059 + 0.977039i \(0.568343\pi\)
\(824\) 472.834i 0.0199903i
\(825\) 22264.4i 0.939570i
\(826\) 11961.0 + 11961.0i 0.503844 + 0.503844i
\(827\) 26547.7 + 26547.7i 1.11627 + 1.11627i 0.992284 + 0.123984i \(0.0395672\pi\)
0.123984 + 0.992284i \(0.460433\pi\)
\(828\) 4751.00 4751.00i 0.199406 0.199406i
\(829\) 14101.2 0.590778 0.295389 0.955377i \(-0.404551\pi\)
0.295389 + 0.955377i \(0.404551\pi\)
\(830\) 648.180 648.180i 0.0271068 0.0271068i
\(831\) 2221.71i 0.0927439i
\(832\) −2347.17 −0.0978046
\(833\) 863.977 + 459.106i 0.0359364 + 0.0190961i
\(834\) 4199.02 0.174341
\(835\) 1924.81i 0.0797734i
\(836\) 19788.1 19788.1i 0.818642 0.818642i
\(837\) −6451.74 −0.266433
\(838\) −14006.4 + 14006.4i −0.577379 + 0.577379i
\(839\) 25296.6 + 25296.6i 1.04093 + 1.04093i 0.999126 + 0.0418004i \(0.0133094\pi\)
0.0418004 + 0.999126i \(0.486691\pi\)
\(840\) −284.449 284.449i −0.0116838 0.0116838i
\(841\) 7249.68i 0.297252i
\(842\) 9278.70i 0.379769i
\(843\) −689.547 689.547i −0.0281723 0.0281723i
\(844\) 10949.1 + 10949.1i 0.446546 + 0.446546i
\(845\) −534.457 + 534.457i −0.0217584 + 0.0217584i
\(846\) 724.407 0.0294393
\(847\) −29909.5 + 29909.5i −1.21335 + 1.21335i
\(848\) 653.429i 0.0264609i
\(849\) 14481.2 0.585389
\(850\) −8170.98 + 15376.7i −0.329720 + 0.620490i
\(851\) −2635.70 −0.106170
\(852\) 7296.75i 0.293407i
\(853\) 2228.52 2228.52i 0.0894527 0.0894527i −0.660964 0.750417i \(-0.729853\pi\)
0.750417 + 0.660964i \(0.229853\pi\)
\(854\) −5836.75 −0.233875
\(855\) 661.093 661.093i 0.0264432 0.0264432i
\(856\) −4578.68 4578.68i −0.182823 0.182823i
\(857\) −16676.2 16676.2i −0.664701 0.664701i 0.291784 0.956484i \(-0.405751\pi\)
−0.956484 + 0.291784i \(0.905751\pi\)
\(858\) 13147.3i 0.523127i
\(859\) 36967.7i 1.46836i −0.678954 0.734181i \(-0.737567\pi\)
0.678954 0.734181i \(-0.262433\pi\)
\(860\) 488.589 + 488.589i 0.0193730 + 0.0193730i
\(861\) −19258.8 19258.8i −0.762299 0.762299i
\(862\) −3579.81 + 3579.81i −0.141449 + 0.141449i
\(863\) 46451.4 1.83224 0.916120 0.400905i \(-0.131304\pi\)
0.916120 + 0.400905i \(0.131304\pi\)
\(864\) 610.940 610.940i 0.0240563 0.0240563i
\(865\) 2954.73i 0.116143i
\(866\) −14253.4 −0.559295
\(867\) −14469.6 2805.06i −0.566798 0.109879i
\(868\) −18058.5 −0.706158
\(869\) 79697.8i 3.11112i
\(870\) −492.756 + 492.756i −0.0192023 + 0.0192023i
\(871\) −16099.7 −0.626313
\(872\) −9357.36 + 9357.36i −0.363395 + 0.363395i
\(873\) 8456.24 + 8456.24i 0.327835 + 0.327835i
\(874\) 30906.4 + 30906.4i 1.19614 + 1.19614i
\(875\) 4177.13i 0.161386i
\(876\) 4384.63i 0.169113i
\(877\) −20316.0 20316.0i −0.782237 0.782237i 0.197971 0.980208i \(-0.436565\pi\)
−0.980208 + 0.197971i \(0.936565\pi\)
\(878\) −22985.3 22985.3i −0.883506 0.883506i
\(879\) −2202.21 + 2202.21i −0.0845038 + 0.0845038i
\(880\) 848.088 0.0324875
\(881\) −18664.0 + 18664.0i −0.713743 + 0.713743i −0.967316 0.253574i \(-0.918394\pi\)
0.253574 + 0.967316i \(0.418394\pi\)
\(882\) 251.251i 0.00959191i
\(883\) −29247.0 −1.11466 −0.557328 0.830293i \(-0.688173\pi\)
−0.557328 + 0.830293i \(0.688173\pi\)
\(884\) −4825.05 + 9080.10i −0.183579 + 0.345472i
\(885\) −1191.41 −0.0452530
\(886\) 18166.1i 0.688828i
\(887\) 25818.9 25818.9i 0.977353 0.977353i −0.0223957 0.999749i \(-0.507129\pi\)
0.999749 + 0.0223957i \(0.00712937\pi\)
\(888\) −338.930 −0.0128083
\(889\) 20110.1 20110.1i 0.758686 0.758686i
\(890\) −1030.56 1030.56i −0.0388140 0.0388140i
\(891\) −3422.10 3422.10i −0.128669 0.128669i
\(892\) 21177.4i 0.794925i
\(893\) 4712.45i 0.176591i
\(894\) −5758.71 5758.71i −0.215436 0.215436i
\(895\) 2221.48 + 2221.48i 0.0829674 + 0.0829674i
\(896\) 1710.03 1710.03i 0.0637590 0.0637590i
\(897\) −20534.4 −0.764353
\(898\) 2574.92 2574.92i 0.0956864 0.0956864i
\(899\) 31283.1i 1.16057i
\(900\) −4471.67 −0.165617
\(901\) −2527.81 1343.25i −0.0934669 0.0496671i
\(902\) 57420.5 2.11962
\(903\) 11036.5i 0.406723i
\(904\) 2719.73 2719.73i 0.100063 0.100063i
\(905\) 1523.83 0.0559711
\(906\) 7477.81 7477.81i 0.274209 0.274209i
\(907\) 3588.37 + 3588.37i 0.131367 + 0.131367i 0.769733 0.638366i \(-0.220389\pi\)
−0.638366 + 0.769733i \(0.720389\pi\)
\(908\) −14777.3 14777.3i −0.540089 0.540089i
\(909\) 7190.79i 0.262380i
\(910\) 1229.42i 0.0447858i
\(911\) −924.244 924.244i −0.0336131 0.0336131i 0.690100 0.723714i \(-0.257566\pi\)
−0.723714 + 0.690100i \(0.757566\pi\)
\(912\) 3974.32 + 3974.32i 0.144301 + 0.144301i
\(913\) 21826.7 21826.7i 0.791193 0.791193i
\(914\) 33171.8 1.20047
\(915\) 290.695 290.695i 0.0105028 0.0105028i
\(916\) 7514.02i 0.271037i
\(917\) 21362.0 0.769287
\(918\) −1107.54 3619.35i −0.0398194 0.130127i
\(919\) −34616.0 −1.24252 −0.621260 0.783605i \(-0.713379\pi\)
−0.621260 + 0.783605i \(0.713379\pi\)
\(920\) 1324.60i 0.0474684i
\(921\) −14291.6 + 14291.6i −0.511319 + 0.511319i
\(922\) 14715.9 0.525642
\(923\) −15768.8 + 15768.8i −0.562335 + 0.562335i
\(924\) −9578.49 9578.49i −0.341027 0.341027i
\(925\) 1240.37 + 1240.37i 0.0440897 + 0.0440897i
\(926\) 28264.1i 1.00304i
\(927\) 531.939i 0.0188470i
\(928\) −2962.32 2962.32i −0.104788 0.104788i
\(929\) 8614.76 + 8614.76i 0.304242 + 0.304242i 0.842671 0.538429i \(-0.180982\pi\)
−0.538429 + 0.842671i \(0.680982\pi\)
\(930\) 899.389 899.389i 0.0317120 0.0317120i
\(931\) −1634.45 −0.0575370
\(932\) −4696.59 + 4696.59i −0.165066 + 0.165066i
\(933\) 14242.9i 0.499776i
\(934\) 7614.02 0.266743
\(935\) 1743.40 3280.86i 0.0609791 0.114755i
\(936\) −2640.57 −0.0922111
\(937\) 37258.1i 1.29901i 0.760359 + 0.649503i \(0.225023\pi\)
−0.760359 + 0.649503i \(0.774977\pi\)
\(938\) 11729.5 11729.5i 0.408295 0.408295i
\(939\) 18086.8 0.628583
\(940\) −100.984 + 100.984i −0.00350398 + 0.00350398i
\(941\) −22818.6 22818.6i −0.790505 0.790505i 0.191071 0.981576i \(-0.438804\pi\)
−0.981576 + 0.191071i \(0.938804\pi\)
\(942\) 271.891 + 271.891i 0.00940411 + 0.00940411i
\(943\) 89683.4i 3.09702i
\(944\) 7162.46i 0.246947i
\(945\) −320.005 320.005i −0.0110156 0.0110156i
\(946\) 16452.7 + 16452.7i 0.565458 + 0.565458i
\(947\) 19534.7 19534.7i 0.670318 0.670318i −0.287471 0.957789i \(-0.592814\pi\)
0.957789 + 0.287471i \(0.0928145\pi\)
\(948\) −16006.8 −0.548394
\(949\) −9475.47 + 9475.47i −0.324117 + 0.324117i
\(950\) 29089.3i 0.993454i
\(951\) −21025.7 −0.716935
\(952\) −3100.02 10130.6i −0.105538 0.344889i
\(953\) 34202.3 1.16256 0.581281 0.813703i \(-0.302552\pi\)
0.581281 + 0.813703i \(0.302552\pi\)
\(954\) 735.108i 0.0249476i
\(955\) 1075.57 1075.57i 0.0364446 0.0364446i
\(956\) 20068.7 0.678941
\(957\) −16593.0 + 16593.0i −0.560476 + 0.560476i
\(958\) −19867.8 19867.8i −0.670041 0.670041i
\(959\) −14416.8 14416.8i −0.485445 0.485445i
\(960\) 170.333i 0.00572655i
\(961\) 27307.6i 0.916640i
\(962\) 732.449 + 732.449i 0.0245479 + 0.0245479i
\(963\) −5151.02 5151.02i −0.172367 0.172367i
\(964\) 16608.6 16608.6i 0.554905 0.554905i
\(965\) 3100.23 0.103420
\(966\) 14960.4 14960.4i 0.498284 0.498284i
\(967\) 12249.7i 0.407367i 0.979037 + 0.203684i \(0.0652914\pi\)
−0.979037 + 0.203684i \(0.934709\pi\)
\(968\) 17910.4 0.594693
\(969\) 23544.7 7204.82i 0.780564 0.238857i
\(970\) −2357.64 −0.0780406
\(971\) 10482.5i 0.346445i −0.984883 0.173222i \(-0.944582\pi\)
0.984883 0.173222i \(-0.0554180\pi\)
\(972\) 687.308 687.308i 0.0226805 0.0226805i
\(973\) 13222.3 0.435649
\(974\) 7208.28 7208.28i 0.237134 0.237134i
\(975\) 9663.57 + 9663.57i 0.317417 + 0.317417i
\(976\) 1747.58 + 1747.58i 0.0573143 + 0.0573143i
\(977\) 47676.1i 1.56120i −0.625031 0.780600i \(-0.714914\pi\)
0.625031 0.780600i \(-0.285086\pi\)
\(978\) 14177.8i 0.463556i
\(979\) −34703.0 34703.0i −1.13290 1.13290i
\(980\) −35.0251 35.0251i −0.00114167 0.00114167i
\(981\) −10527.0 + 10527.0i −0.342612 + 0.342612i
\(982\) −12781.8 −0.415361
\(983\) −26910.2 + 26910.2i −0.873145 + 0.873145i −0.992814 0.119669i \(-0.961817\pi\)
0.119669 + 0.992814i \(0.461817\pi\)
\(984\) 11532.6i 0.373623i
\(985\) 2457.59 0.0794979
\(986\) −17549.4 + 5370.22i −0.566823 + 0.173451i
\(987\) 2281.08 0.0735639
\(988\) 17177.5i 0.553128i
\(989\) −25697.0 + 25697.0i −0.826205 + 0.826205i
\(990\) 954.099 0.0306295
\(991\) −17817.0 + 17817.0i −0.571116 + 0.571116i −0.932440 0.361325i \(-0.882325\pi\)
0.361325 + 0.932440i \(0.382325\pi\)
\(992\) 5406.89 + 5406.89i 0.173053 + 0.173053i
\(993\) −11704.5 11704.5i −0.374048 0.374048i
\(994\) 22976.7i 0.733175i
\(995\) 2953.31i 0.0940968i
\(996\) 4383.77 + 4383.77i 0.139463 + 0.139463i
\(997\) 9887.89 + 9887.89i 0.314095 + 0.314095i 0.846494 0.532399i \(-0.178709\pi\)
−0.532399 + 0.846494i \(0.678709\pi\)
\(998\) −7367.43 + 7367.43i −0.233679 + 0.233679i
\(999\) −381.296 −0.0120757
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 102.4.f.c.55.5 yes 12
3.2 odd 2 306.4.g.g.55.4 12
17.8 even 8 1734.4.a.bd.1.4 6
17.9 even 8 1734.4.a.be.1.3 6
17.13 even 4 inner 102.4.f.c.13.5 12
51.47 odd 4 306.4.g.g.217.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
102.4.f.c.13.5 12 17.13 even 4 inner
102.4.f.c.55.5 yes 12 1.1 even 1 trivial
306.4.g.g.55.4 12 3.2 odd 2
306.4.g.g.217.4 12 51.47 odd 4
1734.4.a.bd.1.4 6 17.8 even 8
1734.4.a.be.1.3 6 17.9 even 8