Properties

Label 1734.4.a.h
Level $1734$
Weight $4$
Character orbit 1734.a
Self dual yes
Analytic conductor $102.309$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1734,4,Mod(1,1734)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1734, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1734.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1734 = 2 \cdot 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1734.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(102.309311950\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{15}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 15 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 102)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 4\sqrt{15}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 q^{2} - 3 q^{3} + 4 q^{4} + (\beta - 6) q^{5} + 6 q^{6} + ( - \beta - 8) q^{7} - 8 q^{8} + 9 q^{9} + ( - 2 \beta + 12) q^{10} + ( - 2 \beta + 12) q^{11} - 12 q^{12} + ( - 2 \beta + 38) q^{13} + (2 \beta + 16) q^{14}+ \cdots + ( - 18 \beta + 108) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{2} - 6 q^{3} + 8 q^{4} - 12 q^{5} + 12 q^{6} - 16 q^{7} - 16 q^{8} + 18 q^{9} + 24 q^{10} + 24 q^{11} - 24 q^{12} + 76 q^{13} + 32 q^{14} + 36 q^{15} + 32 q^{16} - 36 q^{18} + 232 q^{19} - 48 q^{20}+ \cdots + 216 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−3.87298
3.87298
−2.00000 −3.00000 4.00000 −21.4919 6.00000 7.49193 −8.00000 9.00000 42.9839
1.2 −2.00000 −3.00000 4.00000 9.49193 6.00000 −23.4919 −8.00000 9.00000 −18.9839
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1734.4.a.h 2
17.b even 2 1 102.4.a.e 2
51.c odd 2 1 306.4.a.k 2
68.d odd 2 1 816.4.a.l 2
204.h even 2 1 2448.4.a.t 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
102.4.a.e 2 17.b even 2 1
306.4.a.k 2 51.c odd 2 1
816.4.a.l 2 68.d odd 2 1
1734.4.a.h 2 1.a even 1 1 trivial
2448.4.a.t 2 204.h even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1734))\):

\( T_{5}^{2} + 12T_{5} - 204 \) Copy content Toggle raw display
\( T_{7}^{2} + 16T_{7} - 176 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 2)^{2} \) Copy content Toggle raw display
$3$ \( (T + 3)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 12T - 204 \) Copy content Toggle raw display
$7$ \( T^{2} + 16T - 176 \) Copy content Toggle raw display
$11$ \( T^{2} - 24T - 816 \) Copy content Toggle raw display
$13$ \( T^{2} - 76T + 484 \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} - 232T + 12496 \) Copy content Toggle raw display
$23$ \( T^{2} - 29040 \) Copy content Toggle raw display
$29$ \( T^{2} + 60T - 5100 \) Copy content Toggle raw display
$31$ \( T^{2} + 160T + 4240 \) Copy content Toggle raw display
$37$ \( T^{2} - 356T + 2644 \) Copy content Toggle raw display
$41$ \( T^{2} - 588T + 51876 \) Copy content Toggle raw display
$43$ \( T^{2} + 200T - 24560 \) Copy content Toggle raw display
$47$ \( T^{2} + 192T - 153024 \) Copy content Toggle raw display
$53$ \( T^{2} + 84T - 160476 \) Copy content Toggle raw display
$59$ \( T^{2} + 360T - 14640 \) Copy content Toggle raw display
$61$ \( T^{2} - 212T - 219404 \) Copy content Toggle raw display
$67$ \( T^{2} - 136T - 111536 \) Copy content Toggle raw display
$71$ \( T^{2} - 768T - 113904 \) Copy content Toggle raw display
$73$ \( T^{2} + 52T - 552284 \) Copy content Toggle raw display
$79$ \( T^{2} - 224T - 473456 \) Copy content Toggle raw display
$83$ \( T^{2} - 360T - 245040 \) Copy content Toggle raw display
$89$ \( T^{2} + 588T - 9564 \) Copy content Toggle raw display
$97$ \( T^{2} + 388T - 769724 \) Copy content Toggle raw display
show more
show less